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Abstract

We consider estimation of peer e¤ects in social network models where some network links

are incorrectly measured. We show that if the number of mismeasured links does not grow too

quickly with the sample size, then standard instrumental variables estimators that ignore the

measurement error remain consistent, and standard asymptotic inference methods remain valid.

These results hold even when measurement errors in the links are correlated with regressors, or

with the model errors. Monte Carlo simulations and real data experiments con�rm our results in

�nite samples. These �ndings imply that researchers can ignore small amounts of measurement

errors in networks.

JEL classi�cation: C31, C51

Keywords: Social networks, Peer e¤ects, Misclassi�ed links, Missing links, Mismeasured

network.

1 Introduction

In many social and economic environments, an individual�s behavior or outcome (such as a

consumption choice or a test score) depends not only on his or her own characteristics, but also on

the behavior and characteristics of other individuals. Call such dependence between two individuals

a link, and call individuals with such links friends. A social network consists of a group of linked

individuals. Each individual may have a di¤erent set of friends in the network, and each individual

may assign heterogenous weights to his or her links. The structure of a social network is fully

characterized by a square adjacency matrix, which lists all links (with possibly heterogenous weights)

among the individuals in the network.

Much of the econometric literature on social networks focuses on disentangling and estimat-

ing various social or network e¤ects, based on observed outcomes and characteristics of network

members. These structural parameters include the e¤ects on each individual�s outcome by (i) the

individual�s own characteristics (direct e¤ects) and possibly group characteristics (correlated ef-

fects), (ii) the characteristics of the individual�s friends (contextual e¤ects) and (iii) the outcomes

of the individual�s friends (peer e¤ects). Standard methods of identifying and estimating these
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structural network e¤ect parameters assume that the adjacency matrix of links among individuals

in the sample is perfectly observed.

1.1. Our contribution. We consider the case where network links are misclassi�ed, or generally
measured with errors. Here we provide good news for empirical researchers, by showing that

relatively small amounts of measurement error in the network can be safely ignored in estimation.

More precisely, we show that instrumental variable estimators like Bramoullé, Djebbari and Fortin

(2009), and their standard errors, remain consistent and valid, despite the presence of misclassi�ed,

unreported, or mismeasured links, as long as the number and size of these measurement errors grows

su¢ ciently slowly with the sample size. Moreover, these results hold even when the measurement

errors are correlated with the regressors, or with the model errors. Below in subsection 1.3 we give

examples of applications where measurement errors grow at these slow rates.

It may not be surprising that measurement errors growing at su¢ ciently slow rates are asymp-

totically negligible, but it is also not automatic. slow measurement error rates could still blow

up an estimator if the stochastic order of quadratic terms in the parameter estimator errors isn�t

bounded. What we essentially show is that, in the case of two stage least squares (2SLS) estimators

of network models, minimal and standard regularity conditions su¢ ce to bound these terms.

1.2. Motivation. There are many reasons why network links can be mismeasured in practice.
In some data sets, links are imputed from measures of proximity or similarity of individuals (e.g.,

use of distance as a link in gravity models of trade). Such imputations are generally imperfect.

Mismeasurement may also arise because links that are observed in one context may be irrelevant

for outcomes under study in another. For example, two people who are observed as linked on a

social media platform may be connected there for business or political reasons, but have no e¤ect

on each other�s personal outcomes (or vice versa). Or in a school setting, some reported friends

and not others may be study partners who a¤ect academic performance.

Even in data sets where observed links are directly relevant for observed outcomes, link data

may su¤er from a variety of reporting or recording errors. For example, many surveys limit the

number of links (such as the number of friends) one can report, leading to missing links for popular

individuals. Studies that focus on links within groups, such as within classrooms or villages, may

not report links across these groups, (e.g., friendships with people in other schools). Also, in some

surveys an individual A could claim to be a friend with B, but B does not report being a friend

with A. This leaves the status of their link uncertain.

Yet another potential source of network measurement errors is that the adjacency matrix that

determines peer e¤ects could di¤er from the adjacency matrix that determines contextual e¤ects.

For example, in student achievement, many students may bene�t from a contextual e¤ect like

parent volunteers, while peer e¤ects may come only, or primarily, from a student�s immediate

friends. Typically, only a single adjacency matrix is observed, and used for estimating both peer

and contextual e¤ects. This results in another potential source of network measurement errors.

1.3. Examples. For a sample of n individuals, let H�
n be the matrix of reported links between

these n individuals, and suppose the actual adjacency matrix is G�n. Our asymptotic framework is
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one in which n grows to in�nity. Our main results focus on situations where the sum of network

measurement errors (the di¤erences between H�
n and G

�
n) grows at a rate less than

p
n. Here we list

a range of empirical situations in which network measurement errors would be expected to grow at

these slow rates.

Consider �rst the common modeling environment in which data are collected from many groups

of individuals, like villages or schools. Data are often collected on links within these groups, such

as friendships within class rooms, or kinship relationships within villages. Models using such data

often assume no links between individuals in di¤erent groups, either for theoretical convenience,

or because data are not collected on links between groups. This is equivalent to misclassifying as

zero all links that exist outside of diagonal blocks of G�n. In other words, this means using a block-

diagonal H�
n in place of the actual G

�
n in the data-generating process. The measurement errors will

grow at a rate slower than
p
n if the number of sampled groups grows at rate slower than

p
n, and

the number of links between groups is relatively small.

Another example comes from panel data. Suppose the sample consists of L individuals, each of

which is observed for T time periods, so the sample size is n = LT . For example, the data could

be weekly test scores, for T weeks, by L students in a school. Suppose the friendship network is

only observed occasionally, and is assumed to be �xed between observations of the network. Then

friendships that are created or dissolved between observations of the network will be misreported.

The resulting misclassi�cation rates will be of an order less than
p
n if the number of times the

network is observed is su¢ ciently frequent relative to T , or if L grows su¢ ciently quickly relative

to T .1

A third example is data collection that limits the number of observed non-zero links per row,

such as surveys that limit the number of friends any one person can report. If this maximum

allowable number of reported friends grows moderately with sample size (which is plausible as a

model of survey design), then the resulting misclassi�cation rates will be of order less than
p
n.

A fourth example is ordinary recording errors on surveys. These errors may grow at a slow rate

relative to sample size if quality control in the data collection increases the bigger (and hence the

more expensive) the survey design is.

More generally, as long as the number and size of measurement errors in an observed adjacency

matrix is relatively small, asymptotics that assume these measurement errors grow slowly with n

should provide a good approximation for inference.

1.4. The Model. With a sample size n, let Yn = (y1; :::; yn)
0 2 Rn be a vector of individual

outcomes, let � = (1; :::; 1)0 and �n = ("1; :::; "n)
0 be n-dimensional column vectors, and let Xn

= (x1; :::; xn)
0 be an n-by-K matrix that consists of n vectors of exogenous regressors xi 2 RK

for i � n. Let G�n and C�n be n-by-n adjacency matrices that list the actual links for peer e¤ects

1Our base case analysis assumes i.i.d. errors, which is restrictive for panel data. However, our results readily

generalize to allow some degree of error dependence in the usual way, since the estimator takes the form of linear

two-stage least squares.
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and contextual e¤ects respectively.2 Let G�ij (C
�
ij) denote the element in row i and column j of

G�n (C
�
n). We have G

�
ij > 0 if i and j are linked for peer e¤ects and G

�
ij = 0 otherwise. Similarly,

C�ij > 0 if i and j are linked for contextual e¤ects and C�ij = 0 otherwise. For each individual

i, let G�ii = 0 and C�ii = 0 by convention in the literature. Note that G�ij can be binary (with

G�ij 2 f0; 1g indicating the absence or presence of a link), or continuous and non-negative with
G�ij 2 R+ signifying the strength of the link. The same applies for C�n. Throughout the paper, we
maintain that mini

Pn
j=1G

�
ij > 0 and mini

Pn
j=1C

�
ij > 0 with probability one. This means there

are no isolated individuals in the network, or equivalently no rows of zeros in G�n or C
�
n, almost

surely. This condition is standard in the literature.

We assume a linear social network model:

Yn = �0�+ �0GnYn +Xn�0 + CnXn
0 + �n, (1)

where Gn and Cn can be either the original adjacency matrices G�n and C
�
n, or normalized versions

of G�n and C
�
n. For example, a row-normalized Gn is de�ned by Gij = G�ij=

�Pn
j0=1G

�
ij0

�
. Row

normalization is common; we will show our results hold with or without such normalization.

The parameters in equation (1) are as follows: �0 2 R is a scalar peer e¤ect, �0 2 RK is a vector
of direct e¤ects, 
0 2 RK is a vector of contextual e¤ects, and �0 2 R is the structural intercept.
If individuals are divided into groups (such as villages or classrooms), then what are known as

correlated e¤ects are group-level �xed e¤ects, i.e., elements of �0 where the corresponding element

of Xn is a group membership indicator.

Our goal is estimation of �0 � (�0; �0; �00; 
00)0. If Yn, Xn, G�n and C�n (and hence Gn and Cn)
were perfectly observed, the structural model would take the form of a linear regression of Yn on a

constant and the sets of regressors GnYn, Xn, and CnXn. However, even if Xi is uncorrelated with

"j for all i and j, making Xn and CnXn strictly exogenous, this regression could not be consistently

estimated by ordinary least squares, because of the endogeneity of GnYn. Instead, one can use an

instrument-based, 2SLS estimator using friends of friends of i to construct instruments for GnYn
(see, e.g., Lee (2007) and Bramoullé, Djebbari and Fortin (2009)). For example, G2nXn can be

instruments for GnYn. To implement this 2SLS estimator, one is assumed to have perfect measures

of G�n and C
�
n so that the regressors GnYn and CnXn, and instruments such as G

2
nXn, can all be

constructed without errors.

1.5. Estimation with misclassi�ed links.
Instead of observing Yn, Xn, and the true adjacency matrices G�n and C

�
n, we assume that what

is observed is Yn, Xn, and a single mismeasured adjacency matrix H�
n. The di¤erences H

�
n�G�n and

H�
n � C�n are measurement errors in links. Our analysis will assume G�n and C�n are very similar,

so that a single mismeasured H�
n can approximate both.

3 We could instead allow G�n and C
�
n

2Most studies assume a single adjacency matrix, i.e., G�n = C
�
n, since only a single matrix is usually observed in

practice. We allow G�n and C
�
n to di¤er, but require the di¤erences be quite small, unless two di¤erent matrices can

be observed in practice. See, e.g., Blume, et al. (2015).
3 In particular, we will assume that measurement errors H�

n �G�n and H�
n �C�n both grow a slow rate relative to
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to be completely di¤erent, by assuming that two di¤erent adjacency matrices are observed, one a

mismeasured version of G�n and the other a mismeasure of C
�
n. We do not do so to save on notation,

and because it is extremely rare in practice to observe two di¤erent adjacency matrices, where one

is known to measure peer e¤ects and the other is known to measure contextual e¤ects.

Like G�n and C
�
n, the matrix H

�
n by convention has zeros on the diagonal. When G

�
n;ij equals

zero or one, misclassi�cation of that link corresponds to H�
ij = 1�G�ij , and similarly for C�ij . More

generally, a measurement error in a link occurs whenever H�
ij 6= G�ij or H�

ij 6= C�ij . The di¤erences
H�
n � G�n and H�

n � C�n summarize the measurement errors in the network. These measurement
errors can be any combination of misclassi�ed links or incorrectly weighted links.

We investigate the asymptotic properties of 2SLS estimation of (1) when the mismeasured

adjacency matrix H�
n is observed instead of the true unknown matrices G

�
n and C

�
n. So instead of

a 2SLS regression of Yn on GnYn, Xn, and CnXn, using as instruments G2nXn, Xn, and CnXn,

we consider 2SLS regression of Yn on HnYn, Xn, and HnXn, using as instruments H2
nXn, Xn, and

HnXn. Note this means that both some regressors and some instruments are mismeasured, and

that the measurement errors in regressors and instruments are correlated. Moreover, we do not

impose any of the uncorrelatedness or conditional independence conditions on measurement errors

that are usually assumed in measurement error models. For example, we allow the measurement

errors H�
n �G�n and H�

n � C�n to be arbitrarily correlated with Xn, Yn, and �n.
We �nd that if the magnitude of measurement errors grows at a rate slower than

p
n, then

the 2SLS estimator remains
p
n-consistent and asymptotically normal, and the usual formulas

for inference and standard errors remain valid. As a result, under these conditions researchers can

safely ignore the presence of misclassi�ed or mismeasured links, because the estimator and inference

based on H�
n instead of G

�
n and C

�
n remains consistent and valid.

We also �nd that if the magnitude of measurement errors in the observed adjacency matrix

grows at a rate faster than
p
n but slower than n, then the 2SLS estimator is still consistent.

However, in this case the rate of convergence of the coe¢ cients is less than
p
n (due to a bias term

that shrinks at a slower rate than
p
n), so the usual standard error formulas would no longer apply.

1.6 Outline. The next section is a short literature review. This is followed by our formal model.
We then present our results for 2SLS estimation of mismeasured networks. This is followed by some

simulation results and an empirical illustration. Proofs are in the appendix.

2 Literature Review

Typical social network models may allow an individual�s outcome to depend on his or her

own characteristics, contextual in�uences from peers� characteristics, and peer e¤ects from peer

outcomes. The traditional linear-in-means model (which assumes everyone is linked with everyone

else equally, either within groups or in the whole network) su¤ers from the �re�ection problem�as

n, which requires that the di¤erence G�n �C�n also grows at a slow rate, and so requires that the di¤erences between
these true matrices be small.
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pointed out by Manski (1993). This identi�cation problem can be overcome in models with more

complicated social interaction structures. Lee (2007) uses conditional maximum likelihood and

instrumental variable methods to estimate peer and contextual e¤ects in a spatial autoregressive

social interaction model, assuming links are perfectly observed in the data. Bramoullé, Djebbari

and Fortin (2009) and Lin (2010) provide speci�c conditions on observed network structure in

order to identify peer e¤ects in social interaction models, using characteristics of friends of friends

as instruments.

Given results like these, the model described in the introduction has been widely used to estimate

peer e¤ects in a variety of settings (usually assuming either C�n = G
�
n or C

�
n = 0, though see Blume

et. al. 2015). Examples are studies of peer in�uence on students�academic performance, sport and

club activities, and delinquent behaviors (Hauser et al., 2009; Calvó-Armengol et al., 2009; Lin,

2010; Lee et al., 2010; Liu et al., 2014; Boucher et al., 2014; Patacchini and Zenou, 2012). These

models all assume that the network structure is correctly measured in the data.

Regarding selection and comparison of adjacency matrices, LeSage and Pace (2009) use the

Bayesian posterior distribution to choose among models with di¤erent adjacency matrices. Em-

pirical research may also report estimates using di¤erent link weights as robustness checks. These

practices are feasible in, e.g., spatial econometric models, where link weights are assumed to be a

function of observable geographic information, as in gravity models of trade. Errors in construct-

ing such links would �t in our framework. There is also a small literature on identi�cation and

estimation of peer e¤ects when networks are unobserved. Examples include de Paula et al. (2018)

and Lewbel et al. (2021).

The issue of potentially misclassi�ed links is acknowledged and discussed in Patacchini and

Venanzoni (2014), Liu et al. (2014), and Lin (2015) among others. But these papers do not provide

a formal analysis of the asymptotic impact of mismeasured links on the performance of standard

estimators. Gri¢ th (2021) studied the impact on inference when misclassi�cation in the adjacency

matrix occurs because of binding caps on the number of self-reported links. Our results �ll a void

in the literature by analyzing how ignoring small amounts of general measurement errors in the

adjacency matrix a¤ects the consistency of standard estimators and the validity of inference.4

4Referring to potential omission of friends, Patacchini and Venanzoni (2014) say that, �in the large majority of

cases (more than 94%), students tend to nominate best friends who are students in the same school and thus are

systematically included in the network (and in the neighborhood patterns of social interactions)�. Liu et al. (2014)

report that �less than 1% of the students in our sample show a list of ten best friends, less than 3% a list of �ve

males and roughly 4% a list of �ve females. On average, they declare that they have 4.35 friends with a small

dispersion around this mean value (standard deviation equal to 1.41), and in the large majority of cases (more than

90%) the nominated best friends are in the same school.�Lin (2015) says, �this nomination constraint only a¤ects

a small portion of our sample, as less than 10% of the sample have listed �ve male or female friends. Therefore,

this restriction should not have a signi�cant impact on the results.�This last speculation is precisely what our �rst

set of results establishes: that consistency of estimates will not be e¤ected if the number of omitted (and hence

misclassi�ed) links is su¢ ciently small.
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3 2SLS Estimation With Mismeasured Links

In this section we derive asymptotic properties of the 2SLS estimator for the model in (1) when

the mismeasured adjacency matrix H�
n is used in place of the actual, unknown G

�
n and C

�
n. This

means the regressors GnYn, CnXn and instruments G2nXn are replaced by HnYn, HnXn and H
2
nXn

in the estimator.

Write equation (1) as

Yn = Rn�0 + �n = eRn�0 +e�n;
where Rn � (�; GnYn; Xn; CnXn) is the true matrix of regressors, eRn � (�;HnYn; Xn;HnXn) is its
observed proxy, �0 is the true value of �, and e�n � �n � �0�1nYn ��2nXn
0.

Let eVn � (�;H2
nXn; Xn;HnXn) denote an n-by-(3K + 1) matrix of instruments. This eVn is an

observable proxy for the unobservable desired instrument matrix Vn � (�; G2nXn; Xn; CnXn). The
2SLS estimator is: b� = h eR0n eVn(eV 0n eVn)�1 eV 0n eRni�1 eR0n eVn(eV 0n eVn)�1 eV 0nYn. (2)

We show that this estimator is consistent when the measurement errors in the adjacency matrices

are small in the following sense.

Assumption 1
P
i

P
j E
����H�

ij �G�ij
���� = O(ns) and

P
i

P
j E
����H�

ij � C�ij
���� = O(ns) for some

s < 1.

Assumption 1 requires the expected sum of absolute measurement errors in G�n and C
�
n increase

at a rate slower than the sample size n. This condition holds, for example, if mismeasurement

occurs only for a subset of individuals of order O(ns) with s < 1, and if the magnitude and expected

number of mismeasured links for each individual in the subset is bounded. See the introduction for

more examples under a variety of contexts.

As discussed earlier, this assumption implies that the sum of the absolute di¤erences between

G�n and C
�
n also increases at a rate slower than n. We can eliminate this constraint if there are

two di¤erent H�
n matrices reported in the sample, with one being a mismeasurement of G

�
n and the

other a mismeasurement of C�n. However, this is very rarely the case in practice.

Denote Sn � In � �0Gn. When Sn is non-singular, the reduced form for outcomes is:

Yn = S
�1
n (�0�+Xn�0 + CnXn
0 + �n).

We maintain the following regularity conditions.

Assumption 2 (i) �n is independent from Xn; individual errors "i are independent across i, with

E("i) = 0 and there exists a constant M0 <1 such that Prfsupi�nE(j"ij j Hn) �M0g = 1 for all
n. (ii) G�n and C

�
n are sequences of pre-determined, non-stochastic matrices, and Sn is non-singular

for all n. The sequences fG�ng, fC�ng, and fS�1n g are uniformly bounded in both row and column
sums. The row and column sums in the sequence fH�

ng is uniformly bounded in probability. (iii)
The elements of Xn are uniformly bounded for all n; and V 0nVn=n converges in probability to a

non-singular matrix as n!1.
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Part (i) of Assumption 2 states that Xn are exogenous. Notice that we do not impose exogeneity

of H�
n, i.e., the measurement errors H

�
n �G�n and H�

n �C�n can be correlated with both �n and Xn.
This is in sharp contrast to most measurement error models, which typically require measurement

errors to be independent of some observed or unobserved variables for point identi�cation and

estimation. Part (ii) requires the row and column sums of G�n and H
�
n to be uniformly bounded,

and that the reduced form of outcomes is well-de�ned. Invertibility of Sn holds if
P
j j�Gij j < 1

for all i. In the special case of non-negative elements and row-normalization in G�n, j�j < 1 is

su¢ cient for non-singular Sn. Part (iii) requires the matrix of actual instruments to have full

column rank. All these assumptions regarding the true adjacency matrices are standard for linear

social interactions models.

Proposition 1 Under Assumptions 1 and 2,

b� � �0 = Op(n�1=2 _ ns�1).
This proposition holds because we can establish the following relationship between the mismea-

sured proxies and their actual counterparts:

b� � �0 =

24 eR0n eVn
n

 eV 0n eVn
n

!�1 eV 0n eRn
n

35�1 eR0n eVn
n

 eV 0n eVn
n

!�1 eV 0ne�n
n

(3)

=

"
R0nVn
n

�
V 0nVn
n

��1 V 0nRn
n

#�1
R0nVn
n

�
V 0nVn
n

��1 V 0n�n
n

+Op(n
s�1).

Under regularity conditions in Assumption 2, (R0nVn)=n and (V
0
nVn)=n both converge in probability

to constant matrices with full rank (2K+2). Under exogeneity of Xn, the term V 0n�n=n is Op(n
�1=2)

by Chebyshev�s Inequality. Combining these results, we conclude that the estimation errors in (3)

is Op(n�1=2_ns�1). Thus the 2SLS estimator using H2
nXn as an instruments for HnYn is consistent

when s < 1.

It follows from this proposition that with s < 1 the 2SLS estimator b� using instruments H2
nXn

is consistent. Furthermore, if s < 1=2, the e¤ect of measurement errors vanishes fast enough so that

it does not a¤ect the
p
n-rate of convergence or the asymptotic distribution of the 2SLS estimator.

That is, we have

Proposition 2 Under Assumptions 1 and 2, if s < 1=2 then

p
n(b� � �0) d! N(0;
),

where 
 is the asymptotic variance of the 2SLS estimator using the actual adjacency matrix Gn; and


 can be consistently estimated by bA�1 bB bA�1, where bA � 1
n
eR0nP ~V ;n eRn and B̂ � 1

n
eR0nP ~V ;nb�nP ~V ;n eRn,

with P ~V ;n � eVn �eV 0n eVn��1 eV 0n and b�n being a diagonal n-by-n matrix whose i-th diagonal entry is
the square of the i-th residual in Yn � eRnb�.
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As noted in the introduction, even slowly growing measurement errors could asymptotically

corrupt b� if the stochastic order of quadratic terms in b�� �0 isn�t bounded. The closed form of the

2SLS estimator plays a key role in deriving our results. In our proofs, this closed form allows us to

use Cauchy-Schwartz inequalities to bound the stochastic order of these errors. Key conditions we

use for this are boundedness of S�1n and Xn. Without those, the estimation errors might not obey

the stochastic orders we derive.

4 Simulations

We investigate the performance of the 2SLS estimator with mismeasured links using simulated

data. The structural equation in our data-generating process (DGP) is (1) where Xn consists of

two regressors: the �rst is independently drawn from f�1; 1; 2g with equal probability, and the
second is from N(0; 1). The error terms "i are i.i.d. from N(0; 1). Links in G�n are independent

draws from a Bernoulli distribution with success probability pn = �=n for some constant � < 1.
By this construction, the expected number of friends for each individual is equal to �. Let Gn be

a row-normalization of G�n and C
�
n = G

�
n.

We generate misclassi�ed links using H�
ij = G�ij � e1i + (1 � G�ij) � e2i for i 6= j; where e1i

and e2i are Bernoulli random variables with success probabilities 1 � �1i and �2i respectively.
Therefore, �1i is the misclassi�cation probability that H�

ij = 0 when the true G
�
ij = 1, and �2i is the

misclassi�cation probability that H�
ij = 1 when G

�
ij = 0. We set �1i = �in

s�1 and �2i = 100�in
s�2;

where �i = (
Pn
j=1G

�
ij=�+j"ij)=3. For each individual i, the probability of misclassi�cation increases

in the number of individual i�s friends
Pn
j=1G

�
ij , and in the magnitude of i�s unobserved error

j"ij. This construction makes the measurement errors both endogenous (correlated with the model
errors) and correlated with the actual row-normalized Gn.

We set the model parameters to be � = 1; � = 0:4; � = (1:5; 2)0 and 
 = (0:9; 0:6)0; choose

� = 20; and experiment with the rates in measurement errors s = 0:1; 0:3; 0:5; and 0:7. We

experiment with sample sizes n = 200; 500; and 1000. For each value of s and n, we simulate

T = 200 samples and calculate the mean squared error, the bias, the sample standard deviation,

and the asymptotic standard error of the estimator. We also report the total number of misclassi�ed

links based on the average over T = 200 simulated samples.

Results are summarized in Table 1. We observe several patterns:

1. The 2SLS estimates of all parameters appear to converge at
p
n rate. The mean-squared

errors decrease appropriately as the sample size increases.

2. Consistent with our asymptotic theory, the 2SLS estimator using the misclassi�ed adjacency

matrix Hn works almost as well as its infeasible analog based on the actual Gn when the measure-

ment error rate is s < 0:5. This suggests that the sample sizes we consider are large enough for the

asymptotic approximations to apply. Note that with our data generating process, the estimates in

Table 1 where s < 0:5 have error rates where the expected number of misclassi�ed links is less than

n.
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3. The average standard errors do a good job of estimating the standard deviations for all

values of s. This is as expected, because the problem with inference for larger values of s is that

the bias in the estimator shrinks at rate ns�1. Similarly, with s � 0:5, the parameter estimates

deteriorate primarily due to bias rather than variance.

4. With both the true and mismeasured adjacency matrices, the mean-squared errors are much

smaller for the direct e¤ects � than for the peer and contextual e¤ects � and 
, and the mean

squared errors are much lower for the discrete regressor e¤ects �1 and 
1 than for the continuous

regressor e¤ects �2 and 
2
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Table 1. 2SLS Estimators with Misclassi�ed Links
n = 200 n = 500 n = 1000

m.s.e. bias std a.s.e. m.s.e. bias std a.s.e. m.s.e. bias std a.s.e.

True Mis.# 0 0 0

� 3.880 -0.114 1.971 2.197 1.519 0.031 1.235 1.310 0.762 0.065 0.873 0.887

� 0.336 0.025 0.581 0.654 0.131 -0.010 0.362 0.386 0.068 -0.019 0.260 0.264

�1 0.003 0.005 0.058 0.058 0.001 -0.003 0.036 0.036 0.001 -0.000 0.027 0.026

�2 0.005 0.008 0.072 0.073 0.002 0.001 0.048 0.045 0.001 -0.000 0.032 0.032


1 0.802 -0.029 0.898 1.006 0.301 0.019 0.549 0.597 0.165 0.030 0.406 0.410


2 1.571 -0.040 1.256 1.348 0.561 0.020 0.750 0.796 0.278 0.032 0.528 0.545

s = 0:1 Mis.# 66 81 88

� 4.100 -0.058 2.029 2.254 1.576 0.033 1.258 1.325 0.780 0.070 0.883 0.894

� 0.365 0.008 0.605 0.672 0.135 0.010 0.368 0.391 0.070 -0.020 0.263 0.266

�1 0.003 0.004 0.058 0.058 0.001 -0.003 0.036 0.036 0.001 -0.000 0.027 0.026

�2 0.005 0.008 0.072 0.073 0.002 0.001 0.048 0.045 0.001 -0.000 0.032 0.032


1 0.877 -0.015 0.938 1.033 0.307 0.015 0.556 0.604 0.168 0.030 0.410 0.413


2 1.610 -0.012 1.272 1.382 0.574 0.019 0.760 0.805 0.284 0.033 0.533 0.549

s = 0:3 Mis.# 193 278 351

� 4.599 0.058 2.149 2.388 1.678 0.014 1.2985 1.367 0.833 0.083 0.911 0.912

� 0.405 -0.023 0.638 0.712 0.144 -0.002 0.380 0.403 0.074 -0.023 0.271 0.272

�1 0.004 0.003 0.059 0.059 0.001 -0.003 0.035 0.037 0.001 -0.000 0.027 0.026

�2 0.005 0.009 0.073 0.074 0.002 0.001 0.048 0.046 0.001 -0.000 0.032 0.032


1 0.949 0.018 0.977 1.094 0.334 -0.005 0.579 0.622 0.179 0.031 0.423 0.421


2 1.756 0.041 1.328 1.461 0.598 -0.005 0.775 0.830 0.305 0.035 0.552 0.560

s = 0:5 Mis.# 556 968 1401

� 5.620 0.136 2.373 2.773 1.995 0.0670 1.414 1.519 1.060 0.133 1.023 0.982

� 0.498 -0.032 0.706 0.828 0.172 -0.012 0.416 0.449 0.093 -0.035 0.303 0.293

�1 0.004 0.001 0.062 0.060 0.001 -0.003 0.036 0.037 0.001 -0.000 0.028 0.026

�2 0.005 0.011 0.073 0.075 0.002 0.001 0.049 0.046 0.001 -0.000 0.033 0.032


1 1.174 -0.022 1.086 1.272 0.408 -0.015 0.640 0.691 0.218 0.032 0.467 0.453


2 2.157 0.021 1.472 1.691 0.732 -0.021 0.857 0.921 0.376 0.041 0.614 0.602

s = 0:7 Mis.# 1605 3346 5572

� 17.93 0.433 4.223 4.212 4.581 0.253 2.131 2.075 1.812 0.157 1.340 1.291

� 1.549 -0.095 1.244 1.252 0.395 -0.0470 0.628 0.613 0.158 -0.025 0.398 0.385

�1 0.004 0.002 0.066 0.064 0.002 -0.004 0.038 0.039 0.001 -0.001 0.028 0.027

�2 0.006 0.009 0.076 0.081 0.003 -0.001 0.052 0.048 0.001 0.001 0.033 0.033


1 3.643 -0.050 1.913 1.898 0.894 -0.058 0.946 0.934 0.374 -0.069 0.610 0.589


2 6.452 0.011 2.547 2.533 1.545 -0.047 1.245 1.250 0.649 -0.056 0.806 0.786

Note: m.s.e (mean squared error), bias, std (standard deviation) are calculated using the empirical

distribution of 200 estimates. �a.s.e.� is the average of standard errors in 200 samples.
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5 Application

Lin and Lee (2010) model teenage pregnancy rates, using the model

Teeni = �
Pn
j=1GijTeenj + �+ Edui�1 + Incoi�2 + FHHi�3 +Blacki�4 + Phyi�5 + "i;

where Teeni is the teenage pregnancy rate in county i, which is the percentage of pregnancies

occurring to females 12-17 years old, and Gij is the row-normalized entry of the original link

matrix G�n, where G
�
ij = 1 if counties i and j are neighboring counties. Edui is the education

service expenditure (in units of $100), Incoi is median household income (divided by 1000), FHHi
is the percentage of female-headed households, Blacki is the proportion of black population and

Phyi is the number of physicians per 1000 population, all in county i.5

The sample size is n = 761. Among all the 761 � 760 = 578; 360 entries (diagonal are zero) in
the original network G�n, there are 4; 606 non-zero links. We treat the adjacency matrix they report

as the true network, arti�cially introduce misclassi�ed links, and then evaluate how this a¤ect the

2SLS estimates. We generate misclassi�ed links using H�
ij = G�ij � e1i + (1 � G�ij) � e2i, where e1i

and e2i are binary variables with probabilities �1i = �in
s�1 and �2i = 100�in

s�2 of equaling 1. We

set �i = (yi=y)
2; so for each individual i misclassi�cation is more likely to happen the larger is the

magnitude of the observed outcome yi.

We report 2SLS estimates using HnXn and H2
nXn as instruments. Unlike our structural model,

Lin and Lee (2010) assume contextual e¤ects (the 
 coe¢ cients) are zero, so GnXn does not appear

as regressors. It would therefore have been possible to just use HnXn as instruments for estimation.

Nonetheless, to illustrate our proposition, we use both HnXn and H2
nXn as instruments here.

Table 2 reports results based on 1000 Monte Carlo replications for each value of s. Results are

reported where the model is estimated both with and without row normalization.

Consistent with our propositions, when the misclassi�cation rate is low (s < 0:5), the 2SLS

parameter and standard error estimates using the mis-measured Hn are very similar to those based

on Gn. The same is true for estimation based on matrices H�
n and G

�
n that are not row-normalized.

When s increases, the bias and inaccuracy of the estimators increases, as expected. In particular,

the parameter estimates (especially �) become quite biased when s � 0:5 (which, by our theory, is
when bias shrinks at a slower rate than variance).

5The data are collected from 761 counties in Colorado, Iowa, Kansas, Minnesota, Missouri, Montana, Nebraska,

North Dakota, South Dakota, and Wyoming. Data details are in Lin and Lee (2010).
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Table 2. Estimation Results with Di¤erent Misclassi�cation Rates

� � 100�1 �2 �3 �4 �5 Mis. #

Row-normalized adjacency matrices Gij = G�ij=
�P

j G
�
ij

�
and Hij = H�

ij=
�P

j H
�
ij

�
True 0.4813 6.1911 -0.9824 -0.1871 0.7347 0.1267 -0.4956 0

(0.079) (1.469) (0.651) (0.040) (0.063) (0.057) (0.188)

s = 0:1 0.4897 6.1085 -0.9910 -0.1878 0.7355 0.1289 -0.4980 111

(0.081) (1.480) (0.651) (0.040) (0.063) (0.057) (0.188)

s = 0:3 0.5132 5.8759 -1.0086 -0.1895 0.7375 0.1341 -0.5049 418

(0.085) (1.512) (0.652) (0.040) (0.063) (0.057) (0.188)

s = 0:5 0.6017 4.9578 -1.0542 -0.1943 0.7422 0.1465 -0.5227 1578

(0.099) (1.626) (0.654) (0.040) (0.063) (0.057) (0.189)

s = 0:7 0.8138 2.7629 -1.1726 -0.2092 0.7589 0.1683 -0.5535 5948

(0.139) (1.985) (0.660) (0.040) (0.064) (0.057) (0.191)

Original adjacency matrices G�ij and H
�
ij without normalization

True 0.0239 10.840 -1.5244 -0.2348 0.8151 0.2061 -0.5731 0

(0.009) (1.261) (0.669) (0.041) (0.064) (0.058) (0.194)

s = 0:1 0.0275 10.491 -1.5290 -0.2317 0.8087 0.2069 -0.5658 111

(0.009) (1.248) (0.666) (0.040) (0.064) (0.057) (0.193)

s = 0:3 0.0356 9.6492 -1.5361 -0.2239 0.7916 0.2079 -0.5463 418

(0.008) (1.216) (0.659) (0.040) (0.063) (0.057) (0.191)

s = 0:5 0.0486 7.5887 -1.5473 -0.2039 0.7351 0.2058 -0.4813 1578

(0.005) (1.130) (0.633) (0.038) (0.061) (0.055) (0.184)

s = 0:7 0.0442 4.9575 -1.5211 -0.1749 0.6170 0.1858 -0.3396 5948

(0.003) (0.984) (0.571) (0.034) (0.055) (0.049) (0.166)

Note: The table reports average estimates and average standard errors (in parentheses)

from 1000 simulated samples.

6 Conclusions

We show that in 2SLS estimation of linear social network models, measurement errors in the

network can be safely ignored by the researcher if the number and magnitude of measurement errors

in the adjacency matrix grows su¢ ciently slowly with the sample size. Moreover, these results hold

even if the measurement errors are correlated with model errors, covariates, and outcomes. A useful

agenda for future work would be to see if similar results can be obtained for more general network

models.
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Appendix

For a generic matrix A, let A(i), A[k] denote its i-th row and k-th column respectively; and Aij
denote its (i; j)-th component, so that A(i)� is the sum of the i-th row in A. Let ��1n � H�

n � G�n
and ��2n � H�

n � C�n with H�
ii = 0 by construction. With row normalization,

�1n � Hn �Gn = diag
��

1
G�
(1)
� ; :::;

1
G�
(n)
�

��
��1n + diag

��
1

H�
(1)
� �

1
G�
(1)
� ; :::;

1
H�
(n)
� �

1
G�
(n)
�

��
H�
n.

Similarly for �2n. The following two lemmas are useful for the proofs.

Lemma A1. Let an, bn be random vectors in Rn. Let the matrix �n be either�1n or�2n. Suppose
there exist constants M1;M2 <1 such that Prfsupi�n jaij �M1g = 1 and Prfsupj�nE (jbj jj�n) �
M2g = 1 for all n. Then 1

na
0
n�nbn = Op(n

s�1) and 1
na

0
n�

�
nbn = Op(n

s�1) under Assumption 1.

Proof of Lemma A1. The following proof uses �n = �1n (and ��n = �
�
1n) as an example. Similarly

for �n = �2n. From the triangle inequality

E
�P

i

P
j j�ij j

�
= E

 P
i

P
j

����� 1
G�
(i)
��

�
ij +

�
G�
(i)
�H�

(i)

�
��

G�
(i)
�
��
H�
(i)
�
�H�

ij

�����
!

� E

"P
i

P
j

 
1

G�
(i)
�

����ij��+ 1�
G�
(i)
�
��
H�
(i)
�
� ����G�(i) �H�

(i)

�
�
����H�

ij

!#

� E

�P
i

�
1

G�
(i)
�

P
j

����ij��+ 1
G�
(i)
�

P
j

����ij���� = O(ns),
Furthermore,

E
�
j 1na

0
n�nbnj

�
� 1

nE
h
supi;j E (jaibj jj�n) �

�P
i

P
j j�ij j

�i
= O(ns�1).

Similar arguments can be applied to show 1
na

0
n�

�
nbn = Op(n

s�1). �

Lemma A2. Under Assumption 2, supi�n jViqj = O(1) and supi�n V
2
iq = O(1) for q = 1; :::;K,

and there exists constant M� <1 such that PrfsupiE(jyijj�n) �M�g = 1 for all n.

Proof of Lemma A2. Note

sup
i�n

�h
G2(i)X[q]

i2�
�
�
sup
i�n

P
k jGikj

�2 
sup
k�n

P
j jGkj j

!2 
sup
j�n

x2jq

!
= O(1).

It follows that supi V
2
iq = O(1). By Liapounov�s Inequality, supi V

2
iq = O(1) implies supi jViqj = O(1)

for all q = 1; :::;K.

It then follows from reduced form for Yn that

sup
i
E(jyijj�n) = sup

i
E
����Pj(S

�1
n )ij

�
�0 + x

0
j�0 +

P
k Cjkx

0
k
0 + "j

��������n�
� sup

i

hP
j(S

�1
n )ij

i
� sup

j
E
�
j�0j+ jx0j�0j+

P
k jCjkj � jx

0
k
0j+ j"j j

���n� :
14



Hence, there exists some constant M� <1 with PrfsupiE(jyijj�n) �M�g = 1. �

Proof of Proposition 1 . Recall

b� � �0 =
24 eR0n eVn

n

 eV 0n eVn
n

!�1 eV 0n eRn
n

35�1 eR0n eVn
n

 eV 0n eVn
n

!�1 eV 0ne�n
n

(4)

where

1

n
eV 0n eRn =

1

n
V 0nRn +

1

n
V 0n(0;�1nYn; 0;�2nXn)

+
1

n
(0; (Gn�1n +�1nGn +�

2
1n)Xn; 0;�2nXn)

0Rn

+
1

n
(0; (Gn�1n +�1nGn +�

2
1n)Xn; 0;�2nXn)

0(0;�1nYn; 0;�2nXn):

1

n
eV 0n eVn =

1

n
V 0nVn +

1

n
V 0n(0; (Gn�1n +�1nGn +�

2
1n)Xn; 0;�2nXn)

+
1

n
(0; (Gn�1n +�1nGn +�

2
1n)Xn; 0;�2nXn)

0Vn

+
1

n
(0; (Gn�1n +�1nGn +�

2
1n)Xn; 0;�2nXn)

0(0; (Gn�1n +�1nGn +�
2
1n)Xn; 0;�2nXn)

1

n
eV 0ne�n =

1

n
V 0n�n �

1

n
�0V

0
n�1nYn �

1

n
V 0n�2nXn
0 (5)

+
1

n
(0; (Gn�1n +�1nGn +�

2
1n)Xn; 0;�2nXn)

0(�n � �0�1nYn ��2nXn
0):

Due to Assumption 2 and Lemma A2, supi ViV
0
i = O(1): Lemma A2 also suggests that Vn

and Xn
0 satisfy the dominance conditions on the vectors an; Yn and �n satisfy the dominance

conditions bn in Lemma A1. The second to the fourth terms on the RHS of (5) can all be expressed

as 1
na

0
n�nbn in Lemma A1, and hence are Op(n

s�1). Because 1
nV

0
n�n = Op(n

�1=2), it then follows

that 1
n
eV 0ne�n = Op(n�1=2 _ ns�1).

Proof of Proposition 2. As

p
n(b� � �0) = "R0nVn

n

�
V 0nVn
n

��1 V 0nRn
n

#�1
R0nVn
n

�
V 0nVn
n

��1 V 0n�np
n
+Op(n

s�1=2);

when s < 1=2;
p
n(b� � �0) has the same asymptotic distribution as the 2SLS estimator using true

network links.

Consider the asymptotic variance 
. Let �n be the diagonal matrix of the error variance, i.e.,

�ii = E("
2
i ). We have 
 = A

�1BA�1, where

A = p lim
R0nVn
n

�
V 0nVn
n

��1 V 0nRn
n

;

B = p lim
R0nVn
n

�
V 0nVn
n

��1� 1
n
V 0n�nVn

��
V 0nVn
n

��1 V 0nRn
n

:
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Using Lemma A1, we can show that

bA = A+Op(ns�1)
and

bB = B + R0nVn
n

�
V 0nVn
n

��1� 1
n
eV 0nb�n eVn � 1

n
V 0n�nVn

��
V 0nVn
n

��1 V 0nRn
n

+Op(n
s�1):

Then, what left is to show that from the fact that 1
n
eV 0nb�n eVn � 1

nV
0
n�nVn is op(1): As

1

n
eV 0nb�n eVn � 1

n
V 0n�nVn =

1

n
V 0n

�b�n � �n�Vn +Op(ns�1);
and the �rst term on the RHS is Op(n�1=2 _ ns�1) because

1

n
V 0n

�b�n � �n�Vn =
1

n

nX
i=1

�
(Yn � eRnb�)(i)]2 � E("2i )� viv0i

=
1

n

nX
i=1

viv
0
i["
2
i � E("2i )] +

1

n

nX
i=1

viv
0
i

�
[ eRi(�0 � b�)]2 + [(�0�1nYn +�2nXn
0)(i)]2�

+
2

n

nX
i=1

viv
0
i
eRi(�0 � b�)"i � 2

n

nX
i=1

viv
0
i[
eRi(�0 � b�) + "i](�0�1nYn +�2nXn
0)(i)

= Op(n
�1=2) +Op(�0 � b�) +Op(ns�1) = Op(n�1=2 _ ns�1)

Together, we have bA�1 bB bA�1 �A�1BA�1 = Op(n�1=2 _ ns�1) = op(1).
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