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ABSTRACT
Electrocardiography (ECG) and Photoplethysmography (PPG) are two widely used techniques
for monitoring cardiovascular activity. ECG is a well-established method for detecting the
electrical activity of the heart, while PPG utilizes optical technology to measure variations in
blood volume in peripheral tissues. This thesis explores two applications of PPG and ECG
signals, utilizing a PPG dataset with Human Activity Recognition labels and an ECG dataset
labeled with various cardiac conditions. Preprocessing was carried out on the raw time-series
data, through detrending, bandpass filtering, and outlier exclusion. Two reduced versions of the
data were also considered, one using Heart Rate Variability (HRV) summary measures, and the
other a spectral representation based on the Fast Fourier Transform (FFT). Exploratory Data
Analysis and predictive data modeling using machine learning techniques were then performed
on the preprocessed datasets. We comment on the predictive performance of the models, try to
understand the results from a physiological perspective, and suggest possible directions for
future work.
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1. Introduction

1.1. Motivation
In cardiology, Electrocardiography (ECG) and Photoplethysmography (PPG) are two of

the most prevalent methods for analyzing and monitoring cardiovascular activity. ECG is a
well-established method for detecting the electrical activity of the heart, whereas PPG uses
light-based technology for measuring variations in blood volume in peripheral tissues, typically
on fingertips and wristbands[1]. Both Electrocardiography (ECG) and Photoplethysmography
(PPG) provide essential information about the functioning of the cardiovascular system and are
gaining popularity in clinical research and practice.

To gain a greater understanding of these physiological signals, a simple PPG dataset with
three labels (rest, squat, and step) was analyzed. After that, a second dataset containing more
comprehensive ECG signals was utilized to classify numerous types of cardiac conditions.

In this study, our goal is to perform exploratory analysis on both datasets and to evaluate
the capabilities of machine learning models in recognizing and differentiating between various
human activities using PPG data and diagnosing various cardiac conditions using ECG data. The
objectives include evaluating the efficacy of both types of signals and evaluating various
machine learning models to identify the best performing algorithms for the provided data sets. In
addition, the limitations of the datasets and models will be addressed.

1.2. Literature Review
Similar research has previously been conducted. Psathas et al.[2] examined a public PPG -

DaLiA dataset containing fifteen individuals and nine activities. Twenty-four machine learning
techniques were used in total. The greatest performance was obtained by the weighted k-Nearest
Neighbors (k-NN), the Cubic Support Vector Machines (C-SVM), and the Bagged Trees (BGT),
with respective results of 80%, 81.1%, and 92.8%. In Hnoohom et al.[3], a novel method,
PPG-NeXt, for extracting relevant characteristics from the PPG signal using deep
learning methods was used. The proposed model obtained a prediction F1-score of
greater than 90% based on experimental results using only PPG data from the three
benchmark datasets. In addition, the paper suggests that integrating PPG and acceleration
signals can improve activity recognition. Rath et al[4] used two standard datasets consisting of
ECG signals, MIT-BIH and PTB-ECG and applied deep learning models to detect heart diseases.
The authors proposed an ensemble model using Long Short-Term Memory(LSTM) and
Generative Adversarial Network(GAN) and achieved accuracy of 0.992 and area under
curve(AUC) of 0.984. Zhang et al[5] proposed a 12 layer 1D CNN model to classify a single-lead
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ECG signal into five distinct heart disease categories. The proposed model was tested on the
MIT-BIH arrhythmia database and reached a positive predictive value of 0.977.

1.3. Background
1.3.1. PPG dataset description

The supplied data[6] was gathered by the electronics research team of the Department of
Information Engineering at the Polytechnic University of Marche in Ancona, Italy. The dataset
used in this study was collected from a convenience sample of 7 healthy participants (3 males
and 4 females) with age between 20 and 52 years old. The data was recorded using a wrist-worn
photoplethysmography (PPG) device that measures blood volume changes in the microvascular
bed of tissue. Each participant was asked to complete a set of physical activities, including five
series of ten squat exercises each, five series of ten stepper exercises each, and five series of
resting for five minutes each. This dataset comprises 105 PPG signals (15 for each subject) along
with the corresponding 105 tri-axial accelerometer signals, which were recorded at a sampling
frequency of 400 Hz.

1.3.2. ECG dataset description
The PTB-XL (PhysioNet/Computing in Cardiology Challenge 2020) dataset is a large

open-access electrocardiogram (ECG) dataset consisting of 21799 recordings from 18869
patients, 52% of whom are male and 48% of whom are female with ages range from 0 to 95.
Each entry in the dataset is 10 seconds long.

The dataset includes ECG recordings from patients with various cardiac conditions as
well as healthy individuals. The following describes the distribution of diagnoses: 9514 records
have a normal ECG (NORM), 5469 records have Myocardial Infarction (MI), 5235 records have
ST/T change (STTC), 4898 records have conduction disturbance (CD), and 2649 records have
hypertrophy (HYP)[7]. Each of the cardiac conditions is explained below:

MI - Myocardial Infarction, also known as a heart attack, is mainly caused by coronary
artery blockage. A prolonged lack of oxygen supply to the cardiac muscle can result in
the death of cardiac muscle cells. Patients usually experience chest discomfort or
discomfort in the neck, back, or arms[8].
STTC - ST/T Change, common in hypertensive adults, refers to the change in the ST
segment. It describes the region between the conclusion of the QRS complex and the start
of the T wave[9].
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[10]

Figure 1. A normal waveform and some of its related points
Source: QRS Differentiation to Improve ECG Biometrics under Different Physical Scenarios

Using Multilayer Perceptron

CD - Conduction Disturbance, also known as heart block, results from electrical signals
not being produced effectively, not traveling through the heart as it should, or both[11].
HYP - Hypertrophy. Outflow obstruction due to asymmetric septal enlargement, resulting
in sudden cardiac death.

The ECG signals were sampled at a rate of 500 Hz and are presented in the standard
12-lead format (I, II, III, aVL, aVR, aVF, V1–V6). Downsampled versions of the waveform data
with a sampling frequency of 100 Hz are also available for the user's convenience, and they are
the ones being used in this paper.

[12]

Figure 2. Graph showing the placement of electrodes that produce a 12-lead ECG
Source: Artificial intelligence methods for analysis of electrocardiogram signals for cardiac

abnormalities: state-of-the-art and future challenges
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2. Methods

2.1. Datasets Preprocessing
2.1.1. Preprocessing for PPG dataset

Glob package was used to retrieve all of the PPG data files, and the heartpy package was
used for filtering and extracting heart rate variability (HRV) variables. As a parameter for
heartpy API functions, the specified sampling frequency of 400 Hz is used. After trial and error, I
determined that it is difficult to preprocess all PPG data in order to keep it within a suitable
range; hence, corrupted records were flagged and excluded from further analysis. To reduce the
number of "corrupted" data records, I simply utilize the heartpy API function to set the cutoff
threshold for the high pass Butterworth filter to 0.3 Hz and the cutoff level for the low pass
Butterworth filter to 10 Hz. The frequency range of 0.5 Hz to 10 Hz is a commonly used
bandpass, as cited in a number of other research literature[12–14]. After trial and error, it was
determined that an order of 2 preserves the majority of samples while filtering out noise, where
order is the order of an ordinary differential equation that can be used to generate the filter output
using the original signal as the driving stimulus (input)[15]. Two data instances, S1/rest5 ppg and
S2/squat3 ppg were not included for further analysis. Although the original dataset has 35
records for each of the categories rest, squat, and step, the following analysis is based on the
uncorrupted data instances, which have 34 records for rest, 34 records for squat, and 35 records
for step. Then, heartpy's process function is called, which generates ['bpm', 'ibi','sdnn','sdsd',
'rmssd', 'pnn20', 'pnn50', 'hr mad','sd1','sd2','s','sd1/sd2', 'breathingrate']. These HRV variables are
explained below.

bpm: beats per minute.
ibi: inter-beat interval, also called the RR interval, refers to the variation in time between

successive heartbeats. (Note that ECG and PPG signals typically use different
terminology. In ECG signals, the RR interval is utilized, whereas in PPG signals,
the PP (peak-to-peak) interval is employed[16]. For simplicity, we will use the RR
interval throughout this paper.)

[17]

Figure 3. RR interval
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Source: “Yoga Improves Autonomic Control in Males : A Preliminary Study Into the
Heart of an Ancient Practice”

sdnn: standard deviation of NN intervals. NN intervals are derived from RR intervals,
excluding unreliable RR intervals[18,19].

sdsd: standard deviation of successive differences in interbeat intervals[20], reflects the
variability in the change of RR intervals from one beat to the next.

rmssd: the root mean square of successive RR interval differences[18], reflects the
variability in the duration of the RR intervals.

pnn20/50: percentage of consecutive RR intervals that vary by more than 20/50
milliseconds[18].

hrmad: median absolute deviation of RR intervals[20].
sd1/sd2: related to Poincaré analysis. Here, RR intervals were plotted against one another

in a scatter plot called the Poincaré plot, which enables us to visualize the data's
variability. SD1 represents the standard deviation of distances between successive
RR intervals from axis 1 and relates to short-term variability, while SD2
represents the standard deviation of distances between successive RR intervals
from axis 2 and relates to long-term variability.

s: area of the ellipse.

[21]

Figure 4. Poincaré plot fitted with an ellipse and descriptors SD1 and SD2
Source: Poincaré Plots in Analysis of Selected Biomedical Signals

Breathingrate: number of breaths taken per minute.

Fast Fourier Transform (FFT) is applied to the original data and used as input to evaluate
the model's performance. FFT is a mathematical technique used for transforming a signal from
the time-domain to the frequency-domain. To maintain a balance between the maximum number
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of timesteps and the maximum number of records, only the initial 15000 data points (37.5
seconds) in each record were chosen for FFT processing. Since FFT is symmetric, the first half
of the FFT transformed data points were retained for future analysis. This FFT transformed
dataset was then standardized using a standard scaler.

We make the following modifications to the string labels:
rest → 0
squat → 1
step → 2

All classes 0 through 2 whose images or results appear below correspond to this
relationship.

Correlations between the HRV variables were calculated, and some highly correlated
variables were removed from the original dataset to generate a new dataset.

Figure 5. Correlation matrix of HRV variables

2.1.2. Preprocessing for ECG dataset
This data set was imported using the Waveform Database Python Package (wfdb). Labels

were extracted from 'scp_statements.csv' and paired with raw ECG signals. Nan values in labels
were removed, along with the corresponding raw ECG signals.

To extract HRV variables from the ECG records, the raw signals were first divided into
five corresponding categories. An average was taken on 12-lead ECG data to make it 1-lead, and
the package heartpy was then applied. Baseline wander and bandpass filters of [0.5 Hz, 40 Hz]
were performed using functions in heartpy. A threshold of 130 bpm was determined, and records
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that generated bpm above 130 were regarded as corrupted. Similar to the PPG dataset, datasets of
HRV variables of ['bpm', 'ibi', 'sdnn', 'sdsd', 'sdnn', 'sdsd', 'rmssd', 'pnn20', 'pnn50', 'hr mad', 'sd1',
'sd2', 's', 'sd1/sd2', 'breathingrate'] were generated. This dataset was further cleaned by removing
NaN’s and inf.

Fast Fourier Transform was applied to the original filtered dataset in terms of 12-leads
and average 12-leads, and those data were saved as separate datasets for future use. Since ECG
represents the electrical activity of the heart over time, FFT can be used to analyze the various
frequency components of the ECG signal when applied to ECG data[22]. Since each data sample
contains 1000 timesteps and the FFT is symmetric, only the first 500 FFT transformations were
considered for computational efficiency.

Figure 6. One example of ECG data in lead 6 (V1) Figure 7. FFT transformed data on lead 6 (V1)

We make the following modifications to the string labels:
NORM→ 0
MI → 1

STTC → 2
CD→ 3
HYP → 4

All classes 0 through 4 that appear in the images or results below correspond to this
relationship.

2.2. Exploratory Data Analysis
2.2.1. EDA for PPG data

To understand the PPG data better, the summary statistics for each category after
preprocessing are printed below:
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Figure 8. Summary statistics for HRV variables
Observe that the mean bpm and mean breathing rate for the rest category are lower than

the respective values for the squat and step categories, which is intuitively expected. There is
also a smaller standard deviation in the bpms for the rest category compared to the squat and step
categories. This indicates that individuals generally have similar bpm at rest, but their bpm
during exercise can vary depending on their physical abilities. Ibi tends to decrease during
activity, which corresponds to an increase in heart rate. Breaths are taken more frequently during
an exercise, which leads to lower breathing rates in the rest category than the other two. Higher
sd1/sd2 means higher variabilities in consecutive RR intervals, meaning the step category has the
highest variabilities in consecutive RR intervals.

More EDA methods were considered, such as 2D Multidimensional Scaling and t-SNE.
MDS indicates a set of objects as points in a multidimensional space such that points
corresponding to similar objects are near each other and those far apart objects are dissimilar[23].
t-SNE is predominantly employed to comprehend high-dimensional data and project it into
low-dimensional space, 2D in this case. In the filtered unstandardized data, variables have
different scales, ranges, and units (as shown in figure 8), which impacts the relative distance
between graphed points. Standardization transforms the original data to have the same scale and
range and ensures that all variables contribute equally to determining the distance between the
points. Before standardization, as depicted on the left side of Figure 9, there appears to be a
pattern among the various categories; however, on the right side of Figure 9, the points are
dispersed, showing that standardization eliminates some patterns. The purple dots on the left
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have only a few points in common with other categories; therefore, if we wish to distinguish
purple dots from the remaining, it is likely preferable to use unstandardized data.

Figure 9. 2D MDS with (non)standardized dataset

Figure 10. t-SNE with (non)standardized dataset with different perplexities
MDS and t-SNE are effective non-linear transformations for separating data

visualizations, but they tend to deform the space in order to highlight the distinction. Thus, we
also consider a linear transformation, PCA, for visualizations.

Figure 11. PCA with (non)standardized dataset
PCA was performed on both standardized and nonstandardized datasets, and we observe

that the rest category is easily distinguishable from the squat and step categories. However, there
is considerable overlap between squat and step classes in both datasets.
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2.2.2. EDA for ECG data
To understand the ECG data better, the summary statistics for each category after

preprocessing are as follows:

Figure 12. Summary statistics on HRV variables
Note that the mean bpm and ibi are similar across categories, whereas sd2, which relates

to long-term variability, and sd1/sd2 vary significantly across categories.
2D MDS and t-SNE are also performed on this dataset.
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Figure 13. 2D MDS with (non)standardized dataset

Figure 14. TSNE with (non)standardized dataset
Observe that almost all of the points overlap, indicating that it is difficult to distinguish

between the categories using only the HRV variables.

2.3. Experimental setup
2.3.1. For PPG dataset

To gain a preliminary comprehension of the dataset, HRV variables were analyzed. To
determine the amount of information contained in HRV features, non-Neural Network models
were initially trained on summary statistics of HRV features alone, containing values of ['bpm',
'ibi','sdnn','sdsd', 'rmssd', 'pnn20', 'pnn50', 'hr mad','sd1','sd2','s','sd1/sd2', 'breathingrate']. The
primary package used for analysis in this phase was sklearn, and pyplot from matplotlib was
used for plotting. KNN, Random Forest, Naive Bayes Classifier, Linear Classifier, and the
Multilayer Perceptron Model are non-NN machine learning models that were trained on this
dataset. These non-NN machine learning models also utilized the transformed FFT dataset as
inputs afterwards. Cross validation of five folds was considered in each of the models. Since the
original dataset contains only 103 data samples, more than 5 folds would result in each test set
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being too small, and the final cross validation score would lose its persuasiveness. The values of
the eigenvalues indicate that there are considerable variations between them. Due to the fact that
Euclidean distance assigns equal weights to all attributes, resulting in a skewed distribution,
Mahalanobis distance was considered in some of the models.

2.3.2. For ECG dataset
KNN, random forest, Naive Bayes classifier, linear classifier, multilayer perceptron

model, and gradient boosting classifier were utilized to initiate the classification process.
However, models based solely on HRV variables perform poorly. Due to the possibility of time
differences when collecting 12-lead ECG data, the initial modification consisted of only
considering chest-mounted 6-lead ECG data. However, it performed as badly as the average on
12-leads ECG data. Transformation based on principal component analysis (PCA) was then
considered. After applying PCA transformations to the HRV variables dataset, models were
applied; however, the performance was still inadequate.

Before training the original raw data, we considered fast fourier transformation (FFT) on
the original filtered dataset. Multiple fundamental machine learning models were applied to
12-lead and 6-lead ECG data averages. We saw a slight improvement in performance, but not a
substantial one. Following this, HRV variables and FFT data were combined and used as inputs
for the models, but performance deteriorated.

An oversampler with parameter “distance_SMOTE” from the smote_variants Python
module was used to circumvent the problem of imbalance in the dataset. SMOTE is short for
Synthetic Minority Oversampling Technique, which oversamples the minority class by adding
synthetic examples to the original data for each minority class sample. The “distance_SMOTE”
parameter uses the weighted distance to locate the closest examples of the minority classes. The
mean example was then obtained by averaging the k nearest neighbors, where k is a
user-specified number (I set k to 5)[24]. Using this oversampler, each category was oversampled to
achieve the same size as the "NORM" class, which is the most frequent class in the original
dataset. The fundamental machine learning models were then applied once more, and satisfactory
results were obtained. Cross validation of 5 folds were used in all basic machine learning models
to calculate their performance.

However, we would still like to generate models from the original dataset that was not
oversampled. Thus, we go further to build deep learning models on the original filtered dataset.
Convolutional Neural Network (CNN), Inception, and Resnet were considered. All inputs have
the format (21388, 1000, 12), where 21388 represents the number of samples, 1000 represents
the number of time steps, and 12 represents the number of leads.

CNN was chosen as a starting point due to its simplicity of implementation; however, if
we have deep structures of ECG data, it may suffice. ResNet and Inception are two
state-of-the-art deep learning models that are more challenging to interpret and comprehend.
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ResNet is designed to address the issue of vanishing gradients that arises during the training of
extremely deep neural networks. Inception is a family of neural network architectures that
prioritizes the cost of computation.

The structure of CNN is presented below. ResNet and Inception are harder to interpret, so
structures are not provided.

Figure 15. 1D CNN structure
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3. Results

3.1. For PPG dataset
3.1.1. Basic Machine Learning models

3.1.1.1. K-Nearest Neighbors

For a given new sample, KNN examines the K nearest training samples and assigns the
class label that occurs most frequently among these K samples as the predicted class label for the
new sample.

Figure 16. Error rate graph of KNN with respect to k with HRV variables as inputs
Figure 17. Mean 5-fold accuracy and confusion matrix with HRV variables as inputs
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Figure 18. Confusion matrix for KNN
Notice that KNN with HRV variables has the highest accuracy, and the true positive rate

for the rest category remains the highest for all inputs. Note that KNN barely gets the step class
right and predominantly predicts all samples to be in the rest class. For the KNN model that takes
HRV variables as inputs, we can break it down further to analyze the contribution of each HRV
variable to the model. Using permutation, the importance of each variable is printed below. If a
feature is important, permuting its values should significantly degrade the model's performance,
whereas permuting the values of an unimportant feature should have little or no effect.

Figure 19. Permutation importance of variables and distributions of variables
Note here that the variables “sd1” and “ibi” have the highest importance for the

performance of the model. However, the histogram plots show that there is lots of overlap
between class 1 and class 2, which might lead to misclassification in the model.

Some improvements in the accuracy of the model were made when removing highly
correlated variables from the HRV variables, especially for the rest and squat categories.
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Figure 20. Mean 5-fold accuracy and confusion matrix with selected HRV variables as inputs
After removing some of the highly correlated variables ('sd1','sd1','sd2','s','sd1/sd2'), we

obtain a slightly better result for KNN.

3.1.1.2. Random Forest

sklearn.model_selection.RandomizedSearchCV was used to find an optimized
combination of hyperparameters for random forests.

Since a random forest involved a lot of randomization, the result kept changing even
when the parameters remained the same. As a result, both the output of the
RandomizedSearchCV and the accuracy provided by the best parameters chosen by the
RandomizedSearchCV were constantly changing. Obtaining the parameter combination from
RandomizedSearchCV, cross validation of 5 folds was then applied to the best estimate out of the
sample accuracy. However, no matter how the parameter combination changed, the accuracy of
random forest was always between 0.60 and 0.70.

Figure 21. Mean 5-fold accuracy and confusion matrix with HRV variables as inputs
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Figure 22. Accuracy and confusion matrix for Random Forest
Random forest with HRV variables as inputs had the highest accuracy, with some

improvements in classifying the squat and step classes. However, misclassifications between the
step and squat classes were still common. Selected HRV variables were also taken as inputs, but
the accuracy was about the same.
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Figure 23. Permutation importance of variables and distributions of variables
Similarly, there is lots of overlap in the distribution of bpm for class 1 and 2, which might

cause trouble for random forest to differentiate between class 1 and class 2.

3.1.1.3. Naive Bayes Classifier

The Naive Bayes algorithm is a Bayesian probabilistic machine learning algorithm.
Given the class label, Naive Bayes assumes that the features are conditionally independent,
which means that the presence of one feature does not impact the probability of the presence of
another feature. The naive assumption can lead to suboptimal performance. In addition, Naive
Bayes assumes that the features are categorical, which is not true in this case. This classifier also
assumes a linear relationship between the features and the label, which may not be true in
practice.

Figure 24. Mean 5-fold accuracy and confusion matrix with standardized HRV variables as inputs
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Figure 25. Accuracy and confusion matrix for Naive Bayes Classifier

3.1.1.4. Linear Classifier

In a linear classifier, a linear boundary is used to separate different classes. Here,
sklearn.linear_odel.SGDClassifier was used. By default, it fits a linear support vector machine
(SVM) and employs stochastic gradient descent (SGD) as the optimization algorithm for
determining the linear model's weights. SVMs and other linear classifiers inherently perform
binary classification, which might result in reduced performance.
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Figure 26. Mean 5-fold accuracy and confusion matrix with standardized HRV variables as inputs

Figure 27. Accuracy and confusion matrix for Linear Classifier
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3.1.1.5. Multilayer Perceptron Model

For the Multilayer perceptron Model, I used sklearn.neural_network.MLPClassifier.
Similarly, cross validation and standardized data were used. Among the layer values I tried, the
layer [128,64,32,8] gave the highest accuracy value, which reached 0.6805.

Figure 28. Mean 5-fold accuracy and confusion matrix with standardized HRV variables as input
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Figure 29. Accuracy and confusion matrix for MLP

3.1.2. Discussion
Summary of basic machine learning models with 5-fold mean accuracy:

KNN Random Forest Naive Bayes Linear MLP

HRV
variables

0.5829 0.6990 0.5514 0.6414 0.6805

Original 0.3919 0.5190 0.5005 0.3433 0.4323

Standardized
original

0.4123 0.5286 0.5005 0.4419 0.4023

FFT 0.5014 0.5290 0.5367 0.5767 0.3938

Standardized
FFT

0.3052 0.5681 0.43 0.4476 0.3433

Table 1. Accuracy for different models and inputs

Among all, a random forest classifier with HRV variables as inputs had the best
performance, and MLP with HRV variables had similar accuracy. The arrays of accuracy values
from the same data fold generated by the cross-validation procedure were examined to determine
whether the difference between these two results is significant. Since the dataset was
comparatively small, a paired t-test was utilized. As shown in figure 30, a p-value of 0.4493 was
obtained for 10 CV folds; thus, there appears to be no statistically significant performance
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difference between the random forest classifier and the MLP classifier when using standardized
HRV variables as inputs if we use an alpha of 0.05.

Figure 30. Paired t-test results for Random Forest Classifier and MLP using standardized HRV

Figure 31. Paired t-test results for Random Forest Classifier and KNN using standardized HRV
The p-value for random forest classifier and KNN when using 10 CV folds and

standardized HRV variables as inputs is 0.237, which shows that there is no statistically
significant difference between the two models if we use an alpha of 0.05.

Figure 32. Paired t-test results for Random Forest and Naive Bayes classifiers using standardized HRV
The p-value for random forest classifier and naive bayes classifier when using 10 CV

folds and standardized HRV variables as inputs is 0.0632, which shows that there is no
statistically significant difference between the two models if we use an alpha of 0.05. However,
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there is a statistically significant difference between random forest classifier and Naive Bayes
classifier if we use an alpha of 0.1.

Figure 33. Paired t-test results for Random Forest and Linear classifiers using standardized HRV
The p-value for random forest classifier and linear classifier classifier when using 10 CV

folds and standardized HRV variables as inputs is 0.0548, which shows that there is no
statistically significant difference between the two models if we use an alpha of 0.05. However,
there is a statistically significant difference between random forest classifier and linear classifier
if we use an alpha of 0.1.

Notice that the performance of all models with HRV variables as inputs was superior to
that of the same model with other data as inputs. The majority of rest-labeled recordings in the
original dataset were significantly longer than the other two categories. To ensure that all records
in the original dataset and the FFT-transformed dataset had the same duration, only the initial
15000 timesteps of each data sample were considered. The majority of recordings must be
abridged, yielding only 37.5 seconds of data per record, which might not be sufficient for
classification models. In contrast, HRV variables incorporated every piece of information in the
original dataset, making them more informative than the FFT dataset.

3.2. For ECG dataset
3.2.1. Basic Machine Learning models

Accuracy is a metric that measures the proportion of correct predictions made by the
model relative to the total number of predictions. Unlike the PPG dataset, this dataset is
extremely unbalanced. Since accuracy does not consider the distribution of classes, a model can
obtain a high accuracy score by constantly predicting the majority class. Thus, we considered
ROC-AUC scores when training with basic machine learning models for the ECG dataset.
ROC-AUC is short for Receiver Operating Characteristic Area Under the Curve. ROC curve is a
plot of the true positive rate (TPR) against the false positive rate (FPR) at different probability
thresholds and captures the trade off between these two values[25]. AUC refers to the area under
the ROC curve. The larger the AUC, the more accurately the model distinguishes between
classes. All of the models utilized in this study employed the One-Versus-Rest (OvR) method,
which compares each class to the others simultaneously.
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[25]

Figure 34. Typical receiver operating characteristic curves along with the upper (perfect) and lower
(guessing) bounds

Source: Receiver Operating Characteristic Analysis: Basic Concepts and Practical Applications

Since the difference between the 12-lead and 6-lead datasets was negligible, the
following results were based on the 12-lead dataset.

As stated previously, basic machine learning models based solely on HRV variables
performed inadequately, and only the model with greatest performance is demonstrated below,
which is gradient boosting (random forest has similar performance, and since running a random
forest model is faster than running a gradient boosting model, I mainly used a random forest
model when using FFT datasets as inputs).

Figure 35. Gradient boosting ROC AUC scores on HRV variables
Mean ROC AUC score = 0.6104

The outcomes of PCA transformations with component numbers between 12 and 6 were
similar for different PCA components, so I will only provide one example.
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Figure 36. Gradient boosting ROC AUC scores on HRV variables with PCA component = 10
Mean ROC AUC score = 0.6062

Applying FFT on average 12-lead data to naive bayes and random forest classifier
yielded the following performance:

Figure 37. Naive Bayes ROC AUC scores on FFT average 12-lead data
Mean ROC AUC score = 0.6306

Figure 38. Random forest ROC AUC scores on FFT average 12-lead data
Mean ROC AUC score = 0.6952

Using FFT data and HRV variables as inputs on a random forest classifier generated the
following performance:

Figure 39. Random forest ROC AUC scores on FFT data + HRV variables
Mean ROC AUC score = 0.5806

Using oversamplers from smote_variants python module on average of the original
12-lead dataset, the best performance has been reached:
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Figure 40. Random forest ROC AUC scores and confusion matrix on oversampled data

It was also attempted to use oversampled FFT datasets as inputs for random forest
classifiers, but the outcomes were slightly inferior.

3.2.2. Deep Learning models
After all these basic machine learning models were tried, deep learning models were

applied and tuned. Both the original datasets and FFT transformed datasets were used as inputs
for these models, but the original datasets performed better within the same models.

Figure 41. CNN accuracy and AUC-ROC scores for each class
The best test accuracy for a CNN model is 0.7373, with mean AUC-ROC scores of

0.7691.

Figure 42. Inception accuracy and AUC-ROC scores for each class
The best test accuracy for an Inception model is 0.7683, with mean AUC-ROC scores of

0.8069.
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Figure 43. Resnet accuracy and AUC-ROC scores for each class
The best test accuracy for a Resnet model is 0.7511, with mean AUC-ROC scores of

0.7977.

3.2.3. Discussion
Even though HRV variables generated by heartpy are more human-comprehensible, they

result in inadequate model performance. The FFT-transformed dataset, which incorporates the
dataset's frequency information, produces slightly better outcomes than the HRV variables alone.
However, combining the FFT information with the HRV variables as inputs yielded poorer
results, which may have been due to the disparity and scaling between the FFT dataset and the
HRV variables. Among the tests performed, random forest classifiers with oversampled original
data yielded the best results, with about 90% ROC AUC scores for all categories. The confusion
matrix shows that the MI category has the lowest true positive rate (72%), which might be
caused by MI occurring in areas of the heart that are not well represented by ECG data[26].

Deep learning models performed better than all non-NN machine learning models except
the random forest classifier that used the oversampled original dataset as inputs. Notice that for
all models, class 0 (the class that contains normal ECG data) has the highest accuracy, and class
4 (the class that contains HYP data) has the lowest accuracy. There are several physiological
reasons behind this. Hypertrophy can be difficult to detect among other cardiac diseases because
it often has no symptoms in the early stages[27]. Thus, records labeled as HYP might not be
significantly different from others. In addition, hypertrophy can be caused by a variety of factors
and can present in different ways depending on the location of the thickened heart muscle. Thus,
patients might have different symptoms and different test results.

Out of the papers that cited the PTB-XL ECG dataset, two research papers could be used
as benchmarks: “Bimodal CNN for cardiovascular disease classification by co-training ECG
grayscale images and scalograms”[28] and “Estimating critical values from electrocardiogram
using a deep ordinal convolutional neural network”[29]. The first paper transformed the original
1D ECG data into two-dimensional grayscale images and scalograms that were simultaneously
supplied as dual input images to the bimodal CNN model. The bimodal CNN model used
contains Inception-V3, which was pre-trained on the ImageNet database and reached a final
accuracy of 95.74% on all leads. The second paper also modified the original dataset. Instead of
the labels provided by the original PTB-XL dataset, the second paper mapped the diagnostic
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conclusions to critical values, which served as a threshold for determining the severity of
health-related conditions. After that, a 61-layer deep convolutional neural network named
CardioV was built and trained, eventually reaching a mean ROC-AUC score of 0.8735. Due to
the fact that the datasets used in both publications were slightly modified variants of the original
dataset, the provided performance scores are merely for reference.
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4. Conclusions

PPG and ECG are two extensively used methods for monitoring cardiovascular activity,
and their implications in the real world are spreading. They have a wide range of applications in
healthcare, fitness monitoring, sleep monitoring, and biometric authentication. With the
increasing availability of wearable devices and the development of advanced algorithms for data
analysis, these technologies have significant potential to improve health outcomes and enhance
daily life.

This research applies EDA to PPG data and ECG data and evaluates the ability of
machine learning models to recognize and differentiate human activities using PPG data and to
diagnose cardiac conditions using ECG data. The results of our models indicate that for both the
PPG and ECG datasets, the normal or rest class has the highest true positive rate, while the other
categories perform worse. The frequent misclassification of squat and step categories in the PPG
dataset may be due to the small size and short duration of the recordings. The classification of
hypertrophy is mildly hindering performance of the models, which may be due to the absence of
symptoms of hypertrophy in the early stages. It is worth noting that some of the HRV variables
are highly correlated with each other, and this should be taken into account when developing
machine learning models for HRV analysis. Another PPG dataset that has longer durations
should be examined, as it could provide additional insights and improve the predictive
performance. It is possible to construct deeper deep learning models for the ECG dataset, which
may lead to improved accuracy while avoiding overfitting. Transfer learning should also be
considered by pretraining models on higher-quality ECG data before applying them to PPG data.
In addition, different compression methods besides FFT can be considered, such as Discrete
Wavelet Transform and Discrete Cosine Transform.
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