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Abstract

This note extends the Kotlarski (1967) Lemma to show exactly what is identified when

we allow for an unknown factor loading on the common unobserved factor. That is, this

note completely characterizes identification of the model Y = cV + U and X = V + W,

where the joint distribution of Y and X is known, while the constant c and the mutually

independent random variables V, U, and W are unobserved. Potential applications include

measurement error models and panel data factor models.

Suppose we observe, or can identify from data, the joint distribution of two random vari-

ables Y and X . Suppose that

Y = cV +W

X = V +U

where U , V , and W are unobserved, mutually independent real valued random variables, and

c is a nonzero constant. If we knew that c = 1, we could apply Kotlarski’s (1967) Lemma

to show that the distributions of U , V , and W are point identified. Since its introduction

into the econometrics literature by Li and Vuong (1998), Kotlarski’s Lemma has been widely

applied. Prominent examples include Bonhomme and Robin (2010) and Cunha, Heckman,

and Schennach (2010).

This note extends Kotlarski’s Lemma to the case of unknown c. Much of this extension

is a one line proof, combining Kotlarski (1967) with a theorem of Reiersøl (1950), and the

rest exploits bounds like those of Frisch (1934). Given the age of these references, it’s a bit

surprising that the results below hadn’t been previously made explicit.

The main result is that the constant c and the distributions of U , V , and W are all point

identified unless V is normal, and in addition, either U or W contains a normal factor. When

c is not point identified, the sharp identified set for c is an interval.
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This extension of Kotlarski is useful because many economic models have error structures

of the above type, where V is an unobserved factor that affects outcomes Y and X , and c is a

factor loading. Here are two examples of such models:

Example 1: Measurement Error in Linear Regression: Suppose X is the observed, mismea-

sured version of some unobserved true variable X∗, so X = X∗+U where U is measurement

error. Consider the regression model Y = a + bX∗ + e. The goal would be to identify the

coefficients a and b and the distributions of the true X∗, the measurement error U , and the

model error e. Letting V = X∗, W = a + e, a = E (W ), and b = c, we then get that this

model is equivalent to our framework of X = V +U and Y = cV +W .

Example 2: Fixed T Panel Data Models: Consider the panel data model Yi t = gt (Zi t) +
λt Vi + εi t , with unknown functions gt , unobserved individual specific effects Vi , unknown

constant factor loadings λt , and idiosyncratic errors εi t . For the moment, assume gt (Zi t) is

just a constant αt . The goal is then to identify αt , the distribution of the individual specific

effects Vi , each factor loading λt , and the distributions of the idiosyncratic effects εi t in each

period t . Impose the free normalization λ1 = 1, and consider any other time period s. If

we define Ui = α1 + εi1, Wi = αs + εis , and λs = c, we get that αt + λt Vi + εi t equals

V + U in period t = 1 and equals cV + W in period t = s. We may then apply Theorem 1

below, followed by α1 = E (Ui ), εi1 = Ui − E (Ui ), αs = E (Wi ), and εis = Wi − E (Wi ).
This then gives αt , λt , and the distributions of Vi and of εi t for every observed time period

t . Finally, if instead of constants αt we had functions gt (Zi t) for observed covariates Zi t , we

could repeat the analysis conditioning on Zi1 and Zis , and replace the constructions of αi1

and αis with conditional means, conditioning on Zi1 and Zis , respectively. Evdokimov (2010)

uses the Kotlarski Lemma to identify a similar panel structure without factor loadings.

A number of special cases of this paper’s result already appear in the literature, referring

either directly to the system Y = cV + W and X = V + U , or to the equivalent measure-

ment error model of example 1 above. For example, the factor loading c (or equivalently, the

mismeasured regressor coefficient b) is known to be point identified when V is asymmetri-

cally distributed. This fact is used by estimators proposed in Lewbel (1997) and Erickson and

Whited (2002). Other papers assume more generally that the factor loading is point identified

by higher moments, but do not explicitly characterize when that is possible (or what is iden-

tifiable in that case). Examples include Bonhomme and Robin (2010), Fruehwirth, Navarro,

and Takahashi (2016), and Navarro and Zhou (2017). Generalizations of Kotlarski’s lemma

to models with more components include Székely and Rao (2000), Li and Zheng (2019), and

Lewbel, Schennach, and Zhang (2020).1

ASSUMPTION A1: We observe the joint distribution of two real valued, nondegenerate

random variables Y and X .

ASSUMPTION A2: X = V + U and Y = cV + W , where U , V , and W are mutually

1Lewbel, Schennach, and Zhang (2020), which is a later working paper to the present paper, considers a more

general model where Y also depends on X .
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independent, real valued, nondegenerate random variables with unknown distributions. The

unknown constant c is real valued, finite, and nonzero.

ASSUMPTION A3: Either the median or the mean of U , V , or W is zero. The character-

istic functions of U , V , and W do not vanish.

Assumption A3 is mainly used for identification of the distributions of U , V , and W , not

for the identification of c. Kotlarski’s Lemma requires some location normalization, as in

Assumption A3. Evdokimov and White (2012) provide alternative conditions under which

Kotlarski’s Lemma holds even when the characteristic functions of U , V , and/or W can have

zeros.

Kotlarski’s Lemma assumes c = 1. We assume c 6= 0 because, if c = 0 then trivially we

can only identify the distributions of W and of V + U . Moreover, we can immediately tell if

c = 0, because in that case the distributions of X and Y will be independent.

For any random variables R and S, let σ 2
R = var (R) if this variance exists, and let

σ RS = cov (R, S) if this covariance exists. Also let ψ R (t) = ln E
[
exp (i t R)

]
, the log

characteristic function (also known as the cumulant generating function) of R, and similarly

ψ R,S (t1, t2) = ln E
[
exp (i t1 R + i t2S)

]
.

We begin with a tiny Lemma:

LEMMA 1: Let Assumptions A1, A2, and A3 hold. If the constant c is point identified,

then the distributions of U , V , and W are all also point identified.

Proof of Lemma 1: When c is point identified, we have Y/c = V+W/c. We can then apply

Kotlarski’s Lemma to the observed joint distribution of Y/c and X to identify the distributions

of U , V , and W/c, and hence also identify the distribution of W .

Next we have a theorem from model B of Reiersøl (1950).

THEOREM 1: Let Assumptions A1, A2, and A3 hold. If V is not normally distributed,

then the constant c is point identified from the equation

ψY,X (t1, t2)− ψY (t1)− ψ X (t2) = ψV (t1c + t2)− ψV (t1c)− ψV (t2)

otherwise, V is normally distributed and

ψY,X (t1, t2)− ψY (t1)− ψ X (t2) = −σ
2
V ct1t2

The proof of Theorem 1 is given in Reiersøl (1950). Note that the left side of the equations

in Theorem 1 are identified from the joint distribution of Y and X . That the equations in

Theorem 1 hold can be immediately verified by the definition of the log characteristic function

and the independence of U , V , and W . The deep result in Reiersøl (1950) is proving that c is

point identified from these equations whenever V is non-normal, even though the distribution

of V , and hence the log characteristic function ψV , is unknown. When V is normal, these
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equations give a bound on c (it must lie between zero and the coefficient of −t1t2), but this

bound is tightened below.

Lemma 1 and Theorem 1 together show how to tell if V is normal or not, and show that

Kotlarski’s Lemma extends to point identification with an unknown factor loading c as long

as V is non-normal.

Now consider the case where V is normal. For this case, we need some more notation.

For a random variable R, define R’s "largest normal factor" to be the variable R̃ having the

maximum variance such that R = R̃ + R, where R̃ and R are independently distributed and

R̃ is normally distributed. Without loss of generality, assume R̃ has mean zero. Call R the

non-normal factor. If no normal R̃ exists, then R does not have a normal factor, and in this

case we can let R̃ = 0 and R = R. If R is normal then R̃ = R − E (R) and R = E (R).
See Schennach and Hu (2013) and Lewbel, Schennach, and Zhang (2020) for a similar use of

normal factors. Reiersøl (1950) calls a normal factor a normal divisor.

Given a random variable R, the variance of R̃ can be determined by

σ 2

R̃
= sup

{
σ 2 ∈ R+ : ψ R (t)+ t2σ 2/2 is a log characteristic function

}
If σ 2

R̃
= 0 then R does not have a normal factor, otherwise, σ 2

R̃
given by this expression is

the variance of the largest normal factor R̃. This follows immediately from the definition of

a characteristic function, since a positive σ 2

R̃
means by construction that R equals the convo-

lution of two independent random variables, one of which has the log characteristic function

of a mean zero normal.2 This means that if R has a known distribution, and hence a known

characteristic function, we can determine if it has a normal factor or not, and we can point

identify the distributions of R̃ and R.

THEOREM 2: Let Assumptions A1, A2, and A3 hold. Assume V is normally distributed.

Then σ X̃ Ỹ , σ 2

X̃
, and σ 2

Ỹ
are identified. If σ X̃ Ỹ /σ

2

X̃
= σ 2

Ỹ
/σ X̃ Ỹ then c is point identified by

c = σ X̃ Ỹ /σ
2

X̃
= σ 2

Ỹ
/σ X̃ Ỹ and in this case neither W nor U have a normal factor. Otherwise,

c is interval identified by c ∈
[
σ X̃ Ỹ /σ

2

X̃
, σ 2

Ỹ
/σ X̃ Ỹ

]
, and for each value of c in this interval,

there is a corresponding, identified unique distribution for U , V , and W . This interval bound

on c is sharp.

The fact that c is point identified when neither W nor U have a normal factor also appears

in Reiersøl (1950). The identified sets in Theorem 2 are new, but are closely related to the

Frisch (1934) bounds on mismeasured linear regressions. Taken together, Lemma 1, Theorem

1, and Theorem 2 completely characterize the identification of our model.

Proof of Theorem 2: Separating Y and X into their normal and non-normal factors, we

have Y = Ỹ + Y and X = X̃ + X . Similarly, Separating W and U into normal and non-

normal factors, we also have Y = cV + W̃ + W and X = V + Ũ + U . When V is normal,

this implies Ỹ = cV + W̃ , Y = W , X̃ = V + Ũ and X = U . This in turn means that, with V

2An explicit mathematical expression for "being a characteristic function" and hence defining σ 2

R̃
can be

obtained from Bochner’s Theorem, e.g., Theorem 4.2.2 in Lukacs (1970).
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normal, X and Y are independent of each other and of the joint distribution of Ỹ and X̃ . Since

the marginal distributions of Y and X are identified, we can identify the left side of

ψY,X (t1, t2)− ψY (t1)− ψ X (t2) = ψ Ỹ ,X̃ (t1, t2)

And therefore the joint normal distribution of the mean zero variables Ỹ and X̃ is identified.

In particular, this means that σ 2

Ỹ
, σ 2

X̃
, and σ X̃ Ỹ are identified.

The remaining step now borrows heavily from the Frisch (1934) bounds on mismeasured

linear regression. From the identified second moments of Ỹ and X̃ , we have σ 2

Ỹ
= c2σ 2

V+σ
2

W̃
,

σ 2

X̃
= σ 2

V + σ
2

Ũ
, and σ X̃ Ỹ = cσ 2

V , which provides three equations in the four unknown

constants σ 2

Ũ
, σ 2

W̃
, σ 2

V , and c. The only constraints on these parameter values are that c 6=

0, σ 2

Ũ
and σ 2

W̃
must be non-negative (either can be zero if the corresponding normal factor

doesn’t exist), and σ 2
V must be positive. These being the only constraints is what makes the

corresponding bounds be sharp. The equation σ X̃ Ỹ = cσ 2
V means that the sign of c equals the

sign of σ X̃ Ỹ to ensure σ 2
V > 0. Then σ 2

Ũ
≥ 0 requires σ 2

X̃
− σ X̃ Ỹ /c ≥ 0 and σ 2

W̃
≥ 0 requires

σ 2

Ỹ
− cσ X̃ Ỹ ≥ 0. Therefore, either σ X̃ Ỹ > 0 and σ X̃ Ỹ /σ

2

X̃
≤ c ≤ σ 2

Ỹ
/σ X̃ Ỹ , or σ X̃ Ỹ < 0 and

σ 2

Ỹ
/σ X̃ Ỹ ≤ c ≤ σ X̃ Ỹ /σ

2

X̃
. Either way c lies in the interval between σ X̃ Ỹ /σ

2

X̃
and σ 2

Ỹ
/σ X̃ Ỹ ,

and this interval does not include zero.

Finally, given any c that lies in this interval, there’s an identified corresponding unique

distribution for Ũ , V , and W̃ that satisfies the assumptions, given by V ∼ N
(
0, σ X̃ Ỹ /c

)
, Ũ ∼

N

(
0, σ 2

X̃
− σ X̃ Ỹ /c

)
, and W̃ ∼ N

(
0, σ 2

Ỹ
− cσ X̃ Ỹ

)
, and corresponding identified unique dis-

tributions for U and W given by U = Ũ + X and W = W̃ + Y .
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