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Abstract

We propose an adjusted 2SLS estimator for social network models when some exist-

ing network links are missing from the sample (due, e.g., to recall errors by survey

respondents, or lapses in data input). In the feasible structural form, missing links

make all covariates endogenous and add a new source of correlation between the

structural errors and endogenous peer outcomes (in addition to simultaneity), thus

invalidating conventional estimators used in the literature. We resolve these issues by

rescaling peer outcomes with estimates of missing rates and constructing instruments

that exploit properties of the noisy network measures. We apply our method to study

peer effects in household decisions to participate in a microfinance program in Indian

villages. We find that ignoring missing links and applying conventional instruments

would result in a sizeable upward bias in peer effect estimates.
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1 Introduction

In many social and economic environments, an individual’s behavior or outcome (such as

a consumption choice or a test score) depends not only on his or her own characteristics,

but also on the behavior and characteristics of other individuals. Call such dependence

between two individuals a link. A social network consists of a group of individuals, some

of whom are linked to others. The econometrics literature on social networks has largely

focused on disentangling various channels of social effects based on observed outcomes

and characteristics of network members. These include identifying the effects on each

individual’s outcome of (i) the individual’s own characteristics (individual effects), (ii) the

characteristics of people linked to the individual (contextual effects) and (iii) the outcomes

of people linked to the individual (peer effects). See Blume et al. (2011) and Graham (2020)

for extensive surveys about identifying such effects in social network models.

A popular approach for estimating social network models is to use two-stage least

squares (2SLS). This requires researchers to construct instruments for the endogenous peer

outcomes, using perfect knowledge of the network structure, as given by the adjacency ma-

trix (i.e., the matrix that lists all links in the network). See, for example, Bramoullé et al.

(2009), Kelejian and Prucha (1998), Lee (2007), and Lin (2010). In practice, samples of

network links are often collected from survey responses. Such samples may suffer from

missing links, due, e.g., to recall errors or misunderstandings by survey respondents, or

lapses in data input.

Missing links in the sample pose major methodological challenges for estimators like

2SLS. To see this, consider a data-generating process (DGP) from which a large number

of independent networks (i.e., groups) are drawn. Each group has n individual members.

The issues we raise and the solutions we propose also apply to other contexts, such as a

large number of independent networks with different sizes or a single growing network, but

are easiest to illustrate in the context of many independent, identically sized groups.

Suppose that in each group, a vector of individual outcomes y ∈ Rn is determined by a

structural model:

y = λGy +Xβ + ε, where E(ε|X,G) = 0.
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In this model, the adjacency matrix, G, is an n-by-n matrix of dummy variables that

describes the group’s network: the element in row j and column k of G equals one if

individual j is linked to member k, and zero otherwise. Here X is an n-by-K matrix of

exogenous covariates, and ε is an n-vector of structural errors. The random arrays y, G,

X, and ε all vary across the groups in the sample, while the coefficients λ and β are the

same across groups. We drop group subscripts for clarity.

For simplicity we have for now omitted contextual effects, i.e., a term given by GXγ in

equation (1). We also omit group-level fixed effects for now. Extensions of our results that

include either or both are provided later.

The regressors in the model are GY and X. While X is exogenous, the regressors GY

are correlated with ε. The issue of simultaneity arises here, because any one individual’s

outcome depends on, and is determined simultaneously with, the outcomes of other group

peers. A simple estimator of the peer effect λ and individual effects β that deals with this

simultaneity problem is 2SLS, using GX or G2X as instruments for GY , as in Bramoullé

et al. (2009).1

But now suppose that, in each group, a researcher does not observe G perfectly, but

instead observes a noisy measure H, which differs from G by randomly missing some actual

existing links while correctly reporting others. The goal now is to estimate λ and β from

the “feasible” structural form:

y = λHy +Xβ + u, (1)

where u ≡ [ε+ λ(G−H)y] is a vector of composite errors.

The missing links in H aggravate endogeneity issues in (1) in two important ways. First,

they lead to correlation between X and u through λ(G − H)y, a component in u that is

due to the measurement error in the adjacency matrix. As a result, unlike using GX or

G2X as instruments, 2SLS estimates based on the feasible instruments HX or H2X would

be inconsistent, due to a failure of instrument exogeneity.

Second, these missing links cause an additional source of endogeneity in Hy. Like Gy,

1If the model included contextual effects GXγ in its structural form, then G2X could be used as
instruments for Gy, otherwise use of GX as instruments suffices.
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the feasible Hy is correlated with the model error ε due to simultaneity. But in addition,

Hy is also correlated with u through the measurement errors in λ(G−H)y. For all these

reasons, standard 2SLS estimators of this model become inconsistent in the presence of

missing links.2

In this paper, we introduce an adjusted-2SLS estimator, which resolves these challenges

and consistently estimates (λ, β) using alternative valid instruments constructed from H

despite the missing links. We first introduce the main idea for a benchmark case, where

actual links in G are missing randomly from H in the sample at an unknown rate p ∈ (0, 1).

Later, we extend our method to allow the missing rates p(X) to depend on covariates.

Our method is based on a series of new insights that have not been explored in the

literature. First, we observe that by rescaling the noisy measure of peer outcomes Hy with

the inverse probability of reporting correctly 1/(1 − p), we restore the exogeneity of X in

a rescaled structural form. Formally, this means if we reparametrize (1) as

y = λ∗Hy +Xβ + v with λ∗ ≡ λ/(1− p), (2)

then the reparametrized errors v ≡ ε + (λG − λ∗H)y satisfy E(v|X,G) = 0. This holds

regardless of how the actual network G is formed, as long as E(ε|X,G) = 0.

Second, despite the restored exogeneity of X in (2), conventional instruments such

as HX or H2X remain invalid, because the reparametrized errors v depend on H. To

address this issue, we provide alternative functions of H and X that are valid instruments.

For example, we show that if the true network G is symmetric, and the observed H is

asymmetric with links missing independently, then H ′X is uncorrelated with v (where H ′

denotes the transpose of H). Thus, we can use H ′X as valid instruments in an adjusted-

2SLS where peer outcomes are rescaled by 1/(1 − p). To the best of our knowledge, no

other paper in the literature has proposed this use of H ′X as instruments.

For cases where the above conditions do not hold (e.g., if H is symmetric and/or the

symmetry of G is unknown), we provide an alternative way to construct valid instruments,

2While we focus on the 2SLS estimator in this paper, the same arguments apply to show that conven-
tional maximum likelihood, and the generalized least squares estimators based on (1) are also inconsistent.
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based on observing two differentH matrices.3 For example, in our empirical application, for

an undirected link between two households A and B, we observe two proxy measures of the

same link: whether A visited B, and whether B visited A. This yields two different observed

H matrices corresponding to the same true undirected link in the G matrix. Observing

these two H matrices allows us to construct valid instruments.

Third, under either of the two scenarios above that permit construction of valid in-

struments (that is, either asymmetric H with symmetric G, or observing two different H

matrices regardless of symmetry), we provide simple methods to identify and estimate the

unknown missing rate p.4

Building on these insights, we construct a consistent adjusted 2SLS estimator for (λ, β),

and provide its limiting distribution as the number of groups grows to infinity. This es-

timator essentially applies 2SLS to the rescaled peer outcomes in (2), using our proposed

new instruments, and a sample analog estimator for the missing rate p. The estimator

is easy to implement, and we demonstrate good finite-sample performance in monte carlo

simulation.

We then generalize the model and our estimator in several directions. We show how

to include contextual effects (a GXγ term) as well as group-level fixed effects into the

structural form in (1). We also allow the missing rates p to be heterogeneous and depend

on individual covariates in X.

In addition, we extend our method to the case where the sample consists of a single large

network. In this case, the asymptotic experiment is to increase the number of individuals

on a single network, rather than increasing the number of small, fixed-sized groups. For

this extension we propose two possible settings where some form of weak dependence exists

between the outcomes of individuals who are “sufficiently far” from each other, either in the

sense of not being in the same group (Section 6.1) or in terms of a latent distance metric

(Section 6.2). In either case, we show that under such weak dependence our adjusted

3We also show yet another way to construct valid instruments is to use nonlinear functions of X.
4The approach we take in this step differs from, and is simpler than, other papers that use multiple

measures to deal with misclassification in discrete explanatory variables (e.g. Mahajan (2006), Lewbel
(2007), and Hu (2008)). This is because, for implementing our adjusted-2SLS, it is only necessary to
estimate the missing rate p, rather than the distribution of outcomes conditional on the actual G.
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2SLS estimator, when pooled over individuals in the sample, still converges to the intended

estimand.

Finally, we apply our method to estimate peer effects in household decisions to partici-

pate in a microfinance program in Indian villages, using data from Banerjee et al. (2013).

We match the individual survey to the household survey there, yielding a sample of 4134

households in 43 villages in South India. The parameter of interest is the peer (endorse-

ment) effect, which reflects how a household’s decision is influenced by the microfinance

program participation of other households to which it is linked. Survey information about

directed visits between the households provides two noisy measures of network links (i.e.,

two H matrices). We estimate missing rates in each of these two measures using our

methodology, and then we apply these rates in our adjusted-2SLS procedure to estimate

the endorsement peer effects.

We find that participation by another linked household increases a household’s own

participation rate by around 4.6%. This effect is economically significant, compared to the

average participation rate of 18.2% in the sample. We also find that ignoring the missing

links in the noisy measures and applying conventional 2SLS estimation results in a sizeable

upward bias in the estimates of these peer effects.

Roadmap. Section 2 reviews the related literature, and explains our contribution in its

context. Section 3 specifies the model, and illustrates the main ideas in a benchmark

model with independent and identical missing rates. Section 4 defines an analog estimator

for missing rates, and provides our adjusted-2SLS estimator for social effects. Section 5

extends the method to more general settings with contextual effects, heterogeneous missing

rates, and group fixed effects. Section 6 shows how our estimator works when the sample

consists of a single, large network. Section 7 presents monte carlo simulation results.

Section 8 applies our method to analyze peer effects in microfinance participation in India.

Proofs are collected in the Appendix.
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2 Related Literature

Missing or misclassified links is an important topic in the social networks literature. Shalizi

and Rinaldo (2013) note the challenge of dealing with missing network links in Random

Graph Models. Advani and Malde (2018) show that even a relatively low misreporting rate

can lead to large bias in causal effect estimates.

The econometrics literature on the estimation of peer effects with network measurement

issues is fast growing. Butts (2003) proposes a hierarchical Bayesian model to infer social

structure in the presence of measurement errors. Chandrasekhar and Lewis (2011) show

how egocentrically sampled network data can be used to predict the full network in a

graphical reconstruction process. Liu (2013) shows that when the adjacency matrix is not

row-normalized, instrumental variable estimators based on an out-degree distribution can

be valid.

Goldsmith-Pinkham and Imbens (2013) examine network endogeneity and investigate

simultaneously alternative definitions of links and the possibility of peer effects arising

through multiple networks. They explicitly model network formation, with estimation

based on maximum likelihood, using a Bayesian approach for computational convenience

and feasibility. Hardy et al. (2019) estimate treatment effects on a social network when the

reported links are a noisy representation of true spillover pathways. They use a mixture

model that accounts for missing links as unobserved network heterogeneity, and estimate

it using an Expectation-Maximization algorithm. This approach requires a parametric

model of how links are determined and treatment is assigned, and requires enumerating

the likelihood conditional on all possible treatment exposures (which in turn depends on

the latent unobserved network).

In contrast with these papers above, we focus on social effect parameters in a linear

social network model, and exploit implications of randomly missing links for identification.

Our method does not require modeling link formation. Our estimator is essentially a

rescaled 2SLS, which has closed form and is easy to compute.

Boucher and Houndetoungan (2020) estimate peer effects when the social networks in

the sample are subject to measurement issues, such as missing or misclassified links. Their
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method can be applied when the researcher only has access to aggregated relational data,

but assumes the researcher knows, or has a consistent estimator of, the distribution of the

actual network. They construct instruments by drawing from this distribution, and use

2SLS to estimate the peer effects. In comparison, the method we propose does not require

such prior knowledge or estimates of network distribution.

Griffith (2021) studies the case where links are censored in the sample (e.g., when each

individual is restricted to naming 5 or fewer links with other people, even if the actual

number of people the individual is linked with is larger). Griffith (2021) analytically char-

acterizes the bias in a reduced-form regression (i.e., when the outcome vector y is regressed

on the exogenous variables X and GX). In addition, for a model with no endogenous peer

effect, Griffith (2021) shows that the bias can be consistently estimated under an order

invariance condition (i.e., the covariance of characteristics of those one is linked with is

invariant to the order in which links are reported or censored). In comparison, we consider

different settings where links are missing at random in a model with a non-zero endogenous

peer effect λ ̸= 0. (This is later generalized to the case with heterogeneous missing rates.)

We show that the 2SLS estimand in this case contains a simple augmentation bias in peer

effects (in the sense of converging to λ/(1− p), with p being the missing rate), and no bias

in other individual effects. Bias correction in our case is immediate once the missing rate

is estimated using a simple approach that we provide.

3 Model and Identification

Consider a DGP from which a large number of small, independent networks (groups) are

drawn. Each group s consists of ns individual members, with ns ≥ 3 being finite integers.

In Section 3-5, we identify and estimate a linear social network model with missing links

in the data as the number of groups in the sample approaches infinity. Later we consider

the extension to a single growing network.

To simplify exposition, let the group sizes ns = n be fixed across groups s = 1, ..., S.

This allows us to drop the group subscript s while presenting our identification argument.

We will later add back these group subscripts and allow for variation in group sizes when
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we define our estimator in Section 4.

The structural form for the n-vector of individual outcomes y in each group is:

y = λGy +Xβ + ε, (3)

where the peer effect λ and the K-vector of direct effects β are constant parameters of

interest, X is an n-by-K matrix of individual- or group-level explanatory variables, and

G ∈ {0, 1}n×n is a network (adjacency) matrix with its (i, j)-th entry Gij = 1 if and only

if the individual members i and j are linked.

Note that, like y, X, and ε, the adjacency matrix G varies by group, and so it too has

an s subscript that has been dropped for now. Only the coefficients λ and β are constants

that do not vary across groups.

Assume that (I −λG) is invertible almost surely. (A sufficient condition for this is that

||λG|| < 1 for any matrix norm || · ||.) Solving equation (3) for y gives the reduced form

for outcomes:

y =M(Xβ + ε), where M ≡ (I − λG)−1. (4)

For each group, the sample only reports a noisy measure of the adjacency matrix G,

with randomly missing links. Denote this noisy measure by H ∈ {0, 1}n×n. Let Gii = 0

and Hii = 0 by convention. Assume:

(A1) E(Hij|G,X) = E(Hij|Gij, X) for all i and j;

(A2) E(Hij|Gij = 1, X) = 1− p and E(Hij|Gij = 0, X) = 0 for all i ̸= j;

(A3) E(ε|X,G,H) = 0.

Condition (A1) states that the incidence of missing a link between two individual members

i and j is conditionally independent from the state of links involving other individuals

l /∈ {i, j}. Condition (A2) specifies that misclassification of links is one-sided in that

existent links are missing from the sample at a rate of p ∈ (0, 1) while non-existent links

are never mistakenly coded as existent. Condition (A3) rules out endogeneity in link
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formation, by assuming that (X,G,H) are exogenous to the structural error ε.

Under (A1) and (A2), we can write:

E(H|G,X) = (1− p)G. (5)

In the next subsection we show how this property, along with condition (A3), leads to a

simple expression for the 2SLS estimand despite missing links.

3.1 Augmentation bias in two-stage least squares

In place of equation (1), we write a feasible structural form using H instead of G as:

y = λ∗Hy +Xβ + ε+ (λG− λ∗H) y︸ ︷︷ ︸
≡v

, where λ∗ ≡ λ/(1− p). (6)

Note the peer effect parameter λ is replaced with a rescaled version λ∗ in (6). Lemma 1

shows how this replacement restores the exogeneity of X with regard to the new composite

error v in (6).

Lemma 1. Under (A1), (A2), and (A3), E(v|X,G) = 0.

Lemma 1 may seem rather surprising ex ante, because one would expect (X,G) to be

generically correlated with the composite error v which depends on y. The intuition for

this result is as follows. Once we condition on the actual network G and explanatory vari-

ables in X, the randomness in individual outcomes y is solely due to the actual structural

errors ε, which are uncorrelated with both X and (H,G) under (A3). As a result, any

potential correlation between v and (X,G) could only be due to the reparametrized mea-

surement error λG− λ∗H. But equation (5) implies that λG− λ∗H, and consequently the

reparametrized error v, are mean independent from (X,G).

As discussed earlier, even with Lemma 1 establishing exogeneity of X in (6) by replacing

λ with λ∗, there is still endogeneity in the term Hy because E[(Hy)′ v] ̸= 0 in general.5 We

5To see this, note E(H ′H|G,X) ̸= (1−p)2G′G = (1−p)E(H ′G|G,X) under (A1), (A2) and even with
the addition of a stronger condition (A4) in Section 3.2. It then follows from (A3) and an application of
the law of iterated expectation that E (y′H ′Hy) ̸= (1− p)E(y′H ′Gy) in general.
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therefore next investigate the estimand from 2SLS given appropriate instruments for Hy.

Based on Lemma 1 nonlinear functions of X can serve as instruments, if the usual rank

(instrument relevance) condition is satisfied. However, nonlinear functions of X might not

be relevant, or might be weak as instruments, since the structural model is linear in X. To

deal with this possibility, we later show that it is also possible to use the noisy network

measure H to construct instruments just from linear functions of X. One example we give

later in Section 3.2 is that H ′X can be a valid instrument, meaning E[(H ′X)′ v] = 0, when

H consists of directed links.

More generally, let ζ be a generic n-by-L matrix of instruments for Hy. This may

either be nonlinear functions of explanatory variables ζ(X) if these are related to the link

formation in G, or functions of the noisy network measure H such as ζ(X,H) = H ′X

for asymmetric H as discussed later in Section 3.2. Denote R ≡ (Hy,X), Z ≡ (ζ,X) so

that E(R′v) ̸= 0 while E(Z ′v) = 0. Assume the instruments satisfy the following rank

condition:

(IV-R) E(Z ′R) and E(Z ′Z) have full rank.

Let Π ≡ [E(Z ′Z)]−1E(Z ′R). By (6) and Lemma 1,

Π′E(Z ′y) = Π′E(Z ′R)(λ∗, β′)′ +Π′E(Z ′v)

⇒ (λ∗, β′)
′

= [Π′E(Z ′R)]
−1

[Π′E(Z ′y)] . (7)

We formalize this result in the next proposition.

Proposition 1. Suppose (A1), (A2), and (A3) hold, and that (IV-R) holds for instruments

Z. The two-stage least-squares estimand using Z for (6) is then (λ∗, β′)′.

Proposition 1 shows that when links are missing at random in the sample, 2SLS es-

timation using valid instruments leads to augmentation bias in the peer effect, because

2SLS estimates λ∗ instead of λ. Intuitively, when links are missing in the sample, their

contribution to peer effects are erroneously attributed to the remaining observed links,

thereby exaggerating the magnitude of peer effects attributed to the observed links. In

contrast to peer effects, the individual effects β are consistently estimated by 2SLS (with
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valid instruments) despite missing links.

Based on Proposition 1, we have two main requirements for estimating the model. First,

we need to construct valid instruments for 2SLS, and second, we need an estimator of p,

to convert the 2SLS estimate of λ∗ into an estimate of λ.

3.2 Constructing instruments from a noisy network measure

We return to the question about how to construct instruments using a noisy network

measure H. Assume:

(A4) Conditional on (G,X), Hij and Hkl are independent whenever (i, j) ̸= (k, l).

This condition states the incidence of missing two links that do not involve the same

individual are independent conditional on actual link status. This rules out the case where

H and G are both symmetric (i.e., they both consist of undirected links) so Hik = Hki

and Gik = Gki for all i, k.6 We later give a method for constructing instruments in the

symmetric matrix case of undirected links. With (A4), we can construct instruments using

H and X as follows.

Proposition 2. Suppose (A1), (A2), (A3), and (A4) hold. Then E(Z ′v) = 0, where

Z ≡ (H ′X,X).

There is a simple interpretation of the instruments H ′X: the i-th component (row) of

H ′X is the sum of characteristics of all individuals who are observed to report links with i.

Recall that GX are valid instruments when G is perfectly observed. Therefore, one may

wonder why we use H ′X instead of HX as instruments here. To understand this, note the

composite error v in (6) contains the reparametrized measurement error (λG− λ∗H), and

so in particular contains H. Hence, even under (A1)-(A4), HX is correlated with this

reparametrized measurement error in v through H. In contrast, using a transpose of H

in H ′X removes such correlation, because under (A4) the events of missing links between

6Suppose (Hik, Gik) = (Hki, Gki). Under (A1)-(A2), E(Hik|G,X)E(Hki|G,X) = (1 − p)2Gik ̸= (1 −
p)Gik = E(HikHki|G,X). Hence (A4) does not hold.
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different pairs of (i, j) are conditionally independent.7 Therefore, H ′X are valid instruments

while HX are not.

To apply 2SLS, the instruments need to satisfy the rank conditions in (IV-R). The next

proposition specifies sufficient conditions for these rank conditions in terms of moments of

functions of (X,G).

Proposition 3. Suppose (A1), (A2), (A3), (A4) hold, and E(X ′X) is non-singular. Then

(IV-R) holds for Z ≡ (H ′X,X) if

 E(X ′X) E(X ′M−1X)

E(X ′MX) E(X ′X)

 and

 E(X ′G2X) E(X ′GX)

E(X ′GX) E(X ′X)

 are non-singular.

(8)

The rank conditions in (8) hold generically for random link formation models. Our

simulations show that these conditions hold even for very restrictive cases where links are

i.i.d. Bernoulli and independent from X. Violations of these conditions in (8) do exist in

special cases. One such example is the linear-in-means social interactions model where Gk

is proportional to a square matrix of ones for all positive integers k. It is worth noting that

such an example of linear-in-means model also violates the rank condition for identifying

social effects in Bramoullé et al. (2009), which requires I, G, andG2 be linearly independent.

3.3 Instruments based on multiple symmetric measures

The method in Section 3.2 to construct instruments assumes we observe an asymmetric

network measure matrix H. In this section we show that we can alternatively construct

instruments if the sample provides two (or more) symmetric measures of the network. Call

these two measures H(1) and H(2).

For example, Banerjee et al. (2013) provide multiple measures of undirected links be-

tween households in rural villages across the State of Karnataka, India. For each pair

7Formally, (HX)′v contains H ′H (and consequently H2
ik terms), while (H ′X)′v contains H2 (and

consequently HikHki terms) instead. Under (A4), E(H2|X,G) = (1 − p)2G2. This equality, along with
the fact that E(HG|X,G) = (1 − p)G2 under (A1)-(A2), implies E[(H ′X)′v|G,X] = 0. In contrast,
E[H ′H|X,G] ̸= (1− p)2G2, and as a result, E[(HX)′v|G,X] ̸= 0.
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of households, the survey asks which households you visited, and which ones visited you.

Banerjee et al. (2013) symmetrize each of these two measures, yielding symmetric matrices

we can call H(1) and H(2). These two matrices are both measures of the same underlying

symmetric network G. However, as we show later, these two matrices empirically differ

substantially, indicating that they are different noisy measures of G.

Assume we observe symmetric matrices H(1) and H(2) satisfying (A1), (A2), (A3), and

(A4’) Conditional on (G,X), H
(1)
ij and H

(2)
kl are independent whenever (i, j) ̸= (k, l).

Note that H(1) and H(2) can each have their own, different missing link rates p(1) and p(2).

Using either measure H(1) or H(2), we can construct a feasible structural form. That is, for

t = 1, 2,

y = λ
1−p(t)H

(t)y +Xβ + v(t), where v(t) = ε+ λ
[
G− H(t)

1−p(t)

]
y. (9)

Under (A1)-(A3) and (A4’) and by an argument similar to Proposition 2, we can show that

H(2)X satisfies exogenous conditions with regard to v(1) (see Appendix A for details):

E
[
(H(2)X)′v(1)

]
= 0.

By a symmetric argument, similar exogeneity holds forH(1)X and v(2). We can therefore

use H(1)X as instruments in equation (9) with t = 2, and H(2)X as instruments in (9) with

t = 1. In Section 4, we discuss how to construct 2SLS estimators using these multiple

network measures.

3.4 Recovering peer effects and missing rates

To remove the augmentation bias and recover the peer effect λ from the 2SLS estimated

λ∗, we must identify and estimate the unknown missing link rate p. Here we provide two

different methods for identifying p under two different scenarios.

First, consider a scenario where the actual network G is symmetric (meaning links

are undirected, so Gij = Gji with probability one for all i ̸= j), but suppose the sample
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reports a noisy asymmetric H (meaning that Hij ̸= Hji with some positive probability).

For example, the sample may collect self-reported survey responses about undirected links,

with individual i reporting Hik for k ̸= i and individual j reporting Hjk′ for k
′ ̸= j.

In this scenario, we can construct a symmetric measure H̃ given by elements H̃ij =

max{Hij, Hji}. By construction, given our assumptions, if the missing link rate for H is

p, then the missing link rate for H̃ will be p2. Let ψ(H) ∈ R denote the average of all

off-diagonal components in a network measure H. By the implication of randomly missing

links in (5) and the linearity of ψ(·),

E[ψ(H)] = (1− p)E[ψ(G)] and E[ψ(H̃)] = (1− p2)E[ψ(G)].

Hence we can identify the missing rate as p = E[ψ(H̃)]/E[ψ(H)]− 1.

Next, consider a different scenario where the sample has two independent, noisy mea-

sures of the adjacency matrix, H(1) and H(2), with unknown missing rates p(1) and p(2)

respectively. Construct a third measure H
(3)
ij = max{H(1)

ij , H
(2)
ij }. The implied missing

rates in H(3) is p(3) = p(1) × p(2). By equation (5) we have

E[H(t)] = (1− p(t))E (G) for t = 1, 2, 3.

By the linearity of ψ, we therefore get E[ψ(H(t))] = (1− p(t))E[ψ(G)], with E[ψ(G)] ̸= 0,

for t = 1, 2, 3. Hence we can identify the missing rates p(1) and p(2) by

p(1) =
E[ψ(H(3))]− E[ψ(H(1))]

E[ψ(H(2))]
and p(2) =

E[ψ(H(3))]− E[ψ(H(2))]

E[ψ(H(1))]
.

Once the missing rates are recovered, we can use them to remove the augmentation bias

in the 2SLS estimand in (6). Equivalently, we can use these rates to rescale the endogenous

variable as Hy/(1− p) so that 2SLS can then estimate (λ, β′)′ consistently.

In each of the above scenarios, the matrix we construct, either H̃ or H(3), is under

our assumptions a more accurate measure of G than the original H or H(1) and H(2), in

the sense of having a lower rate of missing links. However, direct estimation using these
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constructed matrices in place of G would still be biased and inconsistent due to the missing

links. The estimators we propose in the next section don’t directly use these constructed

matrices (other than to estimate missing rates as above), but the estimators do make use of

the information involved in such construction. Specifically, estimation in the first scenario

make use of both H and its transpose that were used to construct H̃, while estimation in

the second scenario make use of both H(1) and H(2) that were used to construct H(3).

4 Two-Step Estimation

The previous section provides two different identification strategies, based on either ob-

serving an asymmetric noisy adjacency matrix measure, or observing two noisy adjacency

matrix measures. We now propose estimators based on each of these identification strate-

gies. Consider a sample of S independent groups, indexed by s = 1, 2, ..., S, with group s

consisting of ns members (later we consider extensions to a single growing network instead

of many independent groups). For each group s, the sample reports an ns-by-1 vector

of individual outcomes ys, an ns-by-K matrix of explanatory variables Xs, and either an

ns-by-ns noisy asymmetric network measure Hs, or two symmetric ns-by-ns noisy measures

H
(1)
s and H

(2)
s .

Consider the first scenario in Section 3.4, which has symmetric Gs and asymmetric Hs.

We begin by estimating the missing rate p. Let H̃s denote the symmetric measure with its

(i, j)-th component constructed as H̃s,ij = max{Hs,ij, Hs,ji}. Define:

ψs ≡ ψ(Hs) and ψ̃s ≡ ψ(H̃s).

We estimate the missing rate p by

p̂ =
1
S

∑S
s=1 ψ̃s

1
S

∑S
s=1 ψs

− 1,

Because the estimator for the missing rate p̂ is a simple function of sample averages,

we apply the Delta Method to derive its asymptotic properties. Assume 1
S

∑S
s=1E[ψ(Gs)]
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converges to a finite constant as S → ∞. With (A1) and (A2) holding for each group s,

1
S

∑S
s=1E(ψs) and

1
S

∑S
s=1E(ψ̃s) also converge. Denote their limits by µψ and µψ̃ respec-

tively. Let χs ≡ (ψ̃s − E[ψ̃s], ψs − E[ψs])
′ and 1

S

∑S
s=1E(χsχ

′
s) → Σψ, which we assume is

finite, as S → ∞. By applying the Delta Method,

√
S (p̂− p)

d−→ N (0,RΣψR′),

with R ≡
(

1
µψ
,−µ

ψ̃

µ2ψ

)
.

Next, we use p̂ to adjust the 2SLS estimator, yielding consistent estimation of λ. To

simplify derivation and notation, let ns = n for s = 1, ..., S. The derivation for the case

where ns varies across the groups is similar, and only differs by requiring versions of the

Law of Large Numbers and the Central Limit Theorem for independent and heterogeneous

arrays indexed by s. Later, as in our empirical application, we allow for group size variation.

Consider the first scenario in Section 3.4, where the sample reports a single network

measure Hs for each group s that is asymmetric. For each group s in the sample and a

generic p̃ ∈ (0, 1), define

Ws(p̃) ≡
(

1
1−p̃Hsys, Xs

)
and Zs ≡ (H ′

sXs, Xs) .

Let Y denote an nS-by-1 vector that stacks ys for s ≤ S. Similarly, define W(p̂) as an

nS-by-(K + 1) matrix that stacks Ws(p̂) for s ≤ S, and define Z as an nS-by-2K matrix

that stacks Zs for s ≤ S. Our estimator for θ ≡ (λ, β′)′ is:

θ̂ ≡
(
A′B−1A

)−1
A′B−1 (Z′Y ) , (10)

where

A ≡ Z′W(p̂) and B ≡ Z′Z.

The next proposition characterizes the limit distribution of θ̂ as S → ∞. Define Σ0 ≡(
A′

0B
−1
0 A0

)−1
A′

0B
−1
0 with B0 ≡ E(Z ′

sZs) and A0 ≡ E [Z ′
sWs(p)], where p is the actual

missing rate that generates the sample data. Let ξs ≡ Z ′
svs − F0χs, where vs is the n-by-1
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vector of composite errors in (6), and F0 is a 2K-by-1 vector defined as:

F0 ≡ E [Z ′
s▽Ws(p)θ] =

λ
(1−p)2E(Z

′
sHsys), from ▽Ws(p) ≡ dWs(p̃)

dp̃
|p̃=p =

(
Hsys
(1−p)2 , 0

)
.

Intuitively, F0 illustrates how the moment condition in 2SLS depends on the missing rate

p, and −F0χs is the adjustment in the influence function that accounts for the first-stage

estimation error in p̂.

Proposition 4. Suppose (A1), (A2), (A3), and (A4) hold, and (IV-R) is satisfied with

Z ≡ (H ′X,X). Then
√
S
(
θ̂ − θ

)
d−→ N (0,Σ0E(ξsξ

′
s)Σ

′
0),

under the regularity conditions (REG) in Appendix B.

The conditions (REG), provided in Appendix B, are standard conditions that suffice to

apply the Law of Large Numbers, the Central Limit Theorem, and the Delta Method.

Standard errors for θ̂ are calculated by replacing A0, B0, F0, and E(ξsξ
′
s) with their

sample analogs:

Â = 1
S

∑
s
Z′
sWs(p̂), B̂ = 1

S

∑
s
Z′
sZs, F̂ = 1

S
λ̂

(1−p̂)2
∑

s
Z ′
sHsys, ξ̂s = Z ′

sv̂s − F̂ τ̂s,

where

v̂s = ys −Ws(p̂)θ̂, τ̂s =

(
1
ψ
,− ψ̃

(ψ)
2

)(
ψ̃s − ψ̃, ψs − ψ

)′
,

with ψ, ψ̃ being averages of ψs, ψ̃s over s ≤ S.

We conclude this section by explaining how to apply a similar idea for estimation under

the second scenario in Section 3.4. In this case, the sample reports for each group s two

symmetric network measures with randomly missing links, H
(1)
s andH

(2)
s , with missing rates

p(1) and p(2) respectively. As we show in Section 3.3, this leads to two feasible structural

forms, depending on which value of t we use in the expression:

ys = W (t)
s θ + v(t)s for t = 1, 2, (11)
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where θ ≡ (λ, β′)′, W
(t)
s ≡

(
H

(t)
s ys

1−p(t) , Xs

)
, and v

(t)
s ≡ εs + λ

(
Gs − H

(t)
s

1−p(t)

)
ys. The exoge-

nous instruments for these two systems are respectively Z
(1)
s ≡ (H

(2)
s Xs, Xs) and Z

(2)
s ≡

(H
(1)
s Xs, Xs). Let’s write:

Z̃s ≡

 Z
(1)
s 0

0 Z
(2)
s

 ; ỹs ≡

 ys

ys

 ; W̃s ≡

 W
(1)
s

W
(2)
s

 .

Instrument exogeneity implies the following moments:

E
[
Z̃ ′
s(ỹs − W̃sθ)

]
= 0.

This moment condition identifies θ, provided E(Z̃ ′
sW̃s) has full rank. Using arguments

similar to Proposition 3 in Section 3.2, we can derive analogous sufficient conditions for

this rank condition. We omit the details here for brevity.

We define a system, or stacked, two-stage least squares (S2SLS) estimator as follows.

Let Z̃ denote a 2nS-by-4K matrix that is constructed by vertically stacking S matrices

(Z̃s)s≤S. Likewise construct a 2nS-by-(K + 1) matrix W̃ by stacking (W̃s)s≤S (with p(t)

estimated by p̂(t)) and a 2nS-by-1 vector ỹ by stacking (ỹs)s≤S. The S2SLS estimator is

θ̃ ≡ [W̃
′
Z̃(Z̃

′
Z̃)

−1
Z̃′W̃]

−1
W̃′Z̃(Z̃

′
Z̃)

−1
Z̃′ỹ. (12)

This provides us with a single estimator that exploits both sets of instruments in the two

structural forms in (11). Similar to the case with θ̂ in (10), we can readily construct the

standard error for θ̃ that accounts for estimation error in p̂(1), p̂(2). We omit details here

for brevity.

5 Extensions

We now extend the baseline method in Section 3 to more general settings with contextual

effects, heterogeneous missing rates, and group fixed effects. In each case we focus on

extending the ideas for constructive identification. Estimation in each of these cases follows
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from constructive identification arguments and the estimation steps in Section 4.

As before, to fix ideas and simplify notation, let group sizes ns = n be fixed in the

sample throughout the remainder of this section. This allows us to suppress the group

subscripts s.

5.1 Contextual effects

Suppose the structural form is:

y = λGy +Xβ +GXγ + ε,

where γ is a vector of contextual effects, which shows how individual outcomes are directly

influenced by the characteristics of others linked to the individual. The reduced form is

y =M(Xβ +GXγ + ε),

where M is defined as in (4). The noisy structural form based on H is:

y = λ
Hy

1− p
+Xβ +

HX

1− p
γ + η,

where the composite error η is defined as

η ≡ ε− λ
(

H
1−p −G

)
y −

(
H
1−p −G

)
Xγ.

Under the same conditions and by the same arguments as in the baseline case with no

contextual effects (in Section 3.1), rescaling H by 1-p makes the new composite error η

mean independent from (X,G). We can similarly construct instruments using H as before.

Our next proposition establishes these results. For generality, let ζ(X) ∈ Rn×L be any

generic function of X with L ≥ K.

Proposition 5. Suppose (A1), (A2), and (A3) hold. Then E(η|X,G) = 0. If in addition

(A4) holds, then E{[H ′ζ (X)]′η} = 0.
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This proposition implies that H ′ζ(X) satisfies instrument exogeneity for generic func-

tions of X. In fact, a stronger result holds under (A1)-(A4): E(Hη|G,X) = 0. The

intuition is the same as in Proposition 2. Thus we can apply 2SLS as before to consis-

tently estimate (λ, β′, γ′)′ using (H ′X,X,H ′ζ(X)) as instruments for W ≡
(
Hy
1−p , X,

HX
1−p

)
,

provided appropriate rank conditions hold.

5.2 Heterogeneous missing rates

We now extend our methods to allow the missing link rate p to vary with individual

characteristics X. To focus on the main idea, we return to the case with no contextual

effects as in (6). The generalization to including contextual effects, using the results of the

previous sub-section, is straight-forward.

Suppose we replace (A2) with the more general condition:

(A2’) E(Hij|Gij = 1, X) = 1− pij(X) and E(Hij|Gij = 0, X) = 0 ∀i ̸= j.

Under (A2’), E(H|G,X) = Q◦G, where Q is an n-by-n matrix with its (i, j)-th component

Qij ≡ 1− pij(X) and “◦” denotes the Hadamard product. We suppress the dependence of

Q on X for simplicity. By the Law of Iterated Expectation,

E (H|X) = Q ◦ E (G|X) .

To recover pij(·), we can apply a method similar to Section 3.4 by focusing on single

links and conditioning on X. For example, consider the second scenario in Section 3.4 (the

sample reports two noisy measures with missing rates p
(1)
ij (X) and p

(2)
ij (X) respectively).

Under (A2’), E
(
H

(t)
ij

∣∣∣X) =
[
1− p

(t)
ij (X)

]
E(Gij|X) for any i ̸= j and t = 1, 2. As before,

we can construct a third measure H
(3)
ij = max{H(1)

ij , H
(2)
ij } for each pair i ̸= j, and then

identify the missing rates as

p
(1)
ij (X) =

E
(
H

(3)
ij −H(1)

ij

∣∣∣X)
E
(
H

(2)
ij

∣∣∣X) and p
(2)
ij (X) =

E
(
H

(3)
ij −H(2)

ij

∣∣∣X)
E
(
H

(1)
ij

∣∣∣X) .
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In practice, we can avoid the curse of dimensionality in estimation by specifying the missing

rates pij(X) and link formation probability E(Gij|X) as functions of Xi and Xj alone.

With knowledge (or estimates) of p(X) ≡ {pij(X)}i,j≤n, we can use 2SLS to consistently

estimate (λ, β′)′. Let Q̃ denote a “pointwise inverse” of Q, with the (i, j)-th entry being

Q̃ij ≡ 1/(1− pij). With p(X) identified, we can transform the structural form in (6) as

y = λ
(
Q̃ ◦H

)
y +Xβ + ε+ λ[G−

(
Q̃ ◦H

)
]y︸ ︷︷ ︸

v∗

.

Under (A2’) and (A3),

E(v∗|G,X) = λ{GE(y|G,X)− E
[(
Q̃ ◦H

)
y
∣∣∣G,X]}

= λ[GMXβ − Q̃ ◦ E(H|G,X)MXβ]

= λ(G− Q̃ ◦Q ◦G)MXβ = 0. (13)

Let W ∗ ≡ (
(
Q̃ ◦H

)
y,X) and Z∗ ≡ (ζ(X), X) where ζ(X) ∈ Rn×L is a nonlinear

function of X with L ≥ K (e.g., ζ(X) ≡ X ◦X). It follows from (13) that E(Z∗′v∗) = 0.

As long as E(W ∗′Z∗) and E[Z∗′Z∗] both have full rank, then we can use 2SLS to consistently

estimate λ and β.8

5.3 Group fixed effects

Suppose each group has an unobserved fixed effect α so that the structural form is:

y = λGy +Xβ + α + ε.

Let G denote an n-by-n matrix with identical rows, each of which equals the average of all

rows in G. Define H and X analogously. Applying a within transformation (as with panel

8With heterogeneous missing rates, H ′X does not satisfy instrument exogeneity, because H(Q̃ ◦H) ̸=
Q̃ ◦H2 in general.
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data fixed effects) using the group mean ȳ ≡ 1
n

∑n
i=1 yi, we eliminate α and get

y − y =
λ

1− p

(
H −H

)
y + (X −X)β + v − v,

where

v − v = ε− ε+ λ

[
G− H

1− p
−
(
G− H

1− p

)]
y.

Because G,H are linear functions of G,H respectively, the same argument as Lemma 1 in

Section 3 applies to show that

E(v − v|X,G) = 0.

We can therefore use 2SLS to estimate (λ, β′)′ exactly as before, after applying the within

transformation.

6 A Single Large Network

So far we have focused on cases where the sample consists of many small, fixed-sized groups,

where no links exist between members of different groups.

In this section we show how our method can be applied to settings with interdependence

between all individuals in a sample. Specifically, we consider two scenarios in which some

forms of weak dependence exist between individuals that are “far enough” from each other.

For both scenarios, our proposed 2SLS estimators, when pooling observations over a single

large network in the sample, remain consistent and asymptotically normal.

6.1 Nearly block-diagonal (NBD) networks

In this section, we consider a scenario in which the sample can be partitioned into well-

defined, approximate groups, which we henceforth refer to as “blocks”. As before, links

within each block are dense (i.e., the probability of forming links between two individuals

within the same block does not diminish as the sample size increases). But now, in addition,

links between individuals from different blocks exist, but they’re sparse, so the probability

of forming links across blocks diminishes as the number of blocks increases. Measurement
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issues arise because of two reasons. First, as before, links that exist within each block are

missing randomly from the sample at a fixed rate. Second, those sparse cross-block links

that now exist are never reported in the sample.

Formally, we partition the individuals in the sample into S blocks. Each of these blocks

is indexed by s ≤ S, and consists of ns members, with ns ≥ 3 being finite integers. Links

between individuals within the same block are reported in the sample, but are missing at

a rate p ∈ (0, 1) due to measurement errors. Links between individuals across different

blocks are not reported in the sample. The sample size is N ≡
∑S

s=1 ns. Let GN and HN

denote true and reported N -by-N adjacency matrices that span the observed S blocks. To

facilitate investigation of the asymptotic properties of our 2SLS estimators, let G̃N be a

hypothetical block-diagonal approximation of GN , which perfectly reports all within-block

links but drops all cross-block links. That is, for all individual i,

G̃N,ij = GN,ij if j ∈ s(i); G̃N,ij = 0 if j /∈ s(i),

where s(i) indicates the block that i belongs to. We maintain the following assumptions

on the measurement error in HN :

(N1) E(HN,ij|G̃N , X) = E(HN,ij|G̃N,ij, X) ∀i ̸= j, and

(N2) E(HN,ij|G̃N,ij = 1, X) = 1− p and E(HN,ij|G̃N,ij = 0, X) = 0 ∀i ̸= j.

Furthermore, we maintain that the block-specific random arrays, HN,s, G̃N,s, XN,s, ϵN,s

(with HN,s, G̃N,s being ns-by-ns matrices), are drawn independently across the blocks.

We provide conditions under which, in this setting of a single, large network, our 2SLS

consistently estimates structural parameters up to augmentation bias, which as before is

fixed by deflating by an estimate of 1-p. Return to the model with no contextual effects,

so that the structural form is

yN = λGNyN +XNβ + εN , (14)
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where yN , εN are N -by-1 vectors and XN is N -by-K matrix of individual characteristics.

In Appendix C, we show the feasible version of this structural form using the noisy

network measure is

yN = λ
1−pHNyN +XNβ + vN + uN , (15)

where

uN ≡
(
IN − λHN

1−p

)(
IN − λG̃N

)−1

λ∆NyN with ∆N ≡ GN − G̃N ,

and

vN ≡ εN + λ
(
G̃N − HN

1−p

)
ỹN with ỹN ≡ (IN − λG̃N)

−1(XNβ + εN).

Note that we decompose composite errors in (15) into uN and vN , which are both

vectorizations of block-specific vectors uN,s, vN,s. As we explain below, vN is a vectoriza-

tion of vN,s, which are independent across the blocks, whereas the components in uN are

correlated across the blocks because of interdependence between yN,s due to sparse links

between the blocks. This difference requires us to apply separate tactics to characterize

their contribution to the estimation errors in θ̂a.

This decomposition of the composite error is useful for illustrating two key steps for

deriving the asymptotic result. To see this, recall the 2SLS estimator that uses ZN ≡

(H ′
NXN , XN) as instruments for RN ≡ (HNyN , XN) is:

θ̂a =
(
A′
NB

−1
N AN

)−1
A′
NB

−1
N Z ′

NyN .

where AN ≡ Z ′
NRN and BN ≡ Z ′

NZN . By definition,

θ̂a − θa =
(
A′
NB

−1
N AN

)−1
A′
NB

−1
N Z ′

N(vN + uN),

where θa ≡
(

λ
1−p , β

′
)′

with the subscript a being a reminder that this estimand has aug-

mentation bias. Thus the asymptotic property of the estimator depends on that of Z ′
NvN

and Z ′
NuN , which we will investigate sequentially.

First, we characterize the order of Z ′
NvN , using the fact that vN,s are independent

across blocks s. To see why such independence holds, recall that HN,s, G̃N,s, XN,s, ϵN,s are
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assumed independent across blocks s. By construct, G̃N , HN and (I−λG̃N)
−1 are all block-

diagonal. Hence we can write ỹN as a vectorization of independent, hypothetical reduced

forms. That is, ỹN = vec([ỹN,1, ỹN,2, ..., ỹN,S]), where ỹN,s = (Is − λG̃N,s)
−1(XN,sβ + εN,s)

are independent across s.9 It then follows that vN,s = εN,s + λ
(
G̃N,s − HN,s

1−p

)
ỹN,s, and are

independent across s.

We maintain exogeneity and independence conditions which are analogous to (A3) and

(A4) for the case with small groups in Section 3:

(N3) E(εN,s|XN,s, GN,s, HN,s) = 0 for all s;

(N4) Conditional on (GN , XN), HN,ij⊥ HN,kl for all (i, j) ̸= (k, l).

Under these conditions, E(vN,s|XN,s, HN,s) = 0. The independence between vN,s mentioned

above then allows us to apply the law of large numbers (Lemma C3) to show that

1

S
Z ′
NvN =

1

S

∑
s
Z ′
N,svN,s = Op(S

−1/2).

Second, for analyzing the large-sample property of Z ′
NuN , we exploit the fact that it

takes the form of CN∆NyN , where both CN and yN are uniformly bounded under mild

regularity conditions (Lemma C2). Hence the order of 1
S
Z ′
NuN is bounded above by the

expected number of missing links across the blocks, which are sparse in the following sense:

(S-LOB)
∑N

i=1

∑
j ̸∈s(i)

E (|∆N,ij|) = O(Sρ) for some ρ < 1.

This condition holds, for example, if for individuals in each block s, cross-block links only

exist with a finite number (say, c <∞) of nearby blocks, and if the probability for forming

such links qS diminishes as the sample size grows (that is, qS = O(S−α) with α > 0).10

Therefore, with CN and yN bounded, we can establish that 1
S
Z ′
NuN = Op(S

ρ−1) under (S-

LOB) (Lemma C1). This sparsity condition also ensures AN , BN converges in probability

9We refer to ỹN as a hypothetical reduced form, because it is based on the block-diagonal approximation
G̃N rather than the actual GN .

10To see this, suppose all blocks have identical size n < ∞. Then the expected number of the cross-block
links is c× S × n(n− 1)× qS = O(S1−α), which satisfies (S-LOB).
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to certain deterministic arrays in large samples (see Lemma C3). We collect regularity

conditions used for deriving asymptotic properties of θ̂a − θa in Condition (S-REG) in

Appendix C.

Putting all these pieces together, we show that a feasible 2SLS estimator, which uses a

noisy measure H and ignores all links between different blocks, consistently estimates the

(augmented) structural parameter θa ≡
(

λ
1−p , β

′
)′

at a rate that is governed by the order

of sparse, cross-block links. This result is formalized in the next proposition.

Proposition 6. Suppose (N1), (N2), (N3) and (N4) hold. If Assumptions (S-LOB) and

(S-REG) hold, then

θ̂a − θa = Op(S
−1/2 ∨ Sρ−1).

If in addition ρ < 1/2, then

√
S
(
θ̂a − θa

)
d−→ N (0,Ω),

where Ω ≡
(
A′

0B
−1
0 A0

)−1
A′

0B
−1
0 ω0B

−1
0 A0

(
A′

0B
−1
0 A0

)−1
with A0, B0, ω0 being non-stochastic

arrays defined in Appendix C.

This proposition implies θ̂a
p−→ θa because ρ < 1. Furthermore, if ρ < 1/2, the

asymptotic distribution is determined by the leading term of S−1Z ′
NuN , and hence matches

the case of S independent small groups.

To estimate the missing rate p and remove the augmentation bias, one can apply the

same method as the first step in Section 4, which remains valid because of independence

of HN,s across the blocks s = 1, 2, ..., S.

6.2 Networks with near-epoch dependence (NED)

Here we obtain another consistency result for a different scenario, in which the data consists

of a single network that does not admit any definition of “approximate groups”, but does

include some notion of “distance” between individuals on the network. The main working

assumption in this case is that the dependence between two individuals weakens as the
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distance between them increases, which is reminiscent of the notion of weak dependence in

time series models.

Using this primitive condition, we show that observed outcomes satisfy a notion of

near-epoch dependence (NED) as used in Jenish and Prucha (2012). Hence a form of

the law of large numbers and the central limit theorem can be applied to averages over

individual outcomes and covariates in the sample. We also show that the adjusted-2SLS

estimator, when pooling observations over a single large network in the sample, converges in

probability to the structural parameters, where the augmentation bias is removed as before,

once missing rates are estimated. We present details of these results in a supplemental

appendix of this paper.

7 Simulation

In this section we use monte carlo simulation to investigate the finite sample performance

of our two-step 2SLS estimator in Section 4. Recall that the structural form of the data-

generating process is:

ys = λGsys +Xsβ + εs, s = 1, 2, ..., S.

We fix each group size to be ns = 20 in our simulation. In our design, each member i in

each group s has two individual characteristics Xs,i ∈ R2, which are drawn independently

across i and s. The first component Xs,i,1 is uniformly distributed over a finite support

{−1, 1, 2} while the second component Xs,i,2 is standard normal N(0, 1). We consider

three designs, corresponding to small, medium, and large peer effects, in which the true

parameters are:

λ ∈ {0.20, 0.35, 0.60} while (β1, β2) = (−1.5, 2).

The formulation of undirected links in the data-generating process is specified as follows.

First, each individual sends invitations to two other individuals who are drawn randomly

from the same group without replacement. An undirected link exists between two group

members if either of them sends an invitation to the other. No links are formed across the

groups. This generates each G matrix. Each H matrix is then constructed by dropping
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existing links randomly at the rate p = 1/2.

The size of a sample is defined as the number of independent groups in that sample.

For each fixed sample size S ∈ {100, 400, 900}, we generate T = 200 samples. (Our

simulated samples do not contain networks that are singular, which would violate regularity

conditions.) By applying our two-step 2SLS estimator from Section 4 in each sample

t = 1, 2, ...T , we record the empirical distribution of these estimates of (λ, β1, β2). Table 1

below reports the average bias, sample variance, and mean-squared errors (MSEs) based

on this empirical distribution.

Table 1. Two-step 2SLS Estimator Performance in Simulated Samples

S λ=0.2 β1 β2

100 avg. bias 0.000 0.014 0.002

variance 0.000 0.009 0.008

m.s.e. 0.000 0.009 0.008

400 avg. bias 0.000 0.003 0.002

variance 0.000 0.002 0.002

m.s.e. 0.000 0.002 0.002

900 avg. bias 0.000 0.001 0.000

variance 0.000 0.001 0.001

m.s.e. 0.000 0.001 0.001

λ=0.35 β1 β2

0.009 0.055 -0.089

0.015 0.175 0.404

0.015 0.178 0.412

0.006 0.016 -0.037

0.002 0.033 0.083

0.002 0.033 0.084

0.005 0.004 -0.019

0.001 0.013 0.035

0.001 0.013 0.036

λ=0.6 β1 β2

-0.303 0.734 -0.679

0.173 1.672 1.694

0.265 2.211 2.155

-0.142 0.361 -0.235

0.176 0.780 0.606

0.196 0.910 0.661

-0.056 0.162 -0.147

0.072 0.382 0.410

0.074 0.408 0.431

Table 1 shows that the mean-squared errors diminish as the sample sizes increase. For

each parameter, the rate of decrease in MSE is roughly proportional to the rate of increase

in the sample size. This offers evidence for the root-n convergence of our 2SLS estimator.

It is also clear that estimator variance accounts for a major portion of the MSEs. For a

fixed sample size and design, both the bias and variance of the peer effect parameter λ are

smaller than those for the individual effect parameters (β1, β2). We also note that, as the

peer effects λ increases, the MSEs increase for all parameters. This might be related to the

fact that the variance of the estimator depends on the variation of ys, which is scaled by

(1− λG)−1.
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8 Application: Microfinance Participation in India

We apply our method to study how peer effects influence household decisions to participate

in a microfinance program in India. The sample was collected by Banerjee et al. (2013)

using survey questionnaires from the State of Karnataka, India between 2006-2007. Baner-

jee et al. (2013) impute a social network structure in the sample by aggregating several

network measures that were inferred from the survey responses. They studied how the

dissemination of information about a microfinance program, Bharatha Swamukti Sams-

the, or BSS, depended on the network position of the households that were the first to

be informed about the program. Banerjee et al. (2013) use a binary response model with

social interactions to disentangle the effect of information diffusion from the peer effects,

a.k.a. endorsement effects. In contrast, we use two of the multiple measures in Banerjee

et al. (2013) as noisy proxies for an actual network, and apply our method to estimate peer

effects in a linear social network model.

8.1 Institutional background and data

The sample was collected by Banerjee et al. (2013) through survey questionnaires from 43

villages in the State of Karnataka, India.11 These villages are largely linguistically homo-

geneous but heterogeneous in terms of caste. The sample contains information about the

socioeconomic status and some demographic characteristics of 9,598 households. On aver-

age, there were about 223 households in each village, with a minimum of 114, a maximum

of 356, and a standard deviation of 56.2.

We merge the information from a full-scale household census and an individual-level

survey in Banerjee et al. (2013). The household census gathered demographic information

and data on a variety of amenities, such as roofing material, type of latrine, and quality of

access to electric power. The individual survey was administered to a randomly selected

sub-sample of villagers, which covered 46% of all households in the census. Individual ques-

tionnaires collected demographic information, such as age, caste and sub-caste, education,

language, and having a ration card or not, but does not include explicit financial informa-

11The data are publicly available at: http://economics.mit.edu/faculty/eduflo/social.
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tion. We merged the information about the head of household from the individual survey

with the household information from the census. This yields a sample of 4,149 households.

Table 2(a) reports summary statistics for the dependent variable (y = 1 if participates in

the microfinance program) as well as a few continuous and binary explanatory variables.

Summary statistics for additional categorical variables, such as religion, caste, property

ownership, access to electricity, etc, are reported in Table 2(b).

The individual-level survey in Banerjee et al. (2013) also collected information about

social interactions between households, such as (i) individuals whose homes the respondent

visited, and (ii) individuals who visited the respondent’s home. Banerjee et al. (2013)

construct graphs with undirected links by symmetrizing the data.12 That is, the sample

provided by Banerjee et al. (2013) contains two symmetric measures for the same latent

network, based on the responses to (i) and (ii) respectively. These two measures, reported

as “visitGo” and “visitCome” matrices in the sample and denoted as H(1) and H(2) in our

notation, lend themselves to application of our method in Section 3.3.13

12Two households i and j are considered connected by an undirected link if an individual from either
household mentioned the name of someone from the other household in response to the question in (1).
Likewise, a second symmetric network measure is constructed based on responses to (2).

13Banerjee et al. (2013) aggregate responses from 12 questions, including (1) and (2), to construct
a single symmetric network, that they assume equals, without any errors, an actual relevant adjacency
matrix G. In contrast, we take a different approach by interpreting responses to questions (1) and (2) as
two different noisy measures of a true underlying latent network.
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Table 2(a): Summary of Dependent and Explanatory Variables

Variable definition obs. mean s.d. min max

y dummy for participation 4149 0.1894 0.3919 0 1

room number of rooms 4149 2.4389 1.3686 0 19

bed number of beds 4149 0.9229 1.3840 0 24

age age of household head 4149 46.057 11.734 20 95

edu education of household head 4149 4.8383 4.5255 0 15

lang whether to speak other language 4149 0.6799 0.4666 0 1

male whether the hh head is male 4149 0.9161 0.2772 0 1

leader whether it has a leader 4149 0.1393 0.3463 0 1

shg whether in any saving group 4149 0.0513 0.2207 0 1

sav whether to have a bank account 4148 0.3840 0.4864 0 1

election whether to have an election card 4149 0.9525 0.2127 0 1

ration whether to have a ration card 4149 0.9012 0.2985 0 1

Table 2(b): Summary of Category Variables

Variable definition obs. per. Variable definition obs. per.

religion latrine

- Hinduism 3943 95.04 - Owned 1195 28.80

- Islam 198 4.77 - Common 20 0.48

- Christianity 7 0.19 - None 2934 70.72

roof own property ownership

- Thatch 82 1.98 - Owned 3727 89.83

- Tile 1388 33.45 - Owned & shared 32 0.77

- Stone 1172 28.25 - Rented 390 9.40

- Sheet 868 20.92

- RCC 475 11.45

- Other 164 3.95

electricity electricity provision caste

- Scheduled caste 1139 27.54

- Private 2662 64.18 - Scheduled tribe 221 5.34

- Government 1243 29.97 - OBC 2253 54.47

- No power 243 5.86 - General 523 12.65
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Table 3 reports the empirical distribution of the degrees of H(1) and H(2). Because

these measures are symmetric, there is no distinction between the degrees of in-bound or

out-bound links. We pool all households across 43 villages into a single, large network.

There are no links between households from different villages in the sample, so the network

structure is block-diagonal.

Table 3: Degree Distribution in Two Network Measures

Degree 0 1 2 3 4 5 6 7 8 9 10

H(1) 2 21 110 227 357 505 526 546 506 379 269

H(2) 4 24 112 245 384 522 534 577 491 386 255

Degree 11 12 13 14 15 16 17 18 19 20 ≥ 21

H(1) 224 145 90 74 54 33 27 15 9 6 24

H(2) 179 137 102 59 46 28 22 13 9 3 17

Table 3 indicates large variation in the number of connections the households have. If

there were no missing links in these reported measures, we would expect the two matrices

H(1) and H(2) to be identical, and therefore have exactly the same degree distribution. The

fact that they differ substantially is indicative of many missing links, possibly due to the

respondents’ recall errors, or to differences in how they interpret the visiting question.

8.2 Empirical strategy for estimating peer effects

We use the following specification for the feasible structural form:

y = λ

(
H(t)

1− p(t)

)
y +Xβ + villageFE + v(t) for t = 1, 2, (16)

where y is a binary variable indicating whether the household participated in the microfi-

nance program (BSS), X is a matrix of household characteristics, and villageFE are village

fixed effects. Definition and summary statistics of regressors in X are listed in Table 2.

Note that (16) provides two different feasible structural forms (of the same underlying true

structural model), corresponding to t = 1, 2 respectively.
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To implement an adjusted-2SLS estimator, we first estimate the missing rates p(t) for

t = 1, 2, and use them to rescale the endogenous regressors as in Section 4. Following

Section 3.4, we construct H(3) = max{H(1), H(2)} and estimate the missing rates as

p̂(1) =
ψ(H(3))− ψ(H(1))

ψ(H(2))
= 0.1681, and p̂(2) =

ψ(H(3))− ψ(H(2))

ψ(H(1))
= 0.1909,

where ψ(H) is the mean of off-diagonal entries in H. We replace p(1) and p(2) in equation

(16) with p̂(1) and p̂(2) respectively, and then apply the 2SLS estimators in Section 4.

The results are reported in Table 4. The columns of Table 4 are all 2SLS estimates,

defined as follows:

Column (a) ignores missing links in H(1), and so treats H(1) as if it were the true

adjacency matrix G, by putting (unscaled) λH(1)y on the right-hand side, and using H(1)X

as the instruments for H(1)y in 2SLS.

Column (b) estimates the structural form for t = 1 in (16), using H(2)X as instruments

for
(

H(1)

1−p̂(1)

)
y in adjusted 2SLS.

Column (c) is identical to Column (a), except for using H(2) instead of H(1) everywhere,

and so treats H(2) as if it were the true matrix G for 2SLS estimation

Column (d) is identical to column (b), except for switching the roles of the matrices

H(1) and H(2). So the feasible structural model in (16) is written in terms of t = 2, and

H(1)X is used as instruments for
(

H(2)

1−p̂(2)

)
y.

Column (e) applies the S2SLS estimator defined in (12) in Section 4. This estimator

combines (stacks) the 2SLS moments used in Columns (b) and (d) above, and so combines

the moments generated by both of the feasible structural models and their associated IVs

into a single estimator.

In summary, the estimators in (a) and (c) are what a researcher would do if he or she

ignored the missing links problem and treated either H(1) or H(2), respectively, as if it were

the true adjacency matrix G, applying the standard 2SLS estimator that is proposed in

the literature. In contrast, the corresponding adjusted-2SLS estimators in (b), (d) and (e)
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are estimators that we propose to remove the augmentation bias in 2SLS resulting from

missing links.14 Column (e) in particular combines the information used to construct the

estimators in both columns (b) and (d), and so is our preferred estimator.

8.3 Empirical results

Table 4 reports that our adjusted 2SLS estimates for the peer effect λ̂ are 0.0456 when

using H(1)y in the structural form (column (b)), 0.0484 using H(2)y (column (d)), and

0.0461 using both measures and S2SLS (column (e)). These estimates are all significant at

the 1% level, and the differences between them are small relative to the standard errors.

These estimates imply the likelihood of a household to participate in the microfinance

program is increased by about 4.6% when the household is linked to one more participating

household on the network (note for this calculation that our model does not row-normalize

the network measures). With the average participation rate being 18.9% in the sample,

these estimates suggest that peer effects, called “endorsement effects” in Banerjee et al.

(2013), are economically substantial.

The signs of estimated marginal effects by individual or household characteristics are

plausible. Column (e) suggests the head of household being a “leader” (e.g. a teacher, a

leader of a self-help group, or a shopkeeper) increases the participation rate by around 3.9%.

These households with “leaders” were the first ones to be informed about the program, and

were asked to forward information about the microfinance program to other potentially

interested villagers. These leaders had received first-hand, detailed information about the

program from its administrator, which could be conducive to higher participation rates.

14We need two noisy network measures in this particular context because the available reported measures
are symmetric. As we show in Section 3.2, our method can also be used if the sample reports a single yet
asymmetric noisy measure of the network.
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Table 4: Two-stage Least Square Estimates

(a) (b) (c) (d) (e)

r.h.s. endogeneity H(1)y H(1)

1−p̂1y H(2)y H(2)

1−p̂2y
H(t)

1−p̂ y

IV used H(1)X H(2)X H(2)X H(1)X Combined

λ̂ 0.0498*** 0.0456*** 0.0529*** 0.0484*** 0.0461***

(0.0076) (0.0096) (0.0092) (0.0087) (0.0075)

leader 0.0378** 0.0364** 0.0418** 0.0405** 0.0387**

(0.0185) (0.0186) (0.0182) (0.0182) (0.0183)

age -0.0016*** -0.0017*** -0.0016*** -0.0017*** -0.0017***

(0.0005) (0.0005) (0.0005) (0.0005) (0.0005)

ration 0.0441** 0.0435** 0.0423** 0.0413** 0.0426**

(0.0201) (0.0201) (0.0195) (0.0194) (0.0197)

electricity − gov 0.0343** 0.0333** 0.0352** 0.0341** 0.0339**

(0.0157) (0.0157) (0.0156) (0.0155) (0.0156)

electricity − no 0.0223 0.0229 0.0237 0.0247 0.0236

(0.0297) (0.0297) (0.0300) (0.0298) (0.0298)

caste− tribe -0.0285 -0.0272 -0.0275 -0.0257 -0.0268

(0.0312) (0.0309) (0.0305) (0.0300) (0.0305)

caste− obc -0.0520** -0.0490** -0.0486** -0.0441*** -0.0473***

(0.0217) (0.0212) (0.0215) (0.0206) (0.0210)

caste− gen -0.0734*** -0.0698*** -0.0688*** -0.0628** -0.0673***

(0.0239) (0.0242) (0.0241) (0.0234) (0.0239)

religion− Islam 0.0980*** 0.0955*** 0.0893*** 0.0849*** 0.0910***

(0.0323) (0.0323) (0.0343) (0.0344) (0.0332)

religion− Chri 0.1434 0.1420 0.1466 0.1452 0.1438

(0.130) (0.1287) (0.1314) (0.1300) (0.1293)

Controls
√ √ √ √ √

V illageFE
√ √ √ √ √

R2 0.1332 0.1345 0.1350 0.1365 0.1353

Obs 4134 4134 4134 4134 4134

Note: s.e. in parentheses. ***, **, and * indicate 1%, 5% and 10% significant.

Controls include male, roof , room, bed, latrine, edu, lang, shg, sav, election, own.

36



Households with younger heads are more likely to participate, but the magnitude of this

age effect is less substantial. Being 10 years younger increases the participation rate by

1.7%. Having a ration card increases the participation rate by around 4.3%. Compared to

households using private electricity, households using government-supplied electricity have

a 3.4% higher participation rate. These two factors indicate that, holding other factors

equal, households in poorer economic conditions are more inclined to participate in the

microfinance program.

Table 4 also shows that, if we had ignored the issue of missing links in network mea-

sures, and had done 2SLS using H(t)X as instruments for the (unscaled) endogenous peer

outcomes H(t)y, then the estimator would have been considerably biased upward. In (a),

where we use H(1)X as instruments for H(1)y, the estimate for λ is 0.0498. In comparison,

in (b) where we correct for missing link bias by using H(2)X as instruments for H(1)y
1−p̂(1) , then

the estimated λ is 0.0456. The upward bias resulted from ignoring the missing links is

about 9.2% (as 0.0498/0.0456=1.092). Likewise, in (c) where we erroneously use H(2)X as

instruments for H(2)y, we get a proportionally almost the same upward bias in the peer

effect estimate compared with the correct estimate in (d) (as 0.0529/0.0484=1.093).

The over 9% upward bias in (a) and (c) is a manifestation of two factors at work.

First, with missing links the instruments H(t)X are invalid because of the correlation be-

tween H(t)X and the composite errors v(t). Second, even if these instruments were valid,

the augmentation bias, as defined in Section 3.1, would be present without rescaling the

endogenous peer outcomes H(t)y by 1− p(t).

The magnitude of this upward bias is determined by the magnitude of p(t) and by the

correlation between the composite error and the invalid instruments. The microfinance

survey data in Banerjee et al. (2013) is considered to have high quality social network

information. In other empirical environments, we may expect even larger bias when missing

links are not accounted for in estimation. The method we propose in this paper provides

an easy remedy for this issue.
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Table 5: Model Validation: Predicted Microfinance Participation

Ê(y|X) Probit Logit OLS (a) (b) (c) (d) (e)

mean 0.1894 0.1894 0.1894 0.1894 0.1894 0.1894 0.1894 0.1881

s.t.d 0.1176 0.1181 0.1151 0.1339 0.1376 0.1356 0.1409 0.1337

min 0.0103 0.0166 -0.095 -0.104 -0.108 -0.127 -0.131 -0.110

max 0.7490 0.7673 0.6895 0.7807 0.8016 0.7279 0.7576 0.8036

< 0 0% 0% 2.95% 4.67% 4.98% 4.79% 5.49% 4.84%

I{Ê(y|X) > 0.5}
underpredict (1 to 0) 17.76% 17.66% 18.34% 17.34% 17.17% 17.34% 17.13% 17.30%

overpredict (0 to 1) 0.92% 1.11% 0.27% 0.87% 1.02% 0.85% 0.97% 0.80%

correct 81.33% 81.23% 81.40% 81.79% 81.81% 81.81% 81.91% 81.91%

We conclude this section with some model validation results in Table 5, which shows

how the predicted values of E(y|X) fit with the sample data. The Probit and Logit models

use the same set of regressors as in Table 4. We report the summary statistics of the fitted

values Ê(y|X) under different models. Columns (a) through (d) of Table 5 are the fitted

values of the feasible structural models used in each of the corresponding columns in Table

4. Column (e) in Table 4 used two different feasible structural models to obtain S2SLS

estimates. To make use of both for fitted values, in column (e) of table 5 we use the S2SLS

estimates of (λ, β) and construct fitted values based on λ̂ H(3)

1−p1p2y +Xβ̂ + F̂E, where H(3)

is as defined in Section 3.4.

In all but one of the models in Table 5, the sample mean of the predicted participa-

tion probability Ê(y|X) is 0.1894, which is equal to the sample mean of y in the 4,134

observations used in the regression. The standard deviation of the predicted participation

probability varies across different models. Predictions of linear probability models (LPM),

reported under the column of “OLS” and (a)-(e), are mostly within the unit interval [0, 1].

LPM predictions are strictly less than 1 for all observations in the sample; Only 2.95% to

5.49% of the households in the sample end up with negative LPM predictions. That is,

about 95% all LPM predictions in the sample are indeed within the unit interval.

Based on Ê(y|X), we use the indicator I(Ê(y|X) > 0) to predict whether an individual

participates in the microfinance program, and calculate prediction rates. Predictions in our
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linear social network models in columns (a)-(e) generally outperform the OLS, Probit and

Logit models in terms of the percentage of correct predictions.

9 Conclusion

This paper proposes adjusted-2SLS estimators that consistently estimate structural param-

eters, which include peer, individual, and contextual effects, in social network models when

actual existing links are missing randomly from the sample. By rescaling the endogenous

peer outcomes and applying new instruments constructed from noisy network measures,

our estimators resolve the additional endogeneity issues caused by missing links. As an

intermediate step of the method, we provide methods to estimate the rates at which links

are missing from noisy measures of network links. We also show that ignoring missing links

generally leads to augmentation bias, that is, peer effect estimates are generally biased

upward.

We apply our method to analyze the peer (endorsement) effects in households’ decisions

to participate in a microfinance program in Indian villages, using the data collected by

Banerjee et al. (2013). Consistent with our theoretical results, our empirical estimates

show that ignoring the issue of missing links in the 2SLS estimation of the social network

model leads to a substantial upward bias (over 9%) in the estimates of peer (endorsement)

effects.
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Appendix

A. Identification proofs

Proof of Lemma 1. Under (A3), we have

E(Gy|X,G) = E[GM(Xβ + ε)|X,G] = GMXβ,

and

E(Hy|X,G) = E[HME (Xβ + ε|X,G,H) |X,G] = E(H|G,X)MXβ.

Under (A1) and (A2), E(H|G,X) = (1 − p)G. It follows from the definition of v in (6)

that E(v|X,G) = 0.

Proof of Proposition 2. Under (A1), (A2), and (A4), the conditional mean of the (i, j)-th

entry in H2 is

E
[
(H2)ij|G,X

]
= E

(∑
k ̸=i,j

HikHkj

∣∣∣G,X) =
∑

k ̸=i,j
E (HikHkj|G,X)

=
∑

k ̸=i,j
E (Hik|Gik, X)E (Hkj|Gkj, X) =

∑
k ̸=i,j

(1− p)Gik(1− p)Gkj

= (1− p)2
(
G2
)
ij
. (17)

Besides, under (A1) and (A2),

E [HG|G,X] = E(H|G,X)G = (1− p)G2. (18)

It then follows that

E[(H ′X)′v|G,X] = E(X ′Hε|G,X) + λE

[
X ′H

(
G− H

1− p

)
y

∣∣∣∣G,X]
= λE

[
X ′H

(
G− H

1− p

)
MXβ

∣∣∣∣G,X]
= λX ′

(
E(HG|G,X)− E(H2|G,X)

1− p

)
MXβ = 0,



where the first two equalities are due to (A3), and the last holds because of (17) and (18)

under (A1), (A2), and (A4).

As we noted in Section 3.3, one can construct instruments from multiple symmetric

measures for G, denoted by H(1) and H(2). Suppose H(1) and H(2) both satisfy (A1), (A2),

(A3), and are independent in the sense of (A4’). Then one can construct feasible structural

forms as in (9), and use H(2)X as instruments for v(1), and vice versa. To see why, note:

E
[
(H(2)H(1))ij|G,X

]
= E

(∑
k ̸=i,j

H
(2)
ik H

(1)
kj

∣∣∣G,X) =
∑

k ̸=i,j
E
(
H

(2)
ik H

(1)
kj

∣∣∣G,X)
=

∑
k ̸=i,j

E
(
H

(2)
ik

∣∣∣Gik, X
)
E
(
H

(1)
kj

∣∣∣Gkj, X
)

=
∑

k ̸=i,j
(1− p(2))Gik(1− p(1))Gkj

= (1− p(2))(1− p(1))
(
G2
)
ij
. (19)

Besides, under (A1) and (A2),

E
[
H(2)G|G,X

]
= E(H(2)|G,X)G = (1− p(2))G2. (20)

It then follows that

E[(H(2)X)′v(1)|G,X] = E(X ′H(2)ε|G,X) + λE

[
X ′H(2)

(
G− H(1)

1− p(1)

)
y

∣∣∣∣G,X]
= λE

[
X ′H(2)

(
G− H(1)

1− p(1)

)
MXβ

∣∣∣∣G,X]
= λX ′

(
E(H(2)G|G,X)− E(H(2)H(1)|G,X)

1− p(1)

)
MXβ = 0.

where the first two equalities are due to (A3), and the last holds because of (19) and (20)

under (A1), (A2), and (A4’).

Proof of Proposition 3. Define the following moments involving (G,X) (all of them are



K-by-K matrices):

B1 ≡ E(X ′G2MX), B2 ≡ E(X ′GMX), B3 ≡ E(X ′G2X),

B4 ≡ E(X ′GX), B5 ≡ E(X ′X).

Under (A1), (A2), (A3), and (A4),

E(Z ′R) =

 E(X ′H2y) E(X ′HX)

E(X ′Hy) E(X ′X)

 =

 E[X ′H2M(Xβ + ε)] E(X ′HX)

E[X ′HM(Xβ + ε)] E(X ′X)


=

 (1− p)2E(X ′G2MXβ) (1− p)E(X ′GX)

(1− p)E(X ′GMXβ) E(X ′X)

 ≡

 (1− p)2B1β (1− p)B4

(1− p)B2β B5

 .

Suppose the 2K-by-(1 + K) matrix E(Z ′R) does not have full rank. By definition the

2K-by-2K square matrix  (1− p)2B1 (1− p)B4

(1− p)B2 B5


must be singular. This implies [B1, B4;B2, B5] must also be singular because

det

 (1− p)2B1 (1− p)B4

(1− p)B2 B5


= det(B5) det

[
(1− p)2B1 − (1− p)2B4(B5)

−1B2

]
= (1− p)2K det (B5) det(B1 −B4B

−1
5 B2) = (1− p)2K det

 B1 B4

B2 B5

 .

Therefore, non-singularity of [B1, B4;B2, B5] implies that E(Z ′R) has full rank.

AsM−λGM = I, we have GM = 1
λ
(M−I) and G2M = 1

λ
(GM−G) = 1

λ2
(M−I−λG).

We can write  B1 B4

B2 B5

 =

 1
λ
E(X ′(GM −G)X) E(X ′GX)

E(X ′GMX) E(X ′X)

 ,



with the 1st row plus the 2nd row*(− 1
λ
),

 − 1
λ
E(X ′GX) E(X ′GX)− 1

λ
E(X ′X)

E(X ′GMX) E(X ′X)

 ,

with the 1st column plus the 2nd column*( 1
λ
),

 − 1
λ2
E(X ′X) E(X ′GX)− 1

λ
E(X ′X)

E(X ′(GM + 1
λ
I)X) E(X ′X)

 =

 − 1
λ2
E(X ′X) − 1

λ
E(X ′M−1X)

1
λ
E(X ′MX) E(X ′X)

 .

Hence,

 B1 B4

B2 B5

 is non-singular iff

 E(X ′X) E(X ′M−1X)

E(X ′MX) E(X ′X)

 is non-singular.

By the same token, (A1), (A2), and (A4) imply that

E(Z ′Z) =

 E(X ′H2X) E(X ′HX)

E(X ′HX) E(X ′X)

 =

 (1− p)2E(X ′G2X) (1− p)E(X ′GX)

(1− p)E(X ′GX) E(X ′X)


=

 (1− p)2B3 (1− p)B4

(1− p)B4 B5

 .

Similarly, the determinant of E(Z ′Z) is proportional to that of [B3, B4;B4, B5]. Therefore

the non-singularity of [B3, B4;B4, B5] implies E(Z ′Z) has full rank.

Proof of Proposition 5. Under (A3), we have

E(Gy|X,G) = E[GM(Xβ +GXγ + ε)|X,G] = GM (Xβ +GXγ) ,

E(Hy|X,G) = E[HME (Xβ +GXγ + ε|X,G,H) |X,G] = E(H|G,X)M(Xβ +GXγ).

Under (A1) and (A2), E(H|G,X) = (1− p)G. It then follows that E(η|X,G) = 0. Next,



note

E [ζ(X)′HHy|G,X] = ζ (X)′E(H2|G,X)M(Xβ +GXγ);

E[ζ (X)′HHX|G,X] = ζ (X)′E(H2|G,X)X;

E [ζ(X)′HGy|G,X] = ζ (X)′E(H|G,X)GM(Xβ +GXγ);

E[ζ (X)′HGX|G,X] = ζ (X)′E(H|G,X)GX.

As shown in the proof of Proposition 2, under (A4), E(H2|G,X) = (1 − p)2G. Because

E(H|G,X) = (1− p)G under (A1) and (A2), this implies E
[
ζ (X)′Hη

]
= 0.

B. Asymptotic property of two-step Estimator

In this section we sketch a proof of asymptotic distribution for p̂, λ̂, and β̂. We maintain

the following regularity conditions:

(REG) E(ψs) ̸= 0; 0 < p < 1; E(|Z ′
sWs(p)|) < ∞, E(|Z ′

sZs|) < ∞, E(||ξs||2) < ∞ where

ξs is defined below.

These conditions are needed for applying the law of large numbers, the central limit theo-

rem, and the delta method below.

First off, by the central limit theorem,

1√
S

 ∑
s

[
ψ̃s − E(ψ̃s)

]
∑

s [ψs − E(ψs)]

 d→ N (0,Ω),

where Ω is the covariance matrix of (ψ̃s, ψs)
′. The delta method implies

√
S(p̂ − p)

d−→

N (0, DΩD′), where

D =

(
1

E(ψs)
,− E(ψ̃s)

E(ψs)2

)
.

The asymptotic linear presentation of p̂ is

√
S(p̂− p) = 1√

S

∑
s
τs + op(1),



where

τs ≡ D ×
(
ψ̃s − E(ψ̃s), ψs − E(ψs)

)′
,

with E[τs] = 0. Hence
√
S(p̂− p)

d−→ N (0, E(τsτ
′
s)).

Next, note that by construction,

√
S
(
θ̂ − θ

)
=

√
S
(
A′B−1A

)−1
A′B−1Z′ [Y −W(p̂)θ]

=
(
A′

0B
−1
0 A0

)−1
A′

0B
−1
0

1√
S
Z′ [Y −W(p̂)θ] + op(1), (21)

where the second equality holds because A/S
p→ A0, B/S

p→ B0 and 1√
S
Z′ [Y −W(p̂)θ] =

Op(1).

Recall the definition from the text:

F0 ≡ E [Z ′
s▽Ws(p)θ] =

λ
(1−p)2Z

′
sHsys, from ▽Ws(p) ≡ dWs(p̃)

dp̃
|p̃=p =

(
Hsys
(1−p)2 , 0

)
.

Let ∇W(p) be nS-by-(K + 1) matrix that stacks ▽Ws(p) over s ≤ S. Then

1√
S
Z′ (Y −W(p̂)θ) = 1√

S
Z′ (Y −W(p)θ)−

(
1
S
Z′▽W(p)θ

)√
S(p̂− p) + op(1)

= 1√
S

∑
s
Z ′
s (ys −Ws(p)θ)− F0

(
1√
S

∑
s
τs

)
+ op(1)

= 1√
S

∑
s
(Z ′

svs − F0τs)︸ ︷︷ ︸
ξs

+ op(1), (22)

The first equality follows form a Taylor approximation around the true missing rate p; the

second from
(
1
S
Z′▽W(p)θ

) p−→ E[Z ′
s▽Ws(p)θ] and from the asymptotic linear representa-

tion of the estimator p̂; the third from ys = Ws(p)θ + vs. This proves the claim of limiting

distribution of
√
S(θ̂ − θ) in the text.



C. Proofs for NBD networks

We begin by deriving the noisy, feasible structural form in (15). First off, note that the

reduced form of yN is:

yN = (IN − λGN)
−1(XNβ + εN)

= (IN − λG̃N)
−1(XNβ + εN)−

[
(IN − λG̃N)

−1 − (IN − λGN)
−1
]
(XNβ + εN) (23)

= (IN − λG̃N)
−1(XNβ + εN)︸ ︷︷ ︸
≡ỹN

+ (IN − λG̃N)
−1λ(GN − G̃N)︸ ︷︷ ︸

≡∆N

(IN − λGN)
−1(XNβ + εN)︸ ︷︷ ︸
=yN

.

where the third equality follows from the fact that A−1 − B−1 = A−1(B − A)B−1 for

invertible matrices A, B. Next, write (14) as

yN = λ
1−pHNyN +XNβ + εN + λ

(
G̃N − HN

1−p

)
yN + λ∆NyN

= λ
1−pHNyN +XNβ + εN + λ

(
G̃N − HN

1−p

)
ỹN︸ ︷︷ ︸+

≡vN

λ2
(
G̃N − HN

1−p

)
(IN − λG̃N)

−1∆NyN + λ∆NyN︸ ︷︷ ︸
≡uN

,

where the second equlaity holds because we substitute yN in λ
(
G̃N − HN

1−p

)
yN using the

r.h.s. of (23). Furthermore, we can write

uN =
[
λ
(
G̃N − HN

1−p

)
(IN − λG̃N)

−1 + IN

]
λ∆NyN =

(
IN − λHN

1−p

)(
IN − λG̃N

)−1

λ∆NyN .

This establishes (15).

Next, we introduce the technical regularity conditions needed for establishing the asymp-

totic properties in Proposition 6. Suppose IN − λGN and IN − λG̃N are invertible al-

most surely, and denote MN ≡ (IN − λGN)
−1, M̃N ≡ (IN − λG̃N)

−1. Let R̃N,s ≡

(HN,sM̃N,sXN,s, XN,s).

(S-REG) (i) For all i, supi

[∑
j |MN,ij|

]
<∞; supj E ( |XN,jβ|+ |εN,j||∆N) <∞;

supj

∣∣∣∣(X ′
NH

2
NM̃N

)
ij

∣∣∣∣ <∞ and supj

∣∣∣∣(X ′
NHNM̃N

)
ij

∣∣∣∣ <∞ almost surely.

(ii) (HN,s, G̃N,s, XN,s, ϵN,s) are independent across s = 1, 2, ..., S.

(iii) There exist δ > 0 s.t. for all s, E
[
||Z ′

N,sR̃N,s||1+δ
]
, E|

[
||Z ′

N,sHN,sM̃N,sεN,s||1+δ
]
,



and E
(∥∥Z ′

N,sZN,s
∥∥1+δ) are uniformly bounded .

(iv) For some δ > 0, E
∥∥Z ′

N,svN,s
∥∥2+δ < ∆ < ∞ and S−1

∑S
s=1 V ar(Z

′
N,svN,s) > δ′ > 0

for S sufficiently large.

(v) supj

∣∣∣∣[(IN − λHN
1−p

)
M̃N

]
ij

∣∣∣∣ <∞ for all i almost surely.

(vi) limS−→∞
1
S

∑S
s=1E

(
Z ′
N,sZN,s

)
and limS−→∞

1
S

∑S
s=1E

(
Z ′
N,sR̃N,s

)
exist and are non-

singular.

Assumption (S-REG) collects regularity conditions needed for deriving the asymptotic

properties of θ̂a − θa. Part (ii) implies that exogenous variables are drawn independently

across the blocks. Part (i) and (v) introduce bound conditions on exogenous arrays in

the model. These allow us to relate differences between yN and its near-block diagonal

approximation ỹN to the order of difference between GN and G̃N . Parts (iii) and (iv) are

boundedness conditions on population moments that ensure a law of large numbers and a

central limit theorem apply to components of the estimator.

Lemma C1. Let aN , bN be random vectors in RN . Suppose there exist constants C1, C2 <

∞ such that Pr{supi≤N E(|ai||∆N) ≤ C1} = 1 and Pr{supj≤N E (|bj||∆N) ≤ C2} = 1.

Then Assumption S-LOB implies 1
S
a′N∆NbN = Op(S

ρ−1).

Proof of Lemma C1. From Assumption S-LOB,
∑

i

∑
j E |∆N,ij| = O(Sρ) for some ρ < 1.

By construction,

E
(
| 1
S
a′N∆bN |

)
≤ 1

S
E
[
supi,j E (|aibj| | ∆N) ·

(∑
i

∑
j
|∆N,ij|

)]
≤ 1

S
E
[
C1C2

(∑
i

∑
j
|∆N,ij|

)]
= O(Sρ−1).

It then follows that 1
S
a′N∆NbN = Op(S

ρ−1).

Lemma C2. Under the conditions in (S-REG)-(i), there exists a constant C∗ < ∞ such

that Pr{supi≤N E(|yi||∆N) ≤ C∗} = 1 for all N .

Proof of Lemma C2. Let MN ≡ (IN − λGN)
−1. For any matrix A, let A(i) denote its i-th



row; and Aij denote its (i, j)-th component. It then follows from the reduced form that

sup
i≤N

E(|yN,i| | ∆N) = sup
i
E
(∣∣∣∑

j
MN,ij

(
XN,(j)β + εj

)∣∣∣∣∣∣∆N

)
≤ sup

i

[∑
j
|MN,ij|

]
× sup

j
E
(
|XN,(j)β|+ |εN,j|

∣∣∆N

)
.

Hence, there exists some constant C∗ <∞ with Pr{supiE(|yi||∆N) ≤ C∗} = 1.

Lemma C3. Under the conditions in (S-REG), 1
S
R′
NZN = A0 + op(1),

1
S
Z ′
NZN = B0 +

op(1), and
1
S
Z ′
NvN = Op(S

−1/2).

Proof of Lemma C3. By definition, 1
S
Z ′
NZN = 1

S

∑S
s=1 Z

′
N,sZN,s, with ZN,s independent

across s due to (S-REG)-(ii). Then by (S-REG)-(iii) and the law of large numbers for

independent and heterogeneously distributed observations (e.g., Corollary 3.9 in White

(2001)), 1
S
Z ′
NZN = B0 + op(1) where B0 ≡ limS−→∞

1
S

∑S
s=1E

(
Z ′
N,sZN,s

)
. Next, note by

construction and (23),

1

S
Z ′
NRN =

1

S

 X ′
NH

2
N ỹN X ′

NHNXN

X ′
NHN ỹN X ′

NXN

+
1

S
λ

 X ′
NH

2
NM̃N∆NyN 0

X ′
NHNM̃N∆NyN 0

 . (24)

By (S-REG)-(i) and Lemma C2, yN satisfies the condition on bN in Lemma C1. It then

follows from Lemma C1 that the second term on the right-hand side of (24) is Op(S
ρ−1).

Besides, the first term on the r.h.s. of (24) is

1

S

∑S

s=1
Z ′
N,sR̃N,s +

1

S

∑S

s=1

(
Z ′
N,sHN,sM̃N,sεN,s,0

)
. (25)

By (N3), E
(
Z ′
N,sHN,sM̃N,sεN,s

)
= 0. It then follows from (S-REG)-(iii) that the expression

in (25) is A0 + op(1), with A0 ≡ limS−→∞
1
S

∑S
s=1E

(
Z ′
N,sR̃N,s

)
.

Next, note that by definition,

1

S
Z ′
NvN =

1

S

∑S

s=1
Z ′
N,sεN,s + λ

1

S

∑S

s=1
Z ′
N,s

(
G̃N,s − HN,s

1−p

)
ỹN,s. (26)

By construction, ZN,s, εN,s, G̃N,s and HN,s are independent across blocks s = 1, 2, ..., S.



Also, recall that ỹN,s is defined as ỹN,s ≡ (Is − λG̃N,s)
−1(XN,sβ + εN,s), Hence ỹN,s is also

independent across the blocks. Assumption (N3) implies E(Z ′
N,sεN,s) = 0; Assumptions

(N1) and (N2) imply

E
(
HN,s| G̃N,s, XN,s

)
= (1− p)G̃N,s.

Furthermore, the same argument as in the proof of Proposition 2 shows that under (N1),

(N2), (N3) and (N4)

E
(
H2
N,s

∣∣ G̃N,s, XN,s

)
= (1− p)E

(
HN,sG̃N,s

∣∣∣ G̃N,s, XN,s

)
,

so that

E
[
Z ′
N,s

(
G̃N,s − HN,s

1−p

)
ỹN,s

]
= 0.

It then follows from (S-REG)-(iv) and the Central Limit Theorem that 1
S
Z ′
NvN = Op(S

−1/2).

Proof of Proposition 6. As shown in Lemma C3, 1
S
R′
NZN = A0 + op(1),

1
S
Z ′
NZN = B0 +

op(1), and
1
S
Z ′
NvN = Op(S

−1/2) under (N1)-(N4), (S-LOB) and (S-REG). Furthermore,

with (S-REG)-(v), Lemma C1 and Lemma C2 imply that 1
S
Z ′
NuN = Op(S

ρ−1).
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