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Abstract

In this paper, we study dynamic team contests. In the framework of a
Tullock contest between two teams generating impacts according to the
Cobb-Douglas e¤ort aggregation function, we examine how equilibrium
e¤orts and winning probabilities depend on the timing of the actions. We
show that in contrast to synchronous contests, asynchronous contests with
publicly observable actions do not result in the same equilibrium outcome
as the one-stage contest; they are strategically unbalancing, leading to
more lopsided contests. The results have implications about the design of
team contests with complementary e¤orts.
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1 Introduction

�Timing is most important...If the timing is right, even a small action will
produce a huge impact. If the timing is wrong, even if you push hard, only little
will happen. How do you arrive at the timing? This is a complex a¤air.�
�Sadhguru

In this paper, we study the e¤ects of timing of the moves by players in team

contests. Team contests provide a useful framework for modeling a variety of

competitions between �rms, political parties, legal teams, academic teams, and

sports teams. In a team contest, each player performs a separate task, and the

players�e¤orts are aggregated into a total team impact that, together with other

teams�impacts, determines the chances of winning.

We compare di¤erent orders of moves by players in team contests. Suppose

player 1 on team 1 can commit to an e¤ort and make it known publicly (to

his/her team members and to the members of the competing team). Would the

player �nd it bene�cial to commit to a higher or lower e¤ort? How does the

possibility of such commitment a¤ect all the players�equilibrium e¤orts and the

teams�chances of winning?

To answer these questions, we employ the model developed by a recent paper

by Lu and Lu (2020) who consider a two-team contest, in which each team of

which is composed of two players assigned to di¤erent tasks. Players di¤er in

their marginal costs of making e¤ort. The e¤orts of players on a team are aggre-

gated by the same Cobb-Douglas function to produce an impact that determines

the team�s chances of winning through Tullock�s contest success function.1 With

this model, Lu and Lu (2020) considered two di¤erent scenarios: (i) all play-

ers make e¤orts simultaneously, and (ii) players make e¤orts in two stages - in

the �rst stage, players who are assigned to the �rst task choose e¤orts; then,

after observing stage 1 e¤orts, players assigned to the second task choose their

1The Cobb-Douglas e¤ort aggregator function well captures the idea of complementarity
between the e¤orts of players on the same team. Arbatskaya and Mialon (2010) provide an
axiomatization of the logit form contest success function with the Cobb-Douglas e¤ort ag-
gregator function in a related context of multi-activity contests where each individual player
chooses e¤orts in multiple activities. The Cobb-Douglas type function arises under a homo-
geneity axiom, where an equiproportionate change in players�e¤orts in an activity does not
a¤ect players�success probabilities.
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e¤ort levels. Lu and Lu (2020) showed that players�e¤ort levels and winning

probabilities are the same between (i) and (ii), that is, equilibrium outcomes in

one-stage and two-stage synchronous contests are the same. Building on their

model, we analyze a general two-stage contest with an arbitrary order of player

moves. To �nd the equilibrium, we quantify the impacts of each player�s e¤ort

on the e¤orts of other players using a powerful elasticity formula. With this

tool, we demonstrate in Proposition 1 how the equivalence result in Lu and Lu

(2020) holds in synchronous contests.2

We �nd that it is generally the case that a team can bene�t from the strategic

choice of timing of individual team members�e¤orts. When one player on a team

is allowed to move earlier than all other players, the player on the stronger team

(the favorite team) increases their e¤ort, while the player on the weaker team

(the underdog team) decreases their e¤ort. This relaxes competition and reduces

the e¤orts of all players relative to the simultaneous-move game. However, no

strategic incentive exists in contests that are overall perfectly balanced in terms

of marginal costs of e¤ort (Propositions 2 and 3).

We then compare the odds of winning by team 1 across the two-stage and

one-stage contests (Proposition 4). The favorite team has its highest chances

of winning when it leads in both tasks and the lowest chances of winning in

the synchronous contest. The favorite team has more power when it leads than

when it follows. The opposite is true for the underdog team. As a result, in

an endogenous timing game of executing the tasks, there is no pure strategy

equilibrium in our model.3

The rest of the paper is organized as follows. After a brief literature review

in the next section, in Section 3, we set up the model and provide a useful

elasticity formula for analyzing contests such as Lu and Lu�s (2020). In Section

2Although their model is very di¤erent from Lu and Lu�s (2020), Fu, Lu, and Pan (2015)
showed that the winning probabilities of teams and individual e¤orts are all independent of the
temporal structure of the component battles (i.e., one-shot or sequential). They considered a
majoritarian multi-battle team contest in which players from two rival teams form pairwise
matches to compete in distinct component battles - each player �ghts exactly one battle in
the whole contest, much like our synchronous contest.

3Dixit (1987) and Yilidirim (2005) considered endogenous timing game in contests and
found pure strategy equilibria (see Section 2).
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4, we show that their equivalence results for one-stage and two-stage contests

hold for a class of synchronous contests. In Section 5, we show that this is

generally not the case in contests where some actions are asynchronous. When

information about prior choices is publicly available, the contests are generally

unbalancing. In Section 6, we compare all the contests in terms of equilibrium

chances of winning. Section 7 concludes the paper.

2 Literature Review

The literature on dynamic contests is extensive. In a pioneering work, Dixit

(1987) considered a strategic timing choice game in a contest played by a favorite

and underdog, showing that they choose to move sequentially in equilibrium.

Extending Dixit�s model by allowing for two rounds of e¤ort decisions, Yilidrim

(2005) showed that there are multiple subgame-perfect equilibria, while there

is no Stackelberg outcome where the underdog leads and the favorite follows.

Ludwig (2012) introduced asymmetric information into Dixit�s model, analyzing

players�timing of moves. In a model with multiple rounds of play, Harris and

Vickers (1987) considered an R&D race, analyzing how an initial lead by a

team a¤ects the subsequent race. Klumpp and Polborn (2006) asked the same

question in the context of the US presidential primary races using the Tullock

contests, and Konrad and Kovenock (2008) analyzed the dynamic race more

generally using all-pay auctions. All of these studies found that the race favors

the player who gained a lead in the initial stages. In contrast, Klumpp, Konrad,

and Solomon (2019) showed a time-invariance result in a majoritarian Colonel

Blotto problem of allocating a given amount of resources to a �nite number

of battlegrounds. Each player decides how much resources to spend in the

next battleground after each battle�s result has been revealed. They show that

irrespective of the results of the previous battles, the optimal strategy is to

spend the same amount of resources.

In a recent innovative paper, Hinnosaar (2018) studied n-player sequential

contests where each player moves once in an arbitrary order and earlier players�
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e¤orts are observable by later players. In this model, he found that the total

e¤ort is the highest under a fully sequential contest. In contrast, we have teams

composed of multiple players; in our team contests, the amount of rent dissipa-

tion is the highest in the simultaneous-move contest. Contests played by teams

that are composed of multiple players are subject to free-riding among team

members. Häfner (2012) considered a tug of war race, which may be played by

possibly an in�nite number of players, and showed that in his model, there is a

unique Markov perfect equilibria. Esteban and Ray (2001) was the �rst paper

that analyzed team contests formally. Assuming that team members� e¤orts

are perfectly substitutable, the authors showed the conditions under which the

winning probability of a team increases in its size, despite free-riding incen-

tives. Epstein and Meelem (2009) and Nitzan and Ueda (2011) employed CES

e¤ort aggregator functions for team e¤orts to describe e¤ort complementarities

within teams and constant elasticity individual e¤ort costs; they identi�ed the

conditions for free-riding incentives to be overcome by e¤ort complementarities.

However, these papers are not analyzing dynamic intra- nor inter-team strategic

interactions, unlike Lu and Lu (2020) and our paper.

The main result from Lu and Lu (2020) is that the order in which tasks are

performed in team contests does not change the equilibrium e¤orts as long as

tasks are chosen synchronously. In contrast, in multi-activity contests among

individual players, which in our framework corresponds to teams composed of

a single player who chooses e¤orts in each task, Arbatskaya and Mialon (2012)

showed that when some tasks are chosen before others, players would choose

them in a way that relaxes competition in the second stage. This cost-saving

strategic incentive is not present when tasks are performed by di¤erent team

members each maximizing their payo¤. When each task is managed separately

as in Lu and Lu (2020), its impact on the costs of team members is ignored.

The current paper illustrates the e¤ects on strategic incentives of having multiple

players on each team.
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3 Model

Consider a contest among two teams, i = 1; 2, each having two members j = 1; 2

responsible for performing task j. We will refer to player j = 1; 2 of team i = 1; 2

as player ij. Team members independently choose their e¤ort levels eij ; i = 1; 2

and j = 1; 2. Players�e¤orts contribute to their team�s chances of winning a

prize, which is the public good with a value normalized to 1. Team members�

e¤orts are aggregated using the Cobb-Douglas function

Xi = e
�1
i1 e

�2
i2 ; (1)

where �j 2 (0; 1) is the sensitivity or discriminatory power of e¤ort in task j.

We assume Cobb-Douglas impact functions have the same weights on each task

across teams and that �1 + �2 � 1.

The winning probability of team i is described as a Tullock�s (logit) contest

success function

Pi =
Xi

Xi +X�i
=

1

1 + �i
; (2)

where �i = Xi

X�i
is the relative power of team i. Player j in team i has the cost

of e¤ort described by cijeij , with cij > 0. The expected payo¤ for player ij of

team i is

Uij = Pi � cijeij =
�i

1 + �i
� cijeij ; (3)

and each team i�s member j chooses his/her e¤ort level eij to maximize Uij .

We assume that all of the above is common knowledge among all players. The

�rst-order conditions in the one-stage (static) contest can be written as follows:

@Uij
@eij

=
1

(1 + �i)
2

@�i
@eij

� cij = 0 (4)

Here, we introduce a key concept of our analysis, the balance of power of the

teams in the contest:

� � P1P2 =
X1X2

(X1 +X2)
2 =

�i

(1 + �i)
2 (5)

for i = 1; 2. The balance of power � is low in lopsided contests, and it reaches

its maximum of 1=4 in a symmetric contest, where the two teams have an equal
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chance of winning, P1 = P2 = 1=2. For future reference, let team 1�s relative

cost advantage be ��1 �
�
c21
c11

��1 �
c22
c12

��2
> 0.

3.1 Elasticity Representation of the First-Order Condi-
tions

In our analysis, it is convenient to use �rst-order conditions in terms of elas-

ticities. Let E�i;eij =
d�i

deij

eij
�i
be the elasticity of team i�s (relative) power �i

with respect to e¤ort eij . The capitalized E�i;eij signi�es the total elasticity,

where we are taking the total (not partial) derivative: E�i;eij =
d�i

deij

eij
�i
: that is,

player ij evaluates the e¤ect of her e¤ort choice eij by taking the reactions by

successive movers (followers) into account. Thus, the �rst-order condition for

player ij�s e¤ort in an elasticity form is as follows:

dUij
deij

= E�i;eij�
1

eij
� cij = 0 (6)

or

E�i;eij� = cijeij : (7)

The expenditures (cost of e¤ort) by player ij are equal to the total elasticity of

team i�s (relative) power with respect to e¤ort eij times the balance of power.

The expenditures cijeij are higher when the contest is more balanced and when

the power of team i is more responsive to changes in task j.

To analyze players�strategic actions, we investigate E�i;eij and � in contests

with di¤erent orders of moves. Thanks to the Cobb-Douglas speci�cation of the

e¤ort aggregator function, the elasticity of team i�s (relative) power �i with

respect to e¤ort eij in partial di¤erentiation is "�i;eij =
@�i

@eij

eij
�i
= �j . Notice

that for stage 2 e¤orts, E�i;eij = "�i;eij always holds, but this equality is

generally not true for player ij, who moves in stage 1 if the players in stage 2

can observe eij before they choose their actions. In the following lemma, we

list useful elasticity formulas that will be used to simplify the analysis of the

strategic responses in the contest.

Lemma 1. Suppose g and f are C1 functions and that c is a constant. Then,

we have the following:
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1. for z(x) � xc, we have "z(x);x = c

2. for z(x) � cg(x), we have "z(x);x = "g(x);x

3. for z(x) � f(x)g(x), we have "z(x);x = "f(x);x + "g(x);x

4. for z(x) � f(x)
g(x) , we have "z(x);x = "f(x);x � "g(x);x

5. for z(x) � f(g(x)), we have "z(x);x = "f(y);y"g(x);x

6. for z(x) � (g(x))c, we have "z(x);x = c"g(x);x

For example, consider the contest where player 11 moves �rst by choosing

e¤ort e11 in stage 1. Then, after observing e11, other players choose their e¤ort

levels simultaneously in stage 2: eij(e11) for ij 6= 11.

To �nd E�1;e11 , recall that �1 =
X1

X2
=
�
e11
e21

��1 �
e12
e22

��2
and notice that

�1 is a function of e11, e12, e21, and e22 with "�1;e11 = �1, "�1;e12 = �2,

"�1;e21 = ��1, and "�1;e22 = ��2. Denoting the elasticity of responses by the

followers to e11 with "e12;e11 , "e21;e11 , and "e22;e11 , we �nd the following:

E�1;e11 = �1 + �2"e12;e11 � �1"e21;e11 � �2"e22;e11 : (8)

The responses of the followers depend on the extent of the change in the balance

of power, �, that player 11�s e¤ort brings about. Recall that � = �1(1+�1)�2,

so

E�;e11 = "�;�1E�1;e11 ; (9)

where

"�;�1 =
1��1
1 + �1

(10)

and E�1;e11 is stated in equation (8); "�;�1
2 (�1; 1) for �1 > 0.

In the rest of the paper, we consider this team contest with di¤erent timing of

moves. Our elasticity formula proves useful in understanding players�strategic

incentives. In the next section, we review the equivalence result found in Lu

and Lu (2020).
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4 Equivalence Result (Lu and Lu 2020)

Lu and Lu (2020) compared the simultaneous move contest (all players choose

their e¤ort levels simultaneously) and a synchronous task two-stage contest (task

1�s e¤orts are selected by both teams in stage 1, and task 2�s e¤orts are selected

by both teams in stage 2). Somewhat surprisingly, they showed that with a

Cobb-Douglas aggregator function, the outcomes of the contests are equivalent,

even if the teams and players are asymmetric.

4.1 One-Stage Contest

Let�s start with the simultaneous move game. When all e¤orts are chosen si-

multaneously, we have EXi;eij = "Xi;eij = �j . Hence, the �rst-order conditions

(7) can be written as

cije
�
ij = �j�;

where � � �1(1 + �1)
�2 and �1 � X1=X2. This implies e�11

e�21
= c21

c11
and

e�12
e�22

= c22
c12
, and

��1 = ��1 �
�
c21
c11

��1 �c22
c12

��2
:

Then, from the �rst-order conditions (7), we have the following:

e�ij =
�j
cij
� (��1) =

�j
cij
�(��1):

4.2 Synchronous-Task Contests

Consider a two-stage contest in which e11 and e21 are chosen at stage 1 and

observed by all players at stage 2, which is when the other e¤orts are chosen.

We start the analysis with the second stage. For the optimal stage 2 e¤orts

e�12 (e11; e21) and e
�
22 (e11; e21), we have E�i;eij = "�i;eij = �j because no e¤orts

follow second-stage decisions. The �rst-order conditions for stage 2 e¤orts e12

and e22 are �2� = c12e12 and �2� = c22e22. Hence, the ratio of e¤orts in task

2 is just the reciprocal of the ratio of the their marginal costs: e
�
12

e�22
= c22

c12
for any

e11 > 0 and e21 > 0.
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The �rst-order conditions for stage 1 e¤orts in elasticity formula are written

as

ci1ei1 = E�i;ei1�

=
�
�1 + �2"ei2;ei1 � �2"ei02;ei1

�
�

=

�
�1 + �2" ei2

e
i02
;ei1

�
� = �1�;

where i 6= i0. The last two equations hold by Lemma 1.4 and " ei2
e
i02
;ei1

= 0 (which

comes from e�12
e�22

= c22
c12
), respectively. Then, we also have e�11

e�21
= c21

c11
and

��1 =

�
e�11
e�21

��1 �e�12
e�22

��2
=

�
c21
c11

��1 �c22
c12

��2
= ��1:

This implies that P �1 = �P1 =
��1

1+��1
. Thus, the synchronous two-stage contest is

balance neutral, and we can con�rm the equivalence result in Lu and Lu (2020)

by using the elasticity formulas.

Proposition 1 (Lu and Lu 2020). In both one-stage and synchronous two-

stage contests with perfect information, the equilibrium power ratio equals team

1�s relative cost advantage ��1, and equilibrium e¤orts are e�ij =
�j
cij
�(��1) for

all i; j = 1; 2. Team 1�s equilibrium winning probability is P �1 =
��1

1+��1
.

From the elasticity arguments we use in the proof, it is clear that the equiv-

alence theorem in Lu and Lu (2020) extends to a model with arbitrary �nite

numbers of synchronous tasks and stages and to the arbitrary temporal struc-

ture of the contest with an arbitrary order, in the spirit of Fu, Lu, and Pan

(2015).

5 Non-Equivalence Results: Two-Stage Asyn-
chronous Contests

In this section, we show that the equivalence result does not usually extend to

contests where there is a task not chosen by the two teams at the same time

(synchronously). Consider a contest where player 11 leads all other players.

This contest will help us understand all other two-stage contests.
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From, E�i;eij� = cijeij for i; j = 1; 2, where � = �1(1 + �1)
�2. In stage 2,

after observing e11, the rest of the players choose their e¤ort levels simultane-

ously. For each e11, the optimal stage 2 e¤orts, the elasticity representation of

the �rst-order conditions (7) for e�12 (e11), e
�
21 (e11), and e

�
22 (e11) are:

c12e12 = �2� (11)

c21e21 = �1�

c22e22 = �2�;

because E�1;e12 = "�1;e12 = �2, E�2;e21 = "�2;e21 = �1, and E�2;e22 = "�2;e22 =

�2.

Following the discussions after Lemma 1 (8), player 11�s e¤ort e11 a¤ects

team 1�s power as follows:

E�1;e11 = "�1;e11 + "�1;e12"e12;e11 � "�2;e21"e21;e11 � "�2;e22"e22;e11 (12)

= �1 + �2"e12;e11 � �1"e21;e11 � �2"e22;e11 ;

so the �rst-order condition for e11 is

c11e11 = E�1;e11� = (�1 + �2"e12;e11 � �1"e21;e11 � �2"e22;e11) � (13)

Thanks to the Cobb-Douglas speci�cation, we can �nd "e12;e11 , "e21;e11 , and

"e22;e11 from (11) by totally di¤erentiating the identities with respect to e11

(writing in terms of elasticities) and using the elasticity property 2 of Lemma

1:

Ee12;e11 = "e12;e11 = E�;e11

Ee21;e11 = "e21;e11 = E�;e11

Ee22;e11 = "e22;e11 = E�;e11 :

That is, the elasticity of the impact of an increase in e11 on stage 2 e¤orts

is the same as the elasticity of its impact on the balance of power �. This

special property is because of the Cobb-Douglas e¤ort aggregator function, and

it simpli�es the rest of the analysis tremendously.
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Because the elasticity representation of (9) is E�;e11 = "�;�1E�1;e11 =

1��1

1+�1
E�1;e11 , we have the following:

E�1;e11 = �1 + �2"e12;e11 � �1"e21;e11 � �2"e22;e11 (14)

= �1 � �1E�;e11

= �1 � �1
1��1
1 + �1

E�1;e11 :

Solving the above equation for E�1;e11 , we obtain the following:

E�1;e11 = �1

�
1 + �1

1��1
1 + �1

��1
: (15)

Thus the �rst-order condition for e¤ort e11 (7) can be written as follows:

c11e11 = �1

�
1 + �1

1��1
1 + �1

��1
�: (16)

By the �rst-order conditions (7), we have the following:

e11c11
e21c21

=
E�1;e11

�1
and

e12c12
e22c22

= 1: (17)

Since �1 =
�
e11
e21

��1 �
e12
e22

��2
, it follows that

�1 =

�
E�1;e11c21
�1c11

��1 �c22
c12

��2
(18)

=

�
1 + �1

1��1
1 + �1

���1 �c21
c11

��1 �c22
c12

��2
:

Thus, we �nd that the equilibrium power of team 1, �1 = ��1, is the solution of

�1

�
1 + �1

1��1
1 + �1

��1
= ��1; (19)

where ��1 �
�
c21
c11

��1 �
c22
c12

��2
is team 1�s relative cost advantage.

The following technical lemma allows us to prove that there exists a unique

solution ��1 to (19) for any costs cij > 0 and weights �j 2 (0; 1) for i; j = 1; 2;

and to show that if ��1 < 1, then ��1 < ��1 < 1; if ��1 > 1, then ��1 > ��1 > 1.

Lemma 2. Let f(x; a) � x
�
1 + a 1�x1+x

�a
with x > 0 and a 2 [�1; 1]. Then,

@f(x;a)
@x > 0; @f(x;a)@a > 0 i¤ a(1�x) > 0. Equation f(x) = �x with any �x > 0 has
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a unique solution x� > 0; if �x < 1 then x� < �x < 1; if �x > 1 then x� > �x > 1;

if �x = 1 then x� = �x = 1.

Finally, from the �rst-order conditions, we have c11e�11 = ��1�, c12e�12 =

�2�, c21e�21 = �1�, and c22e
�
22 = �2�, where � �

�
1 + �1

1��1

1+�1

��1
and �1 = ��1

is implicitly de�ned by (19). Hence, we obtain the proposition below.

Proposition 2 summarizes the subgame-perfect equilibrium in the contest

where player 11 leads all other players. It also compares the power of team 1

in this contest to the one in a synchronous contest in which team 1�s power

is its relative cost advantage, ��1 �
�
c21
c11

��1 �
c22
c12

��2
. Since team 1�s winning

probability of this contest is P �1 =
1

1+�� , we have P �1 =
1

1+�� <
1

1+��1
= �P1 if

��1 < 1; and P �1 =
1

1+�� >
1

1+��1
= �P1 if ��1 > 1. That is, this dynamic contest

enhances the teams�power unbalance by a strategic choice of e11.

Proposition 2 (player 11 is the leader). For any costs cij > 0 and weights

�j > 0, i; j = 1; 2, there exists a unique subgame-perfect equilibrium: e�11 =

� (��1)
�1
c11
� (��1) with � (�1) =

�
1 + �1

1��1

1+�1

��1
and e�12 =

�2
c12
� (��1), e

�
21 =

�1
c21
� (��1), and e

�
22 =

�2
c22
� (��1), where � = � (�1) � �1(1 + �1)

�2 and the

equilibrium power of team 1, �1 = ��1, is implicitly de�ned as the solution of

f(�1; �1) � �1
�
1 + �1

1��1
1 + �1

��1
= ��1 (20)

with ��1 �
�
c21
c11

��1 �
c22
c12

��2
. This dynamic contest is unbalancing in the sense

that P �i =
1

1+�� > �Pi =
1

1+��i
if team 1 is the favorite team and that P �i =

1
1+�� < �Pi =

1
1+��i

if the team is the underdog.

If team 1 is the favorite, it becomes even more powerful by player 11�s

commitment to a higher e¤ort e11 in stage 1 (overcommitment). If team 1

is the underdog, it becomes less powerful because player 11 exerts less e¤ort.

Either way, the contest is unbalancing through the strategic choice of stage 1

e¤ort.

The unbalancing occurs for a reason di¤erent than in Arbatskaya and Mialon

(2012). In multi-activity contests, unbalancing through the choice of stage 1
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e¤orts is bene�cial for a player because it saves the cost of a stage 2 task.

Here, we have each task managed separately by a team player, so the cost-

saving motive is absent. The reason for a commitment here is to exploit the

best responses of the competitors, which are negatively sloped for the underdog

team (strategic substitutes) and positively sloped for the favorite team (strategic

complements).

By Lemma 2, f(�1; �1) is an increasing function of �1, the equilibrium

power of team 1, ��1, is increasing in ��1. It is also increasing in �1 whenever

team 1 is the favorite (�1 > 1). This means that the favorite team achieves a

higher power and probability of winning when the task that the favorite commits

to is more in�uential (�1 is higher). The opposite is true regarding the underdog

team�s commitment. The underdog�s team commitment diminishes its power

and chances of winning, and this is all the more the case when the task the

underdog is committing to is more in�uential. The extent of the unbalancing

depends on the parameter values. It is impossible to strategically unbalance a

contest that is perfectly balanced based on the costs of e¤ort (��1 = 1).

So far, we have examined synchronous two-stage contests and an asynchro-

nous two-stage contest where a team leads in one task. In the next section, we

study other cases of two-task, two-stage contests. We also compare the odds of

winning by team 1 across the two-stage and one-stage contests.

6 Comparing Across Two-Stage Contests

In this section, we examine two-stage contests with two teams and two tasks.

Tasks in a two-stage contest are divided into stage 2 and stage 1. Without a

loss of generality, assume e11 is selected in stage 1. Then, there are �ve contests

to analyze:

C0. (a synchronous two-stage contest) e¤orts in task 1 are selected in stage 1

and e¤orts in task 2 are selected in stage 2;

C1. one player (player 11) leads, and the rest of the players follow in stage 2;
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C2. one player (player 22) follows, and the rest of the players choose e¤orts in

stage 1;

C3. team 1 leads in both tasks; and

C4. teams lead in di¤erent tasks: team 1 leads in task 1 and team 2 leads in

task 2.

Contests C0 - C4 cover all orders of move in two-stage contests because the

results for any other two-stage contests can be obtained by relabeling the teams,

tasks, or both. (To switch teams, replace �1 with �2 = 1=�1; to switch tasks,

switch �1 and �2.)

For any costs cij > 0 and weights �j > 0, we can compute and compare the

equilibrium e¤orts (e�11, e
�
12, e

�
21, e

�
22) in two-stage contests and in the one-stage

contest. We can also compare the power of team 1 and the associated balance

of power across the contests. Figure 1 shows the stage 1 and stage 2 e¤orts in

contests C0 - C4. Proposition 3 summarizers the properties of the equilibria.

We show that in general, any asynchronous two-stage contest with publicly

observable commitments is strategically unbalancing by the choice of stage 1

tasks, when compared with a synchronous contest C0 (which is equivalent to

the one-stage contest).

Proposition 3. For any costs cij > 0 and weights �j > 0, i; j = 1; 2, there

exists a unique subgame-perfect equilibrium in every two-stage contest C0 - C4.

The equilibrium power of team 1, �1 = ��1, is de�ned by f (�1; a)= ��1, with

f(�1; a) � �1
�
1 + a 1��1

1+�1

�a
, where a takes the following values for each case:

C0: a = 0, C1: a = �1, C2: a = �2, C3: a = �1 + �2, and C4: a = �1 � �2;

stage 1 e¤orts are e�ij = � (�
�
1)

�j
cij
� (��1), with � = � (�1) =

�
1 + a 1��1

1+�1

��1
>

1 i¤ a(1 � �1) < 0; and stage 2 e¤orts are e�ij =
�j
cij
� (��1), where � (�1) �

�1(1 + �1)
�2. The favorite (underdog) team becomes stronger (weaker) in all

asynchronous contests compared with the synchronous contest, unless the contest

is perfectly balanced based on costs, ��1 �
�
c21
c11

��1 �
c22
c12

��2
= 1 or in C4 with

�1 = �2. That is, if ��1 < 1, then ��1 < ��1 < 1; if ��1 > 1, then ��1 > ��1 > 1.
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The derivations of the subgame-perfect equilibria for contests C2 - C4 follow

the same steps as for contest C1, which was analyzed in the previous section and

is omitted here. We know that contest C0 is equivalent in terms of outcomes to

the one-stage contest, in which all tasks are chosen simultaneously. However,

contests C1 - C4 do not show this equivalence result.

There are strategic incentives to change stage 1 tasks, but no such strategic

incentives exist for stage 2 tasks. All stage 1 e¤orts are overcommitted by the

same scaling factor �, which is the same for all stage 1 tasks but di¤erent across

contests C1 - C4; stage 1 e¤orts are scaled up by a factor � > 1 if team 1 is

the favorite (��1 > 1). All stage 1 e¤orts are scaled down by a scaling factor

� < 1 if team 1 is the underdog (��1 < 1). A perfectly balanced contest remains

perfectly balanced: ��1 = 1 if ��1 = 1, with no changes in the equilibrium levels

of stage 1 tasks.

The unique solution to the equilibrium power of team 1, ��1, is found numer-

ically. However, the equilibrium properties, such as the over/under commitment

by stage 1 players, can be obtained without �nding the value for ��1. Impor-

tantly, assuming ��1 6= 1, the two-stage contest is always unbalancing (the weak

team becomes weaker, and the strong team becomes stronger in two-stage con-

tests). The only exception is in contest C4, where players cross-lead with equally

in�uential tasks, that is, when �1 = �2. In this case, there is no unbalancing,

and there is no strategic advantage to team 1.

The following proposition provides some implications about the timing of

moves that a team leader would prefer if this leader cared about their team�s

probability of winning.

Proposition 4. The favorite team has its highest chances of winning when

it leads in both tasks and the lowest chances of winning in the synchronous

contest. The favorite team has more power when it leads than when it follows

(in one task, in both, or in a more in�uential task). The opposite is true for the

underdog team.
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We always assume �1 > 0, �2 > 0, and �1 + �2 � 1. If �1 � �2 and

�1 � 2�2, this means that the �rst task is no less in�uential and no more

than twice in�uential than the second task. Given these constraints, we have

�1+�2 > �1 � �2 � �1��2 � 0. By Lemma 2, for any �1 > 0 and a 2 [�1; 1],

f(�1; a) � �1
�
1 + a 1��1

1+�1

�a
is increasing in �1, and it is increasing in a if and

only if a(1 � �1) > 0. Assuming ��1 > 1, equation f(��1; a) = ��1 implies the

following ranking of contests according to team 1�s equilibrium power ��1 and

probability of winning p�1: C3>C1�C2�C4�C0. The ranking is reversed for

team 1 if ��1 < 1.

We also �nd that the favorite team�s equilibrium power ��1 is higher when

it leads than when its weaker opponent leads. Hence, the favorite team leading

in both tasks results in the highest power and probability of winning for the

team. The results are di¤erent for the underdog team, which su¤ers less power

loss when it follows than when it leads but has the highest chances of winning

in a synchronous contest C0.

If we endogenize the order of moves by allowing team leaders to choose the

timing of the moves for the team at stage 0, with the objective of increas-

ing the team�s chances of winning, then Proposition 4 implies that there is no

pure-strategy equilibrium in the commitment game. From the ranking of prob-

abilities, we know that the best outcome for the favorite team (in terms of the

probability of winning) is to assign both tasks to the stage that the underdog

does not assign its tasks to (C3). However, if the favorite does so, then the

underdog also assigns both tasks to stage 1, which makes the contest C0. Then,

the favorite assigns its tasks to the other stage, and so on. This is a matching-

pennies game. Hence, there is no pure strategy equilibrium in this two-person,

zero-sum game. Nash equilibria are necessarily in mixed strategies.

7 Conclusion

In this paper, we have studied team contests with a Cobb-Douglas e¤ort aggre-

gation function, in which there are two teams, two tasks, and di¤erent timing
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of moves with publicly observed commitments. The problem is complex be-

cause when a player makes a choice he/she needs to consider the in�uence of

his/her choice on the choices of all of his/her team members and rivals. Luckily,

with the identical Cobb-Douglas e¤ort aggregator function across teams, some

e¤ects cancel out. For example, the e¤ect on a player�s teammate and their

direct opponent at the next stage cancel out because they change by the same

percentage and the ratio of their e¤orts stays the same. Hence, when there are

only two stages and two tasks, a player who can precommit would only have

to consider the e¤ect of his/her choice on his/her direct opponent if the oppo-

nent moves later. No change occurs when he/she moves together with his/her

direct opponent (synchronous moves); even though the player has the ability to

change the e¤ort levels of his/her teammate and his/her direct opponent, these

changes do not a¤ect his/her payo¤, which depends on the ratio of e¤orts in

other tasks. Therefore, the Cobb-Douglas e¤ort aggregator function allows us

to cancel out all synchronous moves in other tasks. That is, it is possible to

extend our analysis to accommodate the multiple-task case: it is clear that the

equivalence result in Lu and Lu (2020) extends to any synchronous temporal

structure in multiple task cases, which follows the spirit of Fu, Lu, and Pan

(2015). In contrast, without synchronous moves for the same tasks, it is also

clear that the equivalence theorem does not hold in general.
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Appendix A: Proofs
Proof of Lemma 2. Let f(x; a) � x

�
1 + a 1�x1+x

�a
. Then, we have

@f(x; a)

@x
=

�
1 + a

1� x
1 + x

�a
� a2x

�
1 + a

1� x
1 + x

�a�1
2

(x+ 1)
2

=

�
1 + a

1� x
1 + x

�a�1 
1 + a

1� x
1 + x

� x 2a2

(x+ 1)
2

!

=

�
1 + a

1� x
1 + x

�a�1
1

(x+ 1)
2

n
(x+ 1 + a)

2
(1� a) + a2 (a+ 1)

o
> 0: (21)

Moreover, we have f(0; a) = 0, f(1; a) = 1, and limx!1 f(x; a) =1 (limx!1
1�x
1+x =

�1 and �1 � a � 1). Therefore, by the intermediate value theorem and
@f(x;a)
@x > 0, for any �x > 0, there exists a unique solution x� to equation

f(x; a) = �x, and x� > 0; if �x > 1, f(�x; a) < �x, and if �x < 1, f(�x; a) > �x.

Hence, if �x < 1 then x� < �x < 1; if �x > 1, then x� > �x > 1; if �x = 1 then

x� = �x = 1.�

Proof of Proposition 2.

See Case C1 in the Proof of Proposition 3.

Proof of Proposition 3.

C0: synchronous

The �rst-order conditions are E�i;eij� = cijeij for i; j = 1; 2, where E�1;e11 =

�1 + �2"e12;e11 � �2"e22;e11 = �1, E�1;e12 = �2, E�2;e21 = �1 + �2"e22;e21 �

�2"e12;e21 , and E�2;e22 = �2. Hence,
e�12
e�22

= c22
c12

for any e11 > 0 and e21 > 0. It

follows that "e12;e11 = "e22;e11 , so E�1;e11 = �1+�2"e12;e11 ��2"e22;e11 = �1 and

E�2;e21 = �1 + �2"e22;e21 � �2"e12;e21 = �1. Equilibrium e¤orts are such that

cije
�
ij = �j� (�

�
1) for all i; j = 1; 2, e

�
11

e�21
= c21

c11
, and ��1 =

�
e�11
e�21

��1 � e�12
e�22

��2
=�

c21
c11

��1 �
c22
c12

��2
= ��1.

C1: player 11 leads
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The �rst-order conditions are E�i;eij� = cijeij for i; j = 1; 2, where E�1;e11 =

�1+�2"e12;e11��1"e21;e11��2"e22;e11 , E�1;e12 = �2, E�2;e21 = �1, E�2;e22 = �2.

By fully di¤erentiating the �rst-order condition for stage 2 tasks with respect to

stage 1 e¤ort e11, we �nd that "e12;e11 = "e21;e11 = "e22;e11 = E�;e11 . Since

E�;e11 =
1��1

1+�1
E�1;e11 , we have E�1;e11 = �1 � �1 1��1

1+�1
E�1;e11 , which can

be solved for E�1;e11 = �1

�
1 + �1

1��1

1+�1

��1
. It follows that c11e�11 = ��1�,

c12e
�
12 = �2�, c21e�21 = �1�, c22e��22 = �2�, where � =

�
1 + �1

1��1

1+�1

��1
and

� > 1 if and only if �1 > 1.

From �1 =
�
e11
e21

��1 �
e12
e22

��2
, e11=e21 = c21

c11
, and e12=e22 = �, we �nd that

�1 = �
�
1 is implicitly de�ned by �1

�
1 + �1

1��1

1+�1

��1
= ��1. By Lemma 2, the

unique solution ��1 exists and for any costs cij > 0 and weights �j 2 (0; 1) for

i; j = 1; 2; if ��1 < 1, then ��1 < ��1 < 1; if ��1 > 1, then ��1 > ��1 > 1.

C2: player 22 follows

The �rst-order conditions are c11e11 = E�1;e11�, c12e12 = E�1;e12�, c21e21 =

E�2;e21�, and c22e22 = E�2;e22�, where E�1;e11 = �1 � �2"e22;e11 , E�1;e12 =

�2 � �2"e22;e12 , E�2;e21 = �1 + �2"e22;e21 , and E�2;e22 = �2. That is, c11e11 =

(�1 � �2"e22;e11) �, c12e12 = (�2 � �2"e22;e12) �, c21e21 = (�1 + �2"e22;e21) �,

and c22e22 = �2�.

From �2� = c22e22, the full elasticity of e22 with respect to e11 is Ee22;e11 =

E�;e11 . Therefore, we �nd that "e22;e11 = Ee22;e11 = E�;e11 . Similarly, "e22;e12 =

Ee22;e12 = E�;e12 , and "e22;e21 = Ee22;e21 = E�;e21 . Then, E�1;e11 = �1 �

�2E�;e11 , E�1;e12 = �2 � �2E�;e12 , E�2;e21 = �1 + �2E�;e21 , and E�2;e22 =

�2. Since E�;eij =
1��i

1+�i
E�i;eij , we have E�;e11 =

1��1

1+�1
E�1;e11 , E�;e12 =

1��1

1+�1
E�1;e12 , E�;e21 =

1��2

1+�2
E�2;e21 , E�;e22 =

1��2

1+�2
E�2;e22 = �2

1��2

1+�2
. Then,

E�1;e11 = �1 � �2 1��1

1+�1
E�1;e11 , E�1;e12 = �2 � �2 1��1

1+�1
E�1;e12 , E�2;e21 =

�1 + �2
1��2

1+�2
E�2;e21 , and E�2;e22 = �2. Note that 1��2

1+�2
= � 1��1

1+�1
. Solving

these equalities, we �nd that E�1;e11 = ��1, E�1;e12 = ��2, and E�1;e21 = ��1,

where � =
�
1 + �2

1��1

1+�1

��1
.

By Lemma 2, it follows that for any costs cij > 0 and weights �j > 0,

i; j = 1; 2, there exists a unique subgame-perfect equilibrium: c11e�11 = ��1�,
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c12e
�
12 = ��2�, c21e

�
21 = ��1�, c22e

�
22 = �2�, where � =

�
1 + �2

1��1

1+�1

��1
and

� > 1 if and only if �1 > 1. From �1 =
�
e11
e21

��1 �
e12
e22

��2
, c11e

�
11

c21e�21
= 1 and

c12e
�
12

c22e��22
= �, we �nd that �1 = ��1 is implicitly de�ned by �1

�
1 + �2

1��1

1+�1

��2
=

��1; ��1 > ��1 > 1 or ��1 < ��1 < 1.

C3: team 1 leads in both

The FOCs for stage 2 tasks are c21e21 = �1� and c22e22 = �2�. We fully

di¤erentiate stage 2 FOCs w.r.t. stage 1 e¤orts and write this in terms of elastic-

ities: "e21;e11 = "e22;e11 = E�;e11 and "e21;e12 = "e22;e12 = E�;e12 . The FOCs for

stage 1 tasks are c11e11 = E�1;e11� and c12e12 = E�1;e12�. The elasticity of the

impact each stage 1 task has on the power of team 1 undertaking it is: E�1;e11 =

�1��1"e21;e11��2"e22;e11 = �1�(�1 + �2)E�;e11 = �1�(�1 + �2) 1��1

1+�1
E�1;e11 .

Similarly, E�1;e12 = �2 � �1"e21;e12 � �2"e22;e12 = �2 � (�1 + �2)E�;e12 = �2 �

(�1 + �2)
1��1

1+�1
E�1;e12 . Solving for E�1;e11 and E�1;e12 , we obtain E�1;e11 =

�1� and E�1;e12 = �1�, where � =
�
1 + (�1 + �2)

1��1

1+�1

��1
.

The equilibrium e¤orts are e�11 = �
�1�
c11
, e�12 = �

�2�
c12
, e�21 =

�1�
c21
, e�22 =

�2�
c22
.

Then, �1 =
�
e11
e21

��1 �
e12
e22

��2
= ��1�

�1+�2 , where ��1 =
�
c21
c11

��1 �
c22
c12

��2
, so

�1 = ��1 is a solution to �1
�
1 + (�1 + �2)

1��1

1+�1

��1+�2
= ��1. By Lemma 2,

for any costs cij > 0 and weights �j > 0, i; j = 1; 2, there exists a unique

subgame-perfect equilibrium ��1; if ��1 < 1 then �
�
1 <

��1 < 1; if ��1 > 1, then

��1 >
��1 > 1.

C4: cross-lead

The FOCs are c11e11 = E�1;e11�, c12e12 = E�1;e12�, c21e21 = E�2;e21�,

and c22e22 = E�2;e22�. Given the timing of moves in the contest, E�1;e11 =

�1 + �2"e12;e11 � �1"e21;e11 , E�1;e12 = �2, E�2;e21 = �1, and E�2;e22 = �2 �

�2"e12;e22 + �1"e21;e22 .

From FOCs for stage 2 e¤orts e21 and e21, we have the following respon-

siveness of stage 2 e¤orts to stage 1 e¤orts: "e12;e11 = "e21;e11 = E�;e11 =

1��1

1+�1
E�1;e11 and "e12;e22 = "e21;e22 = E�;e22 =

1��2

1+�2
E�2;e22 . Then, E�1;e11 =

�1+(�2 � �1) 1��1

1+�1
E�1;e11 , so E�1;e11 = �

�1
1+(�1��2) 1��11+�1

, where � �
�
1 + (�1 � �2) 1��1

1+�1

��1
.
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Similarly, E�2;e22 = �2 + (�1 � �2) 1��2

1+�2
E�2;e22 , and therefore E�2;e22 = ��2.

We have c11e11 = ��1�, c12e12 = �2�, c21e21 = �1�, and c22e22 = ��2�,

where � �
�
1 + (�1 � �2) 1��1

1+�1

��1
; �1 =

�
e11
e21

��1 �
e12
e22

��2
= ��1�

�1��2 , where

��1 =
�
c21
c11

��1 �
c22
c12

��2
, and therefore�1 = ��1 is a solution to�1

�
1 + (�1 � �2) 1��1

1+�1

��1��2
=

��1. By Lemma 2, for any costs cij > 0 and weights �j > 0, i; j = 1; 2, there

exists a unique subgame-perfect equilibrium ��1; if ��1 < 1 then �
�
1 <

��1 < 1;

if ��1 > 1, then ��1 > ��1 > 1; � > 1 i¤ (�1 � �2) (1��1) < 0.�

Proof of Proposition 4. By Proposition 3, the equilibrium power of team 1,

�1 = ��1, is de�ned by f(�1; a) � �1

�
1 + a 1��1

1+�1

�a
= ��1, where a equals 0,

�1, �2, �1 + �2, and �1 � �2 for contests C0 - C4, correspondingly. Since we

assume �1 > 0, �2 > 0, and �1 + �2 � 1, we have a 2 [�1; 1]. By Lemma 2,

for any �1 > 0 and a 2 [�1; 1], @f(�1;a)
@�1

> 0; @f(�1;a)
@a > 0 i¤ a(1 � �1) > 0.

Equation f(��1; a) = ��1 then implies that
@��

1

@a > 0 if �1 > ��1 > 1 and
@��

1

@a < 0

if �1 < ��1 < 1.

We can then rank the contests C0 - C4 in terms of ��1 for ��1 > 1. If �1 � �2
and �1 � 2�2, then �1+�2 > �1 � �2 � �1��2 � 0 and C3>C1�C2�C4�C0.

If �1 > 2�2, then �1 + �2 > �1 > �1 � �2 > �2 > 0 and C3>C1>C4>C2>C0.

If �1 < �2, then �1 + �2 > �2 > �1 > 0 > �1 � �2 and C3>C2>C1>C4>C0.

In any case, the favorite has the highest ��1 and p
�
1 = 1=(1 + 1=�

�
1) in contest

C3 and the lowest ��1 and p
�
1 in contest C0.

The ranking is reversed for ��1 < 1. If �1 � �2 and �1 � 2�2, then

C3<C1�C2�C4�C0. If �1 > 2�2, then C3<C1<C4<C2<C0. If �1 < �2,

then C3<C2<C1<C4<C0. In any case, the underdog has the highest ��1 and

p�1 = 1=(1 + 1=�
�
1) in contest C0 and the lowest �

�
1 and p

�
1 in contest C3.

Next, we compare the power of team 1 when it leads and when the other

team leads. Recall that ��1(a) is de�ned by f(�1; a) � �1
�
1 + a 1��1

1+�1

�a
= ��1.

For a given �1 > 0, f(�1; a) < f(�1;�a) if a > 0 and �1 > 1. Hence,

��1(a) > ��1(�a) if a > 0 and �1 > 1. Similarly, ��1(a) < ��1(�a) if a > 0

and �1 < 1. These results hold when a = �1 > 0, a = �1 + �2 > 0, and

a = �1 � �2 > 0.�
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