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Abstract

We study a simple variant of the house allocation problem (one-
sided matching). We demonstrate that agents with recursive pref-
erences may systematically prefer one allocation mechanism to the
other, even among mechanisms that are considered to be the same
in standard models, in the sense that they induce the same probabil-
ity distribution over successful matchings. Using this, we propose a
new Priority Groups mechanism and provide conditions under which
it is preferred to two popular mechanisms, Random Top Cycle and
Random Serial Dictatorship.

JEL codes: C78, D81.

Key words: House allocation problem, Non-expected utility, Ran-
dom Top Cycle, Random Serial Dictatorship, Reduction of compound
lotteries.

I Motivation

Many goods are allocated using randomizing devices. These include, among
others, public schools, course schedules, or dormitory rooms to students, and
shifts, offices, or tasks to workers. Standard analysis of allocation mecha-
nisms is interested in their efficiency and in possible manipulations of their
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outcomes, but typically not in the way these procedures are perceived by the
agents to whom outcomes are allocated. The literature on allocation prob-
lems, and more generally on one-sided and two-sided matching (for a survey,
see Abdulkadiroğlu and Sönmez (2013)), typically maintains the assumption
that agents are only interested in the overall probability they will receive
their desired outcome. This assumption implies the equivalence of differ-
ent randomized mechanisms (Abdulkadiroğlu and Sönmez (1998); see also
Pathak and Sethuraman (2011)). Nevertheless, we show that taking into ac-
count the procedures that generate this probability may be important, and
seemingly similar mechanisms like Random Top Cycle and Random Serial
Dictatorship can be ranked differently when preferences over compound lot-
teries are taken into consideration. Moreover, we use this insight to propose
a new mechanism which may be better than those currently discussed in the
literature.

The basic structure we investigate is simple: N units of two different
types need to be allocated to N individuals, one per person. For example,
N dorms — some face west and the other face east — that need to be
allocated to incoming students. Some will prefer one type and some will
prefer the other. Since there are only two types, there is no room for strategic
manipulations and agents’ optimal strategy is to reveal their true preferences.
For tractability, in the formal analysis we will confine attention to the case
of a large population: a continuum of agents and units.

We first take an ex-ante approach, where agents are yet to learn their
own preferences (as well as those of the other agents) over the goods. These
preferences are revealed after the first part of the procedure takes place. In
professional sports, for example, teams typically know their rank in the draft
before they know which positions they would like to fill. This will become
clearer by the time they know the draft prospects and the medical condition
of their current roster for next year. In a school context, prospective students
often attend visit days and open houses long after the assignment procedure
has been announced. Individuals in such situations thus view possible mech-
anisms as compound lotteries, that is, lotteries over the interim probabilities
of receiving their desired outcome. Crucially, our analysis is based on the
assumption that sequential probabilities are not taken by individuals to be
the same as their product. In other words, individuals do not obey the re-
duction of compound lotteries axiom, according to which an agent should be
indifferent between any multi-stage lottery and the single-stage lottery that
induces the same probability distribution over final outcomes.
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Extensive experimental results suggest that individuals often fail to re-
duce compound lotteries to simple ones using probability laws (see, among
others, Halevy (2007), Abdellaoui, Klibanoff, and Placido (2015), Harrison,
Martinez-Correa, and Swarthout (2015), and Masatlioglu, Orhun, and Ray-
mond (2017)). This is not necessarily a mistake, as is demonstrated by
the following example. One hundred doses of vaccine are available for one
hundred people. Two doses guarantee immunization, while one dose only re-
duces the probability of developing severe symptoms by half. You can either
randomly select half the people and give each two doses, or give one dose
to everyone. As a patient, are you indifferent between these two scenarios?
More broadly, violations of the reduction axiom may reflect preferences over
different processes even if they lead to the same overall distribution over
final outcomes, or intrinsic preferences towards the timing of resolution of
uncertainty.

Many theoretical models in which the reduction of compound lotteries
axiom is relaxed have been proposed. We follow this approach and pos-
tulate that individuals have recursive preferences over compound lotteries.
This structure allows us to distinguish between mechanisms that induce the
same lotteries under the reduction assumption.1 A notable case is the two
aforementioned mechanisms, Random Top Cycle (TC) and Random Serial
Dictatorship (SD), which are no longer indifferent to each other without this
assumption. We show conditions under which each of them is preferred to
the other (see Section III). Moreover, it is this perception of mechanisms that
enables us to propose a new Priority Groups (PG) mechanism, which under
familiar conditions is considered better than both by the receiving agents.

The PG mechanism has the following structure. In the first stage, each
individual is informed which of the two goods he is going to receive. In
addition, he is informed to which ‘trading group’ he belongs, where being in
a certain group determines the probability at which the individual will be able
to trade, if desired, in the second stage. In the second stage each individual
learns his preferences. Those who hold their desired good keep it. The
remaining individuals can trade, where for those who hold the good for which
there is an excess supply, the probability of being selected to trade is the one
assigned to them in the first stage. Priority groups are common in many

1The mechanism design literature often ignores this sequential resolution of uncertainty.
If a person submits his preferences to an algorithm and learns nothing until his final
outcome is revealed, he probably will not view this as a compound lottery.
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industries, for example, in the airline industry. While priority groups often
depend on some merit (e.g. the amount spent and miles flown in the previous
calendar year), in the alternative we suggest the assignment to groups is
random.

Intuitively, the different mechanisms we consider induce lotteries over in-
terim probabilities that can be ranked in terms of “riskiness.” Following
Machina (1982), we approximate local behavior by expected utility function-
als, and the curvatures of these local utility functions determine the desir-
ability of a mechanism. For example, TC generates a less risky distribution
than SD, and thus is preferred if all local utilities are concave. We outline
conditions over these utilities that determine preferences over mechanisms
and show that these conditions can also be linked to attitudes towards the
timing of resolution of uncertainty (see section IV).

While our analysis is mainly focused on the ex-ante approach, it can
also be applied to the interim case, in which each individual learns his place
in the mechanism after he already knows his type. We demonstrate this
in Section VI. Here again, the absence of the reduction assumption allows
us to examine the performance of seemingly identical mechanisms, and to
show conditions under which TC or SD is superior to the other and con-
ditions where PG is preferred to both. More generally, it is important to
emphasize that our analysis is not restricted to any specific order. It ap-
plies whenever mechanisms involve some sequential resolution of uncertainty
(even with more than two stages) and individuals do not obey the reduction
of compound lotteries assumption.

The rest of the paper is as follows: Section II introduces the basic struc-
ture and the TC and SD mechanisms. Section III describes the preferences
we consider and compares TC to SD. Section IV discusses the PG mecha-
nism and provides conditions under which it is preferred to both TC and SD.
Section V extends our analysis beyond the class of preferences we studied in
the previous sections. Section VI considers the interim case. Section VII
concludes with some further discussion.

II Two Allocation Mechanisms

Consider the following continuum variant of the house allocation problem
(Hylland and Zeckhauser (1979)). There are goods of two types, g1 and g2
in proportion p : 1 − p, to exactly supply the total quantity needed to ac-
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commodate a [0, 1] continuum of agents. All agents have the same stochastic
preferences, where with probability q each prefers g1 to g2 (independently of
the preferences of others). We normalize payoffs so that the utility from the
desired outcome is 1 and the utility from the other outcome is 0. We analyze
below the case of excess supply of g1, that is, p > q. The analysis of the case
p < q is similar.

In this section we consider two familiar mechanisms, each consisting of
two stages.

• Random Top Cycle (TC): In the first stage, the goods are randomly
allocated among the agents, so that the probability of person i holding
good of type g1 or g2 is p or 1 − p, respectively. In the second stage,
the entire profile of preferences is revealed and trade, if needed, takes
place. Those who like their holding will keep it. The rest will trade
according to the following schedule: If m proportion of people holding
one type of good and ` < m proportion of people holding the other
type are unhappy with their holding, then the latter group will trade
and get their desired outcome, while ` out of the former group will be
selected at random and get their preferred option. The other m−` will
keep their undesired outcome.2

• Random Serial Dictatorship (SD): In the first stage the order of the
agents is randomly determined, so that the probability of each person
being in the top m part of the queue is m. In the second stage, the
entire profile of preferences is revealed. The agents then choose goods
according to the order determined in the first stage. Agents get their
desired outcome if, when their turn arrives, such a unit is still available.

We first adopt an ex-ante perspective. In both cases, we assume here that
in the first stage, before individuals know their preferences, the uncertainty
of the relevant mechanism is revealed. In the second stage, people learn
their preferences and act according to the outcome of the first stage. It is
clear from the descriptions of the above mechanisms that they involve some
sequential revelation of information: The outcome of the mechanism and the
revelation of individual preferences. However, it is easy to see that both TC

2This is a variant of the classic top cycle mechanism. It can equivalently be formulated
more closely to the familiar top cycle as a problem of matching with indifferences and using
a specific tie-breaking rule. Since the environment we consider is simple, we maintain our
formulation and slightly abuse the title “cycle.”
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and SD lead to the same overall probability of success, and are hence deemed
indifferent if agents are only interested in the overall probability at which they
will receive their desired outcome (see Abdulkadiroğlu and Sönmez (1998)).

Suppose that the individual knows that he will face a binary lottery of the
form (x, π; y, 1− π) where x and y are fixed and x is preferred to y, but the
winning probability π is determined by a random device such that with prob-
ability αi the value of π is πi. We denote such lotteries as 〈π1, α1; . . . ; πn, αn〉.
This is a two-stage lottery, where in the first stage, with probability αi the
winning probability of the second stage is determined to be πi. The second
stage is a simple lottery over the final outcomes x and y, where the former
is obtained with probability πi.

Consider first the TC mechanism. Since there is an excess supply of g1
(p > q), all those who receive g2 — their proportion is 1−p of the population
— know that they will end up with their desired outcome regardless of their
preferences. Either they will like it and keep it, or they will be able to trade.
The size of the group of those who will receive g2 but would like to replace
it with g1 is q(1− p).

Those who receive g1 (proportion p of the population) will not know their
true status until their preferences and trading outcomes are revealed. With
probability q they will like their outcome, but with probability 1 − q they
will look for a trading partner. In the latter case, the conditional probability
of successful trade is

q(1− p)
(1− q)p

(1)

Their overall probability of satisfaction is therefore

q + (1− q)q(1− p)
(1− q)p

=
q

p
< 1.

The TC mechanism thus yields the lottery over probabilities of receiving the
desired outcome which is given by X1 = 〈1, 1 − p; q

p
, p〉. This is an ex-ante

lottery — before individuals know the outcome of the allocation mechanism,
and of course before they know their preferences and the outcome of the
trading period.

Consider now the SD mechanism (still assuming p > q). Out of the first
1−p
1−q individuals, (1−q)× 1−p

1−q = 1−p will choose g2 and q× 1−p
1−q < p will choose

g1. As g2 is exhausted by the first 1−p
1−q individuals, the other p−q

1−q will be able
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to satisfy their desires only if they prefer g1 to g2. The probability of having
these preferences is q. SD thus leads to the lottery over probabilities given
by X2 = 〈1, 1−p

1−q ; q,
p−q
1−q 〉. Here too the analysis is ex-ante, before individuals

know their position in the queue or their preferences (which will only be
revealed to them later). Observe that if p = q, then in a large economy both
TC and SD yield (almost) everyone his desired outcome for sure.

III Are TC and SD Equivalent?

The two lotteries over the probabilities of success we have previously dis-
cussed, X1 = 〈1, 1 − p; q

p
, p〉 and X2 = 〈1, 1−p

1−q ; q,
p−q
1−q 〉, have the same “ex-

pected value.” That is, the expected probability of receiving the preferred
good is the same under both mechanisms, which is 1−p+ q. This is not sur-
prising. As p, the proportion of good g1, is greater than q, the proportional
demand for g1, it must be that eventually p−q agents will not be happy with
their outcome. Ex-ante, when agents do not yet know their preferences and
the outcome of the mechanism, the reduced probability of success for each
of them is therefore 1− p+ q. This, however, does not necessarily mean that
all mechanisms with this reduced probability are equally attractive.

Let x =“receive the desired outcome” and y =“receive the undesired
outcome.” As x and y are fixed, the probability πi represents the lottery
(x, πi; y, 1 − πi). The decision maker has preferences � over compound lot-
teries of the form 〈π1, α1; . . . ; πn, αn〉 which can be represented by a func-
tional V . Following Kreps and Porteus (1978) and Segal (1990), we use the
recursive analysis of preferences over compound lotteries, where the decision
maker considers the two-stage lottery 〈π1, α1; . . . ; πn, αn〉 as a lottery over
his subjective values of the lotteries (x, πi; y, 1−πi). In particular, we do not
assume the reduction of compound lotteries axiom, hence V is not ordinally
equivalent to

∑
αiπi.

We analyze mechanisms as cumulative distribution functions over [0, 1],
where FX(π∗) is the probability that the mechanism X yields a simple lottery
(x, π; y, 1 − π) with π 6 π∗. The set of feasible mechanisms is a strict
subset of all simple lotteries (that is, lotteries with finite support) over the
interval [0, 1], whose outcomes are the winning probability π of the lottery
(x, π; y, 1−π). In particular, we confine our attention to mechanisms in which
the induced allocation is ex-post efficient, in the sense that after all units are
allocated, there are no two agents who can benefit from an exchange between
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them, where at least one of these improvements is strict. Ex-post efficiency
implies that every individual who prefers the good for which there is excess
supply must obtain it, as otherwise there will be scope for an improving trade.
Therefore, any lottery in which some fraction of the population know for
sure that independent of their preferences they will not receive their desired
outcome (that is, any lottery over ex-ante probabilities in which πi = 0 is in
its support) will be inefficient and will not be considered a valid mechanism.
On the other hand, both TC and SD are ex-post efficient. It is enough to
show that there is no agent who holds the item for which there is excess
demand while he prefers the other good. By the construction of the TC
mechanism, any such individual will participate in the second stage trade.
In SD, such an individual will never choose this good when his turn arrives,
as his preferred good, which is in excess supply, will be still available.

Following Machina (1982), we assume first that the representation func-
tion V is smooth in the sense of being Fréchet differentiable: For every F
there exists a continuous local utility function uF (·) over [0, 1] such that

V (G)− V (F ) =

∫ 1

0

uF (π)d(G(π)− F (π)) + o(‖G− F‖)

Fréchet differentiability implies that when individuals evaluate small chan-
ges from the distribution F , they act precisely as would an expected utility
maximizer with (Bernoulli) utility function uF (·). We maintain this assump-
tion on preferences mostly for tractability and conciseness. In Section V we
use the popular rank-dependent utility model to demonstrate that a similar
analysis can be performed for other, non-Fréchet differentiable preferences.

For α ∈ [0, 1], denote by Gα the distribution of

αX1 + (1− α)X2 =

〈
1,

(1− p)(1− αq)
1− q

;
q

p
, αp; q,

(1− α)(p− q)
1− q

〉
Proposition 1 If for all α the local utility of V at Gα is concave, then
X1 � X2 and TC is preferred to SD. If all these local utilities are convex,
then X2 � X1 and SD is preferred to TC.

Proof: Observe that for p > q, X2 is a mean preserving spread of X1, and
therefore for α > α′, Gα′ is a mean preserving spread of Gα. The proposition
now follows from Theorem 2 in Machina (1982). �
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Risk aversion along a segment connecting two lotteries may be a rea-
sonable assumption when lotteries are over monetary payoffs, but such an
attitude is much less obvious in the present context. To illustrate, consider
lotteries of the form Yε = 〈1

2
− ε, 1

2
; 1

2
+ ε, 1

2
〉. Obviously they are ordered by

mean-preserving spread, where for ε′ > ε, Yε′ is a mean preserving spread
of Yε. However, there is no obvious reason to posit a specific ranking be-
tween Y0 and Y0.5. If time is not involved, it seems plausible to assume that
Y0 ∼ Y0.5, as both represent a simple even chance of winning. If the passage
of real time is considered, then preferences between the two capture prefer-
ences over the timing of resolution of uncertainty, as Y0.5 is fully resolved in
the current period, whereas Y0 only resolves later. As we will further discuss
in Section IV, there is no empirically obvious pattern for such preferences.
We are thus interested also in situations where the local utilities are not al-
ways concave or always convex. We use this in the next section where we
offer a new mechanism and show conditions under which this mechanism is
better than both TC and SD.

IV The Priority Groups Mechanism

In this section we offer an alternative new mechanism, called Priority Groups
(PG), and provide conditions under which it is preferred to both TC and SD.
This mechanism first allocates the two goods as in the TC mechanism, and
determines the trading probabilities of the (1− q)p group of people who will
find out that they received g1, the good they do not like but for which there
is an excess supply.

The formal procedure is as follows. In the first stage, allocate the two
goods at random where each person has probability p of getting g1 and 1−p of
getting g2. Also, select n priority groups where each person has probability ri
of being a member of group i, i = 1, . . . , n, where

∑
i ri = 1, and assign each

group probability si, 1 = s1 > . . . > sn, such that the overall probability
for trade of the unlucky (1 − q)p group equals the sum of the subgroups’
probabilities (see eq. (1)). That is,∑

i

risi =
q(1− p)
(1− q)p

(2)

Since there is an excess demand for g2, those who get it are guaranteed to
eventually obtain their desired outcome. The size of this set is 1 − p. Also,
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those who will be assigned to the top priority group will obtain their desired
outcome even if they received g1. The size of this set is pr1. As the allocation
of the goods and the assignments to the priority group are simultaneous, ex-
ante each person knows that with probability 1 − p + pr1 his probability of
getting his desired outcome is 1.

Those who get g1 and are assigned to group i (the probability of this
event is pri) know that either they will like it and keep it, or they won’t like
it and will be able to trade with probability si. That is, with probability pri
they have q+ (1− q)si probability of getting their desired outcome. The PG
mechanism is therefore the following lottery over probabilities

〈1, 1− p+ pr1; q + (1− q)s2, pr2; . . . ; q + (1− q)sn, prn〉(3)

This mechanism is ex-post efficient. Those who like g1 will not end up
with g2. Either they receive g1 and keep it, or they receive g2 but will
be able to trade it. The next claim shows that the reduced probability of
this mechanism is the same as the one we computed at the beginning of
Section III.

Claim 1 The reduced probability of lottery (3) is 1− p + q, independently
of n, ri, and si, i = 1, . . . , n.

Proof: The reduced probability is

1− p+ pr1 +
n∑
i=2

(q + (1− q)si)pri =

1− p+
n∑
i=1

(q + (1− q)si)pri =

1− p+ qp+ (1− q)p
n∑
i=1

risi = 1− p+ q

where the first equality follows by s1 = 1 and the last one by eq. (2). �

Below, we analyze a special case of this mechanism and show conditions
under which it is superior to both SD and TC. Specifically, we consider the
case where n = 2, r1 6 [q(1− p)]/[(1− q)p], and by eq. (2),

s2 =
q(1− p)

(1− q)pr2
− r1
r2

=
q(1− p)

(1− q)p(1− r1)
− r1

1− r1
(4)
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Let

A(r1) = q +
(1− p)q − p(1− q)r1

p(1− r1)
Eq. (3) becomes

X3(r1) = 〈1, 1− p+ pr1; A(r1), p(1− r1)〉(5)

Observe that if r1 = 0, then X3(r1) reduces to X1 = 〈1, 1 − p; q
p
, p〉, the

lottery obtained by the TC mechanism. On the other hand, if r1 = q(1−p)
p(1−q) ,

then by eq. (4) s2 = 0 and X3(r1) reduces to X2 = 〈1, 1−p
1−q ; q,

p−q
1−q 〉, the lottery

obtained by the SD mechanism.
We now show that under some simple conditions, neither TC nor SD are

optimal. We will do this by showing that moving from either in the direction
of the PG mechanism will make individuals better off ex-ante.

Denote by ur1 be the local utility u
X3(r1)

of V at X3(r1).

Proposition 2 If u0 is convex on [ q
p
, 1] and u q(1−p)

p(1−q)

is concave on [q, 1], then

neither TC nor SD is optimal.

Proof: By Machina’s (1982) analysis

∂

∂r1
V (X3(r1)) =

∂

∂r1
E[ur1(X3(r1)]

= pur1(1)− p− q
1− r1

u′r1(A(r1))− pur1(A(r1))

As A(0) = q
p
, we get

∂

∂r1
V (X3(r1))

∣∣∣∣
r1=0

= pu0(1)− (p− q)u′0
(
q

p

)
− pu0

(
q

p

)
which is positive if and only if

p

p− q

[
u0(1)− u0

(
q

p

)]
> u′0

(
q

p

)
This inequality is satisfied whenever u0 is convex on [ q

p
, 1], hence TC is not

optimal.
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For the second part, denote r∗1 = q(1−p)
p(1−q) . As A(r∗1) = q, we get

∂

∂r1
V (X3(r1))

∣∣∣∣
r1=r∗1

= pur∗1 (1)− p(1− q)u′r∗1 (q)− pur∗1 (q)

which is negative if and only if

1
(1−q) [ur∗1 (1)− ur∗1 (q)] < u′r∗1 (q)

This inequality is satisfied whenever ur∗1 is concave on [q, 1], hence SD is not
optimal. �

Note that the functions u0 and ur∗1 are local utilities at two different
distributions, and therefore do not restrict each other.

As we have pointed out in the previous section, the conditions in Propo-
sition 2 are not implausible. Theoretically, they are tied to forms of in-
trinsic preferences towards the timing of resolution of uncertainty.3 Recent
experimental studies (for example, Ahlbrecht and Weber (1997), Kocher,
Krawczyk, and van Winden (2014), Masatlioglu, Orhun, and Raymond (2017),
and Nielsen (2020); see also Dillenberger and Segal (2017) and references
therein) suggest that there is no conclusive evidence about which attitudes
towards the resolution of uncertainty is the most prominent. These change
based on the nature of the outcomes (goods or bads), the framing of the prob-
lem (choosing among information structures or among compound lotteries),
and the skewness (positive or negative) of the underlying distribution over
the probabilities. Furthermore, not only is it unclear which type is most
prominent in a heterogeneous population, but also whether we can charac-
terize an individual as having a global attitude in this regard. The latter is
reflected in different curvatures of the local utility at different points.

V Rank-Dependent Utility

Thus far we have confined attention to functionals V that are Fréchet differ-
entiable. While many known models are consistent with this assumption (for

3Kreps and Porteus (1978) pointed out that in a recursive setting, risk aggregation
(about future consumption) takes place in the period in which it is resolved. They establish
a link, within the recursive expected utility model, between the curvature of the utility
functions in different periods and preferences over the timing of resolution of uncertainty.
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example, quadratic utility (Chew, Epstein, and Segal (1991)) and weighted
expected utility (Chew (1983))), there are many popular models that are not.
A prominent example is rank-dependent utility (Quiggin (1982)).4 Our aim
is to show that the possible improvement of the PG mechanism over both TC
and SD holds more generally. We demonstrate this by providing sufficient
conditions on a version of the rank-dependent utility functional known as the
dual theory (Yaari (1987)).5

Since 1 > A(r1), the rank-dependent value of X3(r1) (see eq. (5)) is

VRD(X3(r1)) = u(A(r1))g(p(1− r1)) + u(1)[1− g(p(1− r1))]

By the definition of A(r1) we get

∂

∂r1
VRD(X3(r1)) =

∂

∂r1
[u(A(r1))g(p(1− r1)) + u(1)[1− g(p(1− r1))]] =

−
(

p−q
p(1−r1)2

)
u′(A(r1))g(p(1− r1))

−pu(A(r1))g
′(p(1− r1)) + pu(1)g′(p(1− r1))

(6)

Recall that r1 = 0 represents the TC case. We get

∂

∂r1
VRD(X3(r1))

∣∣∣∣
r1=0

= −p− q
p

u′
(
q

p

)
g(p)− pg′(p)

[
u

(
q

p

)
− u(1)

]
For example, for u(π) = π this equation becomes

−p− q
p

g(p)− p
[
q − p
p

]
g′(p)

which is positive if and only if

(∗) ηg(p) > 1

4Other examples include Gul (1991) and Cerreia-Vioglio, Dillenberger, and Ortoleva
(2015).

5If we order the prizes in the support of a lottery 〈π1, α1; . . . ;πn, αn〉, with π1 > π2 >
. . . > πn, then the functional form for rank-dependent utility is: V (〈π1, α1; . . . ;πn, αn〉) =

u(πn)g(αn) +
∑n−1

i=1 u(πi)[g(
∑n

j=i αj) − g(
∑n

j=i+1 αj)], where g : [0, 1] → [0, 1] is strictly
increasing and onto, and u : [0, 1]→ R is increasing. In the dual theory, u is the identity
function. We will assume in this section that g is differentiable.
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The SD case is obtained when r1 = q(1−p)
p(1−q) . Now

∂

∂r1
VRD(X3(r1))

∣∣∣∣
r1=

q(1−p)
p(1−q)

=

−p(1− q)
2

p− q
u′(q) g

(
p− q
1− q

)
− pg′

(
p− q
1− q

)
[u (q)− u(1)]

which is negative if and only if

u′(q)(1− q)
1− u(q)

> ηg

(
p− q
1− q

)
For u(π) = π this condition becomes

(∗∗) 1 > ηg

(
p− q
1− q

)
It is common to assume that g is an inverse S-shaped function — concave

for small probabilities and convex for high probabilities.6 This property
captures a tendency to overweight both best and worst events that occur
with small probabilities. The two conditions, (∗) and (∗∗), are consistent
with this shape of g. It is indeed easy to construct functional forms for g
that satisfy both.

The two conditions (∗) and (∗∗) are sufficient to show that there are
PG mechanisms with two groups that are better than both TC and SD. A
natural question is whether there is an optimal PG mechanism, at least for
the case n = 2 and u(π) = π. Since the rank-dependent value of X3(r1)
is a continuous function on a closed segment, then, by eq. (6), a necessary
condition for an interior optimum is

−
(

p− q
p(1− r1)2

)
g(p(1− r1)) + p[1− A(r1)]g

′(p(1− r1)) = 0(7)

=⇒
(

1

p(1− r1)

)
g(p(1− r1)) = g′(p(1− r1)) =⇒ ηg(p(1− r1)) = 1

6For empirical evidence in favor of inverse S-shaped probability weighting, see, among
others, Gonzales and Wu (1989), Tversky and Kahneman (1992), and Fehr-Duda and
Epper (2012).
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If ηg is strictly increasing, there is a unique r∗1 with this property. Note
that this condition is consistent with (∗) and (∗∗) since p > p(1 − r) > p−q

1−q

(recall that r1 ∈
[
0, q(1−p)

p(1−q)

]
). Differentiate again to obtain

− p− q
1− r1

[
2g(p(1− r1))
p(1− r1)2

− 2g′(p(1− r1))
1− r1

+ g′′(p(1− r1))
]

(8)

Using eq. (7), the sign of expression (8) is the same as the sign of −g′′(p(1−
r∗1)). It is thus negative if g′′(p(1 − r∗1)) > 0, in which case r∗1 is indeed
optimal.

VI Known Preferences

In previous sections we studied the ex-ante case, where the first part of the
mechanism is implemented before individuals know their own preferences. A
similar method can be used to study the case where individuals know their
preferences from the beginning. Here we demonstrate how our analysis can
be easily applied to this case as well. As before, we confine attention to the
case of large (continuum) economies and assume, without loss of generality,
that there is an excess supply of g1, that is, p > q. In the TC mechanism we
can therefore identify four groups:

1. qp will get g1 and like it.

2. (1− q)p will get g1 and will prefer to trade it for g2.

3. q(1− p) will get g2 and will prefer to trade it for g1.

4. (1− q)(1− p) will get g2 and like it.

Since p > q, the third group is smaller than the second one, and therefore
all members of the third group will be able to trade. In other words, all
those who prefer g1 (the first and the third group) are guaranteed to receive
it. Those who prefer g2 face a lottery. With probability 1 − p they will
get their desired outcome, and with probability p they will get their desired
outcome if they will be able to trade, the probability of this event is q(1−p)

(1−q)p .

Their underlying conditional lottery is thus W1 = 〈1, 1− p; q(1−p)
(1−q)p , p〉.

In the SD mechanism, the q who prefer g1 are guaranteed to receive it.
A person who prefers g2 will get it only if he is in the top α of the list
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where (1− q)α = 1− p, that is, if his rank is less than 1−p
1−q . The underlying

conditional lottery is thus W2 = 〈1, 1−p
1−q ; 0, p−q

1−q 〉. Note that here, after the
first step of the mechanism, all participants know for sure whether they will
receive their preferred outcome or not.

We obtain that all those who prefer g1 to g2 (q of the group) know in
advance that since there is an excess supply of their desired good, they will
eventually get it under both procedures, and are therefore indifferent between
the two mechanisms. Those who prefer g2 to g1 have to compare W1 with W2.
Here again both mechanisms induce the same overall probability of success,
1−p
1−q , while W2 is a mean preserving spread of W1, so that the same qualitative
results as in Proposition 1 hold. The results from the rank-dependent utility
model can be extended to this case as well.

The analysis of the PG mechanism is also analogous to the ex-ante case.
It is now applied only for individuals who want g2 (the others will get their
desired outcome whether they initially hold it or trade for it.) As before, we
start by randomly assigning the goods and by splitting individuals into two
priority groups. Those who belong to the first group will be able to trade
for sure. The probability of belonging to this group is r1. With probability
1− r1, people belong to the second priority group and will be able to trade
with probability s2. To equate supply and demand, the constraint on s2 is

q(1− p) = (1− q)p(r1 + (1− r1)s2) =⇒ s2 =
q(1− p)− (1− q)pr1

(1− q)p(1− r1)

Each of the individuals who want g2 thus faces the following lottery

W3(r1) =

〈
1, 1− p+ pr1;

q(1− p)− (1− q)pr1
(1− q)p(1− r1)

, p(1− r1)
〉

(9)

where the first entry means that the desired outcome is guaranteed to those
who hold g2 or those who hold g1 but are in the first priority group. Observe
that if r1 = 0 this reduces to TC, whereas SD corresponds to r1 = q(1−p)

(1−q)p < 1.

Denote by vr1 be the local utility v
W3(r1)

of V at W3(r1). Mimicking the
calculations as in the proof of Proposition 2 for W3(r1) rather than X3(r1),
one obtains the following result.

Proposition 3 If v0 is convex on [ q(1−p)
(1−q)p , 1] and v q(1−p)

(1−q)p

is concave on [0, 1],

then neither TC nor SD is optimal.
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Proof: By Machina’s (1982) analysis

∂

∂r1
V (W3(r1)) =

∂

∂r1
E[vr1(W3(r1)]

= pvr1(1)− p− q
(1− q)(1− r1)

v′r1

(
A(r1)− q

1− q

)
− pvr1

(
A(r1)− q

1− q

)
As A(0) = q

p
, we get

∂

∂r1
V (W3(r1))

∣∣∣∣
r1=0

= pv0(1)− p− q
1− q

v′0

(
q(1− p)
p(1− q)

)
− pv0

(
q(1− p)
p(1− q)

)
which is positive if and only if

p(1− q)
p− q

[
v0(1)− v0

(
q(1− p)
p(1− q)

)]
> v′0

(
q(1− p)
p(1− q)

)
This inequality is satisfied whenever u0 is convex on

[
q(1−p)
p(1−q) , 1

]
, hence TC is

not optimal.
For the second part, denote r∗1 = q(1−p)

p(1−q) . As A(r∗1) = q, we get

∂

∂r1
V (W3(r1))

∣∣∣∣
r1=r∗1

= pvr∗1 (1)− pv′r∗1 (0)− pvr∗1 (0)

which is negative if and only if

vr∗1 (1)− vr∗1 (0) < v′r∗1 (0)

This inequality is satisfied whenever vr∗1 is concave on [0, 1], hence SD is not
optimal. �

VII Discussion

There is a vast literature on allocation problems of indivisible goods. This
literature typically distinguishes between possible mechanisms based on cri-
teria that are linked to the strategic interaction between the receiving agents
and the agents’ incentives to truthfully reveal any private information they
may have. In this paper we take a different approach. We purposely abstract
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away from any strategic considerations by confining attention to a setting in
which there are only two types of goods, and use individual preferences over
mechanisms to compare them. We thus concentrate on the decision-theoretic
dimension of the mechanisms without having to worry about individuals’ ma-
nipulations of their preferences over the outcomes.

Random allocation mechanisms typically involve multi-stage lotteries.
Based on a compelling evidence that people do not routinely use the laws
of probability to reduce multi-stage lotteries, we postulate that individuals
perceive mechanisms as compound lotteries and have recursive preferences
over them. Simple and familiar conditions then allow us to compare mecha-
nisms that are deemed identical in standard models. Moreover, our approach
permits us to offer a new mechanism that under some conditions outperforms
standard mechanisms.

In this paper we show that it is enough to have n = 2 priority groups
to (sometimes) improve upon both TC and SD. In the special case of rank-
dependent utility we also outline conditions for an optimal PG mechanism
with two groups. We do leave open, however, the question of what is the
optimal number of groups (together with the probability of trade assigned
to each of them). This question crucially depends on the individuals’ prefer-
ences.

There are some considerations about the actual implementation of the PG
mechanism which we do not explicitly address in the paper. First, it is often
the case that having more groups entails higher bureaucratic costs that may
offset the benefit of having finer division of the population. Therefore, even
if it is theoretically beneficial to have more priority groups, a cost-benefit
analysis may dictate a smaller number of such groups.

Implementation of the extreme cases of TC and SD requires no knowledge
of individual preferences or even aggregate preferences. The goods are allo-
cated at random (TC) and individuals are ordered at random (SD) regardless
of preferences. In order to determine which is better, however, society needs
to have information about the value of q and about individual preferences
over lotteries.

The allocation of the goods in the PG mechanism does not require knowl-
edge about q, but the determination of the sizes of the groups and their prob-
abilities of trade needs to satisfy eq. (2) which requires q.7 Moreover, as is

7For the analysis in Section V, knowing q is needed only to the extent that it determines
the possible range of r1, the size of the group that is guaranteed the option to trade.
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demonstrated in Section V, the optimal division into priority groups requires
knowledge about individual preferences.
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