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Abstract

As industry and academia become increasingly automated, the need for cost-

effective, scalable indoor positioning algorithms increases. Current approaches,

in the new research field of Visible Light Positioning (VLP), utilize modulated

Light-Emitting Diodes (LEDs) for localization. In these works, luminous in-

tensity levels of LEDs are varied rapidly, and the received light levels are used

to find the position of a receiver. In this paper, we propose an alternative po-

sitioning technique that utilizes visible light, but with unmodified LEDs. Our

proposal includes a rudimentary approach, as well as a proof of concept for

a cost-effective, easily replicable and robust technique for indoor localization.

We leverage the inherent manufacturing variations in LED bulbs, that result

in uniquely identifiable light emission, to localize two-dimensional position

directly through a simple multiple output regression neural network trained

on light samples taken in the target environment, eliminating the need for

component decomposition, hardware modification, or triangulation.
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Chapter 1

Introduction

As industry becomes increasingly automated, the need for free-motion indoor navigation

becomes more apparent. Take, for instance, a commercial warehouse setting. To auto-

mate the organization of product within the warehouse, physical tracks with sensors are

commonplace [1]. Such approaches can prove to be costly and rigid. The benefit of Vis-

ible Light Positioning (VLP) is that it is both less expensive and allows for free-motion

navigation. That is, the robot need not be attached to a physical track to interpret its

location. As will be addressed in this chapter, procedures for VLP have been previously

proposed, however, they require prior knowledge regarding the system. For that reason,

custom LED’s and rigs were used. The novelty of our technique is that no customization

is necessary; stock LED bulbs, sockets, wiring and power can be used for positioning.

Thus, our system proves more cost effective, scalable and less invasive.

1.1 Previous Works

Three competing approaches will be analyzed for their efficacy in localization.

In [2], a procedure was designed to track the one-dimensional distance from LED to

sensor within an accuracy of 3 centimeters. The distance was calculated using the prior

known LED transmission signal s(t) and the channel attenuation α(t), which was gathered

via an initial calibration. For clarity, α(t) represents the effect of the medium, through

which the light travels between the bulb and the sensor, on the light itself. A stock

LED was used for light emission. To have the LED emit a unique signal s(t), however,

a custom driver was designed to output said signal through the LED. More specifically,
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1.1 Previous Works

their driver utilizes pulse width modulation (PWM) to generate this signal. To implement

such a procedure for two or three dimensional triangulation, a minimum of three to four

custom drivers would need to be incorporated and each of them must be in the cameras

field of vision. An algorithm would also need to be designed to decompose the various

signals before triangulation. Extrapolated to a warehouse environment, this approach is

unfeasible. A less invasive, and more cost effective approach would be necessary.

A similar procedure was designed in [3] for active positioning of a robot. An LED-

ID approach was implemented, wherein the on-off state of each bulb was manipulated

in such a way to to create an identifiable ID. A CMOS (complementary metal oxide

semiconductor) image sensor was used for photo detection. The procedure exploits the

rolling shutter effect of the sensor to identify the unique on-off frequencies of the LEDs.

The position of the robot was then triangulated using the understood absolute locations

of the LEDs and their phase offsets. This architecture has accuracy under 3 centimeters

as well. Once again, the light emitted by the LEDs was modified to allow for unique

identification and triangulation. For the reasons mentioned before, this procedure is

expensive and invasive when scaled to a larger environment.

A different approach was taken in [4]. In this work, the characteristic frequency (CF)

of each LED is identified and used to triangulate the location of the sensor. Each LED first

undergoes a process to identify its unique CF. Then, these character frequencies are used

to isolate the individual LED contributions from the composite light intensity reading

and triangulate the two-dimensional location of the sensor. This approach resulted in

an accuracy between 10-30 centimeters. The advantage to such an architecture is that

no system modifications are necessary. Instead, each bulb in use must be analyzed prior

to use for triangulation. In practice, this may prove inefficient. Consider a warehouse

setting once again; sufficiently many pre-analyzed LEDs would need to be detectable

from every location for accurate results. Thus the environment must be engineered to

account for this. Moreover, the larger the warehouse and the more inventory present, the

more pre-analyzed bulbs would be necessary overall. A practical system would require

initial analysis for each bulb of first use and for every subsequent replacement bulb in

continuous use. Though this approach may not be directly invasive, the warehouse must

be designed with foresight and the LEDs must undergo extensive prior analysis, which is

expensive, both in time and money.
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1.2 Proposal

1.2 Proposal

Our proposal is two-fold. We propose a proof of concept for the uniquely identifiable

nature of individual LED light emission, as well as a VLP positioning architecture using

unmodified LEDs without the need for triangulation or component analysis. In this work,

we first analyze a simple multi-bulb system to provide the basis for our proof, highlight-

ing the distinct way in which two LEDs emit light. Next, our designed environment and

sampling procedure are explained. Two machine learning models were then employed for

localization: a classification model trained on discrete locations and a multiple output re-

gression model trained on continuous x and y coordinates. The results of our classification

model conclude the proof for uniquely identifiable LED light emission, while the results

of our regression model enable our proposal for a new approach to VLP. We received a

consistent classification accuracy above 90% and a worst-case sub-16cm regression loss.

The novelty of our procedure is that any LED can be deployed directly from its

packaging into any multi-bulb system. No prior analysis or modifications to anything

in the system is necessary for positioning, making our approach both cost and time

efficient. Furthermore, it does not require component decomposition from the observed

light intensity. Rather, the system is calibrated to recognize the unique light levels at

various locations, which it uses to derive an understanding of the environment as a whole.

More specifically, we exploit the excitation of the LED by the rectified power supply, which

is distinct at each location. Note: to the best of our knowledge, this work is the first time

that this physical effect has been used in VLP. We use the regression model to bypass the

need for triangulation, making it robust to positionally-dependent occlusion. Thus, our

approach can adapt to any LED-lit environment without the need for customization or

triangulation, making it increasingly cost effective, time efficient and robust to occlusion.
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Chapter 2

Methods

We hypothesize that two, unmodified, LEDs which were manufactured from the same

litter, emit light with sufficient variation to be uniquely identifiable, thus allowing for

localization.

2.1 Mathematical Basis

Consider two LED light bulbs: bulb A and bulb B. Let both bulbs be manufactured in

the same process and neither be externally modified. We hypothesize that the inherent

manufacturing variability, due to the presence of microscopic impurities that affect crystal

growth, variation in environmental conditions during manufacturing, etc. [5], would lead

to sufficient variation in the way they emit light levels at high frequencies which are

imperceptible to the human eye but can be detected using an electronic photodetector.

Allow xa(t) and xb(t) to represent the light intensities just outside of each, respectively.

We have the full-wave rectified power from the outlet, the signal x(t), which is defined as

follows:

x(t) = V |sin(2πfpt)| . (2.1)

In North America, fp = 60 Hz and V = 120 V. Since x(t) is periodic with fundamental

frequency f0 = 2fp, it can be expressed in terms of a Fourier Series expansion as:

x(t) =
∞∑

k=−∞

cke
2πjkf0t (2.2)
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2.1 Mathematical Basis

Note that f0 = 1/T0, where T0 is the fundamental period. The Fourier Series coeffi-

cients in this expansion are known (e.g. see Equation 3.34 of [6]) to be

ck =
2

π(1− 4k2)
(2.3)

Let bulb A be represented by the filter Ha(f) and bulb B be represented by the filter

Hb(f). We model the electronics following the rectifier and the LEDs in the light-bulbs as

linear-time-invariant (LTI) systems. We do this under the assumption that such a system

is essentially constant, but note the possibility of a transient period before the bulb is

sufficiently warm as well as long-term aging of the bulb, which would affect the transfer

functions in practice. The LTI systems are described by the following block diagrams:

Figure 2.1 Modeling Light Bulbs as Filters

Since we can express x(t) as a sum of exponentials we have

xa(t) =
∞∑

k=−∞

Ha(kf0)cke
2πjkf0t (2.4)

xb(t) =
∞∑

k=−∞

Hb(kf0)cke
2πjkf0t (2.5)

Furthermore, the corresponding Fourier transforms of these signals are

Xa(f) =
∞∑

k=−∞

Ha(kf0)ckδ(f − kf0) (2.6)

Xb(f) =
∞∑

k=−∞

Hb(kf0)ckδ(f − kf0) (2.7)

where δ(f − f ′) is a unit impulse at f = f ′. Hence, Xa(f) and Xb(f) are a series of

impulses separated by f0 with different “heights”, where the “height” of the k-th impulse

of lightbub j is Hj(kf0)ck, for j ∈ {a, b}.
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2.1 Mathematical Basis

Figure 2.2 Light Collected from Bulb Z

Consider the case of a single bulb system wherein arbitrary bulb Z is placed directly

above a photodetector. Let yz(t) represent the light collected from bulb Z (xz(t)) and let

h denote the distance between the photodetector and said bulb. This scenario is depicted

in Fig. 2.2.

We can approximate |Yz(f)|2 using the Welch’s Periodogram approach (pwelch in

MATLAB).

We propose, then, that due to the manufacturing variability of the bulbs, the power

spectral density estimates E[|Ya(f)|2] and E[|Yb(f)|2] sampled from bulb A and bulb B,

respectively, would exhibit uniquely identifiable patterns and, similarly, xa(t) and xb(t)

would be distinct. Here, E[·] denotes the expectation operator. We suspect this variation

can be isolated through the series of unit impulses within the respective power spectral

densities E[|Y (f)|2]’s.

We can extrapolate this instance to a multi-bulb environment. Consider the 2-

dimensional system in Fig. 2.3. In this instance, the photodetector receives input light

intensity from both xa(t) and xb(t). The received light intensity at said photodetector is

the sum of the two light intensity functions after a gain dependent on distance and angle

as follows:

y(t) = G(ra, α)xa(t) +G(rb, β)xb(t) + n(t) (2.8)

where G(r, θ) is the gain between a lightbulb and a photodetector at distance r and angle

θ from the vertical. The noise at the photodetector is denoted by n(t).

Since xa(t) and xb(t) are distinct, each y(t) at any 2-dimensional distance d from bulb
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2.2 Experimental Basis

Figure 2.3 2-D VLP Setup for 1D positioning

Figure 2.4 Sampling Under Single LED

A will also be uniquely identifiable. That is, each yd(t) will be distinct for all d from

bulb A due to the unique combination of G(ra, α), xa(t), G(rb, β), xb(t) at that location.

Therefore, position can be obtained through sampled y(t) and known yd(t) for locations

d.

2.2 Experimental Basis

An experiment was designed to test our hypothesis. Two Sylvania 75W LED bulbs were

selected from the same packaging. Denote them Bulb-A and Bulb-B.

First, light was sampled from directly underneath each bulb individually. No other

7



2.2 Experimental Basis

Figure 2.5 Plot of E[|Y1(f)|2] in units of dBm (decibles relative to a mW).

Figure 2.6 Plot of E[|Y2(f)|2] in units of dBm (decibles relative to a mW)

light in the room was present at the time of sampling. Thorlab’s PDA8A2-Si Fixed Gain

Detector and Measurement Computing’s USB-231 Data Acquisition Module (Analog-to-

Digital Converter) were used for the data acquisition. Unmodified voltage from a wall

power supply, as described in section 2.1, was used to power the bulb. The bulb was

positioned 35cm above the desk. A photo of the system can be seen in Fig. 2.4. Note:

each bulb was sufficiently heated before sampling took place, by leaving the bulb on for

10 minutes before collecting data.

Once again, first consider the single bulb system consisting of a single bulb placed

directly above the photodetector with no additional environmental light. Let y1(t) denote

the light sampled from under Bulb-A and y2(t) denote the light sampled from under Bulb-

B. Matlab’s pwelch function was performed on both y1(t) and y2(t) to yield the power

spectral densities E[|Y1(f)|2] and E[|Y2(f)|2]. Plots depicting these densities are displayed

in Fig. 2.5 and Fig. 2.6.

Now, consider the two dimensional system depicted in Fig. 2.3. A physical system

was designed to implement such. The two bulbs were placed 80cm apart, dAB = 80cm,

8



2.2 Experimental Basis

Figure 2.7 Sampling with Sensor 65cm from Bulb-A

Figure 2.8 Plot of E[|Y ′
1(f)|2] in units of dBm (decibles relative to a mW)

and set to a height of 35cm above the desk, h = 35cm. With respect to the orientation

of Fig. 2.3, Bulb-A was placed in the rig on the left and Bulb-B was placed in the rig on

the right. Light was sampled from two positions: 15cm horizontally from Bulb-A, and

65cm horizontally from Bulb-A (always between the two lights): i.e., d would be 15cm

and 65cm, respectively. A photo of the system described in the latter can be seen in Fig.

2.7.

Let y′1(t) denote the light sampled 15cm from Bulb-A and y′2(t) denote the light

sampled 15cm from Bulb-A. Again, Matlab’s pwelch function was performed to yield

E[|Y ′
1(f)|2] and E[|Y ′

2(f)|2]. Plots depicting these densities are displayed in Fig. 2.8 and

Fig. 2.9.
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2.2 Experimental Basis

Figure 2.9 Plot of E[|Y ′
2(f)|2] in units of dBm (decibles relative to a mW)

For reference, the first major peak (located at the first index) is the average power

output of the sample. The repeating peaks following the initial peak are periodic with

fundamental period of 120hz. That is, they are located at 120hz, 240hz, 360hz etc. Note:

this is due to the full-wave rectification of the 60hz AC power input, which leads to a

120hz voltage fed to the LEDs.

Per Fig. 2.5, we can categorize E[|Y1(f)|2] by its limited prominent peaks and small,

right-oriented bumps centered around 1750hz and 2500hz. Similarly, per 2.6 we can

categorize E[|Y1(f)|2] by the continuity of prominent peaks and larger, middle-oriented

bumps centered around 1300hz and 2300hz.

Let Pyα denote the power spectral density output, E[|Yα(f)|2], of arbitrary yα. We

can visually deduce through Figs. 2.5, 2.8 and 2.6, 2.9, Py1 and Py′1
display distinct

similarities, whereas Py2 and Py′2
do. Qualitatively, the harmonic peaks in Py1 and Py′1

lose their prominence after the 6th peak, whereas those in Py2 and Py′2
continue to have

visible prominence through subsequent repetitions.

For a quantitative analysis, some notation must be defined. Consider the estimated

power spectral density output of the frequencies harmonic about 120hz, in addition to the

output at the 0th element: i.e., the peaks at 0hz, 120hz, 240hz, 360hz... etc. Denote the

first x harmonic peaks of arbitrary Pα to be P x
α . Eg., P

15
y1

would be the set E[|Y1(f)|2] for

f ∈ (0hz, 120hz, 240hz, ..., 1800hz). Denote the element-wise mean absolute difference of

the two sets P x
α and P x

β to be Dx
α,β. From the data sampled, we have D15

y1,y′1
= 0.425,

D15
y2,y′2

= 0.465 and D15
y1,y′2

= 3.77, D15
y′1,y2

= 3.654, and D15
y1,y2

= 3.75. We can then quan-

titatively deduce the similarities between Py1 and Py′1
as well as Py2 and Py′2

. Moreover,

these calculations provide evidence for the overall dissimilarity between Py1 and Py2 .
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2.2 Experimental Basis

This experiment provides us with a basis for the claim that two similarly manufac-

tured LED’s emit uniquely identifiable light and could be used for multi-dimensional

positioning.
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Chapter 3

Experiment

To simulate a warehouse environment, a PVC pipe frame was constructed in lieu of a

warehouse ceiling. The frame contains nine LEDs in a 3x3 grid. Twenty-one locations

beneath the frame were selected for sampling. Five instances of 10 minute samples were

taken at each location and divided and preprocessed for feature extraction. Features were

fed into both a classification algorithm, targeting the discrete locations, and a multiple

output regression model, targeting the location’s corresponding x and y coordinates. This

chapter will discuss the creation of the frame, location selection and sampling process,

preprocessing of the data, feature selection and model architectures.

3.1 LED Frame Construction

A frame was designed and constructed to emulate the ceiling of a warehouse. The bulbs

were established to have 1 meter separation from the floor (Note: the shallow height

was selected to account for use of a low-sensitivity photodetector. A higher-sensitivity

photodetector would be necessary in an actual warehouse setting).

The materials for construction are as follows: 30 meters of 1-1/4in. PVC Pipes; 13x

1-1/4in Furniture Grade PVC 5-Way Cross; 12x 1-1/4in PVC Schedule 40 S x S x S Tee;

8x 1-1/4in Furniture Grade PVC 3-Way Elbow; 1x 1-1/4in Ratcheting PVC Cutter; 9x

Sylvania 75W A19 LED Bulbs; 9x A19 non-polarized sockets; 9x non-polarized extension

cords; Electrical Tape.

Before construction, the 1-1/4in PVC Pipes were cut into 40x 45.5 centimeter pieces

and 8x 112 centimeter pieces. The 45.5cm cuts were assembled into a 5x5 grid and the

12



3.2 Location Selection and Sampling

Figure 3.1 Light Frame

112cm cuts were used as the legs. 9x 1-1/4in Furniture Grade PVC 5-Way Cross were

placed in the 9 central points of the grid for the LEDs to be suspended from. The other 4x

1/4in Furniture Grade PVC 5-Way Cross were placed on the perimeter, with one opening

unfilled to allow for internal wiring. The bulbs and sockets were fastened with electrical

tape. A distance of 1 meter was maintained from the ground to the tip of each bulb and

50cm was maintained between the tips of adjacent bulbs. An image of the frame can be

seen in Fig. 3.1.

3.2 Location Selection and Sampling

Twenty-one locations were selected for sampling: the locations directly below each light as

well as the intermediary points between them. 25 centimeters separate adjacent locations.

A photo of the tape marking these points can be seen in Fig. 3.1. The points were

subsequently denoted location1, location2, ..., location21 and assigned corresponding x

and y coordinates as described in Fig. 3.2. For reference, Fig. 3.2 is oriented with respect

to the perspective in Fig. 3.1.

Sampling was done on four occasions. Attempts were made to assure consistency over

different sessions. The same room was used for each and the frame position and sample

13



3.2 Location Selection and Sampling

Figure 3.2 Location Coordinates and Position

locations were marked for identical orientation. The room was isolated from external

light and held to a temperature within a degree of 67◦F. On three consecutive days, 10

minute samples were taken at each location. A combined 630 minutes of sampling was

gathered from these days. Two months later, two installments of 10 minute samples were

taken at each location on a single day. A combined 420 minutes of sampling was gathered

on this day.

Data was collected using Thorlab’s PDA8A2-Si Fixed Gain Detector and Measure-

ment Computing’s USB-231 Data Acquisition Module (Analog-to-Digital Converter).

The sampling process was as follows: the photodetector was placed on the floor, with the

sensor positioned at the intended location. The sample rate was set to 6000samples/sec

and 3.7 million samples were taken before the data was recorded and the photodetector

was moved to the next location.

Once collected, each 10 minute sample was divided into 1 minute samples and exported

for preprocessing.

14



3.3 Preprocessing and Feature Extraction

Figure 3.3 |Y (f)|2 Location 1, Round 1

3.3 Preprocessing and Feature Extraction

The photodetector samples light intensity over time. Before being analyzed, the data

was converted to the frequency domain. This was done using Matlab’s pwelch algorithm,

which uses Welch’s Periodogram approach.

Welch’s Periodogram approach performs as outlined in this paragraph. First, The

time-domain data is divided into sets of size N data points with M overlapping points.

E.g., say a sufficiently large dataset, D, was divided into sets of size 100 with 50 overlap-

ping points. The sets would then be D[0,100], D[50, 150], D[100, 200]... etc.. A Hamming

window and Fourier Transform are then applied to each set. Finally, The outputs are

squared and averaged to yield the final result.

The welch algorithm was performed on each 1 minute sample with a window size of

5000 data points and overlap of 2500 data points. An example power spectral density

estimate can be found in Fig. 3.3. Note: this output is noisier than those in Chapter 2.2

due to the smaller sample size.

Next, features were extracted. The extraction procedure was simple; from each power

spectral density estimate Pα of arbitrary sample yα(t), the set of the outputs from the

first 10 frequencies harmonic about 120hz in addition to the output at the 0th index,

denoted P 10
α (see Chapter 2.2 for notation) were extracted. These comprise the entirety

of the features selected. The basis for this selection is outlined in Chapter 2.
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3.4 Models

Figure 3.4 Multiple Output Regression Model

3.4 Models

To provide context, the purpose of employing a machine learning approach rather than

a traditional signal processing approach is two-fold: (1.) to bypass the need for com-

ponent decomposition and triangulation and (2.) to increase robustness against variable

environmental factors such as positional occlusion from one or more bulbs.

Before advancing to the intended regression model for precise x and y positioning, a

classification model was implemented to analyze the efficacy of the features extracted.

The classification model selected was Sklearn’s DecisionTreeClassifier [7]. Two pro-

tocols were performed separately to train the model: train-test split and k-fold cross

validation. For the train-test split protocol, an 80-20 split was selected. The model was

trained on the train data and then tested on the test data. Accuracy was recorded and a

confusion matrix was created for analysis. K-fold cross-validation was implemented with

10 folds. The resultant validation scores were recorded individually and averaged for a

composite accuracy. A standard deviation was also taken for the individual scores.

A multiple output regression model was implemented in Pytorch [8] to allow for inter-

correlated training on the continuous x and y output. The architecture is of a simple feed-

forward neural network, which consists of 2 fully-connected hidden layers and Rectified

Linear Unit (ReLU) activation functions. A diagram of the network can be found in 3.4.

Note: the depth and breadth of the model were selected in such a way to be arbitrarily

small, which was done to emphasize that a complex model need not be implemented to

achieve accurate results.

For training, a k-fold stratified cross-validation protocol was designed and imple-
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3.4 Models

mented. Due to the limited number of data points, a custom randomization algorithm

was designed to create folds that were ”well-mixed.” This was done to avoid the possi-

bility of all data points for one location being isolated to a single fold, preventing that

location from being trained on in the case of that fold being selected for validation (or

otherwise validated upon). The algorithm works as follows:

1. All the data for each of the locations is isolated, denoted data1, data2, ..., data21

2. Each of data1, data2, ..., data21 is shuffled

3. total data points
num folds·num locations

data points are selected randomly from each of data1, data2, ..., data21

to create a single fold

4. the data points selected in (3.) are removed from data1, data2, ..., data21

5. steps (3.) and (4.) are repeated until data1, data2, ..., data21 are all empty

6. each of the folds are concatenated and output

The data was randomized in this manner, then the cross validation was performed

with 10 folds for 150 epochs. The loss function selected was Mean Absolute Error (MAE)

and the optimizer selected was Adam with a learning rate of 0.001. Validation Scores

were recorded for analysis.
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Chapter 4

Results

Two models were used for positioning: a classification model was imported for discrete

location positioning and a multiple output regression model was designed for continuous

location positioning. Three collections of data were fed into each model for testing: one

containing the 630 minutes of samples collected initially, one containing the 420 minutes

of samples collected afterwards and one containing all 1050 minutes of samples. The

results are analyzed in this chapter.

For clarity, allow ”Collection 1” to denote the original data taken (630 minutes),

”Collection 2” to denote the data taken at a later date (420 minutes) and ”Composite

Data” to denote the full collection containing both Collection 1 and Collection 2 (1050

minutes).

4.1 Classification

As stated in the previous chapter, Sklearn’s DecisionTreeClassifier was the classification

model in use. The base model was used. Two protocols were implemented to train and

test the model: a train/test split and k-fold cross-validation.

4.1.1 Train/Test Split

An 80-20 train-test split was performed on each of the three collections of data using

Sklearn’s train test split algorithm. Note: This algorithm assures that data points from

all classes are well mixed in the train and test sets.

18



4.1 Classification

Table 4.1: DecisionTreeClassifier Accuracies using Train/Test Split

Figure 4.1 Confusion Matrix for Predictions from Collection 1

The model was trained using the training data for each collection, with discrete loca-

tions location1, location2, ..., location21 as labels and tested on the same collection’s test

data. After being trained, the model predictions were compared to the true labels for

accuracy. The proportion of correct predictions can be found in Table 4.1. Note: each

location is equally represented in the data, so this overall accuracy estimate is justifiably

used.

Confusion matrices were created using the predictions of each model from their re-

spective test sets. The confusion matrix for Collection 1 can be found in Figure 4.1.

Before sampling took place, one concern was that geometrically similar locations in

the grid would be indistinguishable. Should that be the case, there would be little basis

for the claim that each LED emits uniquely identifiable light.

To explain in more detail, take locations 5 and 17 for example; the location in the
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4.1 Classification

bottom right corner and top left corner, respectively (reference Figure 3.2). These two

locations have the same orientation under the grid of LEDs, simply with rotation. In

general, each bulbs is positioned directly above locations 1, 3, 5, 9, 11, 13, 17, 19, and

21. Denote these bulbs, Bulb 1, Bulb 3,..., Bulb21. Bulb 17, 19 and 9 look the same

to location 17 as Bulb 5, 3, and 13 do to location 5. If each LED emitted identical

light, these two locations would receive identical light intensity, making their positions

indistinguishable. The same phenomenon would occur for locations 3, 9, 13 and 19,

locations 7, 10, 12 and 15 and so on.

As can be seen in the Confusion Matrix, geometrically similar locations are the pri-

mary source of confusion. Consider Figure 4.1 for reference. The model predicted location

8 for true value locations 2 and 4. These three are geometrically alike locations. Further-

more, the model also predicted true value location 14 to be locations 18 and 20, which

are also geometrically alike locations. Though they are not all included, a similar pattern

continues throughout the three matrices.

Despite this fact, however, the models performed with accuracies at or above 90%.

More specifically, the model trained on Collection 1 predicted 116/121 correct, the model

trained on Collection 2 predicted 77/84 correct and the model trained on Composite

Data predicted 189/210 correct. Thus, throughout the three models, over 90% of the

samples were not confused with geometrically identical locations. For that reason, we

can confidently claim that the light intensity received at each geometrically alike location

was not indistinguishable, and therefore, were uniquely identifiable.

4.1.2 Cross-Validation

To re-enforce the validity of the accuracies presented in 4.1.1, k-fold cross-validation was

performed on each of the three collections of data.

Once again, Sklearn’s DecisionTreeClassifier was used as the model. Sklearn’s cross val score

was used as the algorithm and 10 folds was selected. The average fold accuracies, as well

as their standard deviations are depicted in Table 4.2

As can be seen in Table 4.2, the average accuracies remain around 90%. Furthermore,

the corresponding standard deviations are relatively low, indicating consistency within

the data.
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4.2 Regression

Table 4.2: Average Accuracies and Standard Deviations of 10-fold Cross-Validation Using
DecisionTreeClassifier

Table 4.3: Results from Multiple Output Regression Model Cross-Validation

4.2 Regression

As described in Section 3.4, the designed regression model is a simple feed-forward neural

network consisting of two hidden layers and ReLU activation functions. The loss function

used was pytorch’s L1Loss function for MAE loss and the optimizer was pytorch’s Adam

optimizer with a 0.001 learning rate.

A 10-fold cross-validation was implemented, trained for 150 epochs per fold. This pro-

cedure was run on each collection of data, with x and y coordinates as targets (reference

Figure 3.2 for location coordinates). The results can be found in Table 4.3.

4.2.1 Results Contextualized

For each location, the corresponding x and y coordinates have values within the integer

range [0,4]: x, y ∈ [0, 4]. For example, the x, y coordinates of location1 are (4,0), location2

are (3,0) and location6 are (4, 1) etc.

The MAE output from the models have these units, however, they are an average

of the loss between the predicted x and true x, and the predicted y and true y. Take a

prediction for arbitrary locationα for instance. Say the model predicted (xp, yp) and the
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4.2 Regression

Table 4.4: Results from Multiple Output Regression Model Cross-Validation in Centime-
ters

true location is (x0, y0). The MAE output would be calculated as follows:

MAE =
|xp − x0|+ |yp − y0|

2
(4.1)

From this output alone, we can only deduce a rough estimate of the true x and y loss;

i.e., we can conclude that, on average, the loss of x or y individually does not exceed

|xp − x0|+ |yp − y0|. For this reason, individual x and y losses were recorded in addition

to the trained upon MAE loss. Hence, the inclusion of these component losses in Table

4.3.

To contextualize the loss in metric units, each adjacent location is separated by a

distance of 25cm. Therefore, an average loss of 0.5 would equate to an average radial loss

of 12.5cm. The data in metric units can be found in Table 4.4.

For a visual reference, see Figure 4.2. The central point represents the true location,

the circle represents the average MAE loss, and the square represents the composite zone

of average x and y loss.

4.2.2 Discussion

For clarity, the standard deviations were included in Tables 4.3 and 4.4 to emphasize

consistency among the cross-validation scores. Because each is low relative to their mean,

we can conclude that the average losses are no fluke.

The goal was sub-decimeter loss. Let the average x loss, the average y loss and the

average total loss be denoted Lx, Ly and Ltot respectively. Aside from Collection 1’s

Ly, none of the losses breached this threshold. A more complex regression model would

likely need to be designed and trained to achieve such a goal. As can be seen in Figure
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4.2 Regression

Figure 4.2 Visual of Average Loss in Centimeters

4.2, each of the losses is constricted moderately tightly about the true location, despite

the aforementioned weakness. Moreover, upon further inspection, it can be noticed that

the zones of loss tend to the true location’s unique space. We define a locations ”unique

space” to be the space containing all points closest to that point. For example, the unique

space of the point p0 = (75, 75) would be the box x, y ∈ (62.5, 87.5) (reference Figure

4.2). Just minor bleeding from the true location’s unique space is exhibited in each of

the prediction zones. This leads us to believe that a more diverse set of locations must

be sampled and trained upon, in addition to a more complex model, to achieve greater

accuracy. Regardless, the current approach must be improved for adequate localization

in practice.

Notice, also, that Ly is lower than the Lx in each case. Three potential causes are the

model training architecture, greater light emission similarity between bulbs along similar

y, and asymmetry in the physically constructed system. Further research would need to

be conducted to reach a definitive conclusion.

Furthermore, note that in the case of both the classification model and the regression

model, the accuracy was greater for Collection 1 and Collection 2 trained and tested on
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4.2 Regression

individually rather than together. In the case of the cross-validation classification model,

the accuracies for Collection 1 and Collection 2 were 0.911 and 0.919 compared to an

accuracy of 0.877 for Composite Data. Similarly, the Ltot losses for Collection 1, Col-

lection 2 and Composite Data in the regression model were 11.529cm, 12.138cm and

14.040 cm, respectively. An identical environment was used in sampling for Collection

1 and Collection 2. The only factor of separation was time. Because the model trained

on the composite data performed worse than the ones trained on the two components

individually, we can conclude that there is variation between the collections. We suspect

then, that there is some variation in the way these LEDs emit light as they age. Further

research would have to be conducted to reach any definitive conclusions, however.
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Chapter 5

Conclusion

This chapter will discuss both the advantages and disadvantages of using the proposed

system architecture.

There are two primary disadvantages to this approach to positioning; (1.) extensive

calibration must be undergone before practical localization can begin and (2.) such cal-

ibrations would be ineffective in a dynamic environment. The regression model must

be trained on samples taken within the environment to interpret position. At a funda-

mental level, a more diverse data set of training sample locations would allow for more

accurate positioning. Moreover, however, should the environment be inconsistently laid

out, greater diversity of training sample locations would be necessary. For example, in

a practical environment, there are certain locations that are especially occluded, such as

those nearest storage palettes, containers etc.. The calibration process, therefore, must

include sufficiently enough samples in and around such locations to account for the dis-

continuous nature of the surrounding light levels. As a logical extrapolation, should the

environment be dynamic — that is, the environment is constantly changing — static

calibrations would be ineffective. Note: the aging or exchanging of bulbs would likely

cause a necessity for re-calibration as well. A system would need to be designed to either

allow for constant re-calibration or could interpret the effects of a dynamic environment.

Further research would need to be conducted to achieve this.

Five advantages to using the the proposed architecture are as follows: (1.) there

is no need for component modulation (2.) or environmental design/infrastructure (3.)

or component decomposition and triangulation, (4.) the system is robust to general

occlusion from one or more LEDs and (5.) the model performs relatively accurately
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despite simplicity. Our approach allows the system to interpret its environment through

positional light intensity. As evidenced in this work, inherent variation in the way alike

bulbs emit light allows for robustness to geometrically identical locations. In theory

then, the system could be used with any stock LED bulb, in any orientation, with any

light fixtures, cords, drivers, power supply etc.. Thus, there is no need for component

modulation or environmental engineering, making this a cost-effective, minimally invasive

solution. Furthermore, due to the machine learning approach taken, light levels from each

bulb need not be seen by the sensor for accurate positioning. The model trains on the

light levels at each location as a whole, therefore occlusion from one or more bulbs should

not effect the accuracy. Finally, a minimalistic neural network design was chosen to

emphasize the computational efficiency of calibration. This was done with foresight to

allow for potential continuous calibration in the future.
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Chapter 6

Future Work

6.1 Improved Sampling Methodology

The primary restriction of this work was the sampling method. Each of the 1050 minutes

of sampling was done by hand. To reiterate, 10 minute samples were taking at each of the

21 locations 5 times: 3 installments were done in three consecutive days and 2 were done

in a single day. This equates to 17.5 hours of live sampling time alone. A minimum of 2

minutes was needed in between each 10 minute sample for movement of the photodetector

and recording of the data. Moreover, in an effort to maintain absolute darkness within

the environment around the testing LEDs, the sampler had to remain within the testing

room. Therefore, a minimum of 21 total hours of active sampling was necessary for the

collection of this limited data. Note: an attempt was made to automate the collection

using a TurtleBotWafflePi, however, due to an incompatibility issue between the required

software and included hardware, it was unsuccessful. As a result of the time-expense, this

procedure limited both the total samples taken as well as the number of sample locations

selected.

To advance this work further, an automated sampling procedure must be imple-

mented. We suggest a LiDAR based approach. More specifically, we suggest a robot

with LiDAR based self-positioning capabilities outfitting with a photodetector and an

absolute clock. The LiDAR based positioning approach performs well in various environ-

ments [9] and an absolute clock would allow us to connect the positional data with the

visible light data. Should an automated sampling method be materialized, we would be

able to increase the total number of samples as well as the locations sampled from. The
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6.2 Study on Factors for Unique Light Emission

result would increase general robustness of the model. We believe this to be a critical step

before our positioning approach can be used in practice. Not only would model accuracy

improve, but for it to be robust to spatial inconsistencies, such as partial occlusion, a

greater diversity of sample locations must be incorporated in the train data.

6.2 Study on Factors for Unique Light Emission

This work gave us the answer to the question, ”do same-manufacturing LED’s emit

uniquely identifiable light?,” but it did not tell us why. We believe a study intended

to understand why these LED’s emit identifiable light would be necessary to create a

practical, real-world system for positioning in this manner. The study would provide us

with a basis for what specific variation is being exploited. Thus, allowing for positioning

architecture to be designed with intent. For obvious reasons, without such, an optimal

system would be unfeasible.

Furthermore, once the unique factor is isolated, a further study could be conducted

on the change in light emission over time. As stated in Section 4.2.2, our models trained

on data collected in close temporal proximity performed better than the one trained

indiscriminately of temporal relation, despite all other factors being consistent. This

leads us to conclude that the identifiable way in which each LED produces light alters

as they age. This phenomenon could be accounted for, should the unique factor be

understood.
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