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Abstract

We provide a new method to point identify and estimate cross-sectional multinomial choice

models, using conditional error symmetry. Our model nests common random coeffi cient spec-

ifications (without having to specify which regressors have random coeffi cients), and more

generally allows for arbitrary heteroskedasticity on most regressors, unknown error distribu-

tion, and does not require a “large support” (such as identification at infinity) assumption.

We propose an estimator that minimizes the squared differences of the estimated error den-

sity at pairs of symmetric points about the origin. Our estimator is root N consistent and

asymptotically normal, making statistical inference straightforward.

1 Introduction

Traditional multinomial choice models, such as multinomial logit (MNL) and multinomial probit

(MNP), e.g., McFadden (1974), assume homoskedastic errors. However, in reality substantial
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unobserved heterogeneity is common, e.g., Heckman (2001). We provide a new method to point

identify preference parameters in cross-sectional multinomial choice models in the presence of gen-

eral unobserved individual heterogeneity. Our identification is semiparametric, in that we do not

specify the joint distribution of the latent errors, and we allow for arbitrary heteroskedasticity with

respect to most regressors, including possible random coeffi cients. We propose a corresponding

estimator, and show it’s root N consistent and asymptotically normal.

Popular multinomial choice specifications that permit unobserved heterogeneity, such as Haus-

man and Wise (1978), McFadden and Train (2000), Train (2009), and the demand side of Berry,

Levinsohn, and Pakes (1995), assume random coeffi cients. Our model nests random coeffi cient

models as a special case (assuming they are symmetrically distributed), and so in particular nests

the usual parametric assumption of normally distributed random coeffi cients.

Advantages of our model (and associated estimator) over standard multinomial choice with

random coeffi cients include:

1. We don’t need to specify which regressors have random coeffi cients.

2. The distribution of the random coeffi cients can depend on regressors.

3. We don’t need to specify the functional form of the random coeffi cient distributions.

4. Our estimator remains numerically the same regardless of which regressors have random

coeffi cients, and

5. Our estimator doesn’t require numerical integration or deconvolution techniques.

Our key identifying assumption is error symmetry. We assume that the joint latent error

distribution, conditional on covariates, is centrally symmetric.1 Though error symmetry has not

previously been used for identification and estimation of multinomial discrete choice models, it

has been used in binary choice models. Manski (1988) shows that conditional symmetry in binary

response models does not have identifying power beyond median independence. Chen, Khan,

1Many multivariate distributions are centrally symmetric. See, e.g., Serfling (2006). A partial list includes
multivariate normal distributions, multivariate logistic, and the elliptically-contoured distribution as well as mean
zero mixtures of multivariate normal distributions. MNP models with or without normal random coeffi cients have
conditionally centrally symmetric latent errors.
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and Tang (2016) in contrast find that symmetry, when combined with conditional independence

of one regressor, does improve rates of convergence. Other studies, like Chen (2000) and Chen

and Zhou (2010), use symmetry to improve effi ciency. As we discuss in section 2, the method

of using symmetry for identification in binary choice models does not immediately extend to the

multinomial setting, because we must account for possible correlations in latent errors of different

choices.

Symmetry has been used to obtain point identification in many econometric models. Examples

include the censored and truncated regression models of Powell (1986a, 1986b), the type 3 Tobit

model of Honoré, Kyriazidou, and Udry (1997), stochastic frontier models as in Kumbhakar and

Lovell (2000), omitted variable models as in Dong and Lewbel (2011), and measurement error

models as in Lewbel (1997), Chen, Hu, and Lewbel (2008), and Delaigle and Hall (2016). These

examples are all univariate dependent variable models. An example of employing joint symmetry

to identify a multiple dependent variable model is the two player entry game of Zhou (2021).2

The intuition of our identification is as follows. In our setting, the expected value of making

any one choice (which we may arbitrarily designate as the base option), conditional on covariates,

equals the conditional distribution function of the latent errors, evaluated at the unknown values

of the utility indices. Taking derivatives of this function with respect to excluded regressors yields

the probability density function of the latent errors, also evaluated at the unknown utility index

values. Conditional symmetry of the latent errors means that, at a given value of the covariates,

we can construct a corresponding symmetry point that has the same value of the latent error

conditional density function. Equating the estimated densities (which are just nonparametric

regression derivatives) at these pairs of points provides equality restrictions on the utility indices

that we use to identify the utility index parameters.

2We differ from Zhou (2021) in many ways, e.g., we consider general multinomial choice rather than a specific
entry game model; we allow for an arbitrary number of choices, as opposed to just two players; we exploit symmetry
of differences in utility rather than in levels of payoffs; and we obtain a new and different estimator based on our
identification.
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Using the analogy principle, we construct a corresponding estimator that minimizes the

squared differences of the estimated error densities at each data point with its corresponding

symmetry point. We show this minimum distance estimator is root N consistent and asymptoti-

cally normal. Computing the objective function of our estimator does not entail either numerical

integration or deconvolution techniques, which are often required by random coeffi cients mod-

els. Moreover, our estimator does not require specifying which covariates, if any, have random

coeffi cients, and is no more or less complicated regardless of how many covariates have random

coeffi cients, or any other more complicated forms of heteroskedasticity.

Many methods have been developed for identifying and estimating utility function parame-

ters with cross-sectional multinomial choice data. Many of those methods assume independence

between the covariates and error terms, ruling out the possibility of individual heterogeneity such

as random coeffi cients (Ruud (1986), Powell and Ruud (2008), Shi, Shum and Song (2018), and

Khan, Ouyang, and Tamer (2019).3 Some assume exchangeable errors across alternatives (e.g.,

Manski (1975, 1985), Fox (2007), and Yan (2013)) which impose restrictions on the permitted

forms of correlation and heteroskedasticity across alternatives, or assume a limited form of het-

eroskedasticity (e.g., Lee (1995) and Ahn, Ichimura, Powell, and Ruud (2018)). All of these

approaches in general exclude random coeffi cients. Lewbel (2000), Berry and Haile (2010), and

Fox and Gandhi (2016) propose semiparametric methods that can accommodate random coeffi -

cients, but they require strong support restrictions on special regressors and on unobservables,

and their estimators have slower than parametric rates of convergence.4

This paper is organized as follows. We show identification in Section 2, using the special case

of three alternatives. We provide an estimator in Section 3, Monte Carlo simulations in Section

4, and Section 5 concludes. In an online supplementary appendix, we present identification for

3Shi, Shum, and Song (2018) and Khan, Ouyang, and Tamer (2019) incorporate unobserved individual hetero-
geneity by exploiting panel data.

4Yan and Yoo (2019) show that a generalized maximum score method can accommodate random coeffi cients,
but they require fully rank-ordered choice data, rather than just the first choice as in standard mulitnomial discrete
choice models.
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the general multinomial choice case, we show root-N consistency and asymptotic normality of our

estimator, and we provide proofs for all of our theorems.

2 The Model and Identification

2.1 The Random Utility Framework

To simplify notation and presentation of our results, for the main text of this paper we restrict

attention to the case of three choices, with the relative utility of the outside option, denoted j = 0,

normalized to equal zero. General results for an arbitrary number of multinomial choices, and

allowing the outside option to vary, are in the Supplemental Appendix.

For each alternative j = 0, 1, 2, let uj be the difference between the latent utility associated

with choice j and the utility of choice zero. Latent utilities uj are not observed. Assume utility

functions

uj = zj + x
′
jθ
o + εj for j = 1, 2, and u0 = 0, (1)

where zj is a continuously distributed covariate with a coeffi cient normalized to equal one,5 xj =

(xj1, xj2, ...xjq)
′ is a q vector of other covariates, θo is the q vector of preference parameters of

interest, and εj is an unobserved random component of utility for alternative j. Errors ε1, ε2 can

depend on x1, x2, so in particular we may have random coeffi cients that are absorbed into ε1 and

ε2.

Let the dummy variable yj indicate whether alternative j yields the highest utility among all

the alternatives, that is,

yj = I (uj ≥ uk ∀ k 6= j) . (2)

Note y0+y1+y2 = 1. We require that the econometrician observes z1, z2, x1, x2, and y0. Greater

effi ciency is possible if y1 and y2 are also observed. But identification only requires observing a

5 In parametric models it is common to normalize the error variance to equal one, but semiparametrically it is
often more convenient to normalize a coeffi cient.
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single outcome like y0, because the choice of any one outcome depends on the utilities of all of

the outcomes.

The model can include both individual and alternative specific covariates. E.g., if s is an

individual specific covariate (that doesn’t vary by choice j), then we could let x11 = x22 = s and

x12 = x21 = 0, so θ1 and θ2 would then be the coeffi cients of s in the utility of choice 1 and 2,

respectively. Separate constant terms in u1 and u2 can similarly be included in the model. Note

z1 and z2 are alternative specific covariates.

By equation (2), we have

Pr (y0 = 1 | z,X) = Pr (u1 ≤ u0, u2 ≤ u0 | z,X) = Pr (u1 ≤ 0, u2 ≤ 0 | z,X) (3)

= Fε1ε2
(
−z1 − x′1θo,−z2 − x′2θo | z,X

)
,

where z ≡ (z1, z2)
′, X ≡ (x1,x2)

′, and Fε1ε2 is the distribution function of the errors, conditional

on covariates. Let sets Sz and SX denote the supports of the random vector z and random

matrix X, respectively. Let sets Sz (X) and Sε1ε2(X) denote the supports of vectors z and

(ε1, ε2) conditional on the values of X, respectively.

2.2 Key Conditions For Identification

Here we provide our key assumptions for identification, focusing on the case of three alternatives,

i.e., J = 2. Identification for the general case J ≥ 2 is proven in the Supplementary Appendix.

Assumption I.

• I1: Conditional on almost every X ∈ SX , the covariate vector z is independent of the error

vector ε, and the conditional distribution function of z, Fz(· |X), is absolutely continuous

over its support Sz(X).6

• I2: For almost every X ∈ SX , the conditional distribution function Fε1ε2 ( t1, t2|X) admits
6Sz(X) is an open subset of RJ .
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an absolutely continuous density function, fε1ε2 ( t1, t2|X), which is centrally symmetric

about the origin, i.e.,

fε1ε2 ( t1, t2|X) = fε1ε2 (−t1,−t2|X) ,

for any vector (t1, t2) ∈ Sε1ε2(X) where Sε1ε2(X) ⊆ R2.

• I3: The true parameter vector θo is in the parameter space Θ, where Θ is a compact set

in Rq.

• I4: (a) For any constant vector c = (c1, . . . , cq)
′ ∈ Rq, P (Xc = 0J) = 1 if and only

if c = 0q. (b) The joint density function of the continuous random variables in X is

absolutely continuous and positive over its support. For every X∗ ∈ SX , the conditional

density function of z given X, fz(· | X = X∗), is absolutely continuous and positive

over its support Sz(X∗). (c) For every X∗ ∈ SX , there exists a subset S̃z(X∗), where

S̃z(X∗) ⊆ int(Sz(X∗)), with positive measure such that −z∗ − 2X∗θ ∈ int(Sz(X∗)) for

every z∗ ∈ S̃z(X∗) and θ ∈ Θ.

• I5: For everyX∗ ∈ SX , S̃ε(X∗) ≡ {−z∗−X∗θo | z∗ ∈ Sz(X∗)}∪{z∗+2X∗θ−X∗θo | z∗ ∈

Sz(X∗), θ ∈ Θ} is a subset of the interior of the support Sε(X∗). For every X∗ ∈ SX and

any constant vector r ∈ RJ , fε(t | X = X∗) = fε(r − t | X = X∗) for every t ∈ S̃ε(X∗)

and r − t ∈ S̃ε(X∗) if and only if r = 0J .

2.3 Identification Strategy

Consider taking the derivatives of both sides of (3) with respect to each elements of z, and evaluate

the resulting function at the points (z = z∗,X = X∗) and (z = −z∗ − 2X∗θ,X = X∗), for

some chosen values of z∗, X∗, and θ. Assume these values are chosen such that X∗ ∈ SX ,

z∗ ∈ Sz(X∗), and −z∗ − 2X∗θ ∈ Sz(X∗) (which we can do by Assumption I5). By Assumption
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I1, this yields the equations

∂2E (y0 | z = z∗,X =X∗)

∂z1∂z2
=
∂2 Pr (y0 = 1 | z = z∗,X =X∗)

∂z1∂z2
(4)

= fε1ε2
(
−z∗1 − x∗′1 θo,−z∗2 − x∗′2 θo |X =X∗

)
× (−1)2,

and

∂2E (y0 | z = −z∗ − 2X∗θ,X =X∗)

∂z1∂z2
=
∂2 Pr (y0 = 1 | z = −z∗ − 2X∗θ,X =X∗)

∂z1∂z2
(5)

= fε1ε2
(
z∗1 + 2x

∗′
1 θ − x∗′1 θo, z∗2 + 2x∗′2 θ − x∗′2 θo |X =X∗

)
× (−1)2.

The left sides of equations (4) and (5) are both identified, and can be estimated as nonparametric

regression derivatives, given a value of θ. If θ = θo, then by the symmetry Assumption I2, the

right sides of equations (4) and (5) are equal to each other. Define the function d0(θ; z
∗,X∗) as

the difference between the left sides of equations (4) and (5),

d0 (θ; z
∗,X∗) ≡ ∂2E (y0 | z = z∗,X =X∗)

∂z1∂z2
− ∂2E (y0 | z = −z∗ − 2X∗θ,X =X∗)

∂z1∂z2
. (6)

If θ = θo, then d0 (θ; z
∗,X∗) = 0. Given some regularity conditions, we can show that setting

the function d0 equal to zero at a collection of values of z∗ and X∗ provides enough equations to

point identify θo. We now formalize this identification strategy.

Definition 2.1 For every vector θ ∈ Θ, define a set

D0 (θ) ≡
{
(z∗,X∗) ∈ int

(
S(z,X)

) ∣∣(−z∗ − 2X∗θ,X∗) ∈ int (S(z,X)

)
, d0 (θ; z

∗,X∗) 6= 0
}
. (7)

The true parameter vector θo ∈ Θ is point identified if P [(z,X) ∈ D0(θ)] = 0 if and only if

θ = θo, where θ ∈ Θ.

At the true parameter vector θo, D0(θ
o) is an empty set because d0 (θ

o; z∗,X∗) = 0 for every

(z∗,X∗), (−z∗ − 2X∗θo,X∗) ∈ S(z,X). To achieve identification, we require that the set D0(θ)
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have positive probability measure for any θ in the parameter space other than θo. Assumptions

I4 and I5 give one set of conditions that suffi ce.Assumption I4 provides a subset of the support

of covariates with positive measure on which the function d0(θ; z
∗,X∗) can be identified, while

Assumption I5 ensures that symmetry points are unique.

Given these assumptions we obtain identification as follows. All proofs are in the Supplemen-

tary Appendix.

Theorem 2.1 If Assumption I hold, then the parameter vector θo ∈ Θ is point identified by

Definition 2.1.

2.3.1 Discussion

Theorem 2.1 used expectations of y0. Additional identifying information (resulting in more effi -

cient associated estimators) can similarly be obtained from y1 and y2. Details are in the supple-

mental appendix.

The conditional independence between z and ε in Assumption I1 is known as a distributional

exclusion restriction (Powell, 1994, p. 2484). This allows for interpersonal heteroskedasticity on

a subset of covariates: Higher moments of ε can depend (in unknown ways) on X, but not z.

Assumption I2 is our error symmetry restriction. Without loss of generality we assume that the

point of symmetry is the origin, because any nonzero term could be absorbed into the intercept

of the utility index as discussed in equation (1).

Assumption I3 assumes a compact parameter space, which is a standard assumption for many

nonlinear models, including semiparametric multinomial discrete choice models. Assumption I4(a)

is a standard full rank condition, ruling out perfect collinearity among the regressors. Assumption

I4(b) requires all continuous covariates to have a positive joint density. Assumption I4(c) guar-

antees that,given any θ ∈ Θ, the function d0(θ; z
∗,X∗) can be identified for a positive measure

of covariates.
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Assumption I5(a) ensures that the error density functions in (4) and (5) are evaluated at

interior points of their support. Assumption I5(b) requires that the error density function has

a unique (local) symmetry point over a subset of its support, S̃ε(X∗). This does not rule out

densities having flat sections, but it does limit the range of any such flat sections.

2.4 An Alternative Identification Strategy

Existing binary choice estimators that make use of latent error symmetry (e.g. Chen (2000) and

Chen, Khan and Tang (2016) are based on the error distribution function rather than on the

error density function as in Theorem 2.1. To illustrate, take a simple binary choice model where

y = I (z + a+ v ≥ 0). If v is a symmetric random variable around zero and v ⊥ z, then

E (y | z = c) = Pr (v ≥ −c− a) = Pr (v ≤ c+ a) = E (1− y | z = −c− 2a) (8)

The constant a is identified by equating the above two expectations, which only requires estimation

of the conditional mean of y and not its derivatives. This immediately extends to identification

of covariate coeffi cients instead of just a constant.

We could have similarly based identification and estimation of our multinomial θ on the dis-

tribution instead of the density of the errors, and thereby only required nonparametric regressions

and not their derivatives for estimation. However, unlike the binary choice case, identification and

estimation using the distribution instead of the density of the errors becomes complicated and

clumsy in the multinomial setting. This is because, in the binary choice case, error symmetry just

equates two conditional expectations, corresponding to two error intervals, while for multinomial

choice, one must equate error rectangles.

To see the issue, begin again from equation (3). Let [a, b] be a rectangle in the support of

ε. Point a = (a1, a2) is the lower left vertex of this rectangle and b = (b1, b2) is the upper right

vertex. By central symmetry, the probability of ε being in the rectangle [a, b] = [a1, b1]× [a2, b2]

is the same as the probability of ε being in the rectangle [−b,−a] = [−b1,−a1]× [−b2,−a2]. This
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then implies

∫
[a,b]

fε1ε2 ( t1, t2|X) dt =
∫

[a,b]
fε1ε2 (−t1,−t2|X) dt =

∫
[−b,−a]

fε1ε2 ( t1, t2|X) dt, (9)

where the first equality in (9) holds by Assumption A2 and the second one holds by changing of

variables.7

The integrals on both sides of equation (9) can be computed using the conditional distribution

function of ε, which in turn is obtained from the conditional expectation of y0. For example,

consider the left-hand side integral:

∫
[a,b] fε (t |X) dt = Pr (a ≤ ε ≤ b |X)

= Pr (a1 ≤ ε1 ≤ b1, a2 ≤ ε2 ≤ b2 |X)

= Pr (ε1 ≤ b1, ε2 ≤ b2 |X)− Pr (ε1 < a1, ε2 ≤ b2 |X)

−Pr (ε1 ≤ b1, ε2 < a2 |X) + Pr (ε1 < a1, ε2 < a2 |X) .

(10)

The right side of this equation can be rewritten as a function of the conditional expectation of y0

evaluated at four different points, which in turn means that the multinomial analog to equation

(8), obtained from equation (9) requires evaluating the conditional expectation of y0 evaluated at

eight different points functions of z, X, and θ. This was for our simple multinomial model with

3 choices. The number of required points increases exponentially with the number of choices.

Our density based identification and estimation entails matching points (that is, using fε (t |X) =

fε (−t |X) at data points t) rather than matching rectangles as above. Matching points rather

than rectangles is also possible using distributions in the binary choice setting, but not for multino-

mial choice.8 In contrast, matching densities rather than distributions at points works for identi-

fying and estimating both binary and multinomial choice, and extends to any number of choices.

7Equation (9) also holds when J > 2, taking [a, b] and [−b,−a] to be centrally symmetric hyper-rectangles,
and it holds for the binary choice model J = 1, where [a, b] and [−b,−a] reduce to symmetric intervals about the
origin. The identifying binary choice equation given above corresponds to this case with b =∞.

8For binary choice we have J = 1, making ε and t being scalars, and by symmetry we get Fε (t |X) =
1− Fε (−t |X) at data points t, but this equality does not hold for the multinomial case J > 1, when ε and t are
vectors rather than scalars.
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We prefer to identify and estimate θ by matching each point in the data using densities, rather

than by matching rectangles using distributions, for many reasons. First, equating error distri-

bution rectangles involves more tuning parameters, since rectangles need to be chosen. Second,

matching densities only requires finding enough points (z = z∗,X = X∗) in the data that have

matches (z = −z∗ − 2X∗θ,X = X∗) that lie in the support of the covariates. In contrast, each

matching rectangle requires finding an entire range of covariates that lie in the support and has

a range of matches that also lie entirely in the support. Third, to gain effi ciency we will later

create more moments by replacing y0 with different choices yj . When matching density points,

the same covariate values (points) that work for any one choice j will also work for any other

choice. The same is not true for matching distribution rectangles, because for rectangles each

match entails pairs of observations rather than individual observations. Finally, the computation

cost of estimation is lower for equating error densities than for distribution rectangles. For a

sample of size N , we compute error densities at 2N points, while in contrast, using rectangles

would entail computing the error distribution at N(N − 1)2J points.

3 AMinimumDistance Estimator and its Asymptotic Properties

3.1 Population Objective Functions for Estimation

Given the identification strategy described in Section 2, we develop a minimum distance estimator

(hereafter, MD estimator) for θo ∈ Θ using the identifying restriction d0(θ
o; z∗,X∗) = 0, where

d0 is defined by equation (6). Note that the function d0(θ; z
∗,X∗) is well defined if both points

(z∗,X∗) and (−z∗ − 2X∗θ,X∗) are in the interior of the support of covariates, S(z,X). For this

reason, we only wish to evaluate the function d0(θ; z
∗,X∗) at such points.

This can be achieved by multiplying d0 by a suitable trimming function τ0. Let Xθ and Xθ

be values in the support of the index Xθ where Xθ << Xθ. We will be trimming values outside
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the range of these values. Define functions τ0(·) and ς0(·) by

τ0

(
z,X;θ,θ

)
≡ ς0 (z,X) ς0

(
−z − 2Xθ,X

)
ς0 (−z − 2Xθ,X) , (11)

and

ς0 (z,X) ≡ 1 (|z| ≤ c1)× 1 (|X| ≤ C2) . (12)

Here the absolute value of a vector or matrix, | · |, is defined as the corresponding vector or matrix

of the absolute values of each element, c1 ∈ R2 is a vector of trimming constants for the covariate

vector z, and C2 ∈ R2×q is a matrix of trimming constants for the covariate matrix X such

that (c1,C2) is in the interior of the support of covariates S(z,X). Denote STrz
(
X,θ,θ

)
as the

largest set of values z given θ, θ, and X, such that STrz
(
X,θ,θ

)
⊂ int (Sz (X)). We assume the

following regularity condition on the trimming function τ0(·)

Assumption TR.

The trimming function τ0

(
z,X;θ,θ

)
is strictly positive and bounded on STrz

(
X,θ,θ

)
×

int (SX), and is equal to zero on its complementary set.

The population objective function of our proposed MD estimator is

Q0 (θ) ≡
1

2
E [τ0 (zn,Xn) d0 (θ; zn,Xn)]

2 (13)

The sample objective function we define later replaces the expectation in (13) with a sample

average and replaces d0 (θ; zn,Xn) with an estimator of this function. The following theorem

provides population identification through the population objective function.

Theorem 3.1 If Assumption I and Assumption TR hold, then (i) Q0 (θ) ≥ 0 for any θ ∈ Θ and

(ii) Qj (θ) = 0 if and only if θ = θo.
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3.2 An Estimator

We now provide an estimator for function d0 (θ; zn,Xn) in (13) as

d̂0,−n (θ; zn,Xn) ≡ ϕ̂(2)
o,−n (zn,Xn)− ϕ̂(2)

cs,−n (zn,Xn,θ) . (14)

where ϕ̂(2)
o,−n (zn,Xn) and ϕ̂

(2)
cs,−n (zn,Xn,θ) are leave-one-out, Nadaraya-Watson nonparametric

regression kernel estimators for the derivatives on the right hand side of equation (6) (see the sup-

plemental appendix for details). By replacing the expectation in Q0 (θ) with its sample mean and

replacing the function d0(θ; zn,Xn) with the estimator d̂0,−n (θ; zn,Xn), we define the minimum

distance (MD) estimator

θ̂ ∈ argmin
θ∈Θ

QN0 (θ) ,

where QN0 (θ) =
1

2N

N∑
n=1

[
τ0 (zn,Xn) d̂0,−n (θ; zn,Xn)

]2
.

We denote the gradient of the objective function as qN0 (θ) = ∇θQN0 (θ) and the Hessian

matrix of the objective function as HN0 (θ) = ∇θθ′QN0 (θ) . The smoothness of the objective

function suggests the first-order condition (FOC): qN0

(
θ̂
)
= 0q. Applying the standard first-

order Taylor expansion to qN0

(
θ̂
)
around the true parameter vector θo yields

qN0

(
θ̂
)
= qN0 (θ

o) +HN0

(
θ̃
)(
θ̂ − θo

)
,

where θ̃ is a vector between the MD estimator θ̂ and the true parameter vector θo. The influence

function is then given by

θ̂ − θo = −
[
HN0

(
θ̃
)]−1

qN0 (θ
o) . (15)

In the Supplemental Appendix, we list regularity assumptions and use them to show thatHN0

(
θ̃
)
→p
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H0 (θ
o) , where

H0 (θ
o) = E

{
τ2

0 (zn,Xn)∇θd0 (θ
o; zn,Xn) [∇θd0 (θ

o; zn,Xn)]
′} , (16)

and we show
√
NqN0 (θ

o) →d N (0q,Ω0), where Ω0 is the probability limit of the variance-

covariance matrix of qN0 (θ
o). More precisely, we prove the following theorems.

Theorem 3.2 Under Assumption I and TR as well as certain regularity conditions, the MD

estimator θ̂ converges to the true parameter vector θo ∈ Θ in probability.

Theorem 3.3 Under Assumption I and TR as well as certain regularity conditions, we have

(a) (Asymptotic Linearity) The MD estimator θ̂ is asymptotically linear with

√
N
(
θ̂ − θo

)
= −N−1/2

N∑
n=1

H−1
0 tn + op (1) ,

where tn0 ≡ (υn0,o − υn0,cs) ∂
2
[
τ2

0 (zn,Xn)∇θd0 (θ
o; zn,Xn)

]
/∂z1∂z2 with scalars υn0,o ≡ yn0−

ϕ0,o (zn,Xn) and υn0,cs ≡ ynj − ϕ0,cs (zn,Xn,θ
o) .

(b) (Asymptotic Normality) The MD estimator is asymptotically normal, i.e.,

√
N
(
θ̂ − θo

)
→d N

(
0q,H

−1
0 Ω0H

−1
0

)
where the matrix Ω0 ≡ E (tn0t

′
n0) and H0 is defined above.

Note that this estimator only makes use of observations of y0, and not the other choices yj , and

so can be applied if the researcher only observes whether the outside option (j = 0) is chosen or not.

In the Supplemental Appendix, we extend this estimator to make use of comparable identifying

information in all of the other choices (thereby increasing effi ciency). This essentially just consists

of renormalizing each choice to be the base choice, constructing the above MD estimator (call

it QNj (θ) for choice j), and then minimizing the sum of the resulting MD objective functions

15



QNj (θ) over each choice. We also extend all our results to multnomial choice with an arbitrary

number of choices, instead of just three as above.

4 Monte Carlo Experiments

In this section, we use Monte Carlo experiments to study the finite-sample properties of the

minimum distance (MD) estimator proposed above. We consider four data generating processes

(DGPs). In each DGP, individual n’s utility from alternative j, unj , is specified as

unj = znj + xnjθn + εnj for n = 1, 2, ..., N and j = 0, 1, 2. (17)

Each DGP is used to simulate two sets of 2000 random samples of N individuals, where sample

size N = 1000 in the first set and N = 2000 in the second set. In DGPs 1 and 2, θn = θo = 0.2,

a constant, while in DGPs 3 and 4 θn = θo + δn where δn is a random variable. In DGP 3,

the random coeffi cient θn is independent of all the covariates, while in DGP 4, θn depends on

individuals’ characteristics. We focus on estimation of θo, which (by our assumed symmetry)

equals both the median and the mean of the second coeffi cient θn under all DGPs.

The researcher observes attributes znj and xnj . We consider both the MD estimator that

only uses y0, and the estimator that uses y0, y1, and y2. We compare these MD estimators

to flexible multinomial probit (MNP) with no constraint on the multivariate normal variance

matrix. This MNP specification requires estimating θo and three parameters of the error vector

variance-covariance matrix.

Details of the Monte Carlo design are given in the Supplementary Appendix. However, note

that under DGP 1, MNP is correctly specified and the MNP estimator is effi cient, so comparisons

with MNP show the effi ciency loss that comes from using our estimator. Under DGP 2, MNP

is misspecified because the errors and covariates are not independent. Under DGP 3, MNP is

misspecified but random coeffi cients MNP is correctly specified. Under DGP 4, both MNP and

random coeffi cient MNP are misspecified, because the random coeffi cient distribution depends on

16



Table 1: Monte Carlo Results of estimating θo (True Parameter θo = 0.2)

MNP MD (y0) MD (y0, y1, y2)

DGP N Bias RMSE Bias RMSE Bias RMSE

1 1000 -0.0012 0.0435 0.0216 0.2368 -0.0017 0.1337

2000 -0.0010 0.0307 0.0055 0.1355 -0.0078 0.0788

2 1000 0.5656 0.5833 0.1047 0.3521 -0.0392 0.3048

2000 0.5627 0.5714 0.0543 0.2308 -0.0289 0.1747

3 1000 -0.0013 0.0454 0.0317 0.2220 0.0015 0.1417

2000 -0.0017 0.0319 0.0158 0.1301 -0.0051 0.0812

4 1000 -0.7512 0.7718 -0.0054 0.3765 -0.0748 0.3550

2000 -0.7481 0.7585 0.0180 0.2616 -0.0343 0.2149

covariates. Under all four DGP’s our MD estimator remains consistent.

Table 1 reports the bias and root mean square error (RMSE) of each estimator in our simula-

tions. The first set of columns reports the MNP estimator, the second reports our MD estimator

using only y0, while the third uses observations of all choices y0, y1, and y2 (MNP also uses

observations of all choices).

Under DGP 1, the MD estimators have small finite sample bias, and RMSEs two to four times

larger than that of the correctly specified effi cient MNP estimator. Under DGP 2, the bias of

the misspecified MNP estimator is around three times the true parameter value, and this bias

remains as the sample size is doubled. In contrast, the bias and RMSE of the MD estimators are

much smaller than the MNP estimator, and they decrease sharply as the sample size increases.

In DGP 3, the random coeffi cients MNP is correctly specified, and so performs better than the

MD estimators in terms of bias and RMSE. However, in DGP 4 where the random component

is heterogeneous, the bias of MNP is almost four times the true parameter value and does not

vanish as sample size grows. In contrast, the bias of the MD estimators is still relatively small.9

In all the DGPs, in terms of RMSE, the MD estimator using y0, y1, and y2 performs better than

9We speculate that the bias in the MD estimators might be further reduced by a bandwidth search, and/or using
local linear estimation for the first stage choice probabilities.
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the MD estimator that only uses y0.

Our Monte Carlo experiments study our estimator, but also provide evidence regarding the

reliability of MNP, which is generally considered to be a very robust parametric estimator, since it

relaxes the restrictive error structure of the popular multinomial logit and nested logit estimators

(Hausman and Wise, 1978; Goolsbee and Pertrin, 2004). In multinomial discrete choice, both

unobserved choice attributes and individual heterogeneity add complexity to the error structure.

Our results show that ignoring either one may result in MNP being severely biased.

5 Conclusion

We propose a new semiparametric identification and estimation method for the multinomial dis-

crete choice model, based on error symmetry. This allows for very general heteroskedasticity across

both individuals and alternatives, and general covariate dependent error correlations among alter-

natives. We do not assume the existence of error moments, or independence between covariates

and errors, nor do we require large support assumptions or identification at infinity arguments.

Utilizing error symmetry, we propose an M-estimator that minimizes the squared difference of

the estimated error density over pairs of symmetric points. We show that the estimator is root-N

consistent and asymptotically normal. Monte Carlo experiments demonstrate finite-sample per-

formance of the estimator under various DGPs, and compares favorably to multinomial probit

models.

Our study opens a few promising areas to explore. Our model can readily incorporate control

function type endogeneity, in the usual way of including estimated control function residuals as

additional regressors, as in Blundell and Powell (2004). An open question is whether our method

can be extended to allow for simultaneously determined prices as in the so-called micro-BLP

model of Berry, Levinsohn, and Pakes (2004) or Berry and Haile (2010).
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S.A The General Model and Identification

S.A.1 The Random Utility Framework

We consider a standard random utility model. An individual in the population of interest faces

a finite number of alternatives and must choose one of them to maximize her utility. Let J ≡

{0, 1, . . . , J} denote the set of alternatives, where integer J ≥ 2. Let z̃j ∈ R and x̃j ∈ Rq denote

covariates that affect the utility of alternative j (the tilde is used here because later we’ll use

simpler notation, omitting the tilde, to denote differences of these covariates). The (latent) utility

ũj from choosing alternative j ∈ J is assumed to be given by:

ũj = z̃jγ
o + x̃′jθ

o + ε̃j ∀ j ∈ J, (S.A.1)

where γo ∈ R and θo ∈ Rq are the preference parameters of interest, and ε̃j ∈ R is the unobserved

random component of utility for alternative j. The utility index z̃jγ
o + x̃′jθ

o is often called
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systematic (or deterministic) utility, as opposed to the error term, ε̃j , which is the unsystematic

(or stochastic) component of utility.

For each alternative j ∈ J, let a dummy variable, yj , indicate whether alternative j yields the

highest utility among all the alternatives, that is,

yj = I (ũj ≥ ũk ∀ k ∈ J \ {j}) . (S.A.2)

The choice of the individual is denoted y ≡ (y0, y1, . . . , yJ), where
∑J
j=0 yj = 1. The econo-

metrician observes the covariates z̃j and x̃j for j ∈ J (or at least differences in these covariates

as discussed later). The econometrician also observes the choice y0, and might observe other

elements of y as well. The latent utility vector ũ ≡ (ũ0, ũ1, . . . , ũJ) is not observed.1

Only differences in utilities matter in making choice decisions. Without loss of generality, we

set alternative 0 ∈ J as the base alternative (i.e., as the so-called outside option) and subtract the

utilities of other alternatives by that of the base alternative. We normalize this outside option

to have utility ũ0 = 0. Denote the (location-normalized) utility vector u ≡ (u1, . . . , uJ)
′ ∈ RJ ,

where uj = ũj − ũ0. For each alternative j = 1, . . . , J , we have the utility function

uj = zj + x
′
jθ
o + εj , (S.A.3)

where zj ≡ z̃j − z̃0, xj ≡ x̃j − x̃0 ∈ Rq, and εk ≡ ε̃k − ε̃0. The location-normalized utility vector

can be expressed as

u = z +Xθo + ε, (S.A.4)

where z ≡ (z1, . . . , zJ)
′ ∈ RJ , X ≡ (x1, . . . ,xJ)

′ ∈ RJ×q, and ε ≡ (ε1, . . . , εJ)
′ ∈ RJ . We use the

compact expressions of utility functions defined in (S.A.3) and (S.A.4) throughout the paper.

In some contexts, like product choice where j = 0 corresponds to not purchasing any product,

it is commonly assumed that z̃0 and x̃0 are zero, making zj and xj equal z̃j and x̃j . Regardless,

1To achieve point identification, we later impose continuity conditions on the covariate z̃j for each alternative j,
which makes utility ties occur with zero probability. For this reason, we ignore utility ties throughout the paper.
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we only require that differences z and X be observed, and regularity conditions (e.g., continuity

of z) are only be imposed on zj and xj , not on z̃j and x̃j . In addition to these covariates, our

identification only requires that y0 be observed, not the entire vector of outcomes y. This is

possible because z provides information about the other outcomes. Nevertheless, the associated

estimators will be more effi cient by observing and making use of more the elements of y, since

each additional outcome yj one observes provides additional overidentifying information.

Assumption I1 immediately implies

Pr (y0 = 1 | z,X) = Fε1ε2···εJ
(
−z1 − x′1θo,−z2 − x′2θo, ...,−zJ − x′Jθo | z,X

)
(S.A.5)

= Fε1ε2···εJ
(
−z1 − x′1θo,−z2 − x′2θo, ...,−zJ − x′Jθo|X

)
.

where the second equality holds by the conditional independence between z and ε in Assumption

I1. In addition, Assumption I1 yields the equations

∂JE (y0 | z = z∗,X =X∗)

∂z1 . . . ∂zJ
=
∂J Pr (y0 = 1 | z = z∗,X =X∗)

∂z1 . . . ∂zJ
(S.A.6)

= fε (−z∗ −X∗θo |X =X∗)× (−1)J ,

and

∂JE (y0 | z = −z∗ − 2X∗θ,X =X∗)

∂z1 . . . ∂zJ
=
∂J Pr (y0 = 1 | z = −z∗ − 2X∗θ,X =X∗)

∂z1 . . . ∂zJ
(S.A.7)

= fε (z
∗ + 2X∗θ −X∗θo |X =X∗)× (−1)J .

Observe that the left sides of equations (S.A.6) and (S.A.7) are both identified, and can be readily

estimated as nonparametric regression derivatives, given θ. It then follows from Assumption I2

that if θ = θo, then the right sides of equations (S.A.6) and (S.A.7) are equal to each other.

Therefore, define function d0(θ; z
∗,X∗) as the difference between the left sides of equations (S.A.6)

and (S.A.7),

d0 (θ; z
∗,X∗) ≡ ∂JE (y0 | z = z∗,X =X∗)

∂z1 . . . ∂zJ
− ∂JE (y0 | z = −z∗ − 2X∗θ,X =X∗)

∂z1 . . . ∂zJ
. (S.A.8)
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Based on Assumptions I1 and I2, we have that if θ = θo, then d0 (θ; z
∗,X∗) = 0. Given some

regularity conditions, setting the function d0 equal to zero at a collection of values of z∗ and

X∗ provides enough equations to point identify θo. The proof of Theorem S.A.1 is provided in

Section S.C.

Theorem S.A.1 If Assumptions I hold, then the parameter vector θo ∈ Θ is point identified by

Definition 1.

S.A.2 Identification Using Multiple Choices

In Section A.1, we identified the parameter vector θo using only derivatives of the conditional

mean of y0. Here we illustrate that identification can be achieved using the conditional mean

of yj for any j ∈ J. Later we will increase effi ciency of estimation by combining the identifying

moments based on each of the observed choices yj .

We now introduce some additional notation. For each j ∈ J, define X(j) as the matrix that

consists of differenced covariate vectors x̃k − x̃j for all k ∈ J and k 6= j. For example, when

1 < j < J , X(j) ≡ (x̃0 − x̃j , . . . , x̃j−1 − x̃j , x̃j+1 − x̃j , . . . , x̃J − x̃j)′ ∈ RJ×q. By this notation,

we have X(0) ≡ (x̃1 − x̃0, . . . , x̃J − x̃0) =X. In the same fashion, define z(j) ∈ RJ as the vector

of differenced covariates z̃k − z̃j for all k 6= j and ε(j) ∈ RJ as the vector of differenced error

terms ε̃k − ε̃j for all k 6= j, respectively. By this definition, we have z(0) = z and ε(0) = ε. Define

u(j) ∈ RJ as the vector of differenced utilities ũk − ũj for all k 6= j . Differenced utility vectors

are then given by

u(j) = z(j) +X(j)θo + ε(j). (S.A.9)
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The conditional probability of choosing alternative j ∈ J is

P (yj = 1 | z(j),X(j)) = P (ũk − ũj ≤ 0 ∀ k ∈ J \ {j} | z(j),X(j))

= P (u(j) ≤ 0J | z(j),X(j))

= P (ε(j) ≤ −z(j) −X(j)θo | z(j),X(j))

≡ Fε(j)(−z(j) −X(j)θo | z(j),X(j)),

(S.A.10)

where the right-hand side of (S.A.10) is the distribution function of the error vector ε(j) evaluated

at the point −z(j)−X(j)θo, conditional on covariates (z(j),X(j)). Let sets Sz(j) ⊆ RJ and SX(j) ⊆

RJ×q denote the supports of the random vector z(j) and random matrix X(j), respectively. Let

sets Sz(j)(X(j)) and Sε(j)(X(j)) denote the supports of vectors z(j) and ε(j) conditional on the

values of X(j), respectively.

Proposition S.A.1 If Assumption I1 holds, then for every j ∈ J and conditional on almost every

X(j) ∈ SX(j), covariate vector z(j) is independent of the error vector ε(j), i.e.,
(
z(j) ⊥ ε(j)

)
|X(j).

The distribution function Fz(j)(· |X(j)), is absolutely continuous over its support Sz(j)(X(j)).

Proposition S.A.1 is an immediate result of the fact that there is a one-to-one correspondence

between X(j) and X, z(j) and z, and ε(j) and ε, respectively. Hence we have

E(yj | z(j),X(j)) = P (yj = 1 | z(j),X(j)) = P (ε(j) ≤ −z(j) −X(j)θo |X(j))

≡ Fε(j)(−z(j) −X(j)θo |X(j)),
(S.A.11)

where the first equality in (S.A.11) holds because yj is a dummy variable, and the second one

holds by (S.A.10) and Proposition S.A.1. For every t ∈ Sε(X), let t(j) denote the vector such

that ε(j) = t(j) when ε = t. Given any t(j) ∈ Sε(j)(X(j)) we can calculate the conditional mean

of yj on the left-hand side of (S.A.11) at z(j) = −t(j) −X(j)θo as

E(yj | z(j) = −t(j) −X(j)θo,X(j)) = P (ε(j) ≤ t(j) |X(j)) ≡ Fε(j)(t(j) |X(j)). (S.A.12)
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Proposition S.A.2 If Assumption I 2 holds, then for every j ∈ J and almost every X(j) ∈ SX(j),

the conditional distribution function Fε(j)(t
(j) | X(j)) admits an absolutely continuous density

function, fε(j)(t
(j) |X(j)), which is centrally symmetric about the origin, i.e.,

fε(j)(t
(j) |X(j)) = fε(j)(−t(j) |X(j)), (S.A.13)

for any vector t(j) ∈ Sε(j)(X(j)) where Sε(j)(X(j)) ⊆ RJ .

To show Proposition S.A.2, observe that for any t ∈ Sε(X), we have ε = t if and only if

ε(j) = t(j) by the one-to-one correspondence between ε and ε(j). Therefore,

fε(j)(t
(j) |X(j)) = fε(t |X) = fε(−t |X) = fε(j)(−t(j) |X(j)), (S.A.14)

where the second equality in (S.A.14) holds by Assumption I2.

Now the remaining derivations mimic that of Theorem S.A.1. Taking the J th order derivatives

of both sides of (S.A.11) with respect to each element of z(j) and evaluating them at (z(j) =

z(j)∗,X(j) = X(j)∗) and (z(j) = −z(j)∗ − 2X(j)∗θ,X(j) = X(j)∗), respectively, we obtain the

equations

∂JE(yj | z(j) = z(j)∗,X(j) =X(j)∗)/∂z
(j)
1 . . . ∂z

(j)
J (S.A.15)

= fε(j)(−z(j)∗ −X(j)∗θo |X(j) =X(j)∗)× (−1)J

and ∂JE(yj | z(j) = −z(j)∗ − 2X(j)∗θ,X(j) =X(j)∗)/∂z
(j)
1 . . . ∂z

(j)
J (S.A.16)

= fε(j)(z
(j)∗ + 2X(j)∗θ −X(j)∗θo |X(j) =X(j)∗)× (−1)J .

By symmetry, if θ = θo then the two error densities on the right-hand sides of (S.A.15) and

(S.A.16) are identical, which implies equality of their left-hand sides. So for any vector θ ∈ Θ and

(z(j)∗,X(j)∗), (−z(j)∗ − 2X(j)∗θ,X(j)∗) ∈ S(z(j),X(j)), define dj(θ; z
(j)∗,X(j)∗) as the difference

6



of the left-hand sides of (S.A.15) and (S.A.16), that is,

dj(θ; z
(j)∗,X(j)∗) ≡ ∂JE(yj | z(j) = z(j)∗,X(j) =X(j)∗)/∂z

(j)
1 . . . ∂z

(j)
J (S.A.17)

− ∂JE(yj | z(j) = −z(j)∗ − 2X(j)∗θ,X(j) =X(j)∗)/∂z
(j)
1 . . . ∂z

(j)
J .

which always equals zero when θ = θo and may be non-zero when θ 6= θo.

Then, analogous to Definition 1, define

Dj (θ) ≡
{
(z(j)∗,X(j)∗) ∈ int

(
S(z(j),X(j))

)∣∣∣ (−z(j)∗ − 2X(j)∗θ,X(j)∗) ∈ int
(
S(z(j),X(j))

)
, dj(θ; z

(j)∗,X(j)∗) 6= 0
}
.

(S.A.18)

Recall that there is a one-to-one correspondence, respectively, between X(j) and X, z(j) and z,

and ε(j) and ε. For every (z∗,X∗) ∈ int(S(z,X)) such that (−z∗ − 2X∗θ,X∗) ∈ int(S(z,X)), we

immediately have (z(j)∗,X(j)∗) ∈ int(S(z(j),X(j))) and (−z(j)∗−2X(j)∗θ,X(j)∗) ∈ int(S(z(j),X(j))),

as well as dj(θ; z(j)∗,X(j)∗) = 0 if and only if dj(θ; z∗,X∗) = 0. Therefore, we can also use the

choice probability of any alternative in the choice set to achieve identification.

S.A.3 Individual Heterogeneity and Random Coeffi cient

Our identifying assumptions do not refer specifically to random coeffi cients. Here we provide

suffi cient conditions for our key identification assumptions I1 and I2 to hold when unobserved

heterogeneity takes the form of random coeffi cients. For clarity, we now add a subscript n where

relevant, to designate a specific individual n, where n = 1, ..., N. The utility functions are then

unj = znj + x
′
njθn + εnj for j = 1, . . . , J and un0 = 0, (S.A.19)

where θn ∈ Rq is the preference parameter vector for individual n. Now decompose the parameter

vector θn as θn = θo + δn, where θo is the vector of the median of each random coeffi cient and

7



δn = θn − θo. Our symmetry assumption implies that θo will also be the mean coeffi cients, as

long as these means exist, but we don’t impose this existence.2

We can rewrite the utility function (S.A.19) as unj = znj+x
′
njθ

o+εnj where εnj = (εnj+x′njδn)

for j = 1, . . . , J . Vector εn = ( εn1, . . . , εnJ) is often called the composite error in the presence of

random coeffi cients. By Theorem 2.1, if this composite error vector εn satisfies Assumptions I1

(Exclusion Restriction) and I2 (Central Symmetry), then θo is point identified under the regularity

conditions given by Assumptions I3-I5. We now give suffi cient conditions for I1 and I2 to hold

with random coeffi cients.

Assumption RC.

• RC1: Conditional on almost everyX ∈ SX , the covariate vector z is independent of (ε, δ),

and the conditional distribution function of z, Fz(· | X), is absolutely continuous over its

support Sz(X).

• RC2: For almost everyX ∈ SX , the conditional distribution function of (ε, δ), F(ε, δ) (te, tc |X),

where te ∈ RJ and tc ∈ Rq, admits an absolutely continuous density function, f(ε, δ) (te, tc |X),

which is centrally symmetric about the origin, i.e.,

f(ε, δ) (te, tc |X) = f(ε, δ) (−te,−tc |X) ,

for any vector (te, tc) ∈ S(ε, δ)(X).

By the definition of the composite error vector, ε = ε +Xδ, Assumption RC1 follows im-

mediately from Assumption I1, because conditional independence between z and (ε, δ) implies

conditional independence between z and ε.

2Before scale normalization, we can have a random coeffi cient on znj , as long as the sign of the coeffi cient
is strictly positive or negative, and the coeffi cient does not vary by j. If negative, replace znj with −znj . Our
previously discussed scale normalization is then equivalent to redefining θn and εnj by dividing these random
coeffi cients and errors for individual n by the random coeffi cient of znj . See, e.g., Lewbel (2019) for details on this
same normalization in the context of special regressors.
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Assumption RC2 nests as a special case the random coeffi cients MNP model in which (ε, δ)

are assumed to be jointly normal and independent of all covariates. To show that Assumption

RC2 is a suffi cient condition for Assumption I2, we need to verify that the composite error vector

ε satisfies conditional central symmetry, i.e.,

P (ε < t |X) = P (ε > −t |X),

for any vector t ∈ Sε(X). To show this, we have

P (ε < t |X) ≡ P (ε+Xδ < t |X)
=

∫
{(te, tc)|te+Xtc<t} f(ε, δ) (te, tc |X) d(te, tc)

=
∫
{(tcse , tcsc )|−tcse −Xtcsc <t}

f(ε, δ) (−tcse ,−tcsc |X) d(tcse , tcsc )
=

∫
{(tcse , tcsc )|tcse +Xtcsc >−t}

f(ε, δ) (t
cs
e , t

cs
c |X) d(tcse , tcsc )

= P (ε+Xδ > −t |X) ≡ P (ε > −t |X),

(S.A.20)

where the third equality in (S.A.20) holds by a change of variables (where tcse = −te and tcsc = −tc)

and the fourth equality hold by Assumption RC2. Thus we have verified that Assumption RC2

is a suffi cient condition for Assumption I2.

There are four advantages of our random coeffi cient model and associated assumptions. First,

our Assumption RC allow the joint distribution of (ε, δ) to vary with covariates X, whereas

typical random coeffi cients models (e.g., random coeffi cients MNP by Hausman and Wise, 1978)

assume stronger independence conditions (ε, δ) ⊥ (z,X), ruling out individual heterogeneity in

the distribution of (ε, δ).3 Second, our method does not require independence between ε and δ,

estimating these covariances, or numerical integration. In contrast, typical empirical applications

of random coeffi cient multinomial choice estimators usually assume independence between ε and

δ to reduce the number of parameters one must identify and estimate. The computational re-

quirements of our method are not affected either by the presence or absence of these covariances,

or by the number of coeffi cients in θn that are random. Third, the econometrician is not required

3Even in flexible semiparametric random coeffi cients models like Fox and Gandhi (2016), the usual assumption
is (ε, δ) ⊥ (z,X), ruling out the possibility that the distribution of random preferences may vary across sub-
populations.
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to know exactly which covariates have random coeffi cients and which do not. Last, our model

does not require thin tails or unimodality, unlike, e.g., normal random coeffi cient MNP models.4

One restriction we do impose is that we require one covariate in each choice j, zj , not have

a random coeffi cient. Setting the coeffi cient of some covariate z equal to one is often a natural,

economically meaningful normalization. For example, utility of choices are typically modeled

as benefits minus costs. Benefits may be subjective and so vary heterogeneously as in random

coeffi cients, while costs are often objective and fixed. In these cases z would be a cost measure.

Examples are willingness to pay studies where the benefits equal the willingness to pay, and

consumer choice applications where zj is the price of choice j. (See e.g., Bliemer and Rose 2013

for more discussion and examples.5) Nevertheless, we could also assume that, before normalizing,

the variable z has a random coeffi cient, provided that the random coeffi cient is the same for all

choices and is positive (this latter restriction is a special case of the hemisphere condition required

by semiparametric binary choice random coeffi cient estimators. See, e.g., Gautier and Kitamura

2013). This restriction is needed because we can’t allow renormalizations that would change any

individual’s relative ranking of utilities. Note that in this case, we require our symmetry condition

to hold after renormalization, not before.

S.B A Minimum Distance Estimator and Asymptotic Properties

S.B.1 Objective Functions for Estimation

Based on the identification strategy described in Section A, we develop a minimum distance

estimator (hereafter, MD estimator) for θo ∈ Θ using the identifying restriction functions

dj(θ
o; z(j)∗,X(j)∗) = 0 (S.B.1)

4Each element of θo is the median of the corresponding random coeffi cient θn. By Assumptions RC1 and RC2,
each element is also the mean of the random coeffi cient if that mean exists, and is also the mode if the random
coeffi cient is unimodal.

5Many other semiparametric random coeffi cients choice models have either the same restriction, such as Lewbel
(2000) and Berry and Haile (2005), or a comparable restriction.
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for j = 0, . . . , J , where dj is defined as the same as equation (S.A.17).

For each j, the function dj(θ; z
(j)∗,X(j)∗) is well defined if both points (z(j)∗,X(j)∗) and

(−z(j)∗ − 2X(j)∗θ,X(j)∗) are in the interior of the support of covariates, S(z(j),X(j)). For this

reason, we only wish to evaluate the function dj(θ; z
(j)∗,X(j)∗) at such points. This can be

achieved by multiplying each function dj(θ; z(j)∗,X(j)∗) by a trimming function of the form

τj

(
z(j),X(j);θ,θ

)
≡ ςj

(
z(j),X(j)

)
ςj

(
−z(j) − 2X(j)θ,X(j)

)
ςj

(
−z(j) − 2X(j)θ,X(j)

)
,

whereX(j)θ (X(j)θ) gives the upper (lower) bound value that the indexX(j)θ can take. A sim-

ple choice for the function ςj(·) is ςj
(
z(j),X(j)

)
≡ 1

(
|z(j)| ≤ c(j)

1

)
×1
(
|X(j)| ≤ C(j)

2

)
, where the

absolute value of a vector or matrix, | · |, is defined as the corresponding vector or matrix of the ab-

solute values of each element, c(j)
1 ∈ RJ is a vector of trimming constants for the covariate vector

z(j), and C(j)
2 ∈ RJ×q is a matrix of trimming constants for the covariate matrix X(j) such that(

c
(j)
1 ,C

(j)
2

)
is in the interior of the support of covariates S(z(j),X(j)). Denote STrz(j)

(
X(j),θ,θ

)
as

the largest set of values z(j) given θ, θ, andX(j), such that STr
z(j)

(
X(j),θ,θ

)
⊂ int

(
Sz(j)

(
X(j)

))
.

We describe the regularity conditions on the trimming function in Assumption TR.

Assumption TR. The trimming function τj
(
z(j),X(j);θ,θ

)
is strictly positive and bounded

on STr
z(j)

(
X(j),θ,θ

)
× int

(
SX(j)

)
, and is equal to zero on its complementary set for j = 0, . . . , J .

Theorem S.B.1 If Assumptions I and TR hold, then (i) Qj (θ) ≥ 0 for any θ ∈ Θ and (ii)

Qj (θ) = 0 if and only if θ = θo.

Theorem S.B.1 shows identification based on the population objective function. Proofs is

available at authors’webpage.
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S.B.2 MD Estimator and Regularity Conditions

Next, we derive the sample objective function based on population objective function and the

asymptotic properties of the MD estimator. To ease notation, we denote the conditional means

E
(
yj | z(j) = z(j)

n ,X(j) =X(j)
n

)
≡ ϕj

(
z(j)
n ,X(j)

n

)
≡ ϕj,o

(
z(j)
n ,X(j)

n

)
,

E
(
yj | z(j) = −z(j)

n − 2X(j)
n θ,X

(j) =X(j)
n

)
≡ ϕj

(
−z(j)

n − 2X(j)
n θ,X

(j)
n

)
≡ ϕj,cs

(
z(j)
n ,X(j)

n ,θ
)
,

and function

dj(θ; z
(j)
n ,X(j)

n ) ≡
∂JE

(
yj | z(j) = z

(j)
n ,X(j) =X

(j)
n

)
∂z

(j)
1 · · · ∂z

(j)
J

−
∂JE

(
yj | z(j) = −z(j)

n − 2X(j)
n θ,X

(j) =X
(j)
n

)
∂z

(j)
1 · · · ∂z

(j)
J

(S.B.2)

≡ ϕ(J)
j,o

(
z(j)
n ,X(j)

n

)
− ϕ(J)

j,cs

(
z(j)
n ,X(j)

n ,θ
)
.

where ϕ(J)
j,o

(
z

(j)
n ,X

(j)
n

)
≡ ∂Jϕj,o

(
z

(j)
n ,X

(j)
n

)
/∂z

(j)
1 · · · ∂z

(j)
J and ϕ(J)

j,cs

(
z

(j)
n ,X

(j)
n ,θ

)
is defined in

the similar way as ϕ(J)
j,o

(
z

(j)
n ,X

(j)
n

)
. Now, consider a leave-one-out (LOO) Nadaraya-Watson

(NW) estimator for ϕ(J)
j,o,−n as ϕ̂

(J)
j,o,−n (·, ·) =

1
N−1

∑N
m=1,m6=n ymjK

(J)
hz

(
z
(j)
m −·

)
KhX

(
X
(j)
m −·

)
1

N−1
∑N
m=1,m6=nKhz

(
z
(j)
m −·

)
KhX

(
X
(j)
m −·

) , where

Khz

(
z

(j)
m − ·

)
=
∏J
l=1 h

−1
zl
k
(
h−1
zl

(
z

(j)
ml − ·

))
, andKhX

(
X

(j)
m − ·

)
=
∏J
l=1

∏q
r=1 h

−1
xlr
k
(
h−1
xlr

(
x

(j)
mlr − ·

))
.

The properties of the kernel function k and those of the bandwidth hz ≡ (hz1 , · · · , hzJ )′ and

hX ≡ (hx1,1 , · · · , hx1,q , · · · , hxJ,1 , · · · , hxJ,q)′ are defined in Assumptions E3 and E4 below, respec-

tively. We can now define the LOO NW estimator ϕ̂j,cs,−n for ϕj,cs in the same fashion. The

partial derivatives are rather tedious. Here we adopt the simplest estimator: the first term of the

analytical derivatives, to simplify our analysis, which is the unbiased estimator for the derivative

of choice probability.

Now we can construct the estimator for function dj
(
θ; z

(j)
n ,X

(j)
n

)
in (S.B.2) as

d̂j,−n
(
θ; z(j)

n ,X(j)
n

)
≡ ϕ̂(J)

j,o,−n

(
z(j)
n ,X(j)

n

)
− ϕ̂(J)

j,cs,−n

(
z(j)
n ,X(j)

n ,θ
)
. (S.B.3)
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By replacing the expectation in Qj (θ) with its sample mean and function dj(θ; z
(j)
n ,X

(j)
n ) with

its LOO estimator d̂j,−n
(
θ; z

(j)
n ,X

(j)
n

)
, we define the MD estimator

θ̂ ∈ argmin
θ∈Θ

QNj (θ) ,

where QNj (θ) =
1

2N

N∑
n=1

[
τj

(
z(j)
n ,X(j)

n

)
d̂j,−n

(
θ; z(j)

n ,X(j)
n

)]2
.

We denote the gradient of the objective function as qNj (θ) = ∇θQNj (θ) and the Hessian

matrix of the objective function as HNj (θ) = ∇θθ′QNj (θ) . The smoothness of the objec-

tive function suggests the first-order condition (FOC): qNj
(
θ̂
)
= 0q. Applying the standard

first-order Taylor expansion to qNj
(
θ̂
)
around the true parameter vector θo yields qNj

(
θ̂
)
=

qNj (θ
o) +HNj

(
θ̃
)(
θ̂ − θo

)
, where θ̃ is a vector between the MD estimator θ̂ and the true

parameter vector θo. Then the influence function will be given by

θ̂ − θo = −
[
HNj

(
θ̃
)]−1

qNj (θ
o) . (S.B.4)

We will show that HNj

(
θ̃
)
→p Hj (θ

o) , where

Hj (θ
o) = E

{
τ2
j

(
z(j)
n ,X(j)

n

)
∇θdj

(
θo; z(j)

n ,X(j)
n

) [
∇θdj

(
θo; z(j)

n ,X(j)
n

)]′}
, (S.B.5)

and
√
NqNj (θ

o) →d N (0q,Ωj), where Ωj is the probability limit of the variance-covariance

matrix of qNj (θ
o). To obtain these properties, we assume the following regularity conditions.

Assumption E.

• E1: {(yn, zn,Xn) , for n = 1, . . . , N} is a random sample drawn from the infinite population

distribution.
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• E2: The following smoothness conditions hold: (a) The density function fj
(
z(j),X(j)

)
is

continuous in the components of z(j) for all z(j) ∈ STrz
(
X(j),θ,θ

)
and X(j) ∈ int (SX).

In addition, fj
(
z(j),X(j)

)
is bounded away from zero uniformly over its support. (b)

Functions fj
(
z(j),X(j)

)
, gj

(
z(j),X(j)

)
and ϕj

(
z(j),X(j)

)
are s (s ≥ J + 1) times con-

tinuously differentiable in the components of z(j) for all z(j) ∈ STrz
(
X(j),θ,θ

)
and have

bounded derivatives.

• E3: The kernel function k is an l-th (l ≥ 1) order bias-reducing kernel that satisfies (a)

k (u) = k (−u) for any u in the support of function k and
∫
k (u) du = 1; (b)

∫
|u|i k (u) du <

∞ for 0 ≤ i ≤ l; (c)
∫
uik (u) du = 0 if 0 < i < l and

∫
uik (u) du 6= 0 if i = l; (d) k (u) = 0

for all u in the boundary of the support of kernel; (e) supu
∣∣k(1)(u)

∣∣2 <∞, where k(1)(u) is

the first derivative of k (u).

• E4: The bandwidth vector hz ≡ (hz1 , · · · , hzJ )′ = (hN , · · · , hN )
′ is a J × 1 vector and the

bandwidth hX ≡ (hx1,1 , · · · , hx1,q , · · · , hxJ,1 , · · · , hxJ,q)′ = (hN , · · · , hN , · · · , hN , · · · , hN )′ is

a Jq × 1 vector. The scalar hN satisfies (a) hN → 0 and Nh2J+J+Jq
N →∞ as N →∞; and

(b)
√
Nh2s

N → 0 and
√
N (lnN)

(
Nh

2(J+1)+J+Jq
N

)−1
→ 0 as N →∞.

• E5: The components of the random vectors ∂Jϕj,o
/
∂z

(j)
1 · · · ∂z

(j)
J ,∂

Jϕj,cs
/
∂z

(j)
1 · · · ∂z

(j)
J

and the random matrix
(
∂Jξj

/
∂z

(j)
1 · · · ∂z

(j)
J

) [
y(j), z(j)′] have finite second moments. Also,

∂Jϕj,o
/
∂z

(j)
1 · · · ∂z

(j)
J ,∂

Jϕj,cs
/
∂z

(j)
1 · · · ∂z

(j)
J and ∂Jξjϕj,o

/
∂z

(j)
1 · · · ∂z

(j)
J , ∂Jξjϕj,cs

/
∂z

(j)
1 · · · ∂z

(j)
J

where ξj
(
z(j),X(j),θo

)
= τ2

j

(
z(j),X(j)

)
∇θdj

(
θo; z(j),X(j)

)
, satisfy the following Lip-
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schitz conditions: for some m
(
z(j), ·

)
∣∣∣∣∂Jϕj,o(z(j)+t,·)∂z

(j)
1 ···∂z

(j)
J

− ∂Jϕj,o(z(j),·)
∂z

(j)
1 ···∂z

(j)
J

∣∣∣∣ < m
(
z(j), ·

)
‖t‖ ;

∣∣∣∣∂Jϕj,cs(z(j)+t,·)∂z
(j)
1 ···∂z

(j)
J

− ∂Jϕj,cs(z(j),·)
∂z

(j)
1 ···∂z

(j)
J

∣∣∣∣ < m
(
z(j), ·

)
‖t‖ ;∣∣∣∣∂Jξjϕj,o(z(j)+t,·)∂z

(j)
1 ···∂z

(j)
J

− ∂Jξjϕj,o(z(j),·)
∂z

(j)
1 ···∂z

(j)
J

∣∣∣∣ < m
(
z(j), ·

)
‖t‖ ;

∣∣∣∣∂Jξjϕj,cs(z(j)+t,·)∂z
(j)
1 ···∂z

(j)
J

− ∂Jξjϕj,cs(z(j),·)
∂z

(j)
1 ···∂z

(j)
J

∣∣∣∣ < m
(
z(j), ·

)
‖t‖ ;

with E
[(
1 + |yj |+

∥∥z(j)
∥∥)m (z(j), ·

)]2
<∞.

• E6: The matrix Hj defined by (S.B.5) is nonsingular and positive definite.

Assumption E2 gives the smoothness condition of the density and the choice probability. As-

sumption E3 collects restrictions for the kernel function. Assumption E4 describes the conditions

on the bandwidth to achieve
√
N asymptotics. Assumption E5 imposes standard bounded mo-

ment and dominance conditions. Assumption E6 requires the hessian matrix is strictly positive

definite. Given these regularity assumptions, we will show asymptotic properties of the estimator.

S.B.3 Asymptotic Properties

The next two theorems establish the asymptotic properties of the MD estimator. The proofs are

available on authors’webpage.

Theorem S.B.2 If Assumptions I, TR, E1-E5 hold, then the MD estimator θ̂ converges to the

true parameter vector θo ∈ Θ in probability.

Theorem S.B.3 Let Assumptions I, TR and E hold. Then

(a) (Asymptotic Linearity) The MD estimator θ̂ is asymptotically linear with

√
N
(
θ̂ − θo

)
= −N−1/2

N∑
n=1

H−1
j tnj + op (1) ,

where tnj ≡ (υnj,o − υnj,cs) ∂J
[
τ2
j

(
z

(j)
n ,X

(j)
n

)
∇θdj

(
θo; z

(j)
n ,X

(j)
n

)]
/∂z

(j)
1 . . . ∂z

(j)
J with scalars

υnj,o ≡ ynj − ϕj,o
(
z

(j)
n ,X

(j)
n

)
and υnj,cs ≡ ynj − ϕj,cs

(
z

(j)
n ,X

(j)
n ,θo

)
.
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(b) (Asymptotic Normality) The MD estimator is asymptotically normal, i.e.,

√
N
(
θ̂ − θo

)
→d N

(
0q,H

−1
j ΩjH

−1
j

)

where matrix Ωj ≡ E
(
tnjt

′
nj

)
and Hj is defined by (S.B.5).

In proofs, we show that the leading term of the numerator of this estimator in equation

(S.B.5) can be written as a U-statistic of order 2, and using the Hoeffding decomposition, we can

decompose this U-statistic into a mean term, linear terms and a quadratic term. One linear term

contributes to the limiting distribution, while the others are asymptotically negligible, following

Newey and McFadden (1994) and Sherman (1993, 1994). Like the U-statistics in Powell, Stock

and Stoker (1989), Newey (1994), and Imbens and Ridder (2009), our U-statistic is an average

over a plug-in nonparametric estimator. We thereby achieve the parametric rate, which is unusual

for semiparametric multinomial choice estimators.

Our simplest MD estimator only requires observing a single choice j (e.g., selecting the outside

option or not) and minimizing QNj (θ), which is a sample average of the square of the trimmed dj

function. If we observe more choices, we can instead minimize the sum of the QNj (θ) functions,

summed over all observed choices j. For effi ciency, one could also consider minimizing a weighted

sum. Moreover, since the expected value of the squared trimmed dj function for each j is zero at

the true θ, it would be possible to construct a generalized method of moments (GMM) estimator

that minimizes a quadratic in the sample average of the vector of squared trimmed dj functions for

observed choices j. However, because the elements of dj are estimated derivatives of conditional

expectations, the corresponding GMM second moment matrix would converge to a zero matrix,

and as a result, standard GMM asymptotic theory would not apply. We therefore leave the

question of effi cient combination of QNj (θ) over multiple j for future research.

We conclude this section by discussing possible testing of our central symmetry assumption.

Under the null hypothesis of a central symmetry, the error density at any two symmetric points
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would be equal, while under the alternative there must exist symmetric points where the densities

are not equal. Also under the null, our estimator is consistent. So a test could be constructed

based on the difference in error density estimates at many symmetry points (other than those

used for estimation), using our estimated parameters to construct symmetry points. More general

specification tests could also be constructed, using the fact that our parameters are over identified

when more than one choice j is observed.

S.C Proof of Identification

Proof of Theorem S.A.1: First, we show that D0(θ
o) is a set of measure zero. If not, assume

that there is a point (z∗,X∗) in set D0(θ
o). By definition in equation (8), both points (z∗,X∗)

and (−z∗ − 2X∗θo,X∗) are in set int(S(z,X)). By Assumptions I1, I2, and equations (5)-(7), we

have function

d0(θ
o; z∗,X∗) = (−1)J [fε (−z∗ −X∗θo |X =X∗)− fε (z∗ +X∗θo |X =X∗)] = 0,

which is a contradiction with definition in equation (8).

Next, we prove that Pr[ (z∗,X∗) ∈ D0(θ) ] > 0 for any θ 6= θo, where θ ∈ Θ and parameter

space Θ satisfies Assumption I3. Denote the set X (θ) ≡ {X∗ ∈ SX |X∗(θ−θo) 6= 0}, which is a

collection of covariate values at whichXθ 6=Xθo. By Assumption I4(a) and the fact θ−θo 6= 0q,

X (θ) is a subset in the support of SX with positive measure, that is,

Pr [X∗ ∈ X (θ)] > 0. (S.C.1)

Recall that we use Xc and Xd, respectively, to denote the continuous and discrete covariates

in X. We define the interior of the support of X as int (SX) ≡{
(X∗c ,X

∗
d) ∈ S(Xc,Xd) |X∗c ∈ int (SXc(X

∗
d)) ,X

∗
d ∈ SXd

}
. Define

S̃(z,X)(θ) ≡
{
(z∗, X∗) ∈ S(z,X)

∣∣∣ z∗ ∈ S̃z(X∗), X∗ ∈ X (θ) ∩ int (SX)} , (S.C.2)
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where S̃z(X∗) satisfies Assumption I4(c). By construction, set S̃(z,X)(θ) is a Lebesgue measurable

subset of int(S(z,X)). Next we construct a subset in the support of covariates (z,X) as follows:

D̃0 (θ) ≡
{
(z∗,X∗) ∈ S̃(z,X)(θ) | d0 (θ; z

∗,X∗) 6= 0
}

(S.C.3)

which is also a subset of D0 (θ) because (−z∗ − 2X∗θ,X∗) ∈ int(S(z,X)) for any (z∗,X
∗) ∈

S̃(z,X)(θ). Under Assumptions I1-I4 and I5(a), both sets D0 (θ) and D̃0 (θ) are Lebesgue measur-

able. Theorem S.A.1 is proved if we show P [ (z∗,X∗) ∈ D̃0(θ) ] > 0 since D̃0 (θ) ⊆ D0 (θ). Now

Pr
[
(z∗, X∗) ∈ S̃(z,X)(θ)

]
= Pr [X∗ ∈ X (θ) ∩ int (SX)]

×Pr
[
z∗ ∈ S̃z(X∗) |X∗ ∈ X (θ) ∩ int (SX)

]
,

(S.C.4)

where the first probability on the right of equation (S.C.4) is positive by (S.C.1), and the second

is positive by Assumption I4(c). Under Assumptions I1, I2, and equations (5)-(7), we have

d0(θ; z
∗,X∗) = (−1)J [fε (−z∗ −X∗θo |X =X∗)− fε (z∗ + 2X∗θ −X∗θo |X =X∗)]

for every (z∗,X∗) ∈ S̃(z,X)(θ). Define r = 2X
∗(θ − θo). Then r 6= 0J because X∗ ∈ X (θ). We

can write z∗ + 2X∗θ −X∗θo = r + z∗ +X∗θo so function

d0(θ; z
∗,X∗) = (−1)J [fε (−z∗ −X∗θo |X =X∗)− fε (r + z∗ +X∗θo |X =X∗)] . (S.C.5)

We claim that

Pr
(
d0(θ; z

∗,X∗) 6= 0
∣∣∣ (z∗,X∗) ∈ S̃(z,X)(θ)

)
> 0. (S.C.6)

If (S.C.6) is not true, then for almost every (z∗,X∗) ∈ S̃(z,X)(θ) we get d0(θ; z
∗,X∗) = 0, which

implies that fε (t |X =X∗) = fε (r − t |X =X∗) for every t ∈ S̃ε(X∗) and r − t ∈ S̃ε(X∗)

by (S.C.5) and Assumption I5(a). This is possible only if r = 0J by Assumption I5(b), which

contradicts r 6= 0J . We have therefore proved that Pr[ (z∗,X∗) ∈ D̃0(θ) ] > 0 by (S.C.3), (S.C.4),

and (S.C.6). Q.E.D.
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S.D Monte Carlo Details

As discussed in the paper, our Monte Carlo design includes 4 data generating processes (DGPs).

Details of the distribution of each DGP are provided in Table 1.

Table 1: Designs of the Data Generating Processes (DGPs)
DGP Distribution of θn Distribution of εnj
1 θn = 0.2 εnj = εnj

2 θn = 0.2 εnj =
1
2e

2xnj εnj ,

3 θn = 0.2 + δn εnj =
1
2εnj

where δn = 1
2ϑn

4 θn = 0.2 + δn εnj =
1
2εnj

where δn = (exn1 + exn2)× ϑn

Note: both ϑn and εnj are standard normal random varaibles, and they are independent of each
other and all the covariates, and i.i.d. across the subscripted dimension(s).

For the MD estimator, we consider both the case where the researcher only observes whether

the outside option (i.e., alternative 0) is chosen, and so just minimizes QN0 (θ), and the case where

the researcher also observes which alternative is chosen by each decision maker, and so minimizes

the sum of QNj (θ) for j = 0, 1, 2. In all DGPs, each covariate znj is a continuous uniform random

variable over the interval [−9, 9] and xnj is a binary variable that takes value of 2 or −2 with equal

probability for j = 1, 2. The covariates of alternative 0 are zn0 = 0 and xn0 = 0. All the observed

covariates are independent of each other and are independent, identically distributed across the

subscripted dimension(s).

We use a grid search to compute our MD estimator over a parameter space of [−0.8, 0.8] with

the bin width of 0.05. In the estimation of choice probabilities we apply a truncated normal

density for the kernel function kh(·) with bandwidth hj = sd(znj)N
(−1/22), where j = 1, 2. Our

bandwidth is derived by minimizing the mean squared errors (MSE) of the second order derivative

of the choice probability. The bias and variance of the second derivative of the choice probability
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are O(hs) with s ≥ J + 1 and O(Nh
−2(J+1)−J−Jq
N ), respectively. Then, Silverman’s Rule of

Thumb suggests that the optimal bandwidth is of order N−1/(2s+2(J+1)+J+Jq). In our simulation

(J = 2, s = 2J+2 and q = 1), we choose hj = cN (−1/22) with c = sd(znj). Cross-validation would

be an alternative way to select the bandwidth, but is more computation-intensive.
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S.D.1 Proof of the Population Objective Function

Proof of Theorem S.B.1: Part (i) can be shown directly from the quadratic form of the

population objective function. We will explicitly prove that Part (ii) holds. To show the existence

of a minimizer, recall the population objective function

Qj (θ) ≡ 1

2
E
[
τj

(
z(j)n ,X(j)

n

)
dj

(
θ; z(j)n ,X(j)

n

)]2
=

1

2
E
{
E
[
τ2j

(
z(j)n ,X(j)

n

)
d2j

(
θ; z(j)n ,X(j)

n

)∣∣∣X(j)
n

]}

From the main identification restriction we discuss in Section 2, we have

E
[
τ2j

(
z(j)n ,X(j)

n

)
d2j

(
θ; z(j)n ,X(j)

n

)∣∣∣X(j)
n

]
= 0 (S.D.1)

when θ = θo. The equality in (S.D.1) holds because, conditional on X(j)
n , when τj

(
z
(j)
n ,X

(j)
n

)
>

0, dj
(
θo; z

(j)
n ,X

(j)
n

)
= 0; and in addition, when τj

(
z
(j)
n ,X

(j)
n

)
= 0, the product term in the

expectation is also equal to zero. Combining these parts gives the desired existence.

To show the uniqueness, consider any θ in the parameter space such that θ 6= θo. We have

Qj (θ)−Qj (θo) (S.D.2)

=
1

2
E
[
τj

(
z(j)n ,X(j)

n

)
dj

(
θ; z(j)n ,X(j)

n

)]2
− 1

2
E
[
τj

(
z(j)n ,X(j)

n

)
dj

(
θo; z(j)n ,X(j)

n

)]2
=

1

2
E
[
τj

(
z(j)n ,X(j)

n

)(
dj

(
θ; z(j)n ,X(j)

n

)
− dj

(
θo; z(j)n ,X(j)

n

))]2
+ E

[
τ2j

(
z(j)n ,X(j)

n

)
dj

(
θo; z(j)n ,X(j)

n

)(
dj

(
θ; z(j)n ,X(j)

n

)
− dj

(
θo; z(j)n ,X(j)

n

))]
> 0.

The last inequality in (S.D.2) holds because the first term on its right-hand side is strictly

positive, as there exists some z(j)n ,X
(j)
n such that τj

(
z
(j)
n ,X

(j)
n

)
> 0 and dj

(
θ; z

(j)
n ,X

(j)
n

)
−

dj

(
θo; z

(j)
n ,X

(j)
n

)
6= 0 when θ 6= θo by Theorem S.A.1 and the identification results in Supple-
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mentary Appendix Section S.A.1; and the second term equals to zero since dj
(
θo; z

(j)
n ,X

(j)
n

)
= 0.

Q.E.D.

S.D.2 Proofs of Some Lemmas for the Asymptotic Properties

Below we first derive some lemmas based on the Hoeffding decomposition for the asymptotic

properties.

Lemma S.D.1 (Lemma 3.1 in Powell et al. (1989) and Lemma D.1 in Chen et al. (2016)).

For an i.i.d. sequence of random variables, {ωm,m = 1, ..., N}, define a general second-order

U-statistic of the form

UN ≡
1

N (N − 1)

∑N

m=1,m6=n

∑N

n=1
ψN (ωm, ωn)

Define

ÛN ≡ µN +
1

N

∑N

m=1
(rN1 (ωm)− µN ) +

1

N

∑N

n=1
(rN2 (ωn)− µN )

where rN1 (ωm) ≡ E [ψN (ωm, ωn) |ωm], rN2 (ωn) ≡ E [ψN (ωm, ωn) |ωn], and µN ≡ E [ψN (ωm, ωn)] =

E [rN1 (ωm)] = E [rN2 (ωn)]. If E ‖ψN (ωm, ωn)‖2 = o (N), then UN = ÛN + op
(
N−1/2

)
.

Lemma S.D.2 Under Assumptions E2-E5,

sup(
z
(j)
n ,X

(j)
n

)
∈STr

(z(j),X(j))

∣∣∣f̂j (z(j)n ,X(j)
n

)
− fj

(
z(j)n ,X(j)

n

)∣∣∣ = Op

(√
lnN

NhJ+JqN

+ hsN

)
= op

(
N−1/4

)

sup(
z
(j)
n ,X

(j)
n

)
∈STr

(z(j),X(j))

∣∣∣ĝj (z(j)n ,X(j)
n

)
− gj

(
z(j)n ,X(j)

n

)∣∣∣ = Op

(√
lnN

NhJ+JqN

+ hsN

)
= op

(
N−1/4

)

sup(
z
(j)
n ,X

(j)
n

)
∈STr

(z(j),X(j))

∣∣∣ϕ̂j (z(j)n ,X(j)
n

)
− ϕj

(
z(j)n ,X(j)

n

)∣∣∣ = Op

(√
lnN

NhJ+JqN

+ hsN

)
= op

(
N−1/4

)
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Proof of Lemma S.D.2: The proofs for three terms are similar. We wil focus on the proof

for ĝj
(
z
(j)
n ,X

(j)
n

)
. Other terms can be done in a similar fashion. First, by the fact that the

outcome come variables By the fact that the outcome variables are binary and function fj is

bounded away from zero, applying the results of Lemma B.1 and Lemma B.2 in Newey (1994)

gives the first equality in each equation. Second, the second equality follows from Asssumption

10 using Lemma 8.10 in Newey and McFadden (1994). Q.E.D.

Define f̂ (t)j
(
z(j),X(j)

)
= ∂tf̂j/∂z1,(t) · · · ∂zt,(t) be the derivative with respect to z

(j)
(t) , where

z
(j)
(t) =

(
z
(j)
1,(t), · · · , ∂z

(j)
t,(t)

)
be any t-element of z(j). Similarly, we can define f (t)j

(
z(j),X(j)

)
,

ĝ
(t)
j

(
z(j),X(j)

)
, g(t)j

(
z(j),X(j)

)
, ϕ̂(t)j

(
z(j),X(j)

)
and ϕ(t)j

(
z(j),X(j)

)
.

Lemma S.D.3 Under Assumptions E2-E5, for t = 1, . . . , J ,

sup(
z
(j)
n ,X

(j)
n

)
∈STr

(z(j),X(j))

∣∣∣f̂ (t)j (
z(j)n ,X(j)

n

)
− f (t)j

(
z(j)n ,X(j)

n

)∣∣∣ = Op

(√
lnN

NhJ+2t+JqN

+ hsN

)
= op

(
N−1/4

)

sup(
z
(j)
n ,X

(j)
n

)
∈STr

(z(j),X(j))

∣∣∣ĝ(t)j (
z(j)n ,X(j)

n

)
− g(t)j

(
z(j)n ,X(j)

n

)∣∣∣ = Op

(√
lnN

NhJ+2t+JqN

+ hsN

)
= op

(
N−1/4

)

sup(
z
(j)
n ,X

(j)
n

)
∈STr

(z(j),X(j))

∣∣∣ϕ̂(t)j (z(j)n ,X(j)
n

)
− ϕ(t)j

(
z(j)n ,X(j)

n

)∣∣∣ = Op

(√
lnN

NhJ+2t+JqN

+ hsN

)
= op

(
N−1/4

)

Proof of Lemma S.D.3: The proof follows the same method used in Lemma S.D.2. Q.E.D.
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Lemma S.D.4 Under Assumptions E2-E5, for t = 1, . . . , J ,

sup(
z
(j)
n ,X

(j)
n

)
∈STr

(z(j),X(j))

∥∥∥∇θ (f̂ (t)j (
z(j)n ,X(j)

n

))
−∇θ

(
f
(t)
j

(
z(j)n ,X(j)

n

))∥∥∥

= Op

(√
lnN

Nh
J+2(t+1)+Jq
N

+ hsN

)
= op

(
N−1/4

)

sup(
z
(j)
n ,X

(j)
n

)
∈STr

(z(j),X(j))

∥∥∥∇θ (ĝ(t)j (
z(j)n ,X(j)

n

))
−∇θ

(
g
(t)
j

(
z(j)n ,X(j)

n

))∥∥∥

= Op

(√
lnN

Nh
J+2(t+1)+Jq
N

+ hsN

)
= op

(
N−1/4

)

sup(
z
(j)
n ,X

(j)
n

)
∈STr

(z(j),X(j))

∥∥∥∇θ (ϕ̂(t)j (z(j)n ,X(j)
n

))
−∇θ

(
ϕ
(t)
j

(
z(j)n ,X(j)

n

))∥∥∥

= Op

(√
lnN

Nh
J+2(t+1)+Jq
N

+ hsN

)
= op

(
N−1/4

)

Proof of Lemma S.D.4: The proof follows the same method used in Lemma S.D.2. Q.E.D.

S.D.3 Consistency of the MD Estimator

Proof of Theorem S.B.1: We apply Theorem S.A.1 of Newey and McFadden (1994) to show

the consistency of the MD estimator. Theorem S.A.1 in Newey and McFadden (1994) requires

the following fours conditions: (1) the population objective function Qj (θ) is uniquely minimized

at θo ∈ Θ; (2) the parameter space Θ is compact; (3) the population objective function Qj (θ)

is continuous; and (4) the sample objective function QNj (θ) converges uniformly in probability

to Qj (θ) over the parameter space.

Our Theorem S.B.1 directly implies Condition (1). Condition (2) follows from Assumption

E3. Condition (3) is from the continuity of our population objective function. Below, we show
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Condition (4) following Hong and Tamer (2003). We first introduce an infeasible sample objective

function Q̄Nj (θ), defined as

Q̄Nj (θ) =
1

2N

∑N

n=1

[
τj

(
z(j)n ,X(j)

n

)
dj

(
θ; z(j)n ,X(j)

n

)]2
.

Following the triangle inequality, we have

|QNj (θ)−Qj (θ)| ≤
∣∣QNj (θ)− Q̄Nj (θ)

∣∣+
∣∣Q̄Nj (θ)−Qj (θ)

∣∣ . (S.D.3)

Then, it is suffi cient to show that the two terms on the right side of (S.D.3) go to zero uniformly,

that is, (i) supθ∈Θ
∣∣QNj (θ)− Q̄Nj (θ)

∣∣ = op (1) and (ii) supθ∈Θ
∣∣Q̄Nj (θ)−Qj (θ)

∣∣ = op (1).

For Part (i), we observe that

sup
θ∈Θ

∣∣QNj (θ)− Q̄Nj (θ)
∣∣ (S.D.4)

= sup
θ∈Θ

∣∣∣∣ 1

2N

∑N

n=1

[
τ2j

(
z(j)n ,X(j)

n

)(
d̂2j,−n

(
θ; z(j)n ,X(j)

n

)
− d2j

(
θ; z(j)n ,X(j)

n

))]∣∣∣∣
= sup
θ∈Θ

∣∣∣∣ 1

2N

∑N

n=1
τ2j

(
z(j)n ,X(j)

n

)(
d̂j,−n

(
θ; z(j)n ,X(j)

n

)
+ dj

(
θ; z(j)n ,X(j)

n

))

×
(
d̂j,−n

(
θ; z(j)n ,X(j)

n

)
− dj

(
θ; z(j)n ,X(j)

n

))∣∣∣
≤ C sup

θ∈Θ
sup(

z
(j)
n ,X

(j)
n

)
∈STr

(z(j),X(j))

∣∣∣d̂j,−n (θ; z(j)n ,X(j)
n

)
− dj

(
θ; z(j)n ,X(j)

n

)∣∣∣ = op (1) .

The first equality in (S.D.4) follows from definition and direct calculation. The second equality

holds by factorization. The next inequality is satisfied by the fact that functions τj and dj are

boundedQEXS. The last equality follows the fact that

sup
θ∈Θ

sup
z
(
z
(j)
n ,X

(j)
n

)
∈STr

(z(j),X(j))

∣∣∣d̂j,−n (θ; z(j)n ,X(j)
n

)
− dj

(
θ; z(j)n ,X(j)

n

)∣∣∣

is bounded by the product of a constant and the derivative functions shown by Lemma S.D.3.
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Part (ii) holds by showing pointwise convergence and stochastic equicontinuity. By the Law

of Large Numbers (LLN), we can directly obtain the pointwise convergence of Q̄Nj (θ) to Qj (θ).

Next we can conclude the uniformity by showing stochastic equicontinuity, that is,

sup
θ(1),θ(2)∈Θ,||θ(1)−θ(2)||≤δ

∣∣∣Q̄Nj (θ(1))− Q̄Nj (θ(2))∣∣∣ = op (1) .

Following Andrews (1994), the stochastic equicontinuity can be shown by verifying that Q̄Nj (θ)

is the type II class of function, satisfying the Lipschitz condition
∣∣∣Q̄Nj (θ(1))− Q̄Nj (θ(2))∣∣∣ ≤

C||θ(1)−θ(2)||. We verify that this holds from the continuity of the quadratic form of the objective

function and the continuity of the kernel derivative functions with bounded second derivatives.

Q.E.D.

S.D.4 Asymptotic Linearity and Normality of the MD Estimator

In this section, we first show the lemmas that contribute to the proof of Theorem S.B.3

Lemma S.D.5 Under Assumptions I,TR and E, HNj

(
θ̃
)
→p Hj, where

Hj = E
{
τ2j

(
z(j)n ,X(j)

n

)
∇θdj

(
θo; z(j)n ,X(j)

n

) [
∇θdj

(
θo; z(j)n ,X(j)

n

)]′}

Proof of Lemma S.D.5: To show the desired result, we first show that the following results

hold:

(i) HNj

(
θ̃
)

= HNj,1

(
θ̃
)

+HNj,2

(
θ̃
)
, where

HNj,1

(
θ̃
)

=
1

N

∑N

n=1
τ2j

(
z(j)n ,X(j)

n

)
d̂j,−n

(
θ̃; z(j)n ,X(j)

n

) [
∇θθ′ d̂j,−n

(
θ̃; z(j)n ,X(j)

n

)]
,

HNj,2

(
θ̃
)

=
1

N

∑N

n=1
τ2j

(
z(j)n ,X(j)

n

)
∇θd̂j,−n

(
θ̃; z(j)n ,X(j)

n

) [
∇θd̂j,−n

(
θ̃; z(j)n ,X(j)

n

)]′
,

(ii) HNj,1

(
θ̃
)

= op (1) , and (iii) HNj,2

(
θ̃
)
→p Hj .
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The decomposition in Part (i) follows from direct calculation. For Part (ii), observe that

HNj,1

(
θ̃
)

=
[
HNj,1

(
θ̃
)
−HNj,1 (θo)

]
+HNj,1 (θo) = op (1)

Given that θ̃ lies between θo and θ̃, we get that θ̃ is uniformly consistent, and by applying the

Delta method for the continuity of the choice probability, we obtain thatHNj,1

(
θ̃
)
−HNj,1 (θo) =

op (1). Next, HNj,1 (θo) = op (1) can be directly shown by applying the Markov Inequality, using

the fact that

τ2j

(
z(j)n ,X(j)

n

)
dj

(
θo; z(j)n ,X(j)

n

) [
∇θθ′dj

(
θo; z(j)n ,X(j)

n

)]′
= 0q×q

and

sup
θ∈Θ

sup(
z
(j)
n ,X

(j)
n

)
∈STr

(z(j),X(j))

∣∣∣d̂j,−n (θ; z(j)n ,X(j)
n

)
− dj

(
θ; z(j)n ,X(j)

n

)∣∣∣

is bounded by the product of a constant and the derivative functions shown by Lemmas S.D.2

and S.D.3.

For Part (iii), define

Hj (θ) = E
{
τ2j

(
z(j)n ,X(j)

n

)
∇θdj

(
θ; z(j)n ,X(j)

n

) [
∇θdj

(
θ; z(j)n ,X(j)

n

)]′}

and we have

HNj,2

(
θ̃
)
−Hj (θo) = HNj,2

(
θ̃
)
−Hj (θo) =

[
HNj,2

(
θ̃
)
−Hj

(
θ̃
)]

+
[
Hj

(
θ̃
)
−Hj (θo)

]
.

By the triangle inequality theorem, we have that

∥∥∥HNj,2

(
θ̃
)
−Hj (θo)

∥∥∥ ≤ ∥∥∥HNj,2

(
θ̃
)
−Hj

(
θ̃
)∥∥∥+

∥∥∥Hj

(
θ̃
)
−Hj (θo)

∥∥∥ .
The desired results then follow from the strong LLN supθ̃∈Θ

∥∥∥HNj,2

(
θ̃
)
−Hj

(
θ̃
)∥∥∥ →p 0q×q

and θ̃ is a uniformly consistent estimator of θo. Q.E.D.
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To analyze the properties of the numerator of the MD estimator, below we decompose it into

two terms by adding and subtracting ∇θdj
(
θo; z

(j)
n ,X

(j)
n

)
in the square brackets,

qNj (θo) =
1

N

∑N

n=1
τ2j

(
z(j)n ,X(j)

n

)
d̂j,−n

(
θo; z(j)n ,X(j)

n

) [
∇θd̂j,−n

(
θo; z(j)n ,X(j)

n

)]
(S.D.5)

=
1

N

∑N

=1
τ2j

(
z(j)n ,X(j)

n

)
d̂j,−n

(
θo; z(j)n ,X(j)

n

) [
∇θdj

(
θo; z(j)n ,X(j)

n

)]

+
1

N

∑N

n=1
τ2j

(
z(j)n ,X(j)

n

)
d̂j,−n

(
θo; z(j)n ,X(j)

n

) [
∇θd̂j,−n

(
θo; z(j)n ,X(j)

n

)
−∇θdj

(
θo; z(j)n ,X(j)

n

)]

≡ qNj,1 (θo) + qNj,2 (θo) .

We will show that the term qNj,1 (θo) on the right side of (S.D.5) contributes to the asymptotic

distribution while the term qNj,2 (θo) is asymptotically negligible.

Lemma S.D.6 Under Assumptions I, TR and E1-E5, we have

qNj,2 (θo) ≡ 1

N

∑N

n=1
τ2j

(
z(j)n ,X(j)

n

)
d̂j,−n

(
θo; z(j)n ,X(j)

n

)

×
[
∇θd̂j,−n

(
θo; z(j)n ,X(j)

n

)
−∇θdj

(
θo; z(j)n ,X(j)

n

)]
= op

(
N−1/2

)

Proof of Lemma S.D.6: Note that

d̂j,−n
(
θo; z(j)n ,X(j)

n

)
(S.D.6)

= d̂j,−n
(
θo; z(j)n ,X(j)

n

)
− dj

(
θo; z(j)n ,X(j)

n

)

=
[
ϕ̂
(J)
j,o,−n

(
z(j)n ,X(j)

n

)
− ϕ(J)j,o

(
z(j)n ,X(j)

n

)]
−
[
ϕ̂
(J)
j,cs,−n

(
z(j)n ,X(j)

n ,θo
)
− ϕ(J)j,cs

(
z(j)n ,X(j)

n ,θo
)]

≡ d̂j,o,−n
(
z(j)n ,X(j)

n

)
− d̂j,cs,−n

(
z(j)n ,X(j)

n ,θo
)
,

where the first equality in (S.D.6) holds by dj
(
θo; z

(j)
n ,X

(j)
n

)
= 0 and the second equality follows

the definitions of d̂j,−n and dj in Section 3 of the main text.
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Next we calculate

qNj,2 (θo) (S.D.7)

=
1

N

∑N

n=1
τ2j

(
z(j)n ,X(j)

n

) [
ϕ̂
(J)
j,o,−n

(
z(j)n ,X(j)

n

)
− ϕ(J)j,o

(
z(j)n ,X(j)

n

)

+ϕ̂
(J)
j,cs,−n

(
z(j)n ,X(j)

n ,θo
)
− ϕ(J)j,cs

(
z(j)n ,X(j)

n ,θo
)]

×
[
∇θd̂j,−n

(
θo; z(j)n ,X(j)

n

)
−∇θdj

(
θo; z(j)n ,X(j)

n

)]

= A1 +A2 +A3 +A4

where

A1 =
1

N

∑N

n=1

[
τj

(
z(j)n ,X(j)

n

)(
ϕ̂
(J)
j,o,−n

(
z(j)n ,X(j)

n

)
− ϕ(J)j,o

(
z(j)n ,X(j)

n

))]

×
[∑J

j=1
τj

(
z(j)n ,X(j)

n

)(
∇θϕ̂(J)j,o,−n,(j)

(
z(j)n ,X(j)

n

)
−∇θϕ(J)j,o,(j)

(
z(j)n ,X(j)

n

))
× x(j)n,j

]

A2 =
1

N

∑N

n=1

[
τj

(
z(j)n ,X(j)

n

)(
ϕ̂
(J)
j,o,−n

(
z(j)n ,X(j)

n

)
− ϕ(J)j,o

(
z(j)n ,X(j)

n

))]

×
[∑J

j=1
τj

(
z(j)n ,X(j)

n

)(
∇θϕ̂(J)j,cs,−n,(j)

(
z(j)n ,X(j)

n ,θo
)
−∇θϕ(J)j,cs,(j)

(
z(j)n ,X(j)

n ,θo
))
× x(j)n,j

]

A3 =
1

N

∑N

n=1

[
τj

(
z(j)n ,X(j)

n

)(
ϕ̂
(J)
j,cs,−n

(
z(j)n ,X(j)

n ,θo
)
− ϕ(J)j,cs

(
z(j)n ,X(j)

n ,θo
))]

×
[∑J

j=1
τj

(
z(j)n ,X(j)

n

)(
∇θϕ̂(J)j,o,−n,(j)

(
z(j)n ,X(j)

n

)
−∇θϕ(J)j,o,(j)

(
z(j)n ,X(j)

n

))
× x(j)n,j

]

A4 =
1

N

∑N

n=1

[
τj

(
z(j)n ,X(j)

n

)(
ϕ̂
(J)
j,cs,−n

(
z(j)n ,X(j)

n ,θo
)
− ϕ(J)j,cs

(
z(j)n ,X(j)

n ,θo
))]

×
[∑J

j=1
τj

(
z(j)n ,X(j)

n

)(
∇θϕ̂(J)j,cs,−n,(j)

(
z(j)n ,X(j)

n ,θo
)
−∇θϕ(J)j,cs,(j)

(
z(j)n ,X(j)

n ,θo
))
× x(j)n,j

]
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where j represents the choice of j product and (j) represents the derivatives with respect to j

index. For A1, we have

1

N

∑N

n=1

[
τj

(
z(j)n ,X(j)

n

)(
ϕ̂
(J)
j,o,−n

(
z(j)n ,X(j)

n

)
− ϕ(J)j,o

(
z(j)n ,X(j)

n

))]2

≤

 sup(
z
(j)
n ,X

(j)
n

)
∈STr

(z(j),X(j))

∣∣∣ϕ̂(J)j,o,−n

(
z(j)n ,X(j)

n

)
− ϕ(J)j,o

(
z(j)n ,X(j)

n

)∣∣∣

2

= op

(
N−1/2

)

and in addition,

1

N

∑N

n=1

[∑J

j=1
τj

(
z(j)n ,X(j)

n

)(
∇θϕ̂(J)j,o,−n,(j)

(
z(j)n ,X(j)

n

)
−∇θϕ(J)j,o,(j)

(
z(j)n ,X(j)

n

))
× x(j)n,1

]2

≤ Cq

 sup(
z
(j)
n ,X

(j)
n

)
∈STr

(z(j),X(j))

∥∥∥∇θϕ̂(J)j,o,−n,(j)

(
z(j)n ,X(j)

n

)
−∇θϕ(J)j,o,(j)

(
z(j)n ,X(j)

n

)∥∥∥

2

= op

(
N−1/2

)

where Cq ∈ Rq. Then by Cauchy-schwarz inequality, it follows that A1 = op
(
N−1/2

)
. Similarly,

we can show that A2 = op
(
N−1/2

)
, A3 = op

(
N−1/2

)
and A4 = op

(
N−1/2

)
. Combining all the

results gives the desired results. Q.E.D.

Denote ξj
(
z
(j)
n ,X

(j)
n ,θo

)
= τ2j

(
z
(j)
n ,X

(j)
n

)
∇θdj

(
θo; z

(j)
n ,X

(j)
n

)
for notational simplicity. By

(S.D.6) we have

qNj,1 (θo) =
1

N

∑N

n=1
ξj

(
z(j)n ,X(j)

n ,θo
)
d̂j,−n

(
θo; z(j)n ,X(j)

n

)
(S.D.8)

=
1

N

∑N

n=1
ξj

(
z(j)n ,X(j)

n ,θo
) [
ϕ̂
(J)
j,o,−n

(
z(j)n ,X(j)

n

)
− ϕ̂(J)j,cs,−n

(
z(j)n ,X(j)

n ,θo
)]
.

Lemma S.D.7 Under Assumptions I, TR and E1-E5,

qNj,1 (θo) =
1

N (N − 1)

∑N

m=1,m6=n

∑N

n=1
ψN (ωm, ωn) + op

(
N−1/2

)
,
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where ψN (ωm, ωn) = ψN,o (ωm, ωn)− ψN,cs (ωm, ωn) with

ψN,o (ωm, ωn) = ξj

(
z(j)n ,X(j)

n ,θo
)(

ymj − ϕj,o
(
z(j)n ,X(j)

n

))

×K(J)
hz

(
z(j)m − z(j)n

)
KhX

(
X(j)

m −X(j)
n

)
f−1j

(
z(j)n ,X(j)

n

)
,

ψN,cs (ωm, ωn) = ξj

(
z(j)n ,X(j)

n ,θo
)(

ymj − ϕj,cs
(
z(j)n ,X(j)

n ,θo
))

×K(J)
hz

(
z(j)m −

(
−z(j)n − 2X(j)

n θ
o
))

KhX

(
X(j)

m −X(j)
n

)
f−1j

(
−z(j)n − 2X(j)

n θ
o,X(j)

n

)
.

where K(J)
hz

(
z
(j)
m − ·

)
=
∏J
l=1 h

−2J
N k(1)

(
h−1zl

(
z
(j)
ml − ·

))
where k(1) is the first derivative of kernel

function.

Proof of Lemma S.D.7: We first observe that

qNj,1 (θo) =
1

N

∑N

n=1
ξj

(
z(j)n ,X(j)

n ,θo
)
d̂j,−n

(
θo; z(j)n ,X(j)

n

)
(S.D.9)

=
1

N

∑N

n=1
ξj

(
z(j)n ,X(j)

n ,θo
) [
ϕ̂
(J)
j,o,−n

(
z(j)n ,X(j)

n

)
− ϕ̂(J)j,cs,−n

(
z(j)n ,X(j)

n ,θo
)]
.

=
1

N

∑N

n=1
ξj

(
z(j)n ,X(j)

n ,θo
){[

ϕ̂
(J)
j,o,−n

(
z(j)n ,X(j)

n

)
− ϕ(J)j,o

(
z(j)n ,X(j)

n

)]

−
[
ϕ̂
(J)
j,cs,−n

(
z(j)n ,X(j)

n ,θo
)
− ϕ(J)j,cs

(
z(j)n ,X(j)

n ,θo
)]}

=
1

N

∑N

n=1
ξj

(
z(j)n ,X(j)

n ,θo
){[

ϕ̂
(J)
j,o,−n

(
z(j)n ,X(j)

n

)
− E

[
ϕ̂
(J)
j,o,−n

(
z(j)n ,X(j)

n

)∣∣∣ z(j)n ,X(j)
n

]

+ E
[
ϕ̂
(J)
j,o,−n

(
z(j)n ,X(j)

n

)∣∣∣ z(j)n ,X(j)
n

]
− ϕ(J)j,o

(
z(j)n ,X(j)

n

)]

−
[
ϕ̂
(J)
j,cs,−n

(
z(j)n ,X(j)

n ,θo
)
− E

[
ϕ̂
(J)
j,cs,−n

(
z(j)n ,X(j)

n ,θo
)∣∣∣ z(j)n ,X(j)

n

]

+E
[
ϕ̂
(J)
j,cs,−n

(
z(j)n ,X(j)

n ,θo
)∣∣∣ z(j)n ,X(j)

n

]
− ϕ(J)j,cs

(
z(j)n ,X(j)

n ,θo
)]}

=
1

N

∑N

n=1
ξj

(
z(j)n ,X(j)

n ,θo
){[

ϕ̂
(J)
j,o,−n

(
z(j)n ,X(j)

n

)
− E

[
ϕ̂
(J)
j,o,−n

(
z(j)n ,X(j)

n

)∣∣∣ z(j)n ,X(j)
n

]]

−
[
ϕ̂
(J)
j,cs,−n

(
z(j)n ,X(j)

n ,θo
)
− E

[
ϕ̂
(J)
j,cs,−n

(
z(j)n ,X(j)

n ,θo
)∣∣∣ z(j)n ,X(j)

n

]]}
+O (hs)
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The second, third and fourth equalities follows from adding and substracting terms. The last

equality holds by the fact that

sup(
z
(j)
n ,X

(j)
n

)
∈STr

(z(j),X(j))

∣∣∣E [ ϕ̂(J)j,o,−n

(
z(j)n ,X(j)

n

)∣∣∣ z(j)n ,X(j)
n

]
− ϕ(J)j,o

(
z(j)n ,X(j)

n

)∣∣∣ = O (hs)

sup(
z
(j)
n ,X

(j)
n

)
∈STr

(z(j),X(j))

∣∣∣E [ ϕ̂(J)j,cs,−n

(
z(j)n ,X(j)

n ,θo
)∣∣∣ z(j)n ,X(j)

n

]
− ϕ(J)j,cs

(
z(j)n ,X(j)

n ,θo
)∣∣∣ = O (hs)

Next, to derive ϕ̂(J)j,o,−n

(
z
(j)
n ,X

(j)
n

)
− E

[
ϕ̂
(J)
j,o,−n

(
z
(j)
n ,X

(j)
n

)∣∣∣ z(j)n ,X
(j)
n

]
, we observe that

ϕ̂
(J)
j,o,−n

(
z(j)n ,X(j)

n ,θo
)
− E

[
ϕ̂
(J)
j,o,−n

(
z(j)n ,X(j)

n

)∣∣∣ z(j)n ,X(j)
n

]

= f̂−1j
1

N

∑N

m=1,m6=n
ymjK

(J)
hz

(
z(j)m − z(j)n

)
KhX

(
X(j)

m −X(j)
n

)

− E
[
ϕ̂
(J)
j,o,−n

(
z(j)n ,X(j)

n

)
|z(j)n ,X(j)

n

]

= f−1j
1

N

∑N

m=1,m6=n

(
ymj − ϕ(J)j,o

(
z(j)n ,X(j)

n

))

×K(J)
hz

(
z(j)m − z(j)n

)
KhX

(
X(j)

m −X(j)
n

)
+Ro,1

where the second equality holds by expanding f̂−1j , and in addition Ro,1 collects the higher order

terms from the decomposition of f̂−1j .1 Note that Ro,1 is bounded by the product of

sup(
z
(j)
n ,X

(j)
n

)
∈STr

(z(j),X(j))

∣∣∣E [ ϕ̂(J)j,o

(
z(j)n ,X(j)

n

)∣∣∣ z(j)n ,X(j)
n

]
− ϕ(J)j,o

(
z(j)n ,X(j)

n

)∣∣∣ ,

and

sup(
z
(j)
n ,X

(j)
n

)
∈STr

(z(j),X(j))

∣∣∣f̂j (z(j)n ,X(j)
n

)
− fj

(
z(j)n ,X(j)

n

)∣∣∣ .
1 f̂−1j = f−1j

(
1− f−1j

(
f̂j − fj

)
+ 2f−2j

(
f̂j − fj

)2
+ o

(
f̂j − fj

)2)

13



Since each term is of order Op
(
N−1/4

)
, thus Ro,1 is of order Op

(
N−1/2

)
. Denoting

ψN,o,1 (ωm, ωn) = ξj

(
z(j)n ,X(j)

n ,θo
)

× f−1j
(
ymj − ϕ(J)j,o

(
z(j)n ,X(j)

n

))
K
(J)
hz

(
z(j)m − z(j)n

)
KhX

(
X(j)

m −X(j)
n

)

will give the first term of ψN,1 (ωm, ωn).

In addition, to derive ϕ̂(J)j,cs,−n

(
z
(j)
n ,X

(j)
n ,θo

)
−E

[
ϕ̂
(J)
j,cs,−n

(
z
(j)
n ,X

(j)
n ,θo

)∣∣∣ z(j)n ,X
(j)
n

]
, we ob-

serve that

ϕ̂
(J)
j,cs,−n

(
z(j)n ,X(j)

n ,θo
)
− E

[
ϕ̂
(J)
j,cs,−n

(
z(j)n ,X(j)

n ,θo
)∣∣∣ z(j)n ,X(j)

n

]

= f̂−1j ymjK
(J)
hz

(
z(j)m −

(
−z(j)n − 2θoX(j)

n

))
KhX

(
X(j)

m −X(j)
n

)

− E
[
ϕ̂
(J)
j,cs,−n

(
z(j)n ,X(j)

n ,θo
)
|z(j)n ,X(j)

n

]

= f−1j
1

N

∑N

m=1,m6=n

(
ymj − ϕ(J)j,cs

(
z(j)n ,X(j)

n ,θo
))

×K(J)
hz

(
z(j)m −

(
−z(j)n − 2θoX(j)

n

))
KhX

(
X(j)

m −X(j)
n

)
+Rcs,1

where the second equality holds by the same argument for f̂−1j , and Rcs,1 collects the higher order

terms from the decompostion of f̂−1j , with the order of Op
(
N−1/2

)
, by the same argument as

above. Denoting

ψN,cs,1 (ωm, ωn) = ξj

(
z(j)n ,X(j)

n ,θo
)

× f−1j
(
ymj − ϕ(J)j,cs

)
K
(J)
hz

(
z(j)m −

(
−z(j)n − 2θoX(j)

n

))
KhX

(
X(j)

m −X(j)
n

)

will give the second term of ψN,1 (ωm, ωn).

Combining all the terms gives the desired results. Q.E.D.
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Lemma S.D.8 Under Assumptions E2-E5,

1

N (N − 1)

∑N

m=1

∑N

n=1,n6=m
ψN (ωm, ωn) =

1

N

∑N

m=1
tmj + op

(
N−1/2

)

and

N−1/2
∑N

m=1
tmj →d N (0q,Ωj) ,

where tmj = (υmj,o − υmj,cs) ∂Jξj
(
z
(j)
m ,X

(j)
m ,θo

)
/∂z

(j)
1 · · · ∂z

(j)
J and Ωj = E

[
tmjt

′
mj

]
.

Proof of Lemma S.D.8: We denote Un (ωm, ωn) as the second-order U-statistic and Ûn (ωm, ωn)

as the projection of the second-order U-statistic, which is given by

Un (ωm, ωn) =
1

N (N − 1)

∑N

m=1,m6=n

∑N

n=1
ψN (ωm, ωn)

and

Ûn = E [ψN (ωm, ωn)] +
1

N

∑N

m=1
(rN1 (ωm)− E [ψN (ωm, ωn)])

+
1

N

∑N

n=1
(rN2 (ωn)− E [ψN (ωm, ωn)]) ,

where rN1 (ωm) = E [ψN (ωm, ωn) |ωm] and rN2 (ωn) = E [ψN (ωm, ωn) |ωn]. To apply this to

Lemma S.D.1, we first show that E
[
‖ψN (ωm, ωn)‖2

]
= o(N), which is equivalent to showing that

E
[
‖ψN,o (ωm, ωn)‖2

]
= o(N) and E

[
‖ψN,cs (ωm, ωn)‖2

]
= o(N). Recall that hz = (hN , · · · , hN )′

and hX = (hN , · · · , hN , · · · , hN , · · · , hN )′ in Assumption E4. Denote u
(j)
z = h−1N

(
z
(j)
m − z(j)n

)
and u(j)X = h−1N

[
∧
(
X
(j)
m −X(j)

n

)]
, where ∧ is juxtaposing the consecutive rows of the matrix

next to each other. In addition, define ∧̄ the inverse transformation (stacking the vector into a

matrix) of ∧ . By direct calculation
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E
[
‖ψN,o (ωm, ωn)‖2

]
(S.D.10)

=

∫ ∥∥∥K(J)
hz

(
z(j)m − z(j)n

)
KhX

(
X(j)

m −X(j)
n

)∥∥∥2

×
[
ϕj

(
z(j)m ,X(j)

m

)
+ ϕ2j

(
z(j)n ,X(j)

n

)
− 2ϕj

(
z(j)m ,X(j)

m

)
ϕj

(
z(j)n ,X(j)

n

)]

× fj
(
z(j)m ,X(j)

m

)
fj

(
z(j)n ,X(j)

n

)
f−1j

(
z(j)n ,X(j)

n

)
ξ2j

(
z(j)n ,X(j)

n ,θo
)
dz(j)m dX(j)

m dz(j)n dX(j)
n

=

∫ ∥∥∥K(J)
hz

(
u
(j)
z

)
KhX

(
u
(j)
X

)∥∥∥2

×
[
ϕj

(
z(j)m ,X(j)

m

)
+ ϕ2j

(
z(j)m − u

(j)
z hz,X

(j)
m − ∧̄

(
u
(j)
X hX

))

−2ϕj

(
z(j)m ,X(j)

m

)
ϕj

(
z(j)m − u

(j)
z hz,X

(j)
m − ∧̄

(
u
(j)
X hX

))]

× fj
(
z(j)m ,X(j)

m

)
ξ2j

(
z(j)m − u

(j)
z hz,X

(j)
m − ∧̄

(
u
(j)
X hX

)
,θo
)
dz(j)m dX(j)

m du
(j)
z du

(j)
X

= O
(
h−2J−J−JqN

)
= O

(
N
(
Nh2J+J+rfJqN

)−1)
= o (N) ,

where the first equality in (S.D.10) follows from definitions; the second equality holds using a

change of variables; and the third equality is satisfied by Assumptions E3 and E4. The desired

result then follows from Assumption E4. Similarly, we can show E
[
‖ψN,cs (ωm, ωn)‖2

]
= o(N).

Next we show that the second term in Ûn contributes to the asymptotic linearity and nor-

mality, while the first and third terms are asymptotically negligible. In sum, we show that (i)

E [ψN (ωm, ωn)] = E [rN1 (ωm)] = E [rN2 (ωn)] = o
(
N−1/2

)
, (ii) 1

N

∑N
n=1 (rN2 (ωn)− E [rN2 (ωn)]) =

op
(
N−1/2

)
, and (iii) 1

N

∑N
m=1 (rN1 (ωm)− E [rN1 (ωm)]) = N−1

∑N
m=1 tmj ,whereN

−1/2∑N
m=1 tmj

is N (0q,Ωj).

First, to show Part (i) holds, it is equivalent to show E [ψN,o (ωm, ωn)] = op
(
N−1/2

)
and

E [ψN,cs (ωm, ωn)] = op
(
N−1/2

)
.
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E [ψN,o (ωm, ωn)] = E [E [ψN,o (ωm, ωn) |ωn]]

= E
[
E
[
ξj

(
z(j)n ,X(j)

n ,θo
)(

ymj − ϕj,o
(
z(j)n ,X(j)

n

))

×K(J)
hz

(
z(j)m − z(j)n

)
KhX

(
X(j)

m −X(j)
n

)
× f−1j

(
z(j)n ,X(j)

n

)∣∣∣ωn]]

= E
[∫

ξj

(
z(j)n ,X(j)

n ,θo
)(

ϕj,o

(
z(j)n + u

(j)
z hz,X

(j)
n + ∧̄

(
u
(j)
X hX

))
− ϕj,o

(
z(j)n ,X(j)

n

))

×K(J)
hz

(
u
(j)
z

)
KhX

(
u
(j)
X

)
f−1j

(
z(j)n ,X(j)

n

)

× f−1j

(
z(j)n + u

(j)
z hz,X

(j)
n + ∧̄

(
u
(j)
X hX

))
du

(j)
z du

(j)
X

∣∣∣ωn]

= −E

∫ ξj

(
z(j)n ,X(j)

n ,θo
) ∂ (ϕj,o (z(j)n + u

(j)
z hz,X

(j)
n + ∧̄

(
u
(j)
X hX

))
− ϕj,o

(
z
(j)
n ,X

(j)
n

))
∂u

(j)
z

× Khz

(
u
(j)
z

)
KhX

(
u
(j)
X

)
f−1j

(
z(j)n ,X(j)

n

)∣∣∣ωn]

= O (hsN ) .

In addition, we can show that E [ψN,cs (ωm, ωn)] = E [E [ψN,cs (ωm, ωn) |ωn]] = O (hsN ). Then it

implies that

E [ψN (ωm, ωn)] = E [ψN,o (ωm, ωn)]− E [ψN,cs (ωm, ωn)] = O (hsN ) .
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Second, to show Part (ii) holds, by direct calculation, we have

rN2,o (ωn) = E [ψN,o (ωm, ωn) |ωn] (S.D.11)

= E
[
ξj

(
z(j)n ,X(j)

n ,θo
)(

ymj − ϕj,o
(
z(j)n ,X(j)

n

))

×K(J)
hz

(
z(j)m − z(j)n

)
KhX

(
X(j)

m −X(j)
n

)
f−1j

(
z(j)n ,X(j)

n

)∣∣∣ωn]

= E
[
ξj

(
z(j)n ,X(j)

n ,θo
)(

ϕj,o

(
z(j)m ,X(j)

m

)
− ϕj,o

(
z(j)n ,X(j)

n

))

×K(J)
hz

(
z(j)m − z(j)n

)
KhX

(
X(j)

m −X(j)
n

)
f−1j

(
z(j)n ,X(j)

n

)∣∣∣ωn]

=

∫
ξj

(
z(j)n ,X(j)

n ,θo
) ∂ (ϕj,o (z(j)n + u

(j)
z hz,X

(j)
n + ∧̄

(
u
(j)
X hX

))
− ϕj,o

(
z
(j)
n ,X

(j)
n

))
∂u

(j)
z

×Khz
(
u
(j)
z

)
KhX

(
u
(j)
X

)
f−1j

(
z(j)n ,X(j)

n

)

× fj
(
z(j)n + u

(j)
z hz,X

(j)
n + ∧̄

(
u
(j)
X hX

))
du

(j)
z du

(j)
X

= O (hsN ) = o
(
N−1/2

)
.

The last second equality follows from integration by parts and a Taylor expansion. We therefore

get that 1
N

∑N
n=1 (rN2 (ωn)− E [rN2 (ωn)]) = op

(
N−1/2

)
.
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To show Part (iii), we have

rN1,o (ωm) = E [ψN,o (ωm, ωn) |ωm] (S.D.12)

= E
[
ξj

(
z(j)n ,X(j)

n ,θo
)(

ymj − ϕj,o
(
z(j)n ,X(j)

n

))

×K(J)
hz

(
z(j)m − z(j)n

)
KhX

(
X(j)

m −X(j)
n

)
f−1j

(
z(j)n ,X(j)

n

)∣∣∣ωm]

=

∫
ξj

(
z(j)m − u

(j)
z hz,X

(j)
m − ∧̄

(
u
(j)
X hX

)
,θo
)

×
(
ymj − ϕj,o

(
z(j)m − u

(j)
z hz,X

(j)
m − ∧̄

(
u
(j)
X hX

)))

×K(J)
hz

(
u
(j)
z

)
KhX

(
u
(j)
X

)
duzduX

=

∫ ∂J
(
ξj

(
z
(j)
m − u(j)z hz,X(j)

m − ∧̄
(
u
(j)
X hX

)
,θo
)
ϕj,o

(
z
(j)
m − u(j)z hz,X(j)

m − ∧̄
(
u
(j)
X hX

)))
∂z
(j)
1 · · · ∂z

(j)
J



×Khz
(
u
(j)
z

)
KhX

(
u
(j)
X

)
du

(j)
z du

(j)
X

− ymj
∫ ∂Jξj

(
z
(j)
m − u(j)z hz,X(j)

m − ∧̄
(
u
(j)
X hX

)
,θo
)

∂z
(j)
1 · · · ∂z

(j)
J

Khz

(
u
(j)
z

)
KhX

(
u
(j)
X

)
du

(j)
z du

(j)
X

= ro (ωm) + ςN,o (ωm)
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where

ro (ωm) =

∫ ∂Jξj

(
z
(j)
m ,X

(j)
m ,θo

)
ϕj

(
z
(j)
m ,X

(j)
m

)
∂z
(j)
1 · · · ∂z

(j)
J

Khz

(
u
(j)
z

)
KhX

(
u
(j)
X

)
du

(j)
z du

(j)
X (S.D.13)

− ymj
∫ ∂Jξj

(
z
(j)
m ,X

(j)
m ,θo

)
∂z
(j)
1 · · · ∂z

(j)
J

Khz

(
u
(j)
z

)
KhX

(
u
(j)
X

)
du

(j)
z du

(j)
X

= ξj

(
z(j)m ,X(j)

m ,θo
) ∂Jϕj,o (z(j)m ,X

(j)
m

)
∂z
(j)
1 · · · ∂z

(j)
J

−
(
ymj − ϕj,o

(
z(j)m ,X(j)

m

)) ∂Jξj (z(j)m ,X
(j)
m ,θo

)
∂z
(j)
1 · · · ∂z

(j)
J

and

ςN,o (ωm) =

∫ ∂J
[
ξj

(
z
(j)
m − u(j)z hz,X(j)

m − ∧̄
(
u
(j)
X hX

)
,θo
)
ϕj,o

(
z
(j)
m − u(j)z hz,X(j)

m − ∧̄
(
u
(j)
X hX

))]
∂z
(j)
1 · · · ∂z

(j)
J

(S.D.14)

−
∂J
[
ξj

(
z
(j)
m ,X

(j)
m ,θo

)
ϕj,o

(
z
(j)
m ,X

(j)
m

)]
∂z
(j)
1 · · · ∂z

(j)
J

Khz (u(j)z )KhX (u(j)X ) du(j)z du
(j)
X

− ym,j
∫ ∂Jξj

(
z
(j)
m − u(j)z hz,X(j)

m − ∧̄
(
u
(j)
X hX

)
,θo
)

∂z
(j)
1 · · · ∂z

(j)
J

−
∂Jξj

(
z
(j)
m ,X

(j)
m ,θo

)
∂z
(j)
1 · · · ∂z

(j)
J



×Khz
(
u
(j)
z

)
KhX

(
u
(j)
X

)
du

(j)
z du

(j)
X

Then it follows that
1√
N

∑N

m=1
(rN1,o (ωm)− E [rN1,o (ωm)]) =

1√
N

∑N

m=1
(ro (ωm)− E [ro (ωm)])

+
1√
N

∑N

m=1
(ςN,o (ωm)− E [ςN,o (ωm)]) .

Then the limiting distribution of 1√
N

∑N
m=1 (rN1,o (ωm)− E [rN1,o (ωm)]) is equivalent to the lim-

iting distribution 1√
N

∑N
m=1 (ro (ωm)− E [ro (ωm)]), provided that the second term converges in
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probability to zero. Note that

1√
N

∑N

m=1
(ro (ωm)− E [ro (ωm)]) (S.D.15)

=
1√
N

∑N

m=1

ξj (z(j)m ,X(j)
m ,θo

) ∂Jϕj,o (z(j)m ,X
(j)
m

)
∂z
(j)
1 · · · ∂z

(j)
J

−E

ξj (z(j)m ,X(j)
m ,θo

) ∂Jϕj,o (z(j)m ,X
(j)
m

)
∂z
(j)
1 · · · ∂z

(j)
J



− 1√
N

∑N

m=1

(
ymj − ϕj,o

(
z(j)m ,X(j)

m

)) ∂Jξj (z(j)m ,X
(j)
m ,θo

)
∂z
(j)
1 · · · ∂z

(j)
J

+ E

(ymj − ϕj,o (z(j)m ,X(j)
m

)) ∂Jξj (z(j)m ,X
(j)
m ,θo

)
∂z
(j)
1 · · · ∂z

(j)
J



and

1√
N

∑N

m=1
(rcs (ωm)− E [rcs (ωm)]) (S.D.16)

=
1√
N

∑N

m=1

ξj (z(j)m ,X(j)
m ,θo

) ∂Jϕj,cs (z(j)m ,X
(j)
m ,θo

)
∂z
(j)
1 · · · ∂z

(j)
J

−E

ξj (z(j)m ,X(j)
m ,θo

) ∂Jϕj,cs, (z(j)m ,X
(j)
m ,θo

)
∂z
(j)
1 · · · ∂z

(j)
J



− 1√
N

∑N

m=1

(
ymj − ϕj,cs

(
z(j)m ,X(j)

m ,θo
)) ∂Jξj (z(j)m ,X

(j)
m ,θo

)
∂z
(j)
1 · · · ∂z

(j)
J

+ E

(ymj − ϕj,cs (z(j)m ,X(j)
m ,θo

)) ∂Jξj (z(j)m ,X
(j)
m ,θo

)
∂z
(j)
1 · · · ∂z

(j)
J


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Then
1√
N

∑N

m=1
(r (ωm)− E [r (ωm)])

=
1√
N

∑N

m=1
(ro (ωm)− E [ro (ωm)])− 1√

N

∑N

i=1
(rcs (ωm)− E [rcs (ωm)])

= − 1√
N

∑N

m=1

(
ymj − ϕj,o

(
z(j)m ,X(j)

m

)) ∂Jξj (z(j)m ,X
(j)
m ,θo

)
∂z
(j)
1 · · · ∂z

(j)
J

+
1√
N

∑N

m=1

(
ymj − ϕj,cs

(
z(j)m ,X(j)

m ,θo
)) ∂Jξj (z(j)m ,X

(j)
m ,θo

)
∂z
(j)
1 · · · ∂z

(j)
J

=
1√
N

∑N

m=1
tmj .

The first two terms in equation (S.D.15) cancel out with the first two terms in equation (S.D.16)

by the identification equation. In addition, by Assumption E5 (similar to Assumption 3 in Pow-

ell et al. (1989)), this last term 1√
N

∑N
m=1 (ςN,o (ωm)− E [ςN,o (ωm)]) has second moment, that

is bounded by 4h2J+2Jqz

{
E [(1 + |y|+ ‖z‖)m (z, ·)]2

[∫
‖u‖ |K (u) |du

]2}
= O

(
h2J+2Jqz

)
. So it

will converge to zero in probability. Applying Linderberg-Feller Central Limit Theorem using

Assumption E2 gives the desired results, where Ωj = E
[
tmjt

′
mj

]
. Q.E.D.

Proof of Theorem S.B.3: The limit distribution in Theorem S.B.3 then follows from Lem-

mas S.D.5—S.D.8 and the non-singularity of Hj in Assumption E6 as well as the symmetry of the

indices m and n. Q.E.D.
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