
Boston College Computer Science Senior Thesis

USING QBF SOLVERS TO SOLVE

GAMES AND PUZZLES

Zhihe Shen

Advisor: Howard Straubing

Abstract

There are multiple types of games, such as board games and card games. Some

are multiplayer games and some are single-player games. Many games such as

2-player games are hard to solve because the problem of determining whether a

given player has a winning strategy for these games is PSPACE-complete. It is

proved that the problem of determining whether a quantified boolean formula is

true is also PSPACE-complete. Because of the PSPACE-completeness of TQBF,

every problem in PSPACE, in particular these games, can be encoded as an instance

of TQBF. Thus, one way to understand the complexity of a game is to encode it

as a quantified Boolean formula.

This thesis aims to investigate the computational complexity of different kinds of

games. We choose to work on games played between two agents, for example, simple

geography games. Because they are in PSPACE, we convert them into non-clausal

quantified Boolean formulas based on the rules of each game. By solving those

formulas, we can find a winning strategy for either player. One way to solve these

formulas is to use a quantified Boolean formula solver (QBF solver). In this paper,

we will use GhostQ to solve the non-clausal quantified Boolean formula.

2

Contents

1. Introduction 4

2. Concept 6

2.1 Boolean formula ... 6

2.2 Conjunctive Normal Form ... 6

2.3 Boolean Satisfiability Problem .. 6

2.4 Quantified Boolean Formulas ... 7

2.5 Clausal vs. Non-Clausal Quantified Boolean Formulas 8

2.6 PSPACE and PSPACE-complete .. 8

2.7 True Quantified Boolean Formulas .. 9

2.8 TQBF is PSPACE-complete .. 10

2.9 SAT vs. QBF ... 11

2.10 SAT solvers vs. QBF solvers .. 12

2.11 A QBF solver: GhostQ .. 13

3. Solve Simple Geography Games 16

3.1 Introduction ... 16

3.2 Methodology .. 16

3.3 Encoding .. 16

3.4 Implementation .. 18

3.5 Result ... 23

3.6 Game Interface .. 23

3

1. Introduction

Let us first think about a game like Rush Hour. The goal is to find a sequence of

legal moves that would allow a target car to exit the game board. In each round,

one of the players can make a legal move based on the rules of the game and state

of the board. When the game board is very large, it is hard to solve because we

cannot find a way better than a brute-force search of all possible sequences of legal

moves. In fact, the problem of solving a generalized n× n game is proved to be

PSPACE-complete [1].

PSPACE-complete problems are important in the way that if we find a solution

to one of these problems, we can easily find solutions to other problems in PSPACE.

This is because according to the definition of PSPACE-complete, we can easily

reduce other problems in PSPACE to the PSPACE-complete one we have solved.

However, PSPACE-complete problems are difficult to solve. So how can we have

a program to solve them? In a paper in 1972, Meyer and L. Stockmeyer create

a PSPACE-complete set based on quantified Boolean formulas [2]. We follow

the approach of Sipser to find out that the problem of determining whether a

quantified Boolean formula is true is PSPACE-complete. A sketch of the proof

of the PSPACE-completeness of TQBF can be found in section 2.8. Following

the same approach, we can conclude that the problem of determining whether a

given player has a winning strategy for simple geography games is also in PSPACE.

Therefore, we can encode these games as instances of quantified Boolean formulas

because TQBF is PSPACE complete. The problem of determining which player

has a winning strategy in a game can be transformed to the problem of evaluating

the value of the corresponding quantified Boolean formula after assigning values

4

that the players have chosen to the variables in the formula.

Then we can use a quantified Boolean formula solver to complete the process

of evaluating quantified Boolean formulas. In this paper, we will encode simple

geography games as instances of quantified Boolean formulas. In section 3.3, we

will introduce the symbols we use and the rules we follow to encode these games. So

how can we solve these instances of quantified Boolean formulas? Given that fairly

large practical instances of the Boolean satisfiability problem can be solved using

SAT solvers, it is reasonable for us to solve the instances of quantified Boolean

formulas by a QBF solver. However, there exists a gap between theory and practice.

In contrast to SAT solvers, QBF solvers are not widely used in practice. A detailed

comparison between SAT solvers and QBF solvers is in section 2.10. In this paper,

we will use a QBF solver GhostQ to solve the instances of QBF we generate for

geography games. Compared to other solvers, one advantage of GhostQ is that

it can solve non-clausal quantified Boolean formulas, which is the reason why we

choose GhostQ. A detail description of non-clausal quantified Boolean formulas is

in section 2.5.

5

2. Concept

2.1 Concept of Boolean formula

A Boolean formula returns true or false, and is formed by variables, along

with the symbols OR ∨, AND ∧, NOT ¬, and parentheses (,). For example,

(¬x1 ∨ x2) ∧ x3 is a Boolean formula with variables x1, x2, x3 and ∨, ∧, ¬, (,).

2.2 Concept of Conjunctive Normal Form (CNF)

A formula is in conjunctive normal form if it is a conjunction of disjunctions.

For example, (¬x1 ∨ x2) ∧ (x3 ∨ x4) is in conjunctive normal form because it is a

conjunction of disjunction (¬x1 ∨ x2) and disjunction (x3 ∨ x4).

2.3 Concept of Boolean Satisfiability Problem (SAT)

The Boolean Satisfiability Problem (SAT) is to determine whether a for-

mula in conjunctive normal form (CNF) has a satisfying assignment. The formula

is satisfiable if there exists a true/false assignment for variables in the formula that

can make the formula true.

For example, to determine whether the formula (¬x1 ∨ x2) ∧ (x1 ∨ x1) has a

satisfying assignment is a Boolean satisfiability problem since (¬x1 ∨ x2)∧ (x1 ∨ x1)

is in conjunctive normal form. The formula (¬x1 ∨ x2) ∧ (x1 ∨ x1) is satisfiable

because x2 = true and x1 = true is a satisfying assignment for the formula. After

assigning the values to variables x1 and x2, the formula becomes (false ∨ true) ∧

6

(true ∨ true) ≡ true.

2.4 Concept of Quantified Boolean Formulas (QBF)

Quantified Boolean formulas (QBF) extend propositional formulas by al-

lowing explicit quantification (∃,∀) over the propositional variables [5].

Syntax:

Boolean formulas together with quantifiers ∀ (for all) and ∃ (there exists) are called

quantified Boolean formulas. If all the variables in a formula are within the

scope of some quantifier, then the formula is fully quantified.

Semantics:

∀x ϕ : we need to check for both possible values of ‘x’ in ϕ to see if ϕ is true or

false. If for both possible values (i.e. 0 and 1) for the variable x, the statement ϕ

is true, then ∀x ϕ is true. Otherwise, ∀x ϕ is false.

∃x ϕ : we need to check if there exists a value for ‘x’ such that ϕ is true. If for

some value of the variable x, the statement ϕ is true, then ∃x ϕ is true. Otherwise,

∃x ϕ is false.

Example:

φ = ∀x1∃x2(x1
⊕

x2) is an example of a quantified Boolean formula. Here, φ is

true if and only if for all values of x1, there exists a value of x2 such that exactly

one of x1 and x2 is true. In addition, the formula is also fully quantified because x1

is within the scope of the quantifier ∀ and x2 is within the scope of the quantifier

∃. To determine whether the formula φ is true or false, we first assume x1 to be

true. In this case, we can let x2 be false, so exactly one of x1 and x2 is true, which

7

means φ is true. Then we assume x1 to be false, so we can let x2 be true to make

the statement φ true. Since for all possible values of x1, we can find a value of x2

to make the statement φ true. We conclude that the statement is always true.

2.5 Clausal vs. Non-Clausal Quantified Boolean Formulas

A Clausal quantified Boolean formula is constructed by one or more quanti-

fiers followed by a Boolean formula in conjunctive normal form.

For example, ∃x1∃x2∀y1∀y2∃z3 ((¬x1 ∨ x2) ∧ (y2 ∨ y3) ∧ z3) is a clausal quan-

tified Boolean formula.

However, a non-clausal quantified Boolean formula does not have this re-

striction of order. It can be constructed by one or more quantifiers followed by

a propositional expression which is followed by quantifiers followed by another

propositional expression and so on.

For example, ∃x1∃x2 ((x1∨x2)∧∀y1∀y2(¬y1∨y2 → x1)) is a non-clausal quantified

Boolean formula.

2.6 Concept of PSPACE and PSPACE-complete

Decision problems are problems with yes-no answers. PSPACE problems are

decision problems which require an amount of space polynomial in the size of the

instance. For example, the problem of determining whether a given player has a

winning strategy for the Japanese game go-moku is PSPACE. To show that, we

8

can loop through all possible moves of the two players. Assume there exists a game

tree. For an n× n game board, we need at most O(n2) space to store the board, so

each level of the recursion stack uses at most O(n2) space. Then we need to keep

track of the moves that have been examined. The height of the recursion stack

is less than or equal to the depth of the game tree, which is n2. Thus, the algo-

rithm to solve go-moku runs in space O(n4), which is polynomial in the input length.

A language is PSPACE-complete if 1. it is in PSPACE, 2. Every language

in PSPACE is polynomial time reducible to it [3]. For example, the problem of

determining whether a quantified Boolean formula is true is PSPACE-complete.

The introduction of true quantified Boolean formula is in section 2.7 and the sketch

of the proof is in section 2.8.

2.7 Concept of TQBF

Syntax: Our approach to define true quantified Boolean formula (TQBF)

follows that of Sipser [3]. We encode problem instances as strings, so if ϕ is an

instance of QBF - that is, a quantified Boolean formula - then 〈ϕ〉 denotes the

string encoding ϕ.

We set TQBF = {〈ϕ〉| ϕ is a true fully quantified Boolean formula.}

Semantics: A fully quantified Boolean formula is either true or false because every

variable of such formula is within the scope of some quantifier. The TQBF problem

is to determine whether a fully quantified Boolean formula is true or false.

9

2.8 Sketch of the proof that TQBF is PSPACE-complete

The problem of determining whether a quantified Boolean formula is true is

PSPACE-complete. Our approach to prove the statement follows that of Sipser [3].

The proof consists of two parts.

First, we use a recursive algorithm to show that TQBF is in PSPACE. Let T

be a polynomial space algorithm that decides TQBF and 〈θ〉 - a fully quantified

Boolean formula - be the input of the algorithm T:

1. If θ contains no quantifiers i.e. ∀, ∃, then we evaluate θ directly because the

expression only contains constants. If θ is true, then accept. Otherwise, reject.

2. If θ equals ∀x ϕ, then we recursively call T on ϕ because variable x can have

different values. That is to say, we replace variable x with 1 and 0 to evaluate ϕ.

According to the concept of QBF, if in either case, the result is accept, then accept.

Otherwise, reject.

3. If θ equals ∀ϕ, then we recursively call T on ϕ because variable x can have

different values. That is to say, we replace variable x with 1 and 0 to evaluate ϕ.

According to the concept of QBF, if in both case, the result is accept, then accept.

Otherwise, reject.

Then we need to show that the algorithm T runs in polynomial time. In fact,

algorithm T runs in linear space, which is even stronger than the proposition that

it runs in polynomial time. To show T runs in linear space, let us assume that the

number of variables in θ is m. Then the maximum number of recursive calls would

be m, and at each level of the recursion, we only need to store the value of one

variable in θ. Thus, the total space complexity is o(m), which is linear.

Second, we need to show that TQBF is PSPACE-hard. We need to construct

10

a quantified Boolean formula φ that is true if and only if a Turing Machine M

accepts the input string w. To get an idea of how to construct φ, we first construct

a formula φc1,c2,t where c1, c2 are two configurations and t is a positive number. We

let the formula to be true if and only if M can go from c1 to c2 in at most t step.

If t = 1, we can construct φc1,c2,t such that one of the following two conditions is

true: 1. c1 equals c2 2. M can go from c1 to c2 in one step

If t>1, we construct φc1,c2,t = ∃m1∀(c3, c4) ∈ {(c1,m1), (m1, c2)}[φc3,c4.t/2], where

m1 is a configuration of M . This formula indicates that the variable represent-

ing the configurations c3, c4 can take either the values of the variables of c1 and

m1 or m1 and c2. In either case, the formula φc3,c4.t/2 is true, which means that

M can go from c3 to c4 in at most t/2 steps. To convert the formula φc1,c2,t

into a quantified Boolean formula, we replace ∀(c3, c4) ∈ {(c1,m1), (m1, c2)} by

∀(c3, c4) [(c3, c4) = (c1,m1)[...] ∨ (c3, c4) = (m1, c2)→ ...]

The formula φcstart,caccept,h, where h = 2df(n), and d is a constant. When t > 1,

we construct φ recursively. The size of each level of recursion is O(f(n)), and

the number of levels of recursion is also O(f(n)). Thus, the formula we get after

recursive calls is of size O(f 2(n)), which is polynomially large.

2.9 SAT vs. QBF

Boolean Satisfiability Problem (SAT) are hard to solve. It is believed that no

algorithm can solve all Boolean Satisfiability Problems efficiently. According to

Cook-Levin theorem, the Boolean Satisfiability Problem is NP-complete, which

means that any problem in class NP is polynomial time reducible to the Boolean

Satisfiability Problem. However, the decision problem of QBF is PSPACE-complete,

11

as shown in the previous section. Thus, according to the definition of PSPACE-

complete, the decision problem of QBF is in PSPACE and is PSPACE hard. Since

NP ⊂ PSPACE and NP is believed to be not equal to PSPACE, we know that

PSPACE problems are harder than NP problems. That is to say, the decision

problems of QBF are even harder than satisfiability problems.

2.10 QBF solvers vs. SAT solvers

SAT solvers produce a satisfying assignment for a formula in conjunctive nor-

mal form (CNF) if such an assignment exists [4]. SAT solvers are widely used

to solve NP problems. Compared to SAT solvers, QBF solvers are not widely

used in practice. Both SAT and TQBF are believed to be computationally hard

problems, so what makes the difference in application? In fact, SAT solvers are

successful in practice because the hard instances don’t seem to arise. While SAT

solvers need to solve satisfiability checking problems, a QBF solver also has to

solve validity checking problems which depend on the variable quantification. SAT

solvers require input in conjunctive normal form (CNF). Thus, one way to construct

QBF solvers is to extend the functions of SAT solvers. By doing so, the QBF solvers

would require that formulas be converted into prenex conjunctive normal form.

However, typically, it is hard to convert QBF into CNF. Translating a formula

to CNF would introduce new existentially quantified variables but not unversally

quantified variables, which makes it hard for QBF solvers to detect when a formula

becomes true [8]. Non-CNF format is more flexible and allows more freedom to

encode decision problems of QBF. A detailed comparison of CNF and non-CNF is

in section 3.10. Thus, QBF solvers which read in non-clausal input are introduced.

Though using non-clausal input might be less satisfying in generating the result,

it is believed that the advantage in encoding of these new type of QBF solvers

12

outweighs the disadvantage in practice [6]. Thus, in this paper, we use GhostQ, a

QBF solver which accepts non-CNF input, to solve decision problems of QBF.

2.11 A QBF solver: GhostQ

Syntax: The input to the QhostQ solver is a QCIR formula. QCIR formulas are

defined by the BNF grammar below. (The listing of the grammar is reproduced

from [7].)

13

The output is a winning strategy for the first player if one exists. We will see later

the exact form the output takes.

Example:

Take the formula ∃x1∃x2∀y1∀y2 ((x1⊕ x2)∧ ((y1 ∧ y2)∨ (¬y1 ∧¬y2)∨ (y1 ∧¬x1)∨

(y2∧¬x1))) as an example. We encode the formula in QCIR format as the following:

exists(x1,x2)

forall(y1,y2)

output(g1)

g2=xor(x1,x2)

u1=and(y1,y2)

u2=and(-y1,-y2)

u3=and(y1,-x1)

u4=and(y2,-x1)

g3=or(u1,u2,u3,u4)

g1=and(g2,g3)

Here, g1 is the output gate variable and u1, u2, u3, u4, g2, g3 are intermediate

gate variables. This encoding follows the rules of QCIR format. [7]

The output contains the winning strategy for the first player: list(list(x1, false()),

list(x2, true())) This means that x1 = false, x2 = true is a solution to the de-

cision problem of QBF. To show that the solution is valid, we need to check if

((x1⊕x2)∧ ((y1∧ y2)∨ (¬y1∧¬y2)∨ (y1∧¬x1)∨ (y2∧¬x1))) is true for all possible

values of y1 and y2 when x1 = false, x2 = true. There are 4 possible cases:

14

(1) y1 = true, y2 = true

(2) y1 = true, y2 = false

(3) y1 = false, y2 = true

(4) y1 = false, y2 = false

Since x1 = false, x2 = true, we have x1 ⊕ x2 ≡ true. Thus, we only need to check

if φ = (y1 ∧ y2) ∨ (¬y1 ∧ ¬y2) ∨ (y1 ∧ ¬x1) ∨ (y2 ∧ ¬x1) is true in the 4 cases above

when x1 = false, x2 = true. Since φ is a disjunction of 4 conjunctions, φ would be

true if the value of one of its conjunction is true.

(1) If y1 = true, y2 = true, then y1 ∧ y2 ≡ true. Thus, φ is true.

(2) If y1 = true, y2 = false, since x1 is false, then y1 ∧ ¬x1 ≡ true. Thus, φ is

true.

(3) If y1 = false, y2 = true, since x1 is false, then y2 ∧ ¬x1 ≡ true. Thus, φ is

true.

(4) If y1 = false, y2 = false, then ¬y1 ∧ ¬y2 ≡ true. Thus, φ is true.

Thus, x1 = false, x2 = true is a solution to the formula ∃x1∃x2∀y1∀y2 ((x1 ⊕ x2) ∧

((y1 ∧ y2) ∨ (¬y1 ∧ ¬y2) ∨ (y1 ∧ ¬x1) ∨ (y2 ∧ ¬x1))).

15

3. Solve simple geography games

3.1 Introduction

In a geography game, two players take turns to name cities from all over the

world. At each round, the player must choose a city beginning with the letter that

is the same as the last letter of the previous city’s name given by the other player.

Repetition is not allowed. The game starts with some designated city and ends if

one of the player is unable to give a city name to continue the game [3].

3.2 Methodology

As we discussed in section 2.8, TQBF is PSPACE-complete. Therefore, according

to the definition of PSPACE-complete, every PSPACE problem can be encoded as

instances of quantified Boolean formula. Since the problem of determining whether

a given player has a winning strategy for geography games is in PSPACE, we can

encode these games as instances of quantified Boolean formulas and use a QBF

solver to solve the instances. In the following sections, we will discuss how to

encode and solve a geography game.

3.3 Encoding

A geography game can be modeled by a directed graph with a designated starting

node. In the directed graph, the nodes are the cities. Suppose node 1 is city X

and node 2 is city Y. If city X ends with the same letter that begins city Y, then

there’s an edge from node 1 to node 2.

16

For example, the following is a directed graph with vertex 0 as the starting node.

The graph has starting node 0 and three ending nodes. The maximum num-

ber of rounds the game can last is 3. We use x, y, z to denote possible moves at

the first, second and third round of the geography game. Let 1,2 3 be the index

of possible ways of move at each round. Let’s assume player 1 plays the first

step of the game. The purpose of the game is to decide whether the first player

has a winning strategy. If he has a strategy to win, then we need to find the

winning strategy. For geography games, a winning strategy for player 1 means

that player 1 can successfully reply to all of player 2’s replies. From the graph,

17

we could see that at the first round, player 1 has 2 possible moves: x1 or x2.

If player 1 moves along x1, then at the second round, player 2 has 2 possible

moves: y1 or y2. If player 1 moves along x2, then player 2 has 1 possible move

y3. Since y3 leads to one of the ending node of the graph, payer 2 wins the game.

If player 2 moves along y1 at the second round, then player 1 has 1 possible

move at the third round: z1. Since z1 leads to one of the ending node of the

graph, payer 1 wins the game. Similarly, if player 2 moves along y2 at the second

round, then player 1 will win the game by moving along z2 to reach the ending node.

Rules of the Game to encode:

1. Players can visit exactly one city at each round of the games. That is to say,

exactly one node in the directed graph is visited at each round of the game.

2. Players cannot visit the cities which have been visited before. That is to say,

the node visited at each round was not visited at the previous rounds of the game.

3. Players should visit the city adjacent to the city being visited at the previous

round. That is to say, the node visited at each round is adjacent to the node visited

at the previous round.

4. Let node 0 be the starting city. Then the node visited at the first round should

be adjacent to node 0.

3.4 Implementation

As mentioned in section 2.11, the QBF solver ghostQ reads in a QCIR speci-

fication file and outputs a file containing a winning strategy for the first player

if one exists. Thus, our goal is to write a program which can generate the QCIR

specification file for arbitrary depth quantified Boolean formulas of geography game

played on a graph automatically. After that, we can use the specification file to

18

run ghostQ which would generate the output file for the geography game. The

following is how we write the program to generate QCIR specification files.

Input:

The program will read in the information of a graph from a .txt file and convert

the information into a Python dictionary. The dictionary will consist of key value

pairs where each key is a vertex, and the value associated with the key is a list

of the neighbors of the vertex. By convention, the vertices are numbered 0, .., n

and 0 is the start vertex. To generate the QCIR specification file for arbitrary

depth quantified Boolean formulas of geography game, we need to determine the

variables for each round. Because there are at most 26 alphabet letters, we cannot

represent each round with a new letter when the maximum number of rounds a

geography game can last exceeds 26. Thus, we cannot apply the way of encoding

the variables described in section 3.3. To solve this problem, we instead encode

the variables for each round of the game as the following: first-round variables are

x1 1, x1 2, x1 3, ...; second-round variables are x2 1, x2 2, x2 3, ...etc. For the meaning

of each variable, we let xi j be true if on round i the player moves to vertex j. In

addition, for all the games, we suppose that player 1 plays first. Furthermore, the

QCIR specification file needs to have an output gate variable g and intermediate

gate variables g1, g2, g3, In our program, we use a global count to keep track of

the next gate variable to use.

The new directed graph that represents the same geography game as described on

page 17 is shown on the next page.

19

The input .txt file for our Python program looks like:

3

0 1 2

1 0 3 4

2 0 5

3 1 6

4 1 7

5 2

6 3

7 4
20

In the first row, 3 is the maximum number of rounds the game (represented

by the above directed graph) can last. The second row means that from node 0,

players can go to node 1 or node 2. The rest rows in the .txt file can be interpreted

in similar way.

We covert the input in .txt into a Python dictionary and a number to make

it easier to retrieve information and modify the graph. The dictionary indicates

the nodes and edges in the directed graph. The number indicates the maximum

number of rounds the game can last. The following is what we get after converting

the .txt file on the previous page:

{0:[1,2], 1:[0,3,4], 2:[0, 5], 3:[1, 6], 4:[1, 7] , 5:[2], 6:[3], 7:[4]}, 3

Constraints:

Let us take the game represented by the directed graph on the previous page as an

example to show how we encode the 4 constraints described on page 18. Recall

that we let xi j be true if on round i the player moves to node j.

a. Exactly one of the variables at a given level is true i.e. exactly one node

is visited at each level

In order to make sure that exactly one node at this level is visited, the following 2

conditions need to be satisfied: 1. at least one node at this level is visited

2. no two nodes at this level can both be visited

Condition 1 can be encoded as the following:

(x1 1 ∨ x1 2 ∨ x1 3 ∨ x1 4 ∨ x1 5 ∨ x1 6 ∨ x1 7) ∧

(x2 1 ∨ x2 2 ∨ x2 3 ∨ x2 4 ∨ x2 5 ∨ x2 6 ∨ x2 7) ∧

21

(x3 1 ∨ x3 2 ∨ x3 3 ∨ x3 4 ∨ x3 5 ∨ x3 6 ∨ x3 7)

Condition 2 can be encoded as the following:

(−x1 1 ∨ −x1 2) ∧ (¬x1 1 ∨ ¬x1 3) ∧ (¬x1 1 ∨ ¬x1 4)∧ (¬x1 1 ∨ ¬x1 5)∧ (¬x1 1 ∨

¬x1 6)∧ (¬x1 1 ∨ ¬x1 7)∧ (¬x1 2 ∨ ¬x1 3) ∧ (¬x1 2 ∨ ¬x1 4) ∧ (¬x1 2 ∨ ¬x1 5)∧

(¬x1 2∨¬x1 6)∧ (¬x1 2∨¬x1 7)∧ (¬x1 3∨¬x1 4)∧ (¬x1 3∨¬x1 5)∧ (¬x1 3∨¬x1 6)∧

(¬x1 3∨¬x1 7)∧ (¬x1 4∨¬x1 5)∧ (¬x1 4∨¬x1 6)∧ (¬x1 4∨¬x1 7)∧ (¬x1 5∨¬x1 6)∧

(¬x1 5 ∨ ¬x1 7)∧ (¬x1 6 ∨ ¬x1 7)

b. The node visited at a certain level was not visited at all previous levels

This constraint can be encoded as the following:

(¬x1 1 ∨ ¬x2 1) ∧ (¬x1 2 ∨ ¬x2 2) ∧ (¬x1 3 ∨ ¬x2 3) ∧ (¬x1 4 ∨ ¬x2 4)∧ (¬x1 5 ∨

¬x2 5)∧ (¬x1 6 ∨ ¬x2 6)∧ (¬x1 7 ∨ ¬x2 7)∧ (¬x1 1 ∨ ¬x3 1)∧ (¬x1 2 ∨ ¬x3 2)∧

(¬x1 3∨¬x3 3) ∧ (¬x1 4∨¬x3 4)∧ (¬x1 5∨¬x3 5)∧ (¬x1 6∨¬x3 6)∧ (¬x1 7∨¬x3 7)∧

(¬x2 1∨¬x3 1)∧ (¬x2 2∨¬x3 2) ∧ (¬x2 3∨¬x3 3) ∧ (¬x2 4∨¬x3 4)∧ (¬x2 5∨¬x3 5)∧

(¬x2 6 ∨ ¬x3 6)∧ (¬x2 7 ∨ ¬x3 7)

c. The node visited at a certain level is adjacent to the node visited at the

previous level

This constraint can be encoded as the following:

(x2 1 → (x1 3 ∨ x1 4))∧ (x2 2 → x1 5)∧ (x2 3 → (x1 1 ∨ x1 6))∧ (x2 4 → (x1 1 ∨

x1 7))∧ (x2 5 → x1 2)∧ (x2 6 → x1 3)∧ (x2 7 → x1 4)∧ (x3 1 → (x2 3 ∨ x2 4))∧

(x3 2 → x2 5)∧ (x3 3 → (x2 1 ∨ x2 6))∧ (x3 4 → (x2 1 ∨ x2 7))∧ (x3 5 → x2 2)∧

(x3 6 → x2 3)∧ (x3 7 → x2 4)

d. The node visited at the first level is adjacent to 0

This constraint can be encoded as (x1 1 ∨ x1 2)

22

3.5 Result

a. Output

We run GhostQ with the QCIR file we have generated for the directed graph

on page 19 and get a cqbf file which contains the following:

Seed: 1. true. Bt: 1, D: 5. R: 0, P: 378, w: 448, C: 0, T: 0.000 s. true()

Interpretation: The first ”true” after ”Seed” means that there exists a winning

strategy for player 1 for the geography game.

To find out the winning strategy, we run GhostQ with the cqbf file to gener-

ate the file which contains the strategy:

list(list(x1 1, true()), list(x1 2, false()), list(x1 3, false()),

list(x1 4, false()), list(x1 5, false()), list(x1 6, false()),

list(x1 7, false()), list(x3 1, false()), list(x3 2, false()),

list(x3 3), list(x3 4, false()), list(x3 5, false()),

list(x3 6, ite(x2 4, false(), true())),

list(x3 7, ite(x2 4, true(), false())))

b. Interpretation

According to the output above, the winning strategy for player 1 is the following:

x1 1, true() means that player1 should go to node 1 at the first round.

list(x3 6, ite(x2 4, false(), true())) means that if player 2 does not go to node 4 at

the second round, then player 1 should go to node 6 at the second round. This is

the same as if player 1 goes to node 3 at the second round, then player 1 should go

to node 6 at the third round because at the second round, player 2 can only go to

node 3 if he does not go to node 4 given that player 1 goes to node 1 at the first

23

round.

list(x3 7, ite(x2 4, true(), false())) means that if player 2 goes to node 4 at the

second round, then player 1 should go to node 6 at the second round.

After verification, we can conclude that the above strategy is a winning strategy

for player 1 for the geography game represented by the directed graph on page 20.

c. Evaluation

We run GhostQ with different geography games to evaluate the performance

of GhostQ with our QCIR files as input. The 4 columns are the number of nodes in

the directed graph, the maximum number of rounds that the geography game can

last, the number of variables (including the gate variables) in the QCIR specification

file, and the number of lines in the QCIR specification file.

num of nodes max number of rounds num of variables num of lines in spec file

5 3 103 92

8 4 213 190

8 6 297 262

10 5 382 343

20 10 2524 2328

We could see that when the number of rounds and the number of nodes become

large, the number of lines in the QCIR specification file grows quickly.

Then we test the performance of GhostQ. When the maximum number of rounds a
24

geography game can last increases to around 10, GhostQ starts to run slowly with

our QCIR input. When the QCIR file becomes too large, GhostQ may fail due to

the lack of stack space.

3.6 Game Interface

We write a Python program, so we can play the geography game interactively.

Given a geography game, we let the computer be the first player. We run GhostQ

to generate the strategy for the computer to win the game if winning strategy

exists, and then extract the first step for the computer to take. Suppose computer

goes to node i, then we let node i be the new starting node and modify the directed

graph accordingly. For example, we need to remove from the graph the original

starting node and the edges going from the original starting node . With the new

graph and the new starting point, we then ask the human player to choose which

node he wants to go to. Then we modify the directed graph accordingly. After

that, we run GhostQ again using the new graph and generate the strategy for the

computer...In this way, we are able to play the geography games interactively.

25

4. References

[1] Gary William Flake and Eric B. Baum. Rush Hour is PSPACE-complete, or

“Why you should generously tip parking lot attendants”. Theoretical Computer

Science, 270(1-2):895-911, January 2002.

[2] A. Meyer and L. Stockmeyer. The equivalence problem for regular expressions

with squaring requires exponential space. In Proceedings of the 13th IEEE Sym-

posium on Switching and Automata Theory, pages 125-129. IEEE, New York, 1972.

[3] Michael Sipser, Introduction to the Theory of Computation, Second Edition,

Thomson Course Technology, Boston, 2006.

[4] Frank van Harmelen , Vladimir Lifschitz , Bruce Porter, Handbook of Knowledge

Representation, Elsevier Science, San Diego, 2007.

[5] Kleine Buning, H., and Bubeck, U. 2009. Theory of quantified Boolean formulas.

In Handbook of Satisfiability, volume 185 of Frontiers in Artificial Intelligence and

Applications. IOS Press. 735-760.

[6] Non-CNF QBF Solving with QCIR. Charles Jordan, Will Klieber, and Martina

Seidl. In Beyond NP 2016.

[7] QCIR-G14: A Non-Prenex Non-CNF Format for Quantified Boolean Formulas,

QBF Gallery 2014

[8] Formal Verification Using Quantified Boolean Formulas (QBF), William Klieber,

2014

26

