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Abstract

We show that a standard linear triangular two equation system can be point iden-
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life expectancy and GDP, obtaining point identification and comparable estimates to
theirs, without using their (or any other) instrument.
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1 Introduction
Consider a standard linear triangular structural model
Y = X/bl + &1 (1)

W:’YY—FX,bQ—i—EQ (2)

for some endogenous variables Y and W, exogenous covariates X, and unobserved errors £,
and 5. For example, W could be a worker’s wages or earnings and Y could be her level of
schooling. Or, as in our later empirical application, W could be a country’s GDP growth
and Y a health measure like growth in life expectancy. The primary goal is identification of
v, the direct causal effect of Y on W, though we will also obtain identification of by, by, and
the joint distribution of the errors.!

The main obstacle to identification and estimation of 7 is that €; and €, may be correlated,
because both depend on a common unobserved U (ability in the case of schooling and wages,

technology in the case of GDP and health). That is, in its simplest form,
e1=U+V and e =pU+R (3)

where U, V, and R are unobserved, mutually independent (conditional on X) random vari-
ables and 3 is a constant. After projecting off covariates X, the V and R errors represent
idiosyncratic shocks to Y and W, while U is what makes Y an endogenous regressor in the
W equation.

Similar triangular structural models arise whenever we have one variable Y affecting
another variable W, and a common unobservable that affects them both. For example,
consider a two period dynamic model with autocorrelated errors. In this case W equals Y
in a subsequent time period, and U represents the autocorrelation in the errors. Another

example is production, where W could be a firm’s value-added output per unit of capital, Y

IThroughout this paper we focus on the traditional homogeneous effects model where v is a constant,
rather than a heterogeneous treatment effects model.



is the firm’s labor per unit of capital, and U is unobserved entrepreneurship, which affects
both productivity and the chosen level of inputs.

Such models are traditionally identified in econometrics by finding an instrument, i.e.; a
variable that correlates with Y but not €9, or equivalently, a variable that correlates with
V but not U or R. However, such instruments can be difficult to find. For example, Card
(1995, 2002) and others propose using measures of access to schooling, such as distance to or
cost of colleges in one’s area, as wage equation instruments, while others raise objections to
the validity of these instruments, e.g. Carneiro and Heckman (2002). Other wage equation
instruments may raise fewer questions of validity but can be weak, like Angrist and Krueger’s
(1991, 2001) quarter of birth instruments.

Similarly, Acemoglu and Johnson (2007) propose using changes in predicted mortality,
constructed based on innovations in health care, as an instrument for life expectancy growth
Y in their regression of GDP growth W on Y. However, such health innovations could be
correlated with other technological advances that increase GDP, leading to instrument in-
validity. Comparable questions can be raised regarding the instruments or identifying side
information in other similar studies, such as Aghion, Howitt, and Murtin (2010), who find
a positive v, in contrast to Acemoglu and Johnson’s (2007) negative . Ecevit (2013) sum-
marizes results from eleven similar studies, finding estimates of v that range from strongly
negative to insignificant to strongly positive. This range of estimates raises serious questions
regarding the validity of instruments or other side information that different authors use to
identify ~.?

Rather than propose any new instrument, we address the more fundamental question of
whether and when this model can be point identified and estimated without side information
such as instruments whose validity can be hard to ascertain (noting that the alternative

of a randomized experiment is not feasible for a macro question like this). If so, then we

20f course, differences are also due to variation in data sets and in how Y and W are defined and
constructed. As another way to explain these differing results, Cervellati and Sunde (2011) suggest that the
true effect might be non-monotonic.



can estimate the model without relying on side information, and/or test the validity of side
information like instruments via overidentification tests.

We provide conditions for point identification of the model
Y=U+V (4)

W =Y + U + R (5)

with U, V', and R being unobserved, mutually independent random variables with unknown
distributions. The same identification theorem can then be applied conditioning on covariates
X, to show point identification of more general models, where the entire distributions of U,
V', and R could depend nonparametrically on X. A special case of this general identification
result is then identification of equations (1), (2) and (3). In this special case, variables V'
and R that depend nonparametrically on X in equations (4) and (5) are instead replaced
with X’y +V and X'f3; + R, where these new V and R do not depend on X .3

Our main result is surprising: under minimal regularity assumptions, the coefficients ~
and [, and the distributions of U, V, and R (and b; and by in that model) are all point
identified without instruments or other side information, unless either U or V' is normally
distributed (after appropriately conditioning on or projecting off covariates X). So, for
example, Y having bounded support would be a sufficient condition for point identification,
since that would rule out normality of U or V.

In addition to proving this general identification result, we also: 1. Provide a few low
order moments yielding simple GMM estimators of the model, 2. Show how infinitely many
additional moments conditions can be systematically constructed to provide identification
under weaker conditions, 3. Provide the sharp identified set for the coefficients v and [ in
the case where either U or V is normal and hence point identification fails, 4. Investigate

the behavior of these GMM estimators in some Monte Carlo exercises, and 5. Provide

3More generally, U, V and R could be heteroskedastic, or otherwise have higher moments that depend
in unknown ways on X, but estimation would then become more complicated. One possibility would be
replacing the GMM estimators we provide with conditional moment GMM, conditioning on X. More simply,
heteroskedasticity could be parameterized, with parameters estimated as part of the GMM.



an empirical application where we establish that our identification and estimation strategy
is viable even with a very small sample size. Specifically, we estimate the Acemoglu and
Johnson (2007) model without using any instruments, and obtain estimates that are very
similar to what they found with their instrument.

Instrumental variables estimation of the model has the advantage that it only requires
assumptions regarding first and second moments of the covariates, errors, and instruments.
In contrast, our assumptions regarding U, V', and R are, implicitly, restrictions on all mo-
ments. However, there are a number of mitigating factors. First, some of our results, such
as Lemma 1 below, only rely on lower order moments. Second, our main theorem works via
convolutions, and so our independence assumptions can be relaxed to subindependence, as
defined and described in Schennach (2019), who points out that subindependence is arguably
as weak as a conditional mean assumption in terms of the dimensionality of the restrictions
imposed. Third, our independence assumption is actually conditional on other covariates,
so, e.g., the identification can handle arbitrary heteroskedasticity and dependence of higher
moments on regressors. Similarly, if, e.g., U is ability, then identification only requires ability
to be conditionally (sub)independent from other unobserved factors, conditional on covari-
ates. Nevertheless, given our required assumptions, these results should be most useful when
instruments either don’t exist, or might be invalid.

The identification of equations (4) and (5) without instruments has been previously con-
sidered by Rigobon (2003), Klein and Vella (2010), and Lewbel (2012), but these results
neither nest nor are nested by ours because they require that the errors be heteroskedas-
tic, and identification is obtained by imposing varying restrictions on the structure of that
heteroskedasticity.*

A number of special cases of our results do appear in the literature, but all of them assume

v = 0, and so they omit the most important feature of the model in applications like ours.

4Rigobon (2003) and Klein and Vella (2010) impose different parametric restrictions on the error variances,
while Lewbel (2012) imposes a nonparametric restriction. For simplicity we assume homoskedastic errors,
but by conditioning our identification theorems on X, we could allow for general heteroskedastity as well, at
the expense of likely weaker identification and more complicated estimators.



Kotlarski (1967) is the special case of our model where it is known that v = 0 and g = 1,
and in that case Kotlarski’s Lemma shows that point identification of the distribution of
all the latent variables holds even under normality. Similarly, Reiersgl (1950) uses a special
case of our model where it is known that v = 0 and Y plays the role of a measurement of U
contaminated by an error V' and establishes conditions under which § would be identified.
As noted in Lewbel (2020), with v = 0 and Reiersgl’s identification of 3, one could rewrite
Reiersgl’s model as Y = U + V and W/ = U + R/f3, and then apply Kotlarski’s lemma to
the joint distribution of Y and W/j to identify the distributions of U, V, and R.?

Our results, showing necessary and sufficient conditions to identify the more general
model of equations (4) and (5) with unknown nonzero =y, turns out to be a difficult extension.
In particular, the methods of proof used by Reiersgl (1950) and Kotlarski (1967) do not
extend to our problem. The proof of our main result instead relies on similar tools as Khatri
and Rao (1972) or Rao (1966, 1971) (see also Comon’s (1994) reference to Darmois (1953)).

Some limitations of our results should be acknowledged upfront. We assume that the
coefficients v and (8 are constants. So, e.g., our results do not immediately extend to random
coefficients, such as treatment effects with unobserved heterogeneity, or to nonlinearity in
the dependence of W on Y. However, this limitation may be mitigated to some extent
by allowing the distributions of the unobservables to be unknown functions of covariates.
Another important restriction on our results is that we require U to be a scalar. While this
is a common assumption (as in the examples cited earlier), there are other situations where
one might expect a vector of unobservable shocks like U to affect both Y and W, and our

identification results would then not apply. We provide examples in Supplement D. Finally,

A special case of non-normality is when the components U and V are asymmetric. Lewbel (1997)
and Erickson and Whited (2002) exploit asymmetry to construct simple estimators for the Reiersgl (1950)
model. See also Bierens (1981). Other papers propose estimators for models like equations (4) and (5) with
~ = 0, by assuming that coefficients like S are point identified using higher moments, but without explicitly
characterizing when that is possible. Examples include Bonhomme and Robin (2010), Fruehwirth, Navarro,
and Takahashi (2016), and Navarro and Zhou (2017). A related result, showing identification of direction
of causality in models under nonnormality, is Peters, Janzing, and Scholkopf (2017). Generalizations of
Kotlarski’s lemma to models with more components (but again still assuming v = 0) include Székely and
Rao (2000) and Li and Zheng (2020). A nonlinear extension of Reiersgl (1950) is Schennach and Hu (2013).



a limitation for empirical work is that our estimators depend on higher than second moments
of the data, and such moments can lead to very imprecise estimates when sample sizes are
small.

In section 2, we provide a few simple moments that will often suffice to point identify our
model, and can be used to construct a correspondingly simple GMM estimator. In Section
3, we present our general identification results, including constructing more moments like
those in Section 2, and showing that, with minimal regularity, the model is point identified
as long as both U and V' are not normal. In sections 4 and 5 we derive the sharp identified
set when either U or V is normal, and derive some inequalities regarding our model relative
to ordinary least squares. Section 6 provides a Monte Carlo analysis of our simple GMM
estimators. In section 7 we provide an empirical application based on Acemoglu and Johnson
(2007), in which we obtain estimates comparable to theirs, without using their (or any other)

instrument. Section 8 concludes with some suggestions for further work.

2 Simple Identification and Estimation

We begin with a simple special case of our general results, by providing some moments
that can easily be used to identify and estimate (by standard GMM) the models described
in the introduction. These results are not as general as our main identification theorem, but
are likely to suffice for many empirical applications.

We first consider identification and estimation of equations (4) and (5) without covariates

X, and then we extend the results to equations (1) and (2).

Assumption 1 We observe the joint distribution of two real valued, nondegenerate random

variables Y and W.

With data, we could assume independent, identically distributed observations of Y and
W, and then identify their joint distribution to satisfy Assumption 1 using the Glivenko

Cantelli theorem.



Assumption 2 The unobserved real valued random variables U, V', and R are mean zero

and mutually independent,® with unknown distributions.
Assumption 3 R has finite variance, and U and V each have finite fourth moments.
Assumption 4 The unknown constants v and 3 are real valued, finite, and 5 > 0.

We can assume our data Y and W have been demeaned, rationalizing the assumption
that the unobservables have mean zero. To see why we need a sign restriction on (3, observe
that we can rearrange equations (4) and (5) to get W = (v + )Y — 8V + R, which, except
for the sign of [, is observationally equivalent to the original model, switching the roles of V'
and U. Usually, the sign of 5 should be clear from the economics of the application, e.g., in
a returns to schooling model, § > 0 is a natural assumption, since it says that unobserved
ability that increases (decreases) education outcomes will increase (decrease) wages. If we
instead believed [ was negative, we could just replace Y with —Y everywhere to make [
positive (redefining 7, U, and V' accordingly).

We also rule out § = 0, because if 5 = 0 then it would be pointless to separately identify
V and U. Moreover, having § = 0 is nonsensical in the types of applications we consider,
since it would mean that Y is exogenous, making identification and estimation of ~ trivial.

Substituting equation (4) into equation (5) gives the reduced form expression for W
W=+qV+aU+ R with a=vy+p (6)

The following Lemma provides two moments that can often suffice to point identify v and

a, which then trivially also point identifies f3.

Lemma 1 Let Assumptions 1-4 and equations (4) and (5) (and therefore also equation 6)
hold. Then
(W —~Y) (W —aY)¥] =0 7)

cov [(W=~Y) (W —aY),Y?| =2E (WY —Y?) E (WY —aY?) =0 (8)

6Independence can be weakened to subindependence (Schennach (2019)).
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Proofs are all in Supplement A. The proof of Lemma 1 works by substituting W —~Y =
U + R and W — aY = —5V + R into equations (7) and (8), and then uses the mutual
independence of U, V', and R to verify that these equations hold.

Lemma 1 provides two equations in the two unknowns « and 7. If we solve the first
equation for o and substitute that into the second, we obtain a quadratic in . The sign
restriction that 5 > 0 then determines which root is the correct one for ~.

We later provide the formal conditions under which these two equations suffice to point
identify o and 7. The main condition, derived in Theorem 1 below, is equation (21). Equa-
tion (21) shows that the main cases in which equations (7) and (8) by themselves fail to
provide point identification are when U and V have the exact same distribution, or when
both are symmetrically distributed, or if either U or V is normally distributed. We later
show that infinitely many additional equations in «, v, Y and W can be constructed, based
on higher moments of Y and W than those used in Lemma 1. These higher moments can
help identify a and v in applications where Lemma 1 does not suffice.

A simple estimator for a and § can be constructed by rewriting equations (7) and (8) as
moment conditions, and applying standard method of moments or GMM. One can immedi-

ately check that these equations take the form
E(YW — ) =0, E(Y? =) =0 (9)
E[W —=7Y)(W—=(+p8)Y)Y]=0 (10)

E [(W —Y)(W—=(v+8)Y) (Y2 - Myy) = 2 (Hyw — Vhyy) W = (v + B)Y) Y} =0 (11)

where i, = E (YW) and p,, = F (Y?). The parameters i, and p,, are estimated along
with v and § by putting equations (9), (10), and (11) into any standard GMM estimation
routine. One could replace 3 with €’ in these equations to impose the sign restriction that
£ > 0.

Lemma 1 uses up to fourth moments of the data. Based on results derived in the next

section, in Supplement B we provide additional equations (using up to fiftth moments) that



can provide overidentification of v and 3, or point identification in some cases where Lemma
1 does not suffice.

Let 0%, 0%, and 0% denote the variances of the error components U, V, and R. It may
be of economic interest to estimate these variances, to identify how much of the variance
of the model errors is due to unobserved ability U versus the idiosyncratic components
V and R. From the model we have E((W —+Y)Y) = fo%, E(Y?) = o4 + o0&, and
E ((W — 7Y)2) = 3?0} + 0%, which implies

oL =E((W —Y)Y) /8, o2=E(?) -0k ob=E(W-~Y))—p%% (12

Given estimates of § and 7, we can replace the expectations in equation (12) with sample
averages to estimate these variances.
Alternatively, we can estimate these variances jointly with the model parameters by
observing that
Fyy = op + oy, Hoyw :BGIQJ+7(U(2J+U\2/) : (13)
So, in equations (9), (10), and (11) we can replace p,, and p,,, with their expressions in

equation (13), and apply GMM using those equations along with the additional equation
E((W =AY)? - B0l —a%) =0 (14)

to simultaneously estimate 3, v, 07, 0%, and 0%. We can further replace o7 with o7 = e™
and similarly for 0% and 0%, to impose the constraint that variances are positive. See
Supplement B for details on these moments.

Higher moments of U, V', and R can be estimated analogously. Alternatively, as discussed
later, once we have identified and estimated g and 7, we can apply Kotlarski’s Lemma to
recover the entire distributions of U, V', and R.

We can also easily extend this identification and associated estimation to allow for co-

variates. Suppose we have the model

Y =UX+U+V (15)
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W=~Y +b0,X+pU+R (16)
where X is exogenous and is therefore uncorrelated with U, V', and R. The reduced form
for W is now

W= (b 4+b)X+(H+BU+9V +R

So we can estimate the coefficient vectors b; and by along with v and £ by replacing Y and
W in equations (9), (10), and (11) with Y — ¥, X and W — (vb; + by)’ X, respectively and

estimate those moments along with the moments
E((W—=(yb1+b) X)X)=0, E((Y-0X)X)=0 (17)

The complete set of moments for estimating this model via GMM, which we use in our
empirical application, is provided in Supplement B.

Although we did not find this to be the case in our application, when GMM models are
substantially overidentified (many more moments then parameters) it is sometimes preferable
to only use a subset of available moments for estimation. Since our estimator takes the form
of standard GMM, in these cases the existing literature on empirical choice of moments
in standard GMM estimation might be applied. See, e.g., Andrews and Lu (2001), Caner
(2009), and Liao (2013).

For simplicity, these estimators assumed the errors U, V', and R are homoskedastic, and
similarly have higher moments that do not depend on X. This could be relaxed to allow
higher moments of these errors to depend in unknown ways on X, by letting the assumptions
of Lemma 1 hold conditional on X, thereby replacing the unconditional moments of equations
(7) and (8) with conditional moments. Corresponding estimators would then, however, be
much more complicated, and parameters like the error variances would need to be replaced

by nonparametric functions of X.

3 General Point Identification

We now provide a more general and systematic analysis of the identification of our model,

using more information than the low order moments of Lemma 1. We provide four main

10



results. First, we show that it is possible to construct infinitely many moments like those
of Lemma 1, which can be used to construct simple GMM estimators, and we give the
conditions under which these moments point identify the coefficients o and v (equivalently,
B and 7). Second, we apply Kotlarski’s lemma to point identify the distributions of U, V/,
and R given point identification of o and . Third, we demonstrate that, using the entire
joint distribution of Y and W (instead of just some moments) the only case where point
identification is not possible is when U or V' (or both) are normal. Finally, in the not point
identified case, we fully characterize the sharp identified set.

We make extensive use of the characteristic function and its logarithm. Knowing the
(log) characteristic function of a vector of random variables is equivalent to knowing the

joint distribution of those variables (Theorem 3.1.1 in Lukacs (1970)).

Definition 1 Given two random variables Y and W, let ¢yw ((,€) = E [eYTEV] de-
note their joint characteristic function. Similarly for a single random variable, let ¢y (¢) =
E [¢Y]. Moreover, let Oy, ((,€) = Ingy,w (¢, €) and Py (¢) = Ingy (¢) denote log char-

acteristic functions (which are also called cumulant generating functions).

Definition 2 Given two random wvariables Y and W, define the cumulant of order k,/

(Lukacs (1970), p. 27) as

ol — Iy ((,€)
YW = FHCROET 4:0,6:0.

Similarly for a single random variable, define the cumulant of order k as

G
(=0

k —
by ikQCk

All cumulants can be expressed in terms of standard moments, as obtained by an explicit

differentiation of the log characteristic function and by exploiting the characteristic function

moment theorem (e.g. E [Y*] = [?:géi)] )7. Also note that the joint and marginal
£=0

"For high-order cumulants, these otherwise tedious algebraic manipulations could be handled with sym-
bolic algebra packages.

11



characteristic functions as well as the corresponding cumulants are directly related, e.g.,

Py (C) = dviw (¢, 0), Py (¢) = Pyw (¢,0) and D} = CDI?,?/V-
With these tools in hand, we are ready to state a general identification result based on
moment constraints. As in Lemma 1, we start by rewriting the model of equations (4) and

(5) in the reduced form of equations (4) and (6), and focus on the parameters « and 7.

Theorem 1 Let Assumptions 1, 2, and Equations (4) and (6) hold. Assume —oo < v <
a < oo and let
M, (o, 7) = Oyi0? — a*®y™ — (v + ) (PFF' — adTHP) . (18)
Let q,¢ € N = {0,1,...} with q < ¢. If E [[Uﬂ, E [\V\q] and E [\Rﬂ exist and
<I>§,+q<1>2YjLV‘II,’1 (Difq(b%,fv%l (or, equivalently, if ®FTIOTTY £ GIIDIT) then the moment con-
straints
My (a,7) =0 (19)
Mg (a,7) =0 (20)
point identify the parameters of the model as (o,y) = (a4, a_), where
3012 3012 \ 2 pi221
Xt = 5021 + (2]:3021) + 3021

abcd —_ a+(j7b C-‘rq,d a+q7b C+(j7d
and where F = <I>Y7W CIDKW — <I>Y7W <I>Y7W .

The proof, provided in Supplement A, proceeds by a judicious choice of cumulants of
(Y, W) that do not depend on cumulants of R, and by exploiting the fact that cumulants of
(Y, W) of order k, ¢ that share the same value of k + ¢ involve the same cumulants of U and
V' with prefactors that only differ in how they depend on o and ~y. These observations then
lead to specific functions of cumulants that can be analytically solved for o and ~.

Note that Theorem 1 also relies on Assumption 4, here rephrased as —oo < 7 < a < o©.
Had we assumed —oo < o < v < oo instead, then essentially the same Theorem would hold
except that now a and v would be point identified by (o, v) = (a—, ay). We next formally

show that Theorem 1 contains Lemma 1 as a special case.

12



Corollary 2 The assumptions of Theorem 1 with ¢ =0 and ¢ = 1 imply that the assump-
tions of Lemma 1 hold. Equations (19) and (20) in Theorem 1 with ¢ = 0 and ¢ = 1 are

equivalent to equations (7) and (8) in Lemma 1.

Equations (9), (10), and (11), used for GMM estimation of a and 7, were obtained by
converting equations (7) and (8) into moments suitable for GMM. Equivalently, equations
(9), (10), and (11) could have been directly derived from M, (a,y) = 0 and M; («,y) = 0.
This is done explicitly in the proof of Corollary 2.

As noted above, all cumulants can be expressed in terms of standard moments, specifi-
cally, cumulants equal sums of products of moments. To fit within a GMM framework, the
cumulants in the expressions M, (c, ) = 0, after being converted to functions of moments,
must be linearized. This is done by introducing nuisance parameters. To illustrate, the
cumulant &4 appears in the equation M; (a,v) = 0. Now &% equals £ [Y4] — 3[E (Y2)]?,
so, e.g., to convert the expression ®} = c into a form suitable for GMM, we rewrite this
expression as F [Y* — 3Y%uyy — ¢ = 0 and E [Y? — pyy| = 0, using the nuisance parameter
yy that was introduced in the previous section.

Theorem 1 shows that one can obtain any number of additional, potentially overiden-
tifying, moments to use for GMM estimation, based on the fact M, (a,y) = 0 holds for
any nonnegative integer p (as long as the associated moments of U, V', and R exist). We
illustrate this in Supplement B, where, in addition to the moments based on Lemma 1, we
provide the additional moments suitable for GMM estimation that are obtained from p = 2.
In our later Monte Carlo simulations and empirical application, we provide results using the
exactly identifying set of GMM moments based on p = 0 and 1, and also using the generally
over identifying set of GMM moments based on p = 0,1 and 2.

Theorem 1 provides explicit conditions under which any pair of cumulant functions

M,

g (a,7) = 0 and M5 (a,y) = 0 suffice to identify the parameters o and . In particu-

lar, point identification based on the moments in Lemma 1, corresponding to My (a,y) =0

13



and M (o,7) = 0, requires that &, ®3, # &Y, or equivalently
(B -3[E@)]") B - (B0 -3 [E02P) B £0.

The left-hand side of (21) turns out to be proportional to the determinant of the Jacobian

of the moment conditions (7) and (8) evaluated at the true value of the parameters:

E[V?] —E[U3
’ { EVY -3(E[VY) —E[UY]+3(B[UY)’ } ' (22)

This connection is expected, since having a nonsingular Jacobian at the true parameter
values is a necessary condition for point identification.

Condition (21) is violated, for instance, if either U or V' is normal, or if both U and V are
symmetric, or if both U and V have the exact same distribution. If we add the additional
moments corresponding to M, (c,y) = 0, then point identification only requires that at
least one of the inequalities ®F,®3, # OLOF, OF DY £ &7 D7, or P70, # D3, P, hold. For
example, if the second of these holds then Theorem 1 applies with ¢ = 0 and ¢ = 2. If more
than one of these inequalities holds, then we are generally overidentified.

Once the parameters a and v have been identified, the full distribution of all unobserv-

ables can be determined under the following Assumption.®

Assumption 5 The characteristic functions of U,V and R are nonvanishing on the real

line.

Corollary 3 If Assumptions 1, 2, 5 and Equations (4) and (6) hold, E[|Y|] < oo and if
a,y are point identified, then the distributions of U, V and R are point identified from the

joint distribution of Y and W through

W —aY

iYel
v (€) = /;EE[E;UWY]]UK (23)

Py (Q) = Py (€) —Pv (¢)

Pr(€) = Pw(§) — Py (ag) — Py (7€) .

8This can be relaxed to nonvanishing everywhere, except at isolated points, under slightly stronger mo-
ment existence conditions; see Schennach (2000) and Evdokimov, K. and H. White (2012).
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A more explicit expression for the distributions of these unobserved variables can be

obtained by an inverse Fourier transform. For instance, if V' admits a density, it is given by

fr =0 [ e @y (@) (24)

and similarly for the other densities. More general distributions (e.g. discrete and/or sin-

gular) can be recovered as well, if equation (24) is interpreted in the appropriate measure
theoretic sense.

Although Theorem 1 is quite general, it does require the condition <I>3U+Q<I>‘€’/+q =+ @i’;“jcb?fq
to deliver identification, so it is natural to ask whether this is fundamentally necessary. It is
in fact possible to formulate an estimation strategy that relaxes this condition. For instance,
as discussed above, one could stack the moment conditions of the form (19) and (20) obtained
with different values of (q,G). The resulting moment conditions would only fail to identify
(cv,7y) if the condition @gw(l)?fq =+ CID%/M(I)?]H fails simultaneously for all the choices of ¢ and
¢ considered.

An even more general strategy could be to start from the fundamental relationships be-
tween the log characteristic functions of the observables and unobservables (®y (¢, &) =
Oy (C+al)+ Py (C+ 7€)+ Pr(£)) and cast identification as an optimization problem that
minimizes deviations between the observed quantities (i.e. @y (¢,€)) and predicted quan-

tities:

(Oé, 7 q)Uv (I)Va q)R> (25)

~ g, min / / By (C+ ab) + By (€ +7E) + Bp (€) — Byay (¢, 6 ddC,

(0,1,20,2v,OR
subject to @ > 7, zero mean constraints (¥}, (0) = 0,P}, (0) = 0,9, (0) = 0) and that
(Py, Py, Pr) be valid log characteristic functions. This approach circumvents requiring
existence of the moments F [[U ﬂ, E [\V\q] and F [[R\q] However, the introduction of
nuisance functions (®y, Py, Pr) would complicate estimation, as these would have to be

parameterized by series or other expansions to construct a corresponding sieve estimator.
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An estimator based on Equation (25) would be obtained replacing ®y.w (¢, &) by its sample
analogue and trimming or downweighting the high-frequency tails in the integral.

The question remains, do there exist situations where neither this nor any other estimator
can consistently estimate the model, due to lack of point identification? The following
theorem fully addresses this question, by showing that there exist cases that are not point
identified. However, all such cases are when U or V' (or both) are normal.

This differs from, and is simpler than, Reiersgl’s (1950) well-known result in linear univari-
ate errors-in-variables models, where the nonidentified cases arise when the model contains
normal factors (see below). However, the required methods of proof differ significantly. For
instance, the presence of two slope parameters o and v (instead of one), and the presence
of both latent variables U and V' in both equations of the model, prevents us from using
Reiersgl’s proof method, which is based on the fact that two functions of different variables
that are equal to each other must be constant. In our case, we have sums of many different
functions of different variables on each side of an equality, and possible cancellation between

terms that complicates the argument significantly.
Assumption 6 £ [\U\?’] ,E UV|3] B [|R[3] are finite.

Theorem 4 Let Assumptions 1, 2, 5, 6 and Equations (4) and (6) hold and assume that
—0 < 7 < a < oo. If neither U nor V. are normally distributed, then o,y are uniquely

determined by the joint distribution of Y and W by Equation (25).

Note that U or V normal implies Y has full real line support, so having the support of
Y be bounded is a simple sufficient condition for point identification. In the next section,

we address what happens when either U or V' (or both) are normally distributed.

4 Set Identification

In the case where Theorem 4 does not apply, so that the parameters are not point

identified, the objective function of Equation (25) is maximized over a set rather than at a
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single point. In order to precisely characterize this identified set, we first need to introduce

the notion of factor, which is used by Reiersgl (1950) and by Schennach and Hu (2013).

Definition 3 If a random variable Z can be decomposed as Z = Z1 + Zy where Z1 and Zs
are independent, then Zy and Zy are called factors of Z. (The term factor can also be used

to refer to the distributions of these variables.)

While for given characteristic functions ¢z, (£) and ¢z, (£), we automatically have that
b7 (&) = ¢z, (&) Pz, (§) by the convolution theorem, the notion of factor embodies the fact
that, if one is instead given the two characteristic functions ¢z (§) and ¢z (§), it is not
automatic that there exists a random variable Z, with characteristic function ¢z, (§) =
07 (&) /b7, (). The inverse Fourier transform of ¢z, (£), may not actually yield a proper
probability measure (it could assign negative weights to some sets, for instance).

Next we consider what it means for a random variable to have a normal factor.

Lemma 2 Let Z be an observed zero mean random vector. Then Z admits a unique decom-

position into two unobserved zero mean independent factors
Z =Zy+ 4y, (26)

where Z, is Gaussian with variance N and Z, has no Gaussian factors. Furthermore, the
variance of Z, is determined (from the observed distribution of Z) from the unique A such

that

A — A is positive semidefinite <= ¢z (&) exp (§'AE/2) is a characteristic function.
(Note that either Z, or Z, or both could be zero.)

Intuitively, Lemma 2 indicates that the decomposition into a Gaussian and a non-
Gaussian factor can, in principle, be found by attempting to deconvolve Z by a Gaussian of
variance A and seeking the “largest” (in a positive definite sense) possible A that will still

yield a proper distribution. In Fourier representation, this amounts to dividing ¢z (§) by

17



exp (—&'A¢/2) and checking if the result is a valid characteristic function (e.g., by verifying if
the inverse Fourier transform is a nonnegative measure). An alternative check for the valid-
ity of a given function ¢ (§) to be a valid characteristic function can be based on Bochner’s
Theorem (Theorem 4.2.2 in Lukacs (1970)): ¢ is a characteristic function iff
YN o (G—&)=0foralle,...,c, € Clorall&,...,& €R for all integer n > 1
i=1 j=1
(Bochner’s Theorem also includes the conditions that ¢ (§) be continuous and ¢ (0) = 1 but
these are automatically satisfied in our context.)
Using Lemma 2, we can decompose the observed Z = (Y, W) into Gaussian (g) and
non-Gaussian (n) factors

(Y, W) = (Y, Wy) + (Yo, Wa) (27)

This decomposition can be accomplished without the knowledge of « or 7v. The non-Gaussian
or Gaussian nature of the two factors is important in our context, because it is associated
with the features that can or cannot be point-identified. This type of decomposition is not
a purely theoretical construct; it can be empirically implemented. Independent Component
Analysis techniques, which are widely used in signal processing, (see Hyvérinen and Oja

(2000) for a review) specifically rely on such decompositions into Gaussian and non-Gaussian

components.
Define
_ EWY]
s e 0
Ds _ E [WsQ] E [Y?] — (f [WSY:?])2 >0 (29)
(E[YZ])

[

where the subscript s is either set to “g” , or to “n” , or is removed. We can now state our

set-identification theorem:

Theorem 5 Let Assumptions 1, 2 and Equations (4) and (6) hold and assume that E [Y?],
E[W?], E[R?] < 0o and that —oo < vy < a < 0o. Then, the following bounds (illustrated in

Figure 1) are sharp:
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1. If both U and V are Gaussian (and E[Y?] > 0), then

a > By (30)

D
B, — g <
g a—Bg -

v < Bq. (31)

2. If V is Gaussian but U is not (and E[Y?], E [Y}?] > 0), then

B,——2— < ~4<B,. (33)

a—B, —

g

8. If U is Gaussian but V is not (and E V2], E [Y}?] >0), then

7= Bn (34)

D
B, < a<B g 35
g = = g+Bg—’y (35)

For each of the possible values of («, ) in the set given by Theorem 5, there corresponds
a unique implied distribution for U, for V', and for R, given by Corollary 3. To distinguish
between the three cases in Theorem 5, we have that case 1 holds only if Y is normal, in case
2 B, > B, and in case 3 B, < B.

Although the quantities B,,, By, D,,, D, are, in principle, observable quantities, they may
be difficult to estimate. For this reason, we also provide below a coarser bound that is only

based on the covariances matrix of the observed Y and W:

Corollary 6 The following bounds on o,y always hold:

v

Qo B

D

B_
a— B

< 7<B

It is no accident that these bounds have the same form as Case 1 of Theorem 5: Both
are solely based on covariance information, but in the Gaussian case, covariances exhaust

all available information and yield sharp inequalities while, in general, that is not the case.
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This looser bound is also related to the measurement error bounds in Frisch (1934). If one
is willing to rely on this relaxed bound, then a simple GMM estimator for the resulting

identified set could be obtained based on the moment conditions

Eld’cl+7* (Y?—op) +op—W? = 0 (36)

Elact+y(Y? o) =YW] = 0 (37)

while optimizing over «,, 0%, 0%, subject to the constraints v < « (equivalent to 8 > 0),
0% > 0 and 0% > 0. These moment conditions are obtained from Equations (66) and (67)
in the proof of Theorem 5, without extracting the Gaussian parts. The bounds of Corollary
6 are also obeyed in the case of point identified models, since they are obtained solely from
positive variance considerations that must always be satisfied. This implies that, if one is
unsure whether Y is normal or not, the moment conditions (36) and (37) could be stacked

with the ones of Theorem 1 to yield an estimator that is robust to loss of point identification.’

5 Ordinary Least Squares

It is instructive to analyze in more detail how the parameters of our model relate to the
slope coefficient of a naive OLS regression (in the population limit). The coefficient B given
by Equation (28) is the slope coefficient of the least-square regression of W on Y (in the
population limit). Regardless of whether the model is point identified or not, an implication
of the model (i.e., of equations (4) and (5)) is that B always lies between v and a. This can
be immediately verified by observing that

5 ENW] _BU+V)(@U+V)] _ aB[U*)+7E[V?]
ENY E[U+V)] - E[UY+EVY

where A\ = E [U?]/ (E [U?] + E[V?]) and so lies between zero and one. So in particular, if

—aA+y(1-N) (38

B >0wegety<B<a.
This type of inequality has been noted before in the context of estimating returns to

education (e.g. by Card (2001), in a more detailed model that allows for some individual

9In this case the maximizing estimands could be sets rather than points, requiring nonstandard inference.
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heterogeneity). In particular, in the returns to schooling context, we would expect both g
and 7 to be positive (because unobserved ability U should affect schooling Y and wages W in
the same direction, and increased schooling should increase wages). By the above analysis,
this in turn means that we would expect 0 < v < B.

However, as noted by Card (2001), most returns to schooling empirical applications
yield estimates of 7, using instrumental variables methods, that are greater than B, which
contradicts this inequality and hence also contradicts the model. One possible explanation for
this contradiction is that, in the returns to schooling context, ¥ may also contain significant
measurement error. Standard attenuation bias under classical measurement error implies
that the ordinary least squares coefficient B is biased towards zero relative to v, which if
0 < v would imply B < . If the model is correct for returns to education, but in addition Y
is mismeasured, then B could be either larger or smaller than v, depending on the relative

magnitude of the measurement error.

6 Monte Carlo

To assess the finite sample performance of our simple GMM estimators, we generate data
from the model of equations (4) and (5) without covariates. All of our designs are chosen to
satisfy equation (21), so the model is point identified just from the moments in Lemma 1.1°
The true values of the coefficients are v = g = 1. It is widely recognized that estimators based
on higher moments can behave poorly with small sample sizes, so to see if our estimators
suffer from these issues, we work with relatively small sample sizes of n = 100 and n = 400.

We generate 5,000 replications of four different designs. In design 1, U is log normal
while V' and R are each standard Gumbel. In design 2, U is log normal while V' and R are
uniform. We then reverse these, making U Gumbel and V' and R log normal in design 3, and
making U uniform with V' and R log normal in design 4. For each design, we report results

using two different estimators. The exactly identified estimator is GMM using moments

10Tn particular in all of our designs, U and V have different, non-normal distributions, and at least one is
asymmetically distributed. U, V, and R are also mutually independent and centered at mean zero.
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corresponding to Lemma 1, given by equations (77), (78), and (79) (without covariates, so
Y=Yand W = W), as given in Supplement B. The over-identified estimator is GMM using
these same equations, plus equations (81) and (82) of Supplement B.

Tables C1 to C4 of the Supplement report results from designs 1 to 4, respectively. Each
Table has four panels, corresponding to the two different GMM estimators, each with the two
different sample sizes. We report estimates of v, 3, the error component variances o3, o3,
and 0%, and, when over-identified, uyw. Reported summary statistics of each parameter
estimate across the simulations are the mean (MEAN), the standard deviation (SD), the
25% quantile (LQ), the median (MED), the 75% quantile (UQ), the root mean squared error
(RMSE), the mean absolute error (MAE), and the median absolute error (MDAE).

Some general tendencies stand out in these simulations. First, consider the trade off
between the exactly identified vs over identified estimators. The latter uses more information,
but that information takes the form of up to fifth order moments, which can be noisy and
more sensitive to outliers. In general we find that the overidentified estimator performs
better than the exactly identified estimator, particularly at the larger sample size.

The primary parameter of interest, 7, tends to be estimated reasonably precisely in all
of the designs, with most RMSEs in the range of .3 to .7. In contrast, 8 is generally much
less precisely estimated, often having much larger RMSEs (except in design 2). Estimates
of the variances 0%, 0%, and 0%, are mostly similar to each other, usually being less precise
than v but more than 8. The estimate of uyw is noisier, since it only appears in the highest
order moment equations of the over identified model. The designs where U was log normal
(designs 1 and 2) generally had more accurate estimates than the other designs. We conclude

that our estimator performs reasonably well even with rather small sample sizes.

7 GDP and Life Expectancy

There is a long literature studying the causal effect of health on economic growth.

Examples include Acemoglu and Johnson (2007) (which we will hereafter refer to as AJ),
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Well (2007), Lorentzen, McMillan, and Wacziarg (2008), Aghion, Howitt, and Murtin (2010),
Cervellati and Sunde (2011), Ecevit (2013), Bloom, Canning, and Fink (2014), and Bloom,
Canning, Kotschy, Prettner, and Schiinemann (2019).

Based on a neo-classical growth model, AJ estimate a model in the form of equations (1)
and (2), where Y is the change in the log of a country’s life expectancy at birth between
1940 and 1980, W is the change in that country’s log GDP in the same time span, and X is
either just a constant, or a constant and a measure of the country’s quality of institutions,
or a constant and GDP per capita in 1930. The main goal is estimation of v, the coefficient
of Y in the W equation.

AJ observe that ordinary least squares estimation of the W equation is inconsistent,
because the health measure Y is endogenous, with improvements and investments in a coun-
try’s productive technology over time positively impacting both health outcomes and GDP.
This technology change corresponds to our unobserved factor U (with 5 > 0) in equations
(15) and (16), while V' and R are the idiosyncratic shocks to health and economic outcomes,
respectively.

To deal with the endogeneity caused by U, AJ construct an instrument, called predicted
mortality, that combines each country’s 1940 mortality rates from specific diseases with a
set of global interventions that addressed those diseases. As noted in the introduction, one
may question the validity of such constructed instruments.

In Table 1, columns labeled 2SLS1, 2SLS2, and 2SLS3 in Panel A are replications of
selected results appearing in Table 9 of AJ.1! These are AJ’s estimates using two stage least
squares (2SLS) with the above listed combinations of covariates X, and using their predicted
mortality instrument. AJ’s ordinary least squares (OLS) estimate of v (corresponding to B
in the previous section) is —0.81, while their 2SLS estimates of - are considerably larger
in magnitude, ranging from —1.316 to —1.643. As we noted earlier, having v < B, as AJ

find, is an implication of our model when S > 0. Note that the sample size is quite small in

1 Our data are provided by AJ. Life expectancy is from UN data sources and the League of Nation reports.
Pre-war GDP data are from Maddison (2003), and post-war data are from the UN. See AJ for details.
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this application, with only 47 countries. Nevertheless, AJ’s estimates of v are statistically
significant.!?

Now suppose we had not observed predicted mortality, or we are uncertain of its validity
as an instrument. We can instead consider applying our GMM estimators. First, consider
the distribution of Y. Assuming (measured) life expectancy is bounded away from zero, log
life expectancy is bounded, which suffices for point identification since it rules out U or V'
being normal.'> We therefore attempt to apply our GMM estimators.

In Table 1, we report two sets of GMM estimates along with AJ’s 2SLS results. Columns
labeled GMM1, GMM2, and GMM3 are GMM estimates of equations (15) and (16), which
do not make use of the predicted mortality instrument in any way. Specifically, these are
estimates based on the over-identifying set of moments given by equations (77) to (82) in
Supplement B. The last three columns of Table 1 then give GMM estimates that use both
our over-identifying set of moments and the additional moment given by AJ’s instrument
(as discussed at the end of Supplement B).!

Panel A in Table 1 reports the main parameter of interest 7, and also reports by, the
other covariate coefficients in equation (16). The variables in columns (4) and (7) have
been demeaned so there is no constant.'® Our main takeaway from Panel A of Table 1 is
that our estimates of v are quite comparable to AJ’s. In GMM1 and GMM2, the estimates

of v are —1.984 and —1.241, virtually the same range as AJ’s 2SLS estimates, and are

120ur standard errors in columns (1)-(3) of Table 1 differ from those reported by AJ. AJ’s estimates are
from iwreg in Stata 9. We use ivregress 2sls, which replaced ivreg as of Stata 10. dvreg and ivregress can
give different robust standard error estimates, because ivreg uses HC1 (MacKinnon and White 1985) robust
standard errors while ivregress 2sls uses HCO (Huber-White). Also, to reduce the number of coefficients in
GMM estimation, we differenced the data while AJ used level data with fixed effects. Since T=2, these are
asymptotically equivalent estimators.

13More heuristically, if Y is close to normal, then it may be that U or V is close to normal. Y has a
skewness of 0.170 and a kurtosis of 1.791, which is reasonably far from normal in terms of the low order
moments our GMM estimator is based on. The p-value of a Shapiro-Wilk test of normality of Y is .02,
rejecting normality, and even lower if one tests the residuals after regressing Y on either of the covariates in
X.

4These GMM models are estimated in Stata, using the vce(robust) option to compute standard errors.

15Tn Supplement B: Moments for GMM Estimation, it is noted that “For the model without covariates,
one can replace b; and by with zero in the above expressions, and drop equation (80). Note that in this case
Y and W should be demeaned.” In columns (4) and (7), we demeaned Y and W so by and by are zeros.
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statisically significant. GMM3 gives an estimate of a lower magnitude —0.383, but this
estimate is statistically insignificant with a very large standard error, suggesting that our
higher moment based estimator is imprecise for this particular combination of covariates and
small sample size. The last three columns of Table 1, which combine both our moments and
the AJ instrument, give estimates very close to those of AJ, with somewhat smaller standard
errors, which is exactly what one would expect to see if both sets of moments are valid and if
AJ’s instrument is strong. In the bottom row of Table 1 we report Hansen’s J-test; we do not
reject validity of the joint set of overidentifying restrictions in any of the GMM estimates.

Panels B and C of Table 1 provide the other estimated parameters of the model. Panel
C gives the estimated by coefficients from equation (15), while Panel B gives the estimates
of § and the estimated variances of our error components. [ appears to be difficult to
precisely estimate, with large standard errors.!® In the specifications where v is statistically
significant, the variance of U (the source of endogeneity in the model) is much smaller than
the variances of the idiosyncratic components V' and R, but very precisely estimated with
small standard errors.

Later tables have the same format as Table 1, providing additional results. In Table 2,
we re-estimate the model using the exactly identified set of moments from Lemma 1. As
expected with fewer moments, these estimates are less efficient, and turn out to be quite a
bit noisier than those of Table 1. GMMb5, with the quality of institutions as the covariate,
is still reasonably comparable to AJ with v of —1.401, while now both GMM4 and GMM®6
are insignificant and more variable. The estimates combining these moments with AJ’s
instrument behave as before.

We also perform a number of robustness checks in Supplement D, using alternative out-
come variables that AJ considered in their Tables 8-9. These additional outcomes are log
population, log births, percentage of population under age 20, log GDP, and log GDP per

working age population. Some of the alternative outcomes suffer from the issue that U might

161n contrast « is, like v, much more precisely estimated, but apparently the difference 8 = o — is harder
to pin down.

25



also contain measurement error, and in those cases, our identification results would not ap-
ply. The results of our GMM estimators with other outcomes are generally more erratic than
with log per capita GDP. The estimates that combine our moments and the AJ instrument
remain comparable to AJ’s 2SLS estimates.

We conclude that, in all specifications where the standard errors were small enough to
yield statistically significant results, our estimates based on higher moments, without side

information, are very close to those obtained by AJ that required an instrument.

8 Conclusions

We have shown that a standard linear triangular structural model is generally point
identified, without an instrument or other side information that is generally used to identify
such models. We illustrate the result with Monte Carlo simulations and in an empirical
application. Our application shows that, without using an instrument, GMM estimation of
moments based on the model yields estimates close to those that were obtained by previous
authors using an instrument. Even when instruments are available, our estimator could be
usefully combined with instrument based moments to either increase estimation precision by
adding more moments to the model, or to provide overidentifying moments that might be
used for specification testing.

What makes point identification possible is the assumed error structure, which takes the
standard form of a scalar common component U in each equation, plus additional scalar
idiosyncratic components V' and R. One goal for future work could include deriving alter-
native estimators for the model. These could include estimators that allow U, V, and R
to depend nonparametrically on covariates X (e.g., allowing heteroskedasticity of unknown
form), and estimators that make direct use of all the information in Theorem 4, perhaps
based directly on characteristic functions rather than moments. Other possibilities for fur-
ther work include extending the model to more equations, allowing the common component

U to affect outcomes nonlinearly, and extending the model to also allow for measurement
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error in Y. Based on Card (2001), this last extension would likely be needed for returns to

education applications.

Acknowledgments

Susanne Schennach acknowledges support from NSF grant SES-1950969. Vincent Starck is

gratefully acknowledged for valuable comments.

Disclosures

The authors report there are no competing interests to declare.

References

Acemoglu, D., and S. Johnson, (2007), “Disease and development: The effect of life

expectancy on economic growth,” Journal of Political Economy, 115(6), 925-985.
Aghion, P., P. Howitt, P., and F. Murtin, (2010), “The relationship between health and

growth: When Lucas meets Nelson-Phelps, ” National Bureau of Economic Research.

Andrews, D.W.K. and Lu, B. (2001): ”Consistent model and moment selection pro-
cedures for GMM estimation with application to dynamic panel data models”, Journal of

Econometrics, 101(1), 123-164.

Angrist, J. and A. Krueger, (1991), “Does Compulsory School Attendance Affect School-

ing and Earnings?” Quarterly Journal of Economics, 106, 979-1014.

Angrist, J. and A. Krueger, (2001), “Instrumental Variables and the Search for Identifica-
tion: From Supply and Demand to Natural Experiments,” Journal of Economic Perspectives,

15, 69-85.

Bierens, H. J. (1981) Robust Methods and Asymptotic Theory in Nonlinear Economet-

rics, Springer Verlag

27



Bloom, D. E., D. Canning, and G. Fink (2014), “Disease and development revisited ,”
Journal of Political Economy, 122(6), 1355-1366.

Bloom, D. E., D. Canning, R. Kotschy, K. Prettner, and J. J. Schiinemann (2019),

“Health and Economic Growth: Reconciling the Micro and Macro Evidence,” NBER Work-

ing Paper No. 26003.

Bonhomme, S. and J. - M. Robin (2010), “Generalized Non-Parametric Deconvolution

with an Application to Earnings Dynamics,” The Review of Economic Studies, 77, 491-533.
Caner, M. (2009): ”Lasso-type GMM Estimator”, Econometric Theory, 25(1), 270-290.

Card, D (1995) “Using Geographic Variation in College Proximity to Estimate the Return
to Schooling,” In L.N. Christofides, E.K. Grant, and R. Swidinsky, editors, Aspects of Labor
Market Behaviour: Essays in Honour of John Vanderkamp , University of Toronto Press,

Toronto.

Card, D. (2001), “Estimating the Return to Schooling: Progress on Some Persistent
Econometric Problems,” Econometrica, 69, 1127-1160.

Carneiro, P. and J. J. Heckman, (2002), “The Evidence on Credit Constraints in Post-
Secondary Schooling,” The Economic Journal, 112(482), 705-734.

Cervellati, M., and U. Sunde, (2011), “Life expectancy and economic growth: The role
of the demographic transition,” Journal of economic growth, 16(2), 99-133.

Comon, P. (1994), “Independent component analysis, a new concept?,” Signal processing,
36(3), 287-314.

Darmois, G. (1953), “Analyse générale des liaisons stochastiques: etude particuliere de

I’analyse factorielle linéaire,” Revue de I'Institut international de statistique, 2-8.

Fruehwirth, J. C., S. Navarro, and Y. Takahashi (2016), “How the Timing of Grade
Retention Affects Outcomes: Identification and Estimation of Time-Varying Treatment Ef-

fects,” Journal of Labor Economics 34:4, 979-1021

Erickson, T. and T. M. Whited, (2002), “T'wo-step GMM estimation of the errors-in-

28



variables model using high-order moments,” Econometric Theory, 18(3), 776-799.

Evdokimov, K. and H. White (2012), “Some Extensions of a Lemma of Kotlarski,” Econo-
metric Theory, 28(4), 925-932.

Frisch, R. (1934), “Statistical confluence analysis by means of complete regression sys-
tems,” Vol. 5, Universitetets Dkonomiske Instituut.

Hyvérinen, A. and E. Oja (2000) “Independent component analysis: algorithms and
applications,” Neural Networks 13, 411-430.

Khatri, C. and Rao, C. R. (1972), “Functional equations and characterization of proba-
bility laws through linear functions of random variables,” Journal of Multivariate Analysis
2, 162-173.

Klein, R., and F. Vella, (2010), “Estimating a class of triangular simultaneous equations
models without exclusion restrictions,” Journal of Econometrics 154(42), 154-164.

Kotlarski, I. I. (1967), “On characterizing the gamma and normal distribution,” Pacific
Journal of Mathematics, 20, 69-76.

Lewbel, A. (1997), “Constructing Instruments for Regressions With Measurement Er-
ror When No Additional Data are Available, With an Application to Patents and R&D,”
Econometrica, 65(5), 1201-1213.

Lewbel, A. (2012), “Using heteroscedasticity to identify and estimate mismeasured and
endogenous regressor models,” Journal of Business and Economic Statistics, 30, 67-80.

Lewbel, A. (2020), “Kotlarski With a Factor Loading,” Unpublished Manuscript, Boston
College.

Li, S. and X. Zheng, (2020), “A Generalization of Lemma 1 in Kotlarski (1967),” Statistics
and Probability Letters,165, article 108814.

Li, T. and Q. Vuong (1998), “Nonparametric Estimation of the Measurement Error Model

Using Multiple Indicators,” Journal of Multivariate Analysis, 65, 139-165.

29



Liao, Z. (2013): ” Adaptive GMM Shrinkage Estimation With Consistent Moment Selec-

tion”, Econometric Theory, 29(5), 857-904.
Lorentzen, P., J. McMillan, and R. Wacziarg, (2008), “Death and development,” Journal
of Economic Growth, 13(2), 81-124.
Lukacs, E. (1970), “Characteristic Functions,” Second edition, Griffin, London.
Maddison, A. (2003), “Development centre studies the world economy historical statistics:

Historical statistics,” OECD Publishing.

Navarro, S. and J. Zhou, (2017), “Identifying agent’s information sets: An application to a
lifecycle model of schooling, consumption and labor supply,” Review of Economic Dynamics,
25, 58-92.

Peters, J., D. Janzing, and B. Scholkopf, (2017), “Elements of causal inference: founda-
tions and learning algorithms,” MIT press.

Rao, C. R. (1966), “Characterisation of the distribution of random variables in linear
structural relations,” Sankhya: The Indian Journal of Statistics, Series A, 251-260.

Rao, C. R. (1971), “Characterization of probability laws by linear functions,” Sankhya:
The Indian Journal of Statistics, Series A, 265-270.

Reiersgl, O. (1950), “Identifiability of a linear relation between variables which are subject
to error,” Econometrica, 18, 375-389.

Rigobon, R. (2003), “Identification Through Heteroskedasticity,” Review of Economics
and Statistics 85(4), 777-792.

Schennach, S. M. (2000), “Estimation of nonlinear models with measurement error,”
Working Paper, University of Chicago.

Schennach, S. M. (2019), “Convolution without independence,” Journal of Econometrics,
211(1), 308-318.

Schennach, S. M. and Y. Hu (2013), “Nonparametric Identification and Semiparametric

Estimation of Classical Measurement Error Models Without Side Information,” Journal of

30



the American Statistical Association, 108, 177-186.

GJ Székely, G. J. and C. R. Rao (2000), “Identifiability of distributions of independent
random variables by linear combinations and moments,” Sankhya: The Indian Journal of

Statistics, Series A, 62(2), 193-202.

Well, D. N. (2007), “Accounting for the Effect Of Health on Economic Growth,” The
Quarterly Journal of Economics, 122(3), 1265-1306.

31



(@ v b 7
A A o =B,
(BeBg) BeBg) identified set
identified set ‘//—
>» O > o
D
. _ g
Y= Bg T o—B _ D g

— By y=B, —
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Case 2, is not shown).
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Supplement A: Proofs

Proof of Lemma 1. Define Qand PasQ =W —7Y =U+Rand P=W —-(y+ )Y =
—BV 4+ R. Then Lemma 1 claims

E@QPY)=0 and cov(QPY?) —2E(QY)E(PY)=0 (39)
First verifying that £ (QPY) = 0, we have
E(QPY)=FE[BU+R)(-B8V +R)(U+V)]
= E (R’U + R’V + RU?B — RV*3 - UV - UV?B%) =0

This expectation is zero by U, V', and R being mutually independent with mean zero.

For the second equation, we have

cov (QP,Y?) = cov [(BU + R) (—BV + R), (U + V)?]
=cov (R*+ RUB— RVB—UVB, U*+2UV + V?)
= cov (-UVB*,U* + 20V + V?)

=-—FE[UV (U*+20V +V?)] = =28°E (U*) E (V?)
and
2E(QY)E(PY)=2E[(BU+R)(U+V)|E[(=pV +R) (U + V)]
=2E (BU?) E (—BV?) = —28°E (U?) E (V?)

[ |
Proof of Theorem 1. To show identification, we first compute the joint characteristic

function of the two observed variables in terms of the unobserved variables:
Py (C.€) =E [eig(U+V)ei€(aU+’7V+R)}
=E [ei(GaOU} E [@i(CJF’Yf)V} E [eigR]

= ¢y (C+ a&) oy (C+E) or (§)



where we have used mutual independence of U, V, R to factor the expectations. In terms of

cumulant generating functions, we therefore have:
Pyw (¢, €) = Pu (€ + af) + v (C + 7€) + Pr (§) (40)
For £ = 0, this specializes to:
Dy (¢) = Pu () + v (€) - (41)

Next, for any any p € N and ¢ € {1,2}, we immediately get, from (40), the cumulant
relationship

cb?ffv@_w ST SAINND S
Replacing <I>3U+p by its value implied from (41), we have:

(D;%/—Fz_é’ﬁ _ aﬁq)i;-i-p + (,YE . CYE) (I)?/+p. (42)

Now, (42) implies, for ¢ = 1,2, the following system of equations:

YN — @y = (v —a) ey (43)
CID;FV%Q — 2PTP = (v* = a?) PP, (44)

Factoring (72 — a?) ®37 as (v + @) (v — a) &3 in Equation (54) and replacing (v — o) &5

by its value from Equation (43) yields:
Oy — POV = (7 + @) (BT — ad}'T),

which is identical to the condition M, (a,v) = 0 for M, (c,7) defined in statement of the

Theorem. Now, considering two different values ¢ and ¢ of p, we obtain:

Q2 — PP = (v + ) (PYHE — ady) (45)
@%,TV%Q — a2<I>§’/+‘j = (v+a) (@iqu;l — a@?ﬁ) (46)

Next, multiplying (45) by (@?V?,’l — oz<I>?{/+‘j> yields:
(@587 — a0} ) (937! — a0 7) = (7 + ) (OFF' — a7 (@35 — ad}') . (47)

2



(We can verify that @iﬁ?;l — a®¥T #£ 0 as follows:
O —adP' T = (O + ol + ol ) —a (87 + @}
_ (C@?&w i 7(1)?;61‘) N <¢?&+«j i <I>;°’/+‘j> = (v — a) ®¥1

where v # a by assumption. If CD?,W were zero, we could simply exchange the role of tilded
and non-tilded variables, which would require instead that (P%fq # 0. Under the assumption
that ®FFITHT £ TP it is not possible that both @77 = 0 and @ = 0, so one of
these two approaches has to yield a nonzero multiplier.)

In Equation (47), (v + «) (@3}?}1 — Oz(I)?;rq) can be replaced by its value from (46) to yield

a single equation in a:
(@35 — a20) (9358 — a0} 7) = (07— a?07) (035" — a0})
Expanding the products, simplifying and collecting by powers of « yields:
(a0t — aalig) o2 (8Tl — o ralii?) o (a1R8T - 0l5i0li) — o,
or, in the notation of the theorem (noting that ®377 = (ID‘Q;S,?;O):
0212 4 3012, | pl221 () (48)
The roots of (48) are thus:
3012 3012 \ 2 1221
Xt = 5301 * (2F3021> + 3021 (49)

Since the original problem is completely symmetric upon permutation of the role of («, U)

and (v, V), if we had gone through the same steps after eliminated ®y (¢) instead of @y ({),
we would have obtained the same Equation (48) with « replaced by . This implies that
the two roots of (48) simply correspond to the values of o and 7. Since we have assumed
v < a, it follows that we must make the assignment («,v) = (ay,a_). The condition

OTHIOTIE — oTHIOTHEY o£ 0 of the Theorem ensures that F3°%! £ 0, so that Equation (49) is



well-defined. This condition can also be phrased in terms of the log characteristic functions

of U and V:
B - e
= (o) (-t ) (000 (350 o)
_ <(I)?]+d 4 q)%/wi) (aq)g;rq _i_,yq)%;rq) _ ((I)?;rq 4 q’?/ﬂ) <a<b?&+‘j +’Yq’?/+q>
— (a—7) (q)?;rqq)i%;rd _ (I)?,*qd)?frq)
Since we have assumed that a >+, the only condition needed is that ®7 /05 £ F 93+,

Proof of corollary 2. The equivalence is shown by starting from Equations (19) and (20)

and using the definitions of cumulants in terms of moments for zero-mean random variables:

Some cumulants involve products of moments (@f/ﬁy, @?;},V, ®7) and to linearize them to
obtain proper GMM-type moment conditions, we need to introduce nuisance parameters.

For the above expression, it is sufficient to define:

fyy = E [YQ} (50)

o = EIYW 61
so that we can write, for instance, ), = E [Y*] =3, E[Y? = E [Y* — 31,,Y?]. Equations
(50) and (51) yield the moment conditions of Equation (9).

4



Next, to establish Equation (10), we start from Equation (19):

Oy — a’®} — (v +a) (Pyyy — ad})
= E[YW?] - d’E [Y?’} —(y+a)(E[Y*W] —aE[Y?])
EYW?-a’Y? — (v+ ) Y*’W +a(y+a)Y?]
E[YW? = (y+a)Y?W 4+ ayY?]
= E[(W=(y+ ) YW +ayY?)Y]
E[W =AY) (W —aY)Y],
which is Equation (10).

To establish Equation (11), we start from Equation (20):

Dy — 020} — (3 + o) (O}l — a9})
= B, (B, — o) bl
= E[W?Y?| -E[W?|E[Y?] -2E[WY|E[WY]
(B [WY*] =3B [WY]E [?)) — o (B[Y'] - 3B [y*] B [¥?]))
—a (E[WY?] =3E[WY]E [V?])
= E[W*Y?| = p, B [W?] =2, EWY] -~ (E [WY?] - 3p,,E[WY])
—ya (E Y] =3E[Y?] ) — o (E [WY?] =3E[WY]p,,)
= E[W?Y? = p, ,W? =20, , WY —yWY? 4 3y, WY + anY* — 3ayp,, Y —aWY? + 3au,, WY
= E[(W?=aWY — WY +ayY?) Y? — (W? —aWY — WY + aY?) p,,
+ (2aWY +29WY —2a9Y?) p,,, — 241, WY]
= E[W—=7Y)(W—aY)(Y?—p,,) +2aWYp,, +29yWY 1, — 207Y 1, — 241, WY]
E[(W -~

VYW —aY) (Y? = pyy) — 2 (Hyw — Yiyy) (W —aY) Y],

which is Equation (11). m



Proof of Corollary 3. We first express the model of Equations (4) and (6) as:

Y = U4V (52)

W = aU+~yV +R (53)

Equations (52) and (53) can be re-written as:

Y = V+U
W —aY 1
Woa¥ 1
T—a (v—a)
from which one can see that Y and % provide two repeated error-contaminated mea-

surements of V' which satisfy the assumption of the Kotlarski identity (Equation (23) given
in the statement of Theorem, and the distribution of V' is thus known. (The condition
E[|Y]] < oo ensures the numerator of (23) is well defined while Assumption 5 ensures that
the denominator is nonvanishing.)

Next, from Equation (41), we have @ (() = ®y (¢) — Py (¢) and the distribution of U is
identified. Finally, from Equation (40), we have ®g (§) = Oy (0,£) — Py (o) — Py (7€) =
Dy (&) — Py (af) — Dy (7€) and the distribution of R is thus identified. In these steps,
we have used the fact that Assumption 5 implies that the log characteristic functions of

Y, W, U,V, R all exist everywhere on the real line. m

Proof of Theorem 4. Lack of point identification means that there exists an observa-
tionally equivalent alternative model with variables Y, W, V,U,R (note that Y, W are the
same since they are observable) and parameters &, 3. We first establish that «,~, &, must
all be different. We note that, by assumption, we have both v < a and ¥ < &, so a # ~ and
& # 4. We can also show that if @« = @, then v = 4 and the alternative model would, in fact,

be identical. This follows from the fact that, if we knew «, we could write the model as:

Y = V4+U

W—-at = (y—a)V+R



which is just a standard errors-in-variables model in which the slope (7 — «) and the latent
distributions are identified under non-normality of V' (Reiersgl (1950)). We can also permute
the role of (a, U) and (7, V') and show that the knowledge of  implies the knowledge of «
in the same fashion, under non-normality of U. Hence, the mapping between o and 7 is
one-to-one. Similarly, & = 7 implies v = &, but this would violate the condition ¥ < a.
These considerations let us assume throughout that «,~, &, are all different.

We now proceed by showing that if o,y were not point identified, then V' and U would
be normal, leading to a contradiction of the assumptions of the theorem. Starting from (40),

we calculate 0/0¢:

3w (€, &) = O (C+ af) + Oy (C+ 7€) - (54)

Note that knowledge of ®{, (¢) is sufficient to recover @y (¢) since it is known that ¢y (0) =

In £ [1] = 0. We have a similar expression for the alternative model:
3y (€, €) = Pp (G +ag) + @y (C+5€). (55)
Equating (54) and (55), we have:
By (C+af) + Py ((+76) = D (C+a€) = D ((+5€) = 0. (56)
Equation (56) has the general structure:
Aj(ay-x) + Ag (ag - x) + Az (az - ) + Ay (ag - ) =0

where z = ((,¢) and

in which the Ay (x) are twice differentiable by Assumption 6.

7



Lemma 3 below shows that if no two vectors in {(1,a),(1,7),(1,&), (1,%)} are colinear
(which is the case here since a, 7, &, 4 are all different) then it must be that the functions
Ay (+), Az (1), A3(-), Ay (+) are polynomials. This implies that @i, (-) and ®}; (-) must be
polynomials and so must @y (-) and ®y (-). But by Theorem 7.3.5 in Lukacs (1970), the
only possibility is that ®y (-) and @y (+) are quadratic and V' and U are thus normal. Since

U and V were assumed not normal, this is not possible. m

Lemma 3 For k = 1,...4, let a, € R*\ {(0,0)} be given and let Ay be unknown twice
differentiable functions from R to R. If no pair of vectors in {ak}izl are colinear and, for
all v € R?,

Al(al'{L’)—f-AQ((lQ'I)+A3(CL3'$)+A4(6L4'ZL’):O, (57)

then the Ay are polynomials.

Proof of Lemma 3. This result could be proven making use of Corollary 5 in Khatri
and Rao (1972) under weaker differentiability conditions, or using Rao (1966, 1971) (see
also Comon’s (1994) reference to Darmois (1953)). For ease of comprehension, instead of
gathering results across multiple papers, we here provide a simple self-contained proof.
Computing all distinct second derivatives (denoted by ”) of Equation (57) with respect

to elements of x yields the following system of equations, in matrix form:

Mb=0
where
r 2 2 2 2
ay (GP) ais A1y
M = 11021 Q12G22 QA13023 A14024
2 2 2 2
| 493 59) Qas Qa4
B "
Al (a; - x)
1
by _ AY (ag - x)
- 12
Af (ag - x)
"
| AY (a4 - )

Note that rows of M are linearly independent under the assumptions that the a; are pairwise

noncolinear. (Indeed, the proportions a%k : apagr are different for two different £ and so

8



are the proportions ajgag : a3, and a?;, : a3,. Also, there exists no f,g € R such that

fa?, + ga3, = aypagy for all k since this expression reduces to f%: + galk}a% = 1 where the
ratios'” ¢t differ for two different £.)
Since there are 3 constraints and 4 elements in b, and since M does not depend on x, the

solution vector b is constrained to be of the form
b=B(x)c

where ¢ is a constant vector satisfying Mc = 0 and B (z) is a scalar-valued function defined
on R2. Note that ¢ must have at least 2 non zero elements because if it had only one, then
a column of M would have to be zero. This would imply az; = ags = 0 for some k but then
ay, would be colinear with all other a;, in contradiction to the assumptions.

Let ¢; and ¢; (i # j) denote two nonzero elements of ¢. Having A7 (a;-z) = B (x)¢;
forces B (x) to be of the form B; (a; - ) while having A% (aj-x) = B(x)c; forces B (z) to
be of the form B; (a; - ). These constraints are only compatible if B (z) is in fact constant,
as a; and a; are not colinear. But then, all A} (a; - x) are constant, which implies that all

Ay, (ay - x) are (second order) polynomials.

|
Proof of Lemma 2. We first need to establish that the decomposition (26) is unique. We
will argue by contradiction by assuming that there exists another decomposition Z = Zg+Zn

with Zg being Gaussian with variance A and Z, having no Gaussian factor. Define
AF =4 1 (N > 0) N

where \; and v; denote the i-th eigenvalue and corresponding eigenvector of the matrix

<fX — A), respectively. Then, observe that:

Z,= N (0,A) = N (0,& — A*) + N (0,A%)

"We conventionally assign the value “co” to a fraction of the form aj;/0. The indeterminate case 0/0
cannot occur because then two (a1x, agx) would be colinear.



and that
Z,=N (0,]\) N <0,]\—A‘> +N(0,A7),

where equalities hold in distributions and the Gaussians are mutually independent.

Next, we can show that A — A™ = A — A~ since
A-At = A+ (K-A)-at
= A+) (1—1(N\ > 0) N

Let us define A° = A — AT = A — A~. The random variable Z can then be decomposed into

a sum of independent factors in two ways:

Z = N(0,A%) + N (0,A%) + Z, (58)

Z = N(0,A°) + N (0,A7) + Z, (59)

We then have that N (0,A%) + Z, and N (0, A~) + Z, must have the same distribution.
Now, A" and A~ are degenerate covariance matrices such that the range of A* lies in the
null space of A~ (and the range of A~ lies in the null space of AT). Provided that AT is
not trivially zero, we can find a unit vector u that lies in the null space of A~ and in the

range of AT. Computing u'Z from expressions (58) and (59) yields

WZ = u'N(0,A =A%) +u'N(0,A%) +u'Z,

W7 = uN <0,/~X — A‘) +u'Z,,
where each term summed is independent from the others. From this, we can conclude that
u'Z, and W' N (0, AT) 4+ v'Z,, must have the same distribution. But then, u'Z,, and thus Z,

would have a normal factor u'N (0, A™), in contradiction to our assumptions. The only way

to avoid this contradiction for any suitable choice of u is to have A™ be zero. We can repeat
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the same reasoning after permuting the roles of A™ and A~ to conclude that A~ must also
be zero. It then follows that A = A, i.e., our two decompositions must, in fact, be the same.
Having shown uniqueness of the decomposition into Gaussian and non-Gaussian factors,

we then observe that we can write the following decomposition into independent factors:
Z=N(0,A)+N(0,A=A)+Z,

if and only if A — A is positive definite. Since ¢, (&) exp (§’A€/2) is the characteristic function

of N (0,A — A) + Z, (i.e. Z deconvolved by N (0,A)), the result follows. m

Proof of Theorem 5. Thanks to Lemma 2, we have the unique factor decomposition
(Y, W) = (Y,,W,) + (Y,,W,,) and the model defined by Equations (52) and (53) can be
uniquely decomposed into a sum of two models of the form:

Y, = U4V, (60)

W, = aU,+~V, + Ry, (61)

(A

one Gaussian (with subscript s set to “g” ) and one non-Gaussian (with subscript s set to
((n” )'
Consider Case 1: Since U and V' are Gaussian, the non-Gaussian model reduces to:
Y, = 0
W, = R,

and provides no information regarding o and ~. For the Gaussian model, the covariance

matrix of Y, and W, exhausts all available information:

EY}] = ag,g + O'%/g (62)

E[W7] = azang + 7203/9 + U%g (63)

EY,W,] = aa?]g + 70%@ (64)

where the possible value of the parameters oz,%UQUg =F [ng], a%/g = [Vgﬂ and a%g =

E [R?] have to be determined, under the constraints that ang >0, 0y, >0, 0% >0and

11



a > . From (62) we have

A= £ -, &

and (63) and (64) become:
EW? = a*ob, +9* (B [Y?] - a},) + 0%, (66)
E[Y,W,) = aoh, + (B[] -ot,) (67)

From (67) we then have:

Since a > 7, we have
ElY,W,] _

< —>—= = .
ey
This incorporates the first constraint o, > 0 and shows the first inequality (30) defining
g
the identified set.

From (66), with o7, from (68), we have
T E Y Wy —E [Ygﬂ T (E [
a =7

which can be re-arranged as:

E [W;] =«

y?]

g

EM%%%Wﬂ) )
+oR
a—y g

(= E[W+ay(a=y)E[Y}] = (a+7) (a—7) E[Y,W,] = 0% (a—7)

g

where we know that 0% > 0. Upon division by (o —~) > 0 we have:

E[W?]+ayE[Y}] — (a+7)E[Y,W,] >0
and re-arranging:
v (B [Y]] = EY,Wy]) = aE [Y,W,] - B [Wy] (69)

Now, we observe that
(aE Y]] - E[Y,W,]) = E[Y,(aY,—W,)] (70)
= E[U; +V,) (U, + oV, —aU, — vV, — Ry)]
= ElUg+Vy) (=) Vg = Ry)] = (=) E[(Uy + V) Vg
= (a—7y)E[V}] >0
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Therefore (69) can be divided by aF [Yf] W,] while preserving the inequality:

aB YW, — E[W7] _oF [Y W, J [E[VG] - EWg] /B [Y]]

aE [V2] - [ Wl — B[Y,W,] /E V7]

aB, — E[W2 /E[YY] (a- Bg) By + B; — E[W7] /B[]
a— B, B o — B,

By — E W] /B [Yy]
_ g g9 g
— B,+ :

=

or
D

12 B, (71)
g

where D, > 0 by Cauchy-Schwartz. This incorporates the second constraint 0’%%9 > 0 and

shows that (71) provides the second inequality (31) defining the identified set.

The last constraint O'%/g > 0 turns out to then be automatically satisfied. Indeed, com-

bining Equation (65) and (68), we have
EY,W,] —~vE [Y]]
a—r

oy, = E[Y]]—op, =EN7] -
_eB[ - BN
a—7
since a > 7 by assumption and aE [Y] — E [Y,W,] > 0 was already shown in (70).

We now turn to Case 2: V is Gaussian but U is not. The non-Gaussian model thus

reduces to:
Y, = U, (72)
W, = aU,+ Ry, (73)
where, under our assumptions, U, is necessarily nondegenerate. Equations (72) and (73)

just define a standard regression model with correctly measured regressors, thus implying

that « is point-identified:

EY,W,]
=—rr " 74
“T B T
Next, the Gaussian model reduces to:
Y, = U +V, (75)
W, = aUy+~V,+ R, (76)
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where we note that even though U is not Gaussian, it could still have a nondegenerate
Gaussian factor U,.We also note that Y, =Y — U, and W, = W — aU,, — R, so that the
left-hand sides of (75)-(76) do not depend on . Therefore, as one considers different possible
value of v, one does not need to take into account possible changes in the left-hand side. The
left-hand side does depend on « but « has been determined already. Equations (75) and
(76) thus have the form assumed in Case 1, except that « has a known value. This implies

that the identified set for + is:

for a given by (74).

Finally, Case 3 is analogous to case 2, with the roles of (o, U) and (7, V) permuted. m

Proof of corollary 6. The proofs follows the proof of Case 1 of Theorem 5 with the
subscript g removed, so we work with the observed distributions directly rather than their
Gaussian factor. The proofs only relies on the fact that variances must be positive, so
the inequalities are equally valid for non-Gaussian random variables. However, unlike the
Gaussian case, these bounds are not sharp because covariances matrices are not a sufficient

statistic for the whole distribution in general. m

Supplement B: Moments for GMM Estimation

To facilitate the application of our estimator, here we write out the moments required for
simple estimation of our model with or without covariates, based on Lemma 1 and Theorem

1. Assume X is a J vector of covariates X1,...,X ;. The model with covariates X is
W =Y + b, X + e, Y =b0X +e
where the mean zero errors €; and ¢4 are

51:BU+R, 52:U+V.
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Here b, and by are vectors of coefficients b11,...,b15, and boq,...,bo ;. Typically we would have

X1 =1, s0 by; and by are the constant terms in the regressions.

Define Y, W, Q, and P by
Y=Y - VX, W =W —(yb +b) X,

Q=W —7Y —b,X, P=W—(y+B8)Y +(Bb —by)' X

The parameters we wish to estimate are v, 3, 0%, 0%, 0%, bi1,....,b1s, and bay,...,bay.
Substituting the above expressions for }7, W, @, and P into the following equations gives

the moments for GMM estimation of these parameters.

E (?W — Bo? — (0 + aa)) —0, E (172 — % - aa) ~0, (77)
E(Q*— 0% —0%) =0, E(QPY) =, (78)

E [QP (?2 - 02V> - 250?]1317} —0 (79)

E(QX;)=0 and E (?Xj) =0 forj=1,..J (80)

In addition to these moments, we also have the inequality constraints that 3, %, 0%, 0% are

all positive. These inequalities can be imposed by replacing these parameters in the above

b o2 =€, 0% = ¢V, and 0% = €'k, and instead estimating the

expressions with § = e
parameters b, 7y, Ty, and Tg.
For the model without covariates, one can replace b; and b, with zero in the above
expressions, and drop equation (80). Note that in this case Y and W should be demeaned.
Theorem 1 showed that 0 = &1 — a2y — (v + o) (@TH" — a®y'™) holds for non-
negative integers p, and the moments of Lemma 1 are equivalent to this equation for p = 0
and p = 1. Straightforward but tedious algebra shows that, with p = 2, we get the additional

moments

E(W? — j1,,) =0 (81)
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T2 2117 3 | V37172 2 (15 13
o:E}&WV%y—wWYqu%@f+Yw/—a(Y—Jm/%ﬁ (82)

- (v+a) (—Guyy?QW — 4uyw§~/3 YW —a <§~/5 - 10373,uyy>>]

where again we could replace f,,,, = €™ to impose the sign constraint that p,,, > 0.'®
Estimation of standard GMM using, as moments, equations (77), (78), (79), and (80)
yields the exactly identified models named GMM4, GMMS5, and GMMG6 in our empirical
application. Estimation using equations (77), (78), (79), (80), (81), and (82) gives the
overidentified models labeled GMM1, GMM2, and GMM3 in our application.
If one in addition has an external instrument Z, then instead of Y = 0] X + €3 we would
have Y = b/ X + 0Z + 5. In this case all of the above equations still hold if we redefine Y

asY =Y — by X — 67, and we could then add the additional moment
E(VZ)=0 (83)

Estimation using equations (77) to (83) with this redefinition of ¥ gives the models GMM1+AJ,
GMM2+AJ, and GMM3+AJ in our application, and the same without (81) and (82) gives
GMM4+-AJ, GMM5+AJ, and GMM6+AJ.

Some of these procedure yield overidentification. In these cases, with small samples,
it might be desirable to choose a subset of moments for estimation instead of using all
available moments. Our estimator takes the form of standard GMM, so one might apply the
existing literature on empirical choice of moments in GMM, e.g., Andrews and Lu (2001),
Caner (2009), and Liao (2013). The only additional advice we can provide specific to our
application is the general observation that, for a given sample size, lower order moments

tend to be more accurately estimated than higher order moments.

18Just as Lemma 1 required ®f,®3, # &1 07, for identification (see equation 21), to have equations (81),
and (82) provide useful overidentifying information requires that either ®3,®3, £ &%, @3, or 7, ®{, # ®J, 7.
See Theorem 1 for details.

16



Supplement C: Monte Carlo Results

Table C1: Design 1
Over Identified Moments

N = 100

TRUE MEAN SD LQ MED UQ RMSE MAE MDAE
5y 1 0.96 0.76 0.8 1.15 1.36  0.76 044  0.32
B 1 1.18 1.14 0.66 1.01 1.43  1.15 0.57  0.37
0% 1.72 1.16 1.28 0.09 0.8 1.86 1.4 1.16 1.2
o? 1.64 1.8 1.03 0.98 1.81 2.5 1.04 0.85  0.76
o 1.64 1.72 1.84 1.25 1.69 208 1.84 0.57  0.43
Bww 10.17 8.74 3.78 6.41 7.83 9.93 4.04 3.13 291
Hansen-Sargan J stat 1.42 2.04 0.22 0.72 1.81
p-val 0.23 0.64 04 0.18
N = 400

TRUE MEAN SD LQ MED UQ RMSE MAE MDAE
5y 1 0.99 0.48 0.88 1.09 1.27  0.48 0.3 0.22
15} 1 1.06 044 084 1 1.18 0.44 0.26 0.17
o? 1.72 1.33 0.98 0.55 1.21 1.96  1.06 0.88 0.8
o2 1.64 1.8 0.72 131 1.79 231 0.74 0.59  0.52
o 1.64 1.73 0.46 145 1.73 2.2 0.47 0.35 0.28
oy 10.17 9.32 239 7.714 8.83 10.34  2.54 2 1.83
Hansen-Sargan J stat 1.57 1.96 0.31 0.86 2.12
p-val 0.21 0.58 0.35 0.15

Exactly Identified Moments

N =100

TRUE MEAN SD LQ MED UQ RMSE MAE MDAE
~ 1 1.05 0.49 0.89 1.44 1.33 0.5 0.33  0.27
I6] 1 1.92 7.73 0.78 1.08 1.48  7.79 1.19  0.33
o? 1.72 1.32 2.74 0.08 0.96 1.94  2.77 1.24 1.14
0% 1.64 2.03 1.04 1.3 198 266 1.11 0.86 0.72
o 1.64 1.71 0.67 131 1.72 215 0.68 0.52 041
N = 400

TRUE MEAN SD LQ MED UQ RMSE MAE MDAE
~ 1 1 0.39 0.87 1.07 1.23  0.39 0.26  0.19
I6] 1 1.21 2.09 0.89 1.03 .21 21 0.36  0.16
o? 1.72 1.53 1.23 0.84 145 2.08 1.24 0.81  0.65
0% 1.64 1.83 0.7 134 181 2.3 0.73 0.58  0.49
o% 1.64 1.71 043 145 1.7 1.98  0.44 0.33  0.26

Notes: Design 1: In(U) ~ N(—=0.5,1), V ~ Gumbel(0, 1), R ~ Gumbel(0, 1). All resulting variables are
standardized to have zero means. The four panels are GMM estimates based on over-identifying set of
moments, and exactly identified set of moments with sample sizes n = 100 and n = 400. The reported
summary statistics are the mean (MEAN), the standard deviation (SD), the 25% quantile (LQ), the
median (MED), the 75% quantile (UQ), the root mean squared errors (RMSE), the mean absolute errors
(MAE), and the median absolute errors (MDAE). p-val is the p value of the J statistics under the null
hypothesis that the overidentifying restrictions are valid.
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Table C2: Design 2
Over Identified Moments

N =100

TRUE MEAN SD LQ MED UQ RMSE MAE MDAE
vy 1 0.96 140 0.80 1.05 1.36 1.40 042  0.29
B 1 1.07 1.50  0.59 0.96 1.33 1.51 0.53 037
UZU 1.72 1.34 1.24 0.45 1.17 1.90 1.30 1.00 0.87
0%/ 1.33 1.42 0.80 0.92 1.30 1.82  0.80 0.59 0.44
o 1.33 2.00 20.66 0.98 1.36 1.69 20.67 1.11 0.35
oy w 9.54 8.65 425 6.03 752 9.81 4.34 3.19 2.80
Hansen-Sargan J stat 2.19 344 026 091 2.59
p-val 0.14 0.61 034 0.11
N = 400

TRUE MEAN SD LQ MED UQ RMSE MAE MDAE
5 1 1.04 0.37 0.89 1.02 1.27  0.37 0.27  0.17
B 1 0.96 0.37  0.72 0.98 1.15 0.38 0.28 0.21
0¥ 1.72 1.33 0.90 0.81 1.33 1.83 0.98 0.76  0.59
o%/ 1.33 1.51 0.62 1.15 1.35 1.74 0.64 0.43 0.25
O'?% 1.33 1.36 0.44 1.12 1.34 1.66 0.44 0.34 0.26
Moy w 9.54 8.88 248 729 839 9.85 2,57 1.95 1.71
Hansen-Sargan J stat 4.10 7.55 057 1.53 3.71
p-val 0.04 0.45 0.22  0.05

Exactly Identified Moments

N = 100

TRUE MEAN SD LQ MED UQ RMSE MAE MDAE
5 1 1.09 0.54 0.87 1.18 1.43  0.55 0.39 034
B 1 1.02 1.31 053 0.87 1.23 1.31 0.51 0.39
0¥ 1.72 1.11 145 0.00 0.84 1.67 1.57 1.15 1.11
0% 1.33 1.90 1.22 1.09 1.65 245 1.35 0.90 0.61
0'%2 1.33 1.49 0.63 1.13 1.55 1.94 0.64 0.52 0.46
N = 400

TRUE MEAN SD LQ MED UQ RMSE MAE MDAE
5y 1 1.14 0.49 091 1.23 1.50 0.51 0.41 0.40
B 1 0.86 0.49 0.49 0.79 1.09 0.51 0.41 0.38
0'2U 1.72 1.06 1.17 0.00 1.00 1.72  1.34 1.01 0.90
o2 1.33 1.99 1.03 1.19 1.76 272 1.22 0.90  0.65
o 1.33 1.54 0.60 1.21 1.64 2.01 0.63 0.53  0.52

Notes: Design 2: In(U) ~ N(—0.5,1), V ~U(-2,2), R ~ U(—2,2). p-val is the p value of the J statistics
under the null hypothesis that the overidentifying restrictions are valid.
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Table C3: Design 3
Over Identified Moments

N =100

TRUE MEAN SD LQ MED UQ RMSE MAE MDAE
vy 1 0.94 0.66 0.79 1.01 1.27  0.66 0.37 0.24
B 1 1.21 1.46 0.56 0.97 1.53 148 0.70 047
UZU 1.64 1.77 1.23 084 1.74 2.50 1.24 0.97 0.84
0%/ 1.72 1.32 1.30 0.19 1.08 2.09 1.36 1.11 1.09
o 1.72 1.55 492 074 1.24 1.87  4.92 0.98  0.72
oy w 10 9.01 220 7.53 8.70 10.17  2.41 1.96 1.78
Hansen-Sargan J stat 1.74 2.71 0.23 0.82 2.19
p-val 0.19 0.63 037 0.14
N = 400

TRUE MEAN SD LQ MED UQ RMSE MAE MDAE
5y 1 0.93 0.40 0.86 0.96 1.06  0.41 0.19 0.11
B 1 1.06 1.04 0.72 0.93 1.20 1.04 0.40  0.25
0¥ 1.64 1.95 0.89 140 1.96 253 094 0.73  0.64
o%/ 1.72 1.24 1.02 044 1.10 1.86 1.13 0.93 0.87
O'?% 1.72 1.62 1.96 1.07 1.49 1.95 1.97 0.65 0.48
Moy w 10 9.39 1.26 8.56 9.28 10.08 1.40 .12 0.97
Hansen-Sargan J stat  2.30 6.35 0.29 0.96 2.46
p-val 0.13 0.59 033 0.12

Exactly Identified Moments

N = 100

TRUE MEAN SD LQ MED UQ RMSE MAE MDAE
5y 1 0.99 0.55 0.86 1.04 1.27  0.55 0.32 0.22
B 1 2.23 8.86 0.79 1.17 1.86  8.95 1.51 0.45
0¥ 1.64 1.58 1.24 0.56 1.46 234 124 0.99  0.89
0% 1.72 1.77 148 0.71 1.65 247 148 1.06  0.88
0'%2 1.72 1.40 1.46 0.57 1.14 1.86 1.49 1.02 0.84
N = 400

TRUE MEAN SD LQ MED UQ RMSE MAE MDAE
v 1 0.96 0.33 0.89 0.99 1.09 0.33 0.18  0.10
B 1 1.68 6.85 0.83 1.06 1.38  6.88 0.91 0.26
0% 1.64 1.76 0.95 114 1.73 231 095 0.73  0.60
o2 1.72 1.60 1.07 0.86 1.57 224 1.08 0.83  0.69
o 1.72 1.60 1.04 1.01 145 2.01 1.04 0.75  0.57

Notes: Design 3: U ~ Gumbel(0, 1),In(V) ~ N(-0.5,1),In(R) ~ N(—=0.5,1). p-val is the p value of the J
statistics under the null hypothesis that the overidentifying restrictions are valid.
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Table C4: Design 4
Over Identified Moments

N =100

TRUE MEAN SD LQ MED UQ RMSE MAE MDAE
vy 1 0.95 0.56 0.83 1.01 1.18 0.56 0.28  0.18
B 1 1.23 299 032 097 1.54  3.00 0.86  0.62
UZU 1.33 1.67 1.41 0.86 1.36 2.15 1.45 0.92 0.59
o2 1.72 1.26 1.25 0.19 1.07 1.88 1.33 1.05  0.95
o 1.72 1.42 4.82 0.57 1.17 1.77 4.83 1.02  0.76
oy w 8.76 8.06 1.86 693 7.79 889 1.99 1.53 1.32
Hansen-Sargan J stat  2.45 4.63 0.22 0.85 2.52
p-val 0.12 0.64 036 0.11
N = 400

TRUE MEAN SD LQ MED UQ RMSE MAE MDAE
5y 1 0.99 0.23 0.92 0.99 1.06 0.23 0.12  0.07
B 1 1.09 2.12  0.55 1.00 142 2.12 0.55  0.44
0¥ 1.33 1.63 1.10 098 1.32 1.99 1.14 0.73 044
o2 1.72 1.43 1.02 0.73 143 2.02 1.06 0.82 0.65
o 1.72 1.39 1.31  0.79 1.33 1.87 1.36 0.74  0.60
Moy w 8.76 8.43 1.10 774 830 894 1.15 0.88 0.74
Hansen-Sargan J stat 3.86 11.48 0.26 0.87 2.49
p-val 0.05 0.61 035 0.12

Exactly Identified Moments

N = 100

TRUE MEAN SD LQ MED UQ RMSE MAE MDAE
5y 1 0.91 0.63 0.86 1.00 1.13 0.64 0.27  0.13
B 1 1.99 454  0.67 1.33 2.04 4.65 1.35  0.66
0¥ 1.33 1.47 1.30  0.67 1.21 1.93 1.30 0.87  0.64
0% 1.72 1.56 148 048 1.36 2.25 1.49 1.09  0.93
0'%2 1.72 1.26 3.13 0.00 0.93 1.74 3.16 1.23 1.05
N = 400

TRUE MEAN SD LQ MED UQ RMSE MAE MDAE
5y 1 0.99 0.16 0.93 1.00 1.06 0.16 0.09  0.06
B 1 1.70 262 048 1.27 1.94 2.71 1.13  0.67
0'2U 1.33 1.62 1.21 0.80 1.22 2.46 1.25 0.92 0.65
o2 1.72 1.44 1.16 0.15 147 219 1.19 0.95 0.83
o 1.72 1.18 1.17  0.00 1.12 2.01 1.29 1.03  0.98

Notes: Design 4: U ~ U(-2,2),In(V) ~ N(-0.5,1),In(R) ~ N(—0.5,1). p-val is the p value of the J
statistics under the null hypothesis that the overidentifying restrictions are valid.

Supplement D: Additional Results of the AJ Application

Besides log GDP per capita, AJ also consider the effect of the change in life expectancy on
log population, log births, percentage of population under age 20, log GDP, and log GDP

per working age population. For completeness, we investigate the applicabilty of our method
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to these additional outcome variables (W).

One concern is whether these alternative specifications are still consistent with our model
(i.e. equations (4) and (5)). The OLS regression of population measures on health outcomes
is inconsistent due to unobserved common shock (e.g. improvement in medical technology)
positively impacting both population and health. In this context, the medical technology
improvement is the unobserved factor U in our model, with 5 > 0, and V' and R are idiosyn-
cratic shocks to health and population measures, respectively. Indeed, for log population, log
births, and percentage of population under age 20, AJ’s OLS estimates of 7 (corresponding
to B in section 5) are either smaller or nearly equal to their 2SLS estimates of 4'°. Having
~v > B contradicts the implication of our model when § > 0. As noted in the previous sec-
tion, one possible explanation is that the population measures may also contain significant
measurement errors. If this is the case, then U is a vector rather than a scalar, violating one
of the assumptions of our model.

Tables D1 to D5 report estimates based on the over-identifying set of moments given by
equations (77) to (82). Each table corresponds to a different outcome variable.

Tables D1 to D3 present the effect of a change in log life expectancy between 1940 and
1980 on changes in log population, log total births, and percentage of population under
age 20, respectively. Panel A reports the main parameter of interest ~, and also reports bs.
GMM2, the estimates that include quality of institutions as a covariate, in all three tables are
comparable to AJ’s 2SLS estimates, whereas both GMM1 and GMM3 are more variable and
insignificant for population and total births. The estimates from combining our moments
and the AJ instruments are quite close to those of AJ, with relatively smaller standard errors.
However, as we just discussed, in the context where W are population measures, our model
(equations (4) and (5)) does not necessarily hold, then it would be inappropriate to use our

moments in this context.

9In AJ, the OLS estimate of regressing log population on log life expectancy is 1.62, while the 2SLS
estimate is 1.67. The OLS and 2SLS estimates for the effect on log total births are 2.35 and 2.53, respectively.
For the effect on the fraction of the population under the age of 20, the OLS and 2SLS estimates are 0.094
and 0.12, respectively.
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Table D4 presents the effect on the change in log total GDP. GMM1, GMM?2, and GMM3
give estimates of much higher magnitude than AJ’s 2SLS estimates, but AJ’s estimates are by
themselves already insignificant and erratic, finding estimates of v that range from positive
to negative for different choices of covariates. This makes it even harder to obtain precise
estimates for this particular outcome variable based on our higher moments. The estimates
combining our moments and AJ’s instrument behave as before.

In Table D5, we report the effect on the change in log GDP per working age population.
In GMM1 and GMM2, the estimates of v are quite comparable to AJ’s. GMM3 gives an
estimate of a lower magnitude. The estimates that combine these moments and the AJ
instrument are very close to those of AJ, with somewhat smaller standard errors. Overall,
the ~ estimates for this outcome variable behave similarly to those we found with log GDP

per capita.
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