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Abstract

This paper considers estimation of a directed network model in which outcomes are
driven by dyad-specific variables (such as measures of homophily) as well as unobserved
agent-specific parameters that capture degree heterogeneity. I develop a jackknife bias
correction to deal with the incidental parameters problem that arises from fixed effect
estimation of the model. In contrast to previous proposals, the jackknife approach
is easily adaptable to different models and allows for non-binary outcome variables.
Additionally, since the jackknife estimates all parameters in the model, including fixed
effects, it allows researchers to construct estimates of average effects and counterfactual
outcomes. I also show how the jackknife can be used to bias-correct fixed effect averages
over functions that depend on multiple nodes, e.g. triads or tetrads in the network.
As an example, I implement specification tests for dependence across dyads, such as
reciprocity or transitivity. Finally, I demonstrate the usefulness of the estimator in an
application to a gravity model for import/export relationships across countries.
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1 Introduction

Networks are common in both economic and social contexts, and it is important to under-
stand the factors that play a role in both the formation and strength of the links between
agents. The econometric analysis of networks faces a number of challenges that have received
much attention in recent literature (see de Paula (2020) and Graham (2020) for reviews of
this literature). One common modeling approach is to assume a dyadic network structure
(one in which decisions are made bilaterally between agents), but allow for linking decisions
to depend on unobserved agent-specific heterogeneity. These models are common in practice
since they are straightforward to implement while still being able to capture important as-
pects of observed networks. Controlling for agent-specific heterogeneity is important since in
many real world networks agents vary significantly in the number and strength of connections
made. Ignoring this heterogeneity can lead to large biases in estimated effects.

In this paper, we consider the estimation of dyadic models, where the presence of unob-
served heterogeneity is accounted for by two sets of agent-specific fixed effects – a sender
and a receiver effect. The fixed effects approach is appealing as it does not require strong
assumptions about the unobserved component as in random effects models. In addition, the
network setting does not suffer from the ‘fixed T ’ issues of panel data, since we observe every
agent interacting with N − 1 other agents in the network, so that fixed effect estimates are
consistent. However, the large number of fixed effects (proportional to the square root of
the sample size) does create an incidental parameter problem (Neyman and Scott, 1948).
This paper proposes a jackknife approach to bias correction, which has a number of benefits
over existing methods. Importantly, the jackknife is easily adaptable to a range of settings,
including models for non-binary outcome variables. Additionally, since the jackknife esti-
mates all of the parameters in the model, including the fixed effects, we are able to construct
estimates of average effects and counterfactual outcomes. We also show how the jackknife
can be used to bias correct averages over functions of multiple observations (e.g. dyads or
triads in the network), which we show is useful for constructing specification test statistics,
such as tests for the presence of certain strategic interactions like reciprocity or transitivity.

We demonstrate the consistency and asymptotic normality of the jackknife estimator under
asymptotic sequences in which a single network grows in size, while the network remains
‘dense’. The network model we consider is one in which agents make bilateral decisions
about link-specific outcomes, independently of other relationships. This type of dyadic
model (a dyad is a pair of agents) has received much attention in the literature, because
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of its tractability and its ability to replicate some key features of observed networks. In
particular, it allows for: homophily, the tendency of agents to form stronger ties with other
agents that are similar to them; and degree heterogeneity, where the number/strength of
links in the networks can vary substantially across nodes.

In the case of a binary outcome variable, the model we consider is one of link formation, and
is an extension of the model by Holland and Leinhardt (1981). There are several alternative
approaches to address the incidental parameters problem in this setting. Graham (2017),
Charbonneau (2017), and Jochmans (2018) all consider versions of this model in which the
latent disturbances follow a logistic distribution, and use conditioning arguments to remove
dependence on the fixed effects. The conditioning approach has the advantage of being
applicable under certain sparse network asymptotic sequences, but is limited to models in
which sufficient statistics for the fixed effects exist, and is not able to recover counterfactuals
or average effects. Yan et al. (2019) also studies the logistic model and provides asymptotic
results for the incidental parameters. Graham (2017) considers an analytical correction
for the logistic model, while Dzemski (2019) derives the analytical correction for a probit
model. The analytical bias correction approach is limited to dense network sequences, as
in this paper, and similarly to this paper can recover average effects. The advantage of
the jackknife correction relative to an analytical approach is that it provides an off-the-
shelf approach that researchers may apply to new settings, without the need to first derive
bias expressions. Candelaria (2020), (Toth, 2017), and Gao (2020) study identification of
the common parameters without a known parametric form for the disturbance term, while
Zeleneev (2020) allows for nonparametric structure in the unobserved heterogeneity term.

Although the focus of the literature on dyadic network models has been on the binary out-
come case, researchers often have access to outcome variables that are non-binary. Examples
of these settings include the value of exports between countries, the value of loans between
banks, or the number of workers migrating between states. The results in this paper are
derived for a general M-estimator satisfying basic regularity conditions and so cover a range
of models for both binary and non-binary outcome variables, as well as a range of estimation
approaches, including MLE, quasi-MLE and nonlinear least squares estimation.

As a demonstration of the technique in an empirical setting, we estimate a model of in-
ternational trade relationships. Gravity models have been a workhorse model in the trade
literature for many years, and the importance of including country-specific fixed effects is
well known ((Anderson and Van Wincoop, 2003)). We estimate the zero-inflated negative
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binomial model of Burger et al. (2009), which combines both a model for the decision of
countries to engage in trade, as well as a model for the value of exports conditional on some
trade occurring. The model addresses to key issues in the gravity model literature: it allows
for a large proportion of zero trade flows in the network, and it captures the observed high
dispersion of export values across countries. We obtain bias-corrected estimates of both the
model parameters, as well as average effects.

The jackknife bias correction also allows for the construction of various specification tests.
Many models of network formation include strategic aspects in which agents’ decisions are
influenced by the state of the network. For instance, agent i may find it more beneficial
to link with j if they already share many other links in common. Graham and Pelican
(2020) derives the locally best similar test for a class of alternatives in a logit model, using
conditioning arguments. Dzemski (2019) tests for the presence of transitive links with triads
(groups of three agents) in a probit model, and derives an analytical bias correction for
the statistic. We demonstrate that a range of test statistics, including that of Dzemski
(2019), can be bias-corrected using the jackknife. This extends the set of tests available to
researchers, as well as the range of models they can be applied to. As an example, we test
for reciprocity and transitivity in trade links between countries and find evidence that the
decisions of countries to engage in trade are reciprocal (if country i exports to country j

then it is likely that j also exports to i), but do not find evidence of transitive relationships.

The network jackknife extends previous results on jackknife bias correction in panel data.
Hahn and Newey (2004) introduced a jackknife correction for panel estimators with individual
fixed effects, based on re-estimating the parameters on data sets that exclude a single time
period. Dhaene and Jochmans (2015) present a split-sample version of this idea based on
estimating the model in the first and second halves of time periods separately. Fernández-Val
and Weidner (2016) develop a general framework that allows for both time and individual
fixed effects. The analysis in this paper builds heavily off of the asymptotic expansions in
Fernández-Val and Weidner (2016).

Analogously to the panel data setting, the network jackknife is constructed by forming ‘leave-
out’ estimates that exclude certain subsets of the data. Cruz-Gonzalez et al. (2017) and Chen
et al. (2021) have suggested jackknife approaches for network data, although without formal
proof, based on either a split-sample approach or a leave-one-out approach that drops a
single agent at a time. We propose a different approach to jackknifing network data that is
based on a novel partitioning of the data set that constructs leave-out estimates that remove
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bias from both sender and receiver of fixed effects in one step. We extend the asymptotic
expansions of Fernández-Val and Weidner (2016) to allow for formal analysis of the jackknife
estimator. The jackknife proposed here drops a single observation per fixed effect at each
step, so that our approach is likely to have better finite sample variance properties than
the split-sample approach (see Hughes and Hahn (2020) for a formal argument in the panel
setting). In contrast to a jackknife that drops all observations from a single agent in the
network, our jackknife retains all agents in each leave-out estimation, so that the distribution
of unobserved effects is held constant. We demonstrate the small-sample effectiveness of our
approach in comparison to previous suggestions in simulations that show that our jackknife is
more robust to settings with meaningful levels of unobserved heterogeneity and in networks
with lower density.

In addition, we introduce a weighted jackknife, that differs from standard implementations of
the jackknife approach by taking a weighted-average of the leave-out estimates. This version
puts less weight on noisier leave-out estimates, which improves the finite-sample properties
of the jackknife in sparser settings. The weighted jackknife idea may be useful elsewhere, for
example in binary-outcome panel data models with few successes for some individuals (so
called ‘rare events’). Finally, we also introduce a ‘leave-l-out’ version of the jackknife. This
version requires only (N−1)/l additional estimations of the model, and may allow researchers
to reduce the computational burden in settings where model estimation is difficult.

The rest of the paper is organized as follows. Section 2 introduces the network model and
discusses implementation of the jackknife procedure for the estimation of model parameters,
while Section 3 discusses estimation of average effects, and the construction of specification
tests. Section 4 provides asymptotic results for the estimators, and discusses the main
assumptions under which they hold. In Section 5 we demonstrate the method by estimating
a model of international trade flows, while Section 6 reports simulation results that are
consistent with the jackknife theory.

2 Dyadic linking model and jackknife correction

2.1 Model

The researcher observes a network ofN agents; these agents may, for example, be individuals,
firms, or countries. For each potential directed connection, i→ j, we observe an associated
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link-specific outcome variable Yij. The variable Yij may capture the presence (or absence)
of a link between two agents, in which case Yij is binary, or may represent a measure of
the strength of the link between agents. For example, Yij may be the value of exports from
country i to country j in a particular year, or the number of times agents i and j interacted
in some period. Links are directed, meaning that Yij 6= Yji in general, and so, following the
literature, we term i the ‘sender’ and j the ‘receiver’ in link Yij.

The researcher also observes a set of link-specific covariates Xij. The covariates capture
characteristics of the relationship between agents that may impact the linking outcome.
Often these will be interpreted as measures of homophily, that is, the tendency for agents to
link with other agents that are similar to themselves. For example, countries may engage in
greater levels of trade if they share a common language, or are geographically close.

Agents are endowed with two fixed effects, αi and γi, which capture unobserved degree
heterogeneity, that is, the tendency of some agents to form more (or stronger) links than
others. The ‘sender’ fixed effect αi accounts for heterogeneity in out-degree (the number
or strength of links from agent i to other agents), while the ‘receiver’ fixed effect accounts
for in-degree heterogeneity. Degree heterogeneity is an important feature of many networks,
for example, we would expect countries with larger GDPs to engage in more trade than
smaller countries ceteris paribus (see Anderson and Van Wincoop (2003) for an example
of such a model). Since the network considered here is a directed one, we allow for the
sender and receiver fixed effects to differ; some countries may have structural tastes for
importing goods over exporting, that is, they run trade deficits (or vice versa), so that
αi < γi. Failure to account for degree heterogeneity in a network can lead to incorrect
conclusions about the strength of homophily in a network. For example, observing that the
United States imports more from China than from Canada may lead to the conclusion that
distance between countries is unimportant for trade if we do not account for a China export
effect. Graham (2017) provides some further intuition for why failing to account for degree
heterogeneity can bias conclusions about homophily in a network.

We make the assumption that linking decisions are bilateral in nature, so that

Yij ⊥⊥ Ykl|X, β, α, γ ∀(k, l) /∈ {(i, j), (j, i)}, (1)

where ⊥⊥ denotes independence of the outcomes conditional on observed covariates and fixed
effects. This assumption does allow for dependence between the two links within a pair of
agents (a dyad), but implies the decision between i and j is independent of that between
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i and k for instance. Importantly, this independence is conditional on the covariates and
agent-specific fixed effects. Unconditionally, country i’s exports to country j are correlated
with their exports to country k, since both are determined by the exporter effect αi. In
many settings, the inclusion of fixed effects will be important in establishing the plausibility
of (1). Assumption (1) may not be appropriate in situations where linking decisions are
strategic. Estimation of models with strategic interactions is substantially more challenging,
and is likely to require multiple observations of the network over time. Nonetheless, the
dyadic model presented here still represents an important baseline model, and can be used
to construct tests for the presence of strategic interactions against the null hypothesis of (1).
We discuss examples of such tests in Section 3.2.

We leave the specific model for the network outcomes unspecified, and assume only that the
model parameters (β0, α0, γ0) are solutions to the population maximization problem

max
(β,α,γ)∈Rdim β+2N

Ē
[
LN(β, α, γ)

]
,

LN(β, α, γ) =
1

N − 1

∑
i

∑
j 6=i

`(Yij, Xij, β, αi + γj)−
b

2N

(∑
i

αi −
∑
i

γi
)2
, (2)

where Ē represents expectation conditional on the exogenous covariates and fixed effects,
and ` is a known function that is maximized in expectation at the true parameters. Many
models can be estimated by maximizing objective functions of the form in (2), including
MLE, quasi-MLE, and nonlinear least squares estimators. The researcher need only specify
the objective function L and does not need to specify the distribution of the fixed effects, or
how they relate to the covariates.

We assume that the unobserved effects enter in an additively separable manner, i.e. as
αi + γj, identification of the two sets of fixed effects parameters requires a normalization, for
which we choose ∑

i

αi =
∑
i

γi.

The term b
2N

(∑
i αi −

∑
i γi
)2 is a penalty term intended to impose this normalization on

the fixed effect parameters, where b > 0 as an arbitrary constant.1 Note that the vec-
tors of fixed effects α and γ are dependent on the network size N , although we leave this

1In practice the constraint could simply be eliminated by substituting it into the objective. We follow
Fernández-Val and Weidner (2016) in choosing this normalization as it is convenient in the proofs.
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dependence implicit in the notation. When functions are evaluated at the true parame-
ters (β0, α0, γ0) we will typically drop them from notation. We will also use the shorthand
`ij = `(Yij, Xij, β0, α0,i + γ0,j) when convenient.

Example. Maximum likelihood

If we specify the full conditional distribution of the outcome variable as

Yij|X, β, α, γ ∼ f(Yij|Xij, β, αi + γj),

then ` will be the log-likelihood function

`(Yij, Xij, β, αi + γj) = log f(Yij|Xij, β, αi + γj).

Note that L need not be a true log-likelihood, since it may be that the observations Yij and
Yji are conditionally dependent, in which case L is a pseudo log-likelihood.

As an example, consider a model of directed link formation according to

Yij = 1{X ′ijβ + αi + γj − εij ≥ 0},

where εij follows a known distribution F . This linking rule is compatible with a model in
which utility is transferable across linked agents as in Bloch and Jackson (2007). Given the
distributional assumption for εij, the probability of a link forming, conditional on covariates
and fixed effects is pij = F (X ′ijβ + αi + γj), and the log-likelihood is `ij = Yij log pij + (1−
Yij) log(1− pij). This is an extension of the linking model of Holland and Leinhardt (1981)
and has been used extensively in empirical literature.

Example. Nonlinear least squares

The researcher may choose to specify only the conditional mean function for the outcome,
rather than its full distribution, e.g E

[
Yij|X, β, α, γ

]
= h(Xij, β, αi + γj). In this case, we

may estimate the parameters of the model by setting

`(Yij, Xij, β, αi + γj) = −
(
Yij − h(Xij, β, αi + γj)

)2
.
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2.2 Empirical setting - gravity equation

Although much of the focus of the incidental parameters bias-correction literature has been
on the binary outcome case, researchers often have access to non-binary outcome variables
and will be interested in modeling networks in which the links are weighted. As a working
example throughout the paper, we will consider a model of country-level trade relationships
using a data set consisting of a directed network of export volumes between 136 countries
(136 × 135 country pair observations) in 1990. The data are taken from Santos Silva and
Tenreyro (2006), and additional details on their construction can be found in their paper.
The outcome variable is the value of exports from country i to country j. We also use several
covariates to capture homophily in trade relationships, which include: log distance, the log
of the distance between the capitals of the countries; border, an indicator of whether the
countries share a common border; language, an indicator for whether the countries share a
language; colonial, and indicator for whether either country had colonized the other at some
point in history; and trade agreement, an indicator for the presence of a joint preferential
trade agreement between the two countries.

The Anderson and Van Wincoop (2003) gravity equation expresses the trade volume from
country i to country j as

Yij = α0GiGjd
β
ije

αi+γj (3)

where Yij is the trade flow from country i to country j, Gi is GDP of country i, and dij is
inversely proportional to the distance between the two countries (which is generally taken to
include all factors that create resistance to trade). The inclusion of exporter and importer
fixed effects (αi and γi) is intended to control for multilateral resistance terms, which may
bias results if excluded.

A simple method for estimating the parameters in (3) is to first log-linearize the model.
Unfortunately, this raises the issue of how to deal with the presence of zero outcomes that
are common in trade data. In the country-level trade data introduced above, just under
half of all country pairs engage in no trade. A number of solutions to this problem have
been suggested. Several authors use Tobit models or two-step Heckman style models, which
combine a binary selection equation (predicting whether or not any trade occurs) and a
separate equation for the value of trade (conditional on selection); see for example Helpman
et al. (2008), Rose (2004), Linders and de Groot (2006).

Another popular approach, suggested by Santos Silva and Tenreyro (2006), is to use a Poisson
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pseudo-maximum-likelihood estimator, which provides a natural way to incorporate zero-
valued outcomes, as well as being robust to heteroskedasticity issues that can arise when
log-linearizing multiplicative equations. However, there are two key drawbacks to modeling
trade flows with a Poisson distribution. Firstly, the proportion of zeroes observed in typical
trade data is much larger than that predicted by a Poisson model. Secondly, since the
variance of a Poisson is restricted to be equal to its mean, outcomes are typically much more
dispersed than would be expected under the Poisson model. In order to address these two
issues, Burger et al. (2009) propose a zero-inflated negative binomial model, in which the
value of trade between i and j is given by the product of two variables, Yij = zijY

∗
ij , where

zij ∈ {0, 1} is a binary decision to enter into a trading relationship, while Y ∗ij is the value of
exports that will be realized, conditional on zij = 1. The binary decision is modeled using as
a probit function, while the latent outcome Y ∗ij is modeled as a negative binomial variable,
which allows for overdispersion in the model for Y ∗ij , that is, it allows the variance to differ
from the mean. Since the distribution of Yij is parametrically specified, we may estimate the
model using maximum likelihood, so that this model is captured by the framework in (2).

2.3 Incidental parameters problem

In total, the model contains dim(β)+2N parameters to be estimated, from the N(N−1) ob-
servations (Yij, X

′
ij) — we will typically refer to these observations using the shorthand (i, j).

As is well known, nonlinear estimators with fixed effects suffer from an incidental parameter
problem (Neyman and Scott, 1948). To describe the problem, consider the maximization
problem (2) after first concentrating out the fixed effect parameters

α̂(β), γ̂(β) = arg max
α,γ
LN
(
β, α, γ

)
,

β̂ = arg max
β
LN
(
β, α̂(β), γ̂(β)

)
. (4)

Replacing the population functions α(β), γ(β) = arg maxα,γ Ē
[
LN(β, α, γ)

]
with their sam-

ple values, results in an objective function that is biased, in the sense that

β0 6= βN = arg max
β

Ē
[
LN
(
β, α̂(β), γ̂(β)

)]
. (5)

To see why, observe that the first-order condition for α̂i(β) depends only on the N − 1

observations (i, j) for j 6= i. Similarly, the first-order condition for γ̂i(β) depends on the
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N − 1 observations (j, i) for j 6= i. Expanding α̂i(β) around αi(β) (and similarly for γ)
will therefore result in a bias of order O(N−1). Under regularity conditions discussed in
Section 4, we show that the bias of the maximizer of the profile objective function (5) is
approximately given by

βN − β0 ≈
BN

N − 1
(6)

for some bias term BN . Analogously to the panel literature, the bias is inversely proportional
to the number of observations used to estimate each of the fixed effect parameters; the
exporter effect for country i is estimated using the data on the N − 1 other countries in the
network that i may export to. As the size of the network grows, N →∞, we will have that
βN → β0 so that parameter estimates are consistent. Considering β̂ as an estimator for βN ,
we can show that N(β̂ − βN) ⇒ N (0, V ). However, since the bias βN − β0 is of the same
order as the estimation error, O(N−1), β̂ will be asymptotically biased, that is

N(β̂ − β0)⇒ N
(
B, V

)
.

The incidental parameters generate an asymptotic bias in the network model analogous to
the panel setting with both N and T growing to infinity at the same rate. Similar asymptotic
expansion arguments have been used in the panel data literature on nonlinear models with
fixed effects. Hahn and Newey (2004) derive expansions for models with individual fixed
effects, while Fernández-Val and Weidner (2016) derive expansions that apply to general
models with additively separable unobserved effects, and Chen et al. (2021) consider the
setting with interactive effects. The expansions used in this paper rely heavily on these prior
results. Dzemski (2019) also applies the Fernández-Val and Weidner (2016) expansions to
the network model structure to derive bias expressions for a probit model. In this paper,
we extend the asymptotic expansions to higher order so that they may be used to justify
jackknife bias correction procedures. We demonstrate that, under mild additional regularity
conditions, the jackknife estimator introduced below is asymptotically normal and mean
zero, so that valid inference can be performed on model parameters.

2.4 Jackknife bias correction

The jackknife bias-corrected estimator is constructed as a linear combination of the full-
sample parameter estimates and an average of ‘leave-out’ estimators that exclude certain
observations in the data set. The particular linear combination chosen can be motivated by
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asymptotic expansions of the estimator, in particular the form of the bias in (6).

Suppose we were to drop observations from our data set in such a way that for every country
i we exclude one observation in which i is the exporter, and one observation in which i is
the importer (recall that a single observation is one export-import relationship, of which we
observe N(N − 1) in total). We show that the new estimator using this ‘leave-out’ sample,
β̃, has a bias that is approximately

Ē[β̃]− β ≈ BN

N − 2
.

The form of the bias for β̃ can be explained by two important factors: (i) β̃ is estimated
using only N − 2 observations per fixed effect, since we excluded one observation related to
each fixed effect parameter, and (ii) β̃ is estimated on a random sample generated from the
same set of fixed effects, so that the bias expression BN is the same as that in (6).

Taking advantage of the fact that the estimate β̃ has a larger bias than the full-sample
estimate β̂ by the factor N−1

N−2
, we can construct a new estimator β̂jack = (N −1)β̂− (N −2)β̃

which has no asymptotic bias

Ē
[
(N − 1)β̂ − (N − 2)β̃

]
− β ≈ 0.

To describe the construction of the leave-out estimators, we first define a partition of the
N(N − 1) observations of directed pairs (i, j) into N − 1 sets of the form2

Ik =
{

(i, j) : j = (i+ k) (mod N)
}
, for k = 1, . . . , N − 1

that is, the set of directed pairs {(1, 1 + k), . . . , (N − k,N), (N − k + 1, 1), . . . , (N, k)}.3

Figure 1 represents the structure of the first three sets Ik for a network of N = 10 agents.
Observations are ordered in an N × N matrix so that the (i, j) cell represents the corre-
sponding observation in the network (the diagonal elements are empty since there are no
(i, i) observations). The leave-out sets take diagonal sections from the data matrix. Im-
portantly, constructing the sets this way ensures that each contains exactly one observation
related to each sender and receiver fixed effect; i.e. there is one observation taken from every
row and every column.

2In the modulo notation we consider agent N equivalent to agent 0.
3The construction of the leave-out sets assumes that the labelling of the nodes is arbitrary. This will

generally be true, but the researcher may ensure this by randomizing the ordering of nodes prior to estimation.
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Figure 1: Diagram of leave-out sets Ik for k = 1, 2, 3

Observation (i, j) in the network is represented by the corresponding position in each matrix. The
blue squares are the observations contained in the leave-out sets Ik.

Let 1kij = 1{(i, j) 6∈ Ik}, be an indicator variable that is equal to one whenever the observa-
tion (i, j) is not in the k-th leave-out set. The k-th leave-out estimates are

(β̂(k), φ̂(k)) = arg max
(β,φ)∈Θ

1

N − 2

∑
i

∑
j 6=i

`ij(β, φ)× 1kij, (7)

subject to
∑
i

αi =
∑
i

γi,

that is, the estimates obtained by excluding the observations in Ik from the data. We can
then construct the jackknife bias-corrected estimator

β̂J = (N − 1)β̂N − (N − 2)
1

N − 1

N−1∑
k=1

β̂(k). (8)

The construction of the leave-out estimators is analogous to jackknife bias correction in
the panel data setting; however, the structure of the jackknife proposed here is new. The
procedure relies on dropping sets of observations that contain a single observation related to
every sender fixed effect αi as well as every receiver fixed effect γi. In this way, the bias from
both types of fixed effects can be addressed simultaneously, while holding the distribution
of fixed effects constant across the leave-out samples. This is in contrast to an approach
which drops all observations from a single agent, which removes that agents’ fixed effects
from the leave-out sample and alters the distribution of unobserved heterogeneity. We show
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in simulations that the method proposed here is more robust to networks that have more
unobserved heterogeneity or are less dense.

We prove in Section 4 that the jackknife bias correction is consistent, and asymptotically
normal, with mean zero and variance equal to that of the full-sample estimate

N(β̂J − β0)⇒ N
(
0, V

)
.

The fact that the jackknife is able to remove bias without affecting the asymptotic variance
of the estimator may seem surprising. This important feature is achieved by averaging across
the N − 1 different leave-out estimators β̂(k). Since the sets I1, . . . , IN−1 form a partition of
the N(N − 1) observations in the network, each observation is excluded from exactly one of
the leave-out estimates. This balanced treatment of observations ensures that the jackknife
procedure does not affect the first-order asymptotic approximation of the estimator.4

Remark 1. The construction of the leave-out sets depends on the labelling of nodes, and
so the final estimator will be dependent on this labelling (since the make-up of the leave-out
sets will change). While the researcher could re-randomize the node labels, construct β̂J for
each randomization, and then average to remove some of the arbitrariness of the node labels,
this is not necessary. The estimators with different labelings should be very similar so that
the additional computations will have little effect.5

The jackknife estimator requires N estimations of the model, and so may be computationally
intensive for large networks, although speed may be improved by computing the leave-out
estimates in parallel, and using good starting values such as the full sample estimates. As an
alternative, we present a ‘leave-l-out’ version of the jackknife, which reduces the number of
additional estimations of the model by dropping l observations per fixed effect, as opposed to
just one. To describe the estimator, let Nl = N−1

l
(we assume here that N−1 is divisible by l

for simplicity). We can construct the k-th leave-l-out set by combining l of the leave-one-out
sets as follows I lk = ∪l−1

j=0Ik+jNl , for k = 1, . . . , Nl. This results in Nl = N−1
l

non-overlapping
leave-l-out sets, with corresponding estimates β̂l,(k), which are the estimates from using all

4In the panel data setting, Dhaene and Jochmans (2015) note that forming a jackknife using overlapping
subpanels (across time) results in an inflation of the asymptotic variance, since some time periods are used
more that others. That the Ik form a partition ensures that each observation is used an equal number of
times in the average 1

N−1

∑N−1
k=1 β̂(k).

5In simulations (see Section 6 for the design) the estimates based on different labelings were close to
identical and so the additional calculations had almost no effect on the estimation.
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observations except those in the k-th leave-l-out set I lk. A jackknife bias-corrected estimate
can then be constructed as

β̂J,l =
N − 1

l
β̂N −

N − 1− l
l

1

Nl

Nl∑
k=1

β̂l,(k), (9)

where Nl = N−1
l
.6

Remark 2. The leave-l-out jackknife bias correction has the same asymptotic variance as
the standard leave-one-out jackknife and the full-sample estimator. However, there may be
some finite-sample efficiency loss, particularly when l is large or when the network is not
sufficiently dense. Hughes and Hahn (2020) show in the panel case that the leave-one-out
jackknife is higher-order more efficient than the split-sample jackknife (i.e. its variance to
O(N−1) is smaller), and it is likely that the same result applies here, although this is beyond
the scope of the present paper.

2.5 A weighted jackknife

The jackknife relies on large dense network asymptotics, but in finite samples it is possible
for some leave-out estimates to drop a number of important observations all at once. This
is more likely to occur when N is small, there are few links for some nodes, or when we are
using the leave-l-out jackknife with large l.

The performance of the jackknife can be improved in these settings by taking a weighted
average of the estimates β̂(k). Define the weights

Ŵ(k) = − 1

N

(
∂ββ′L̂(k) −

1

N
(∂φβ′L̂(k))(∂φφ′L̂(k))

−1(∂βφL̂(k))
)
.

6In the case that N − 1 is not divisible by l, let Nl = bN−1
l c. Then we may partition the data into

r = N − 1 − lNl leave-(l + 1)-out sets and Nl − r leave-l-out sets. Denote β̂(k) as the leave-(l + 1)-out
estimates for k = 1, . . . , r and the leave-l-out estimates for k = r + 1, . . . , Nl. Then, let

β̄ =
1

(N − 1)(Nl − 1)

( r∑
k=1

(N − l − 2)β̂(k) +

Nl∑
k=r+1

(N − l − 1)β̂(k)
)

The jackknife bias-corrected estimator is then given by

β̂J = Nlβ̂N − (Nl − 1)β̄
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The weighted-jackknife estimator is given by

β̂wJ = (N − 1)β̂N − (N − 2)W̄−1
J

( 1

N − 1

N−1∑
k=1

Ŵ(k)β̂(k)

)
, (10)

where W̄J = 1
N−1

∑N−1
k=1 Ŵ(k).

The weights Ŵ(k) are the Hessian for β, after concentrating out the fixed effects. In the
special case that L is a log-likelihood function, WN is the Fisher information for β, and
so is equal to the inverse of the asymptotic variance. In this case, we are using an inverse
variance weighting scheme, which down-weights leave-out samples that produce particularly
noisy estimates of the common parameters. The weighting scheme is equally applicable to
non-likelihood settings, although it no longer carries the inverse variance interpretation. In
simulations, this weighted version of the jackknife significantly improves the performance of
the estimator in sparser networks (see Section 6 for more details).

Remark 3. Asymptotically the weights have no effect on the estimator, since all Ŵ(k)

converge to the same quantity. This implies that the asymptotic variance of the weighted
jackknife is the same as that of the standard jackknife. In finite samples, variation in the
weights depends on the number of nodes N , as well as the density of the network (i.e.
the variation in outcomes for each node). The weighting scheme is likely to have a large
impact for small or less dense networks, but in denser (or larger) networks we will have
W̄−1
J Ŵ(k) ≈ Idimβ, so that the weighted and unweighted jackknife estimates are very similar.

Remark 4. The motivation behind the particular choice of weights comes from the first-
order asymptotic expansion of the estimator. A Taylor expansion of the first-order conditions
of the objective function gives an expression of the form

WN(β̂ − β) ≈ A+B,

where A is mean zero and asymptotically normal with variance Ω̄ (as in Theorem 1), while
B is an additional term responsible for the asymptotic bias of the estimator.

As demonstrated in Lemmas 3 and 4 in the Appendix, the jackknife procedure applied to
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A+B successfully demeans B and leaves A unchanged, i.e.

(N − 1)A− (N − 2)
1

N − 1

N−1∑
k=1

A(k) = A,

Ē
[
(N − 1)B − (N − 2)

1

N − 1

N−1∑
k=1

B(k)

]
= 0.

This results in an estimator with no asymptotic bias and unchanged asymptotic variance. In
practice however, the jackknife is applied to β̂, so we must consider the effect of the jackknife
procedure on W−1

N (A+B).

The validity of the jackknife relies on the fact that W(k) ≈ WN , which is guaranteed in
large samples under our assumptions, in particular, dense network asymptotics. However,
in finite samples, W(k) could vary substantially in some leave-out samples when N is small,
there are few links for some nodes, or we are using the leave-l-out jackknife with large l.
This motivates instead averaging over Ŵ(k)β̂(k), so that variation in W−1

(k) has less impact on
the quality of the asymptotic approximation. Intuitively, we are jackknifing the first-order
condition for β̂, rather than β̂ itself.7

3 Estimating average effects

In addition to estimation of the common parameter β, researchers may also be interested in
estimating certain averages over the distribution of exogenous regressors and fixed effects.
An important advantage of the jackknife bias correction, over methods based on conditioning
on sufficient statistics (e.g. Graham (2017), Jochmans (2018)), is that by estimating the fixed
effect parameters we are able to construct estimators for these averages. Common examples
include average and marginal effects, as well as counterfactual outcomes. In the network
setting, these are averages over functions of a single potential link (i, j) in the network.
We will additionally show that averages over multiple links also provide interesting objects
of interest; for example, averages over dyads {(i, j), (j, i)}, triads (groups of three nodes),
or other network patterns. As an example, we focus on how these objects can be used to

7Of course, W−2,W−3 and similar terms also appear in high-order parts of the expansion. The validity
of the large-network approximation W−1

(k) ≈ W̄−1 is still necessary for the jackknife to be consistent and
asymptotically normal. The weighting scheme simply aims to improve the finite-sample properties of the
estimator.
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construct tests of the assumption of independent link formation stated in (1), but they may
have wider relevance in empirical work. Estimation of the many fixed effect parameters
means that these averages also suffer from an incidental parameter problem. We show
that the jackknife can be used to bias-correct average effects estimates and obtain correct
inference.

3.1 Averages over single observations

A simple fixed effect average may be expressed as

δ = E
[
∆N(β0, φ0)

]
,

∆N =
1

N(N − 1)

N∑
i=1

∑
j 6=i

m(Xij, β, αi + γj),
(11)

where the expectation is taken over the joint distribution of covariates Xij and fixed effects
(αi, γj), and the function m represents the effect of interest. Here we specify two possible
parameters of interest, δ the population average, and ∆N , the sample average; this choice
will affect the asymptotic distribution of the estimator, a point we return to in Section 4. As
earlier, we will impose that the fixed effects enter the function m in an additively separable
way, as πij = αi + γj; this will imply that the choice of fixed effect normalization will not
affect the estimator.

Example. Marginal effect

As an example, consider a binary outcome model with P (Yij = 1|X, β, α, γ) = F (βXij +

αi + γj). We may be interested in estimated the average partial effect of the covariate, in
which case we would have

m(Xij, β, αi + γj) = β
∂

∂X
F (βXij + αi + γj).

Alternatively, we may be interested in the average partial effect at some fixed value of
Xij = x, in which case, m(Xij, β, αi + γj) = β ∂

∂X
F (βx+ αi + γj).

Example. Counterfactual change

Alternatively, assume that we estimate the conditional mean function E[Yij|Xij, β, φ] =

h(βXij + αi + γj). We may be interested in the counterfactual change in predicted outcome
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from a change in the value of the covariate Xij from x0 to x1, e.g. the effect of entering or
exiting a trade agreement. In this case

m(Xij, β, αi, γj) = h(βx1 + αi + γj)− h(βx0 + αi + γj).

The average effect in (11) can be estimated by plugging in estimates of the model parameters

∆̂N =
1

N(N − 1)

N∑
i=1

∑
j 6=i

m(Xij, β̂, α̂i, γ̂j).

As with estimates of the parameters themselves, the average effect estimate ∆̂N is asymptot-
ically biased, that is, N(∆̂N−∆N) converges to a normal distribution that is not centered at
zero. The asymptotic bias in ∆̂N stems from three sources: (i) bias in the common parameter
estimates β̂, (ii) averaging over a nonlinear function of noisy fixed effect estimates (a Jensen
inequality type bias), and (iii) correlation between the fixed effect errors andm(Xij, β, αi, γj).

The average effect estimator can be bias-corrected using the jackknife in an almost identical
way to the bias correction of β̂. Let

∆̂(k) =
1

N(N − 1)

N∑
i=1

∑
j 6=i

m(Xij, β̂(k), α̂(k),i, γ̂(k),j)

be the average effect estimate that uses the parameter estimates in the k-th leave-out sample
(that is, the sample which we drop observations (i, j) ∈ Ik). A jackknife bias-corrected
estimator is

∆̂J = (N − 1)∆̂N − (N − 2)
1

N − 1

N−1∑
k=1

∆̂(k). (12)

We show in Section 4 that the bias-corrected estimator is asymptotically normal with mean
zero. Note that there is no need to use a bias-corrected estimate of β̂ in the construction of
the average effects. The jackknife takes care of the bias generated by bias in β̂ as well as the
other sources of bias in a single step.

3.2 Specification testing

The parameter in (11) is an average over a function that depends on a single observation in
the network. In some cases, we may be interested in averages over functions that depend on
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multiple observations such as patterns depending on pairs of nodes (dyads), groups of three
or four nodes (triads or tetrads), or other structures. Although these averages may be of
interest in their own right, they prove particularly useful in developing specification tests,
and we focus on this case. In this section, we show that like simple average effects, these
averages also suffer from the incidental parameters bias problem, but can be bias corrected
using the jackknife approach.

Let λ be a set of observations in the network; for example, λ = {(i, j), (j, i)} collects the
two observations within a dyad, and λ = {(i, j), (j, k), (k, i)} collects a sequence of potential
links between three nodes. Let ΛN be the set of all possible λ formed by permuting the
nodes for a network of size N . We consider averages of the form

∆N =
1

|ΛN |
∑
λ

m(Yλ, Xλ, β, πλ), (13)

where Yλ = {Yij}(i,j)∈λ, Xλ = {Xij}(i,j)∈λ, and πλ = {αi + γj}(i,j)∈λ collect the outcomes,
covariates and fixed effects for the observations in λ. These generalize the averages in (11) in
two ways: (i) they allow for averages over functions of multiple observations in the network,
and (ii) they allow the function m to depend on the outcome variable Yij.

One important application of the type of averages in (13) is to specification testing. The
model presented in this paper assumes that decisions are made bilaterally, that is, agents
i and j decide on Yij independently of other outcomes in the network. In some settings,
we may expect that decision making has some strategic aspect, in that an agent’s utility
from a link depends on the presence (or strength) of other links. One way to model such
a phenomenon is to include network statistics in the utility function. For example, imagine
that i sends a link to j according to

Yij = 1
{
δSij + β′Xij + αi + γj ≥ εij

}
, (14)

where Sij is the value of some network statistic, and εij are independent shocks. Models
of this form generally result in multiple equilibria, which raises a number of difficulties for
estimation. However, under the null hypothesis H0 : δ = 0, the model is the dyadic link
formation model considered in this paper and can be consistently estimated. This suggests
that a test statistic based on Sij may be useful for testing the null hypothesis of the dyadic
model (i.e. assumption (1)) against an alternative of the form (14). One possible test statistic
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is
TN =

1

N(N − 1)

∑
i

∑
j 6=i

(Yij − pij)Sij, (15)

where pij = E[Yij|X, β, α, γ]. The statistic tests the ability of the network statistic Sij to
predict the model errors Yij − pij. Under the null model, E[(Yij − pij)Sij] = 0 and so values
of TN far from zero suggest the presence of unexplained strategic interactions. Graham and
Pelican (2020) consider a similar setup in the case of a logit model and derive the locally
best conditional similar test for the null hypothesis H0 : δ = 0 in (14). The resulting statistic
is similar to (15), although this certainly does not imply any optimality of the test proposed
here. The motivation for the statistic suggested here is heuristic, but has the advantage of
being applicable to a wide set of models (e.g. models that do not admit a sufficient statistic)
and has the simplicity of using asymptotic critical values. Some examples of potential test
statistics in this framework may be useful.

Example. Reciprocity in link formation

Consider a model in which links are reciprocal, that is the presence of a link from j to i
increases the utility of the reverse link from i to j. In this case we could let Sij = Yji in (15),
which gives the statistic

TN =
1

N(N − 1)

∑
i

∑
j 6=i

(Yij − pij)Yji (16)

This statistic measures whether the average prediction error for reciprocal links differs from
the average prediction error for non-reciprocal links. Note that reciprocity is allowed for
under the assumptions of this paper, so that a rejection of the null hypothesis of no reciprocity
does not affect the interpretation of model estimates.

Example. Transitivity

Consider a triad, three nodes in the network (i, j, k). Under the dyadic model, linking
decisions are independent across the three pairs of nodes in the triad, but in many settings it
may be reasonable to think that the existence of links between two of these pairs may affect
the formation of the links in the third. For example, imagine that i has formed a directed
link to j, and j has formed a link to k. We may expect the existence of the indirect path
from i to k (passing through j) to increase the likelihood of observing the direct link from i

to k. This linking structure, i→ j, i→ k,k → j (shown in the right diagram of Figure 2), is
known as a transitive triangle.
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Figure 2: Transitive triangles

There are six potential transitive triangles that may exist within any triad; the figure above shows
two of these (in which i is the sender of two links). Additional links may exist within the triad -
these do not affect the existence of a transitive triangle.

Transitivity in linking is a feature of many models of strategic network formation and we
may test the null hypothesis that linking decisions are dyadic against an alternative in which
transitivity exists by choosing Sij = 1

N−2

∑
k 6={i,j} YikYkj and using the statistic

TN =
1

N(N − 1)(N − 2)

∑
i

∑
j 6=i

∑
k 6={i,j}

(Yij − pij)YikYkj. (17)

Note that in both examples, and more generally, the outcome Yij need not be binary. The
test applies equally to non-binary outcomes, for example, in a trade network the presence of
large export flows of a particular good from i to k and from k to j may reduce the expected
direct exports of that good from i to j.

The framework in (14) generates just one possible set of specification tests, and many others
statistics of the form (13) are possible. One alternative method is to compare the observed
frequency of some possible subgraph configuration with the expected frequency under the
assumed dyadic model. Such a test, for the case of transitive and cyclic triangles, was
proposed by Dzemski (2019), who also derived an analytical bias correction for the statistic
in a binary outcome model with normal disturbances. The statistic suggested by Dzemski
(2019) is of the form

TN =
1

N(N − 1)(N − 2)

N∑
i=1

∑
j 6=i

∑
k 6={i,j}

(
YijYikYkj − pijpikpkj

)
,
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where YijYikYkj is an indicator for a transitive triangle and pijpikpkj is the probability of
observing such a triangle when all three links are independent. Many test statistics of
this form could be derived in the same way, by taking some function of network outcomes
between multiple agents and comparing it to its expectation under the dyadic model. For
example, an alternative statistic for reciprocity would be 1

N(N−1)

∑
i

∑
j 6=i(YijYji− pijpji). A

key advantage of the jackknife procedure proposed in this paper is that it applies to such a
wide variety of statistics. Given the plethora of potential test statistics, an analysis of their
power properties would certainly be useful, although is beyond the scope of this paper.

Like estimates of the common parameter β, the test statistics discussed above suffer from
an incidental parameter bias. Although the infeasible test statistics are mean zero under
a correctly specified model, the feasible versions, which replace parameters β0, α0, γ0 with
their estimated values, have an asymptotic bias that leads to incorrect inference. However,
we show in Section 4 that statistics of the form in (13), may be jackknife bias corrected.

To describe the jackknife bias correction for these statistics, denote the number of observa-
tions contained in λ as r. Let 1kλ =

∏
(i,j)∈λ 1

k
ij be an indicator that is zero whenever any of

the observations in λ are included in the k-th leave-out set Ik. Define the leave-out estimate

∆̂(k) =
N − 1

N − r − 1

1

|ΛN |
∑
λ

m(Yλ, Xλ, β̂(k), π̂λ,(k))× 1kλ,

where β̂(k), π̂λ,(k) are parameter estimates from the k-th leave-out estimation. The factor
N−1
N−r−1

accounts for the fact that mλ is dropped from the average whenever any of the r
observations it is a function of are dropped.8 A jackknife bias-corrected estimator is again
given by

∆̂J = (N − 1)∆̂N − (N − 2)
1

N − 1

∑
k

∆̂(k). (18)

In Section 4, we show that the bias-corrected statistic is asymptotically normal and well
centered. In the case of the specification test statistics discussed above, we have Ē[∆N ] = 0

and so N∆̂J ⇒ N(0, V∆), where the form of the variance is shown in Theorem 2. This
allows us to test hypotheses in the usual way, comparing N∆̂J/

√
V∆ to the quantiles of

a standard normal distribution. Further details on the implementation of these tests are
8This jackknife differs from (12) by jackknifing the average itself, not just the parameter estimates. This

is because m here may depend on the outcome Yij . In settings where m does not depend on outcomes, or
it is separable between outcomes and parameters, the simpler jackknife in (12) can be used. For example,
when mλ = YijYikYkj −pijpikpkj , the average over the second term (pijpikpkj) may be jackknifed separately
and the average over the first term (YijYikYkj) left as is.
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discussed below.

4 Asymptotic theory

We consider an asymptotic framework in which a single network of N agents grows in size,
i.e. N → ∞. Recall that the parameters of interest maximize the objective function in
(2) for some function `ij = `(Yij, Xij, β, αi + γj) of the observables Zij = (Yij, Xij) and
additive unobserved fixed effects αi + γj. The asymptotic theory relies on expansions of
the objective function, for which we require certain differentiability and moment conditions.
We let φ′ = (α′, γ′) denote the 2N × 1 vector of fixed effect parameters and πij = αi + γj

represent the additive index through which they enter the objective function. We denote
derivatives of the function ` with respect to parameters by ∂β`ij(β, α, γ) = ∂`ij(β, α, γ)/∂β,
∂πq`ij(β, α, γ) = ∂q`ij(β, α, γ)/∂πq etc. When evaluating these objects at the true parameter
values, we simply write ∂πq`ij and so on.

4.1 Asymptotic analysis for the common parameters

The results below are derived under the following set of assumptions. Proofs are provided
in the Appendix.

Assumption 1. Let ε > 0. For every (i, j) let Bε,ij be a subset of Rdimβ+1 that contains an
ε-neighborhood of (β0, π0,ij) for all N .

(i) Conditional on (X,α, γ), dyads are independent, that is,

Yij ⊥⊥ Ykl|X, β, α, γ ∀(k, l) /∈ {(i, j), (j, i)}.

(ii) For all i, j and N we have that Ē[∂β`ij] = Ē[∂π`ij] = 0. For all N , the objective function
L is strictly concave over Rdimβ+2N , and the matrix H̄ = −∂φφ′L̄ is positive definite.

(iii) For all (i, j), the function (β, π) 7→ `ij(β, π) is five times continuously differentiable over
Bε,ij almost surely. For all (i, j), the partial derivatives of `ij with respect to the elements
of (β, π) up to fifth order are bounded in absolute value uniformly over (β, π) ∈ Bε,ij by a
function M(Zij) > 0 a.s., where maxi,j Ē[M(Zij)

16] is a.s. uniformly bounded over N .
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(iv) Let

W̄N = − 1

N

(
∂ββ′L̄ − (∂φβ′L̄)(∂φφ′L̄)−1(∂βφL̄)

)
Ω̄N = Ē

[(
∂βL − (∂βφ′L̄)(∂φφ′L̄)−1(∂φL)

)2]
.

The limits plimN→∞W̄N = W and plimN→∞Ω̄N = Ω exist for W and Ω positive definite
matrices.

(v) There exist constants bmin and bmax such that for all (β, π) ∈ Bε,ij

0 < bmin ≤ −Ē[∂π2`ij(β, π)] ≤ bmax

a.s. uniformly over i, j and N .

Assumption 1(i) specifies that outcomes depend on dyad specific variables only, and not
on other features of the network. Conditional on the observed covariates and fixed effects,
the outcome Yij is independent of other outcomes in the network, with the exception of Yji.
Note that unconditionally outcomes are allowed to be dependent, through dependence across
covariates Xij and the fixed effects.

Assumption (ii) contains the parametric restriction of the model and requires that the true
parameters β0, α0, γ0 are solutions to the first-order equations of the objective function. Con-
cavity of the objective function ensures that the population problem has a unique solution.
This is satisfied in many common nonlinear models, including the class of regression mod-
els with log-concave densities (as well as censored and truncated versions of these models),
which includes probit, logit, ordered probit, Tobit, gamma and beta models among others
(see Pratt (1981), Newey and McFadden (1994)).

Assumption 1(iii) provides basic smoothness conditions for the objective function. The
derivative and moment conditions are required to ensure the validity of the asymptotic
expansions to high enough order to establish the properties of the jackknife procedure, and
to ensure that remainder terms are well bounded. Analysis of the jackknife requires higher
order expansions than are required for characterization of the analytical bias and first-order
asymptotic properties of the estimator, and so Assumption 1(iii) is somewhat stronger than
the equivalent assumption employed in Fernández-Val and Weidner (2016).

Assumption 1(iv) ensures that the variance of β̂ is non-degenerate. The term W̄N is the
Hessian matrix for the common parameters β, after concentrating out the fixed effect pa-
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rameters, while Ω̄N is the variance of the score for β (again after concentrating out the fixed
effect parameters). To describe estimators of these terms, let

Ξij = − 1

N

∑
s

∑
t6=s

(
H̄−1

(αα)is + H̄−1
(γα)jt + H̄−1

(αγ)it + H̄−1
(γγ)st

)
Ē[∂βπ`st],

and define Dβ`ij = ∂β`ij − Ξij(∂π`ij). This term is the score for β after partialling out the
fixed effect parameters. Estimators of the variance terms can be created in the usual way
by plugging in estimates of the model parameters, i.e.

ŴN = − 1

N

(
∂ββ′L̂ − (∂φβ′L̂)(∂φφ′L̂)−1(∂βφL̂)

)
,

Ω̂N =
1

N(N − 1)

∑
i

∑
j<i

(D̂β`ij + D̂β`ji)
2,

(19)

where the terms ∂ββ′L̂, D̂β`ij etc. are evaluated at the estimates β̂, α̂, γ̂. Note that the
estimator Ω̂N allows for correlation between the Yij and Yji outcomes.

Finally, Assumption 1(v) ensures that the Hessian for the fixed effect parameters is positive
definite. This requires sufficient variation in the outcomes across both dimensions – i.e.,
variation in Yij over j (for fixed sender i) and over i (for fixed receiver j). In the binary
outcome case, it implies that the model generates a dense network, one in which the number of
links formed by each node tends to infinity as the size of the network grows. The assumption
may not be reasonable in all empirical settings – in simulations we investigate the robustness
of the estimator to sparsity in finite samples. The density assumption can be avoided in
settings where sufficient statistics for the incidental parameters exists, such as the conditional
logit framework, since estimation of the fixed effects is avoided. This comes at the expense
of no longer being able to estimate average effects or counterfactual outcomes.

We now state the main theorem of the paper, on the asymptotic distribution of the jackknife
bias-corrected estimator.

Theorem 1. Let Assumption 1 hold and let β̂J be the jackknife bias-corrected estimator (8),
the leave-l-out estimator (9) or the weighted jackknife (10). Let VN = W̄−1

N Ω̄NW̄
−1
N and

assume that V = plimN→∞VN exists and is positive definite. Then,

N(β̂J − β0)⇒ N (0, V ).
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Let V̂N = Ŵ−1
N Ω̂NŴ

−1
N be an estimator of the asymptotic variance, where ŴN and Ω̂N are

the plug-in estimators shown in (19). Then V̂N → V .

The jackknife estimator is asymptotically normally distributed and unbiased. It also has the
same asymptotic variance as the non-bias-corrected estimator in (2). The variance is the
usual sandwich form one, and is easily computed. In the case of maximum likelihood we will
have that W̄N = Ω̄N so that the variance simplifies to VN = W̄−1

N . In general this will not
be true, for example the researcher may wish to allow for correlation between Yij and Yji by
clustering Ω̄N at the dyad level as in (19).

4.2 Asymptotic analysis for fixed effect averages

Here we present asymptotic results for averages of functions that may take more than one
observation as arguments. This structure will cover a number of interesting cases such as
standard average effects, averages over dyads, triads or other structures in the network, and
specification tests. Recall that λ is a set of observations (i, j), and ΛN is the collection of all
such sets formed by permuting the nodes in λ. We let Yλ = {Yij}(i,j)∈λ, Xλ = {Xij}(i,j)∈λ, and
πλ = {αi + γj}(i,j)∈λ collect the outcomes, covariates and fixed effects for the observations in
λ. The function of interest is mλ = m(Yλ, Xλ, β, πλ), which is a function of (Yij, Xij, αi + γj)

for each (i, j) ∈ λ.

It will be useful to define three separate quantities

δ = E
[
∆N

]
, ∆̄N = Ē

[
∆N

]
, and ∆N =

1

|ΛN |
∑
λ∈ΛN

mλ.

Here, ∆N is the average effect computed in the observed sample (at the true parameter val-
ues), ∆̄N is the expectation of the average effects conditional on the distribution of covariates
and fixed effects in the observed sample, while δN is the population expectation. We can
decompose the estimation error ∆̂N − δ into three sources

∆̂N − δ = (∆̂N −∆N) + (∆N − ∆̄N) + (∆̄N − δ). (20)

The first term, ∆̂N −∆N , represents variation caused by estimation of the parameters in the
model, including fixed effects. The next term, ∆N − ∆̄N , is variation of the sample outcomes
mλ around their conditional expectations m̄λ = Ē[mλ]. In the case that m is a function of
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the data only through Xλ, i.e. it does not depend on outcomes Yλ, we will have m̄λ = mλ

and this second term will vanish. Finally, ∆̄N − δ captures differences in the distribution of
covariates and fixed effects in the observed network, relative to the population. In the case
that the full network is observed, or whenever ∆̄N = 0 as is the case for specification tests,
we will have that ∆̄N = δN .

The results below will rely on Assumption 1, as well as additional restrictions on the choices
of λ and m.

Assumption 2. Let λ be a set of r observations (i, j) containing p distinct agents. For
every λ, let Bε,λ be a subset of Rdimβ+r that contains an ε-neighborhood of (β0, π0,λ) for all
N , with ε > 0.

(i) The number of observations and unique agents in λ, r and p, are fixed over N . The set
ΛN contains all N !

(N−p)! permutations of agents in the set of observations λ.

(ii) The function m depends on (α, γ) only through πλ = {αi + γj}(i,j)∈λ. For all λ, the
function (β, πλ) 7→ m(Zλ, β, πλ) is five times continuously differentiable over Bε,λ a.s. For
all λ, the partial derivatives of m with respect to the elements of (β, πλ) up to fifth order are
bounded in absolute value uniformly over (β, πλ) ∈ Bε,λ by a function M(Zλ) > 0 a.s., and
maxλ Ē[M(Zλ)

16] is a.s. uniformly bounded over N .

(iii) We have that 0 < minλE[m2
λ] − E[mλ]

2 ≤ maxλE[m2
λ] − E[mλ]

2 < ∞ uniformly over
N

Assumption 2 (i) restricts m to be a function of a fixed number of edges in the network,
which allows us to construct leave-out sets to bias correct using the jackknife. It also assumes
that ∆N is an average of all possible arrangements of the nodes in λ, ensuring that averaging
occurs over all dimensions. For example, an average of the form 1

N

∑
j 6=im(Xij, αi, γj) is not

allowed since we are only averaging over the receiver dimension, while holding i fixed.

Assumption 2 (ii) is analogous to Assumption 1 (iii), and imposes the same differentiability
and moment conditions on m as are imposed on `. This allows for asymptotic expansions
of ∆̂N to be derived, in the same way as for β̂. Finally, (iii) ensures that the unconditional
second moments of m are well defined.

The asymptotic distribution depends on the choice of target parameter, either a conditional
or population average. The following theorem states the asymptotic result for the jackknife
bias-corrected estimator of the conditional fixed effect average ∆̄N .
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Theorem 2. Let Assumptions 1 and 2 hold, and let ∆̂J be the jackknife bias-corrected
estimator (18). Then

N(∆̂J − ∆̄N)⇒ N (0, V∆).

If we additionally assume that E
[
(mλ − m̄λ)(mλ′ − m̄λ′)

]
6= 0 for sets λ and λ′ that share

exactly one observation in common, then the asymptotic variance is

V∆ = lim
N→∞

1

N(N − 1)

∑
i

∑
j<i

Ē
[
(hij + sij)

2
]

where hij = −N(∂θ∆̄N)(∂θθ′L̄)−1
(
(∂θ`ij)+(∂θ`ji)

)
, for θ′ = (β, α′, γ′), and sij = (N−p)!

(N−2)!

∑
λ∈Λ̃ij

(mλ−
m̄λ), with Λ̃ij = {λ : (i, j) ∈ λ or (j, i) ∈ λ}.

If we have either mλ = m̄λ or E
[
(mλ − m̄λ)(mλ′ − m̄λ′)

]
= 0 for sets λ and λ′ that share

exactly one observation in common, then the asymptotic variance is

V∆ = lim
N→∞

1

N2

∑
i

∑
j<i

Ē
[
h2
ij

]
.

In either case, let V̂∆ be the plug-in estimator for V∆ that replaces the unknown θ with
estimates θ̂. Then V̂∆ → V∆.

Some explanation for the form of the variance may be useful. The two terms hij and sij

relate to the first two components of (20). The first component ∆̂J −∆N contains variation
from estimation of the common parameters β and fixed effects α, γ. In the Appendix it is
shown that this term can be approximated using the delta-method

N(∆̂J −∆N) = −N(∂θ∆̄N)(∂θθ′L̄)−1(∂θ`ij) + op(1)

=
1

N − 1

∑
i

∑
j 6=i

hij + op(1).

Note that, replacing the jackknife estimate ∆̂J with the standard estimator ∆̂N would result
in additional terms appearing in the above first-order approximation, related to the incidental
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parameter bias. The second component is

N(∆N − ∆̄N) =
N

|ΛN |
∑
λ

(mλ − m̄λ).

The variance of this term depends on the conditional covariance between mλ and mλ′ for
distinct sets λ and λ′. Note that if λ and λ′ share no dyads in common then they are
conditionally independent. The variance of this term depends on the condition E

[
(mλ −

m̄λ)(mλ′ − m̄λ′)
]
6= 0 for sets λ and λ′ share exactly one observation in common. Under

this condition, the variance of
∑

λ(mλ − m̄λ) is dominated by covariances between mλ and
mλ′ for λ and λ′ that share exactly one dyad in common; although λ with two or more
common dyads also contribute to the variance, there are an order of magnitude fewer such
combinations, and so these represent smaller order contributions that do not appear in the
asymptotic variance. In settings where E

[
(mλ−m̄λ)(mλ′−m̄λ′)

]
= 0 for λ and λ′ that share

exactly one observation in common, ∆N − ∆̄N is a degenerate U-statistic and its variance is
asymptotically of smaller order than the variance from parameter estimation, i.e. ∆̂J −∆N ,
and so may be ignored.

Theorem 2 shows how we may construct confidence sets for the parameter of interest ∆̄N .
When the object of interest is the unconditional average δ, the convergence of the estimator
will be dominated by variation from the third component in (20), ∆̄N − δ. To describe the
statistic in this setting, it is useful to use its U-statistic representation. We will additionally
assume that Xij = h(Xi, Xj). This condition appears in other work on dyadic models, for
example in Graham (2017). When Xij measures the similarity (or difference) between i and
j in some measure, we will commonly have Xij = d(Xi −Xj), for d some distance function.
Alternatively, if Xij captures common membership in some group, we may have Xij = XiXj

where Xi is an indicator for i’s membership.

To give ∆̄N a U-statistic representation, we first sum together all m̄λ which share the same
set of agents. Since there are p agents in each λ, this gives p! different λ that can be created
from a given set of agents. We denote these sets of unordered agents by τ . We have, for
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m̃ = m̄− E[m]

∆̄N − δ =
1

N · · · (N − p+ 1)

∑
λ

m̃λ

=
p!

N · · · (N − p+ 1)

∑
τ

( 1

p!

∑
λ∈τ

m̃λ

)
=

(
N

p

)−1∑
τ

uτ ,

where uτ = 1
p!

∑
λ∈τ m̃λ. The term uτ is a symmetric function of {β,Xi, αi, γi} for p agents

i. Assuming that the {Xi, αi, γi} are i.i.d. over agents, ∆̄N − δ is a U-statistic of order p and
we may apply standard theory on such statistics to compute its asymptotic distribution.

Theorem 3. Let Assumptions 1 and 2 hold. Additionally, assume that Xij = h(Xi, Xj)

where Xi is an observed agent-specific characteristic, and also that (αi, γi, Xi) is i.i.d. over
i. Let

Σ1 = Cov
(
uτ , uτ ′

)
,

for τ, τ ′ such that τ ∩ τ ′ = {i}. Then, for Vδ = p2Σ1

√
N(∆̂J − δ)⇒ N (0, Vδ).

Additionally, the variance estimator V̂δ in (21) is consistent, i.e. V̂δ → Vδ.

The convergence rate in Theorem 3 is slower than the rate in Theorem 2. While mλ and
mλ′ are conditionally independent when λ and λ′ share no dyads in common, the two are
unconditionally independent only when they share no agents in common. Since there are
many more sets λ that share a single agent i than share a dyad (i, j), the variance of ∆̄N − δ
is an order of magnitude larger than that of ∆̂N −∆N , and so the convergence rate is slower.

Similarly to Theorem 2, the variance is dominated by covariances between sets λ that share
exactly one node in common. The term Σ1 is the covariance between uτ and uτ ′ when τ and
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τ ′ share exactly one agent in common. A consistent estimator for this quantity is given by

V̂δ =
1

N

∑
i

µ̃2
i ,

µ̃i =
(N − p)!
(N − 1)!

∑
λ:i∈λ

( ̂̄mλ − µ̂),

µ̂ =
(N − p)!
N !

∑
λ

m̂λ,

(21)

where µ̃i is the average over all sets λ containing agent i, ̂̄mλ is a plug-in estimator for m̄λ,
and µ̂ =

∑
λ
̂̄mλ is the overall mean.

Since the rate of convergence in Theorem 3 is N−1/2, there is in fact no asymptotic bias
generated by the incidental parameters. The bias from the estimation of the fixed effects is
of order N−1, which is smaller than the variation in the sampled distribution of fixed effects
around is population distribution. Nonetheless, we would still recommend bias correcting
estimators as it is likely to improve the finite sample properties of inference, in terms of
correct centering of confidence sets, with little or no cost in terms of additional variance.
In the panel data setting, Fernández-Val and Weidner (2016) report such improvements in
simulations.

4.3 Examples

Theorems 2 and 3 suggest that the construction of confidence sets for estimates and hypoth-
esis testing may be performed in the usual way, by using the asymptotic normal approxima-
tions. Standard plug-in estimates for the variance expressions may be used. Here we provide
some examples of how these results can be used.

Example 1. Average marginal effect in a probit model

The average marginal effect in the probit model can be estimated using

∆̂ =
1

N(N − 1)

∑
i

∑
j 6=i

βϕ(β′Xij + αi + γj),

where ϕ is the standard normal density function. In this setting we have λ = (i, j) and
mij = m̄ij so that sij = 0. The variance in Theorem 2 is then the standard delta-method

32



variance of

V∆ = (∂θ∆̄N)(∂θθ′L̄)−1Ω̄(∂θθ′L̄)−1(∂θ∆̄N),

Ω̄ =
1

N(N − 1)

∑
i<j

Ē
[
(∂θ`ij + ∂θ`ji)(∂θ`ij + ∂θ`ji)

′],
and standard plug-ing estimators may be used. A (1 − α)-per cent confidence set could be
constructed for ∆N using ∆̂J ± c1−α/2V

1/2
∆ /N , where c1−α/2 is the (1− α/2) quantile of the

standard normal distribution.

If instead we are interested in inference with respect to the population parameter δ, Theorem
3 states that we may compute the asymptotic variance as

V̂δ =
1

N

∑
i

( 1

N − 1

∑
j 6=i

(βϕij + βϕji − 2∆̂)
)2

.

A (1− α)-per cent confidence set for δ is ∆̂J ± c1−α/2V̂
1/2
δ /
√
N .

Example 2. Testing transitivity in a probit model

Recall that a statistic for testing the presence of transitivity is

∆̂N =
1

N(N − 1)(N − 2)

∑
i

∑
j 6=i

∑
k 6={i,j}

(Yij − pij)YikYkj,

where pij = E[Yij|X, β, α, γ]. Fitting Yij with a probit regression, we have pij = Φ(β′Xij +

αi + γj). Since m̄λ = Ē
[
(Yij − pij)YikYkj

]
= 0, we have ∆̄N = δ = 0 so we may determine

the asymptotic distribution of the test statistic using Theorem 2. We have

sij =
1

N − 2

∑
k 6={i,j}

(
(Yij − pij)YikYkj + (Yji − pji)YjkYki

+ (Yik − pik)YijYjk + (Yjk − pjk)YjiYik

+ (Ykj − pkj)YkiYij + (Yki − pki)YkjYji
)
.

From the likelihood for a probit model, we have `ij = Yij log(pij) + (1 − Yij) log(1 − pij),
which gives ∂π`ij = Hij(Yij − pij) and ∂β`ij = Hij(Yij − pij)Xij for Hij = ϕij/pij(1 − pij).
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Also,

∂β∆̄N = − 1

N(N − 1)(N − 2)

∑
i

∑
j 6=i

∑
k 6={i,j}

ϕijpikpkjXij,

∂αi∆̄N = − 1

N(N − 1)(N − 2)

∑
j 6=i

∑
k 6={i,j}

ϕijpikpkj,

∂γi∆̄N = − 1

N(N − 1)(N − 2)

∑
j 6=i

∑
k 6={i,j}

ϕjipjkpki,

from which we can construct hij using the estimated Hessian matrix and the formula given
in Theorem 2.

5 Empirical example

We illustrate the jackknife procedure on a data set consisting of a directed network of export
volumes between 136 countries (136× 135 country pair observations) in 1990. The data are
taken from Santos Silva and Tenreyro (2006), and additional details on their construction
can be found in their paper. The outcome variable Yij is the value of exports from country
i to country j. We also use several covariates to capture homophily in trade relationships,
which include: log distance, the log of the distance between the capitals of the countries;
border, an indicator of whether the countries share a common border; language, an indicator
for whether the countries share a language; colonial, and indicator for whether either country
had colonized the other at some point in history; and trade agreement, an indicator for the
presence of a joint preferential trade agreement between the two countries.

5.1 Zero-inflated binomial model

Burger et al. (2009) propose a zero-inflated negative binomial model. The value of trade
between i and j is given by the product of two variables Yij = zijY

∗
ij , where zij ∈ {0, 1} is

a binary decision to enter into a trading relationship, while Y ∗ij is the value of exports that
will be realized, conditional on zij = 1. The binary decision is modeled using as a probit
function, while the latent outcome Y ∗ij is modeled as a negative binomial variable.
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In this example, the objective function is given by

f(Yij|Xij, θ) = 1{Yij = 0}pij + (1− pij)g(Yij|Xij, θ)

where θ = (β, α, γ, ν), and

pij = Φ(X ′ijβ
z + αzi + γzj )

g(Yij|Xij, θ) =
Γ(Yij + ν)

Γ(ν)Yij!

( ν

ν + µij

)ν( µij
ν + µij

)Yij
µij = exp(X ′ijβ

y + αyi + γyj )

The parameter ν captures the degree of overdispersion in the model for Y ∗ij , with ν → ∞
resulting in a model with equal mean and variance (as in the Poisson), while smaller ν lead
to greater degrees of dispersion.

Estimates of the parameters in the model are presented in Table 1. Most variables change
by only small amounts after bias correction. However, the effect of sharing a common border
on the probability of engaging in zero trade changes significantly after bias correction; while
the maximum likelihood estimate suggests that common borders are important for link
formation, the bias corrected estimate is no longer significant. This suggests that the sharing
a common border has little effect on the likelihood of engaging in trade, but does affect the
volume of trade. The results also suggests a substantial impact of trade agreements, both
on the probability of engaging in trade and on the volume of trade, a result that is robust to
bias correction. The overdispersion parameter ν is less than a half, suggesting a significant
amount of overdispersion, i.e. export volumes have far greater variation across country pairs
than suggested by a Poisson model.

The rightmost column in the table reports the difference between the MLE and jackknife
bias-corrected estimators in terms of their standard errors. For a number of variables in the
model of export volumes, the change in estimate is around three-quarters of the standard
deviation or more, which has an important impact on inference. To give some idea of the
scale of these biases, a bias of three-quarters of a standard error is enough for a five per cent
test two reject around 12 per cent of the time (more than twice nominal size), while bias of
1.5 standard errors leads to a rejection rate of more than 30 per cent.
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Table 1: Zero-inflated negative binomial model

Coefficients
MLE Jackknife SE (Bias/SE)

Zero model
log distance 0.721 0.721 0.029 0.00
border 0.628 0.157 0.120 3.93
language -0.330 -0.306 0.053 0.45
colonial -0.305 -0.282 0.056 0.41
trade agreement -1.168 -1.126 0.180 0.24
Volume model
log distance -1.243 -1.218 0.033 0.77
border 0.437 0.483 0.129 0.36
language 0.405 0.418 0.068 0.18
colonial 0.399 0.335 0.073 0.88
trade agreement 1.055 0.960 0.131 0.73
ν 0.492 0.459 0.008 4.38

Table 2 contains estimates of the average effect of a regressor on expected export volume,
conditional on non-zero trade, over the distribution of regressors and fixed effects for trading
country pairs. That is, we calculate (for n1 =

∑
i

∑
j 6=i 1{Yij > 0})

∆N =
1

n1

∑
i

∑
j 6=i

1{Yij > 0}βdist exp(X ′ijβ
y + αyi + γyj )

for the continuous regressor log distance and

∆N =
1

n1

∑
i

∑
j 6=i

1{Yij > 0}
(

exp(βy ′X
(1)
ij + αyi + γyj )− exp(βy ′X

(0)
ij + αyi + γyj )

)
for binary regressors, where X(1)

ij sets the binary regressor of interest to one for all (i, j) and
X

(0)
ij sets it to zero (leaving other regressors unchanged). Again, the jackknife bias correction

has an important impact on two of the effects; for example, the effect of a trade agreement
on expected export volumes decreases by about a quarter (more than a one standard error
change in magnitude). Note that, as is the case here, a small bias in the coefficient on some
variable does not necessarily imply low bias in the corresponding marginal effect.
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Table 2: Zero-inflated negative binomial model

Average effects
MLE Jackknife SE (Bias/SE)

log distance -116.2 -113.8 9.08 0.26
border 47.5 50.2 16.95 0.16
language 43.4 41.0 8.64 0.28
colonial 44.4 31.0 10.00 1.34
trade agreement 140.2 107.1 28.10 1.18

5.2 Testing for strategic interactions

To demonstrate the use of the jackknife for specification testing, we implement the test in
(15) in a binary model for the probability of country i exporting to country j. We test
for two types of strategic interaction: reciprocity, using Sij = Yji; and transitivity, using
Sij = 1

N−2

∑
k 6={i,j} YikYkj. In both cases we construct the statistics by estimating pij using a

probit model and jackknife the statistic. Standard errors are computed using the expressions
in Theorem 2. Table 3 presents the values of the statistics as well as the standardized values
tN = NTN/

√
VT and tJ = NTJ/

√
VT for both tests.

For the reciprocity statistic, the jackknife bias correction appears to have little effect. The
statistic rejects the null of no reciprocity strongly suggesting that the existence of an export
relationship from i to j increases the likelihood of i also importing from j. This is perhaps
not surprising. It is important to note that the model considered in this paper allows for
reciprocity so that this conclusion has no impact on the validity of model estimates. The
presence of reciprocity does suggest that standard errors should be clustered at the dyad
level to account for correlation between the outcomes Yij and Yji.

Table 3: Strategic interaction tests

NTN NTJ tN tJ
Reciprocity 3.160 3.249 16.96 17.43
Transitivity -0.094 0.012 -6.75 0.88

In contrast, the jackknife bias correction appears to have an important effect on the transi-
tivity statistic. The uncorrected statistic leads to a rejection of the null, and the conclusion
that indirect paths of trade (exports paths from i to j through a third-party country) are
associated with a lower probability of a direct export relationship than is expected given the
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model. However, the jackknifed statistic is close to zero so that we do not reject the null
hypothesis that trade decisions are bilateral in nature.

5.3 Comparison with conditional logit estimator

As a comparison with an existing approach to the incidental parameters problem in networks,
we consider estimating a logit model for the probability that country i exports to country j.
Under the logit specification, it is possible to estimate the common parameters in the model
by first removing the fixed effects. This approach has been suggested by Graham (2017) for
an undirected network, and Jochmans (2018) for a directed network. The conditional logit
estimator works by forming difference-in-differences style contrasts among sets of four nodes
(tetrads). Let

zij,kl =
(Yik − Yil)− (Yjk − Yjl)

2

rij,kl = (Xik −Xil)− (Xjk −Xjl)

Given the logistic specification

P (Yij = 1|X, β, α, γ) =
exp(β′Xij + αi + γj)

1 + exp(β′Xij + αi + γj)

and conditional independence of outcomes across dyads, we may write

P (zij,kl = 1|zij,kl ∈ {−1, 1}, X, β, α, γ) =
exp(β′rij)

1 + exp(β′rij)
(22)

That is, conditional on the event zij,kl ∈ {−1, 1}, the outcome zij,kl follows a logit model
without any fixed effect parameters. This allows us to estimate the common parameter β by
a standard logit regression of zij,kl on rij,kl in the subsample of zij,kl ∈ {−1, 1}. Estimates
from this model, as well as the jackknife bias-corrected estimates, are shown in Table 4.

Interestingly, although the jackknife bias correction suggests little bias in the original logit
parameter estimates, the conditional logit estimates are significantly different. For example,
while the coefficient on distance is similar across the MLE and jackknife estimates (-1.34 and
-1.31 respectively), the conditional logit estimate differs by more than three standard errors.

There may be a number of reasons for such a discrepancy between the estimates. One
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Table 4: Coefficient estimates for logit model

MLE Jackknife Conditional logit
log distance -1.341 -1.305 -1.125

(0.062) (0.062) (0.059)
border -1.192 -1.157 0.866

(0.265) (0.265) (0.268)
language 0.590 0.573 0.488

(0.105) (0.105) (0.104)
colonial 0.509 0.493 0.579

(0.110) (0.110) (0.106)
trade agreement 2.057 1.998 1.653

(0.407) (0.407) (0.349)
Standard errors are shown in parentheses. For the MLE and
jackknife, the standard errors are those shown in Theorem 1,
while for the conditional logit standard errors are computed
using the asymptotic distribution in Jochmans (2018).

possibility is that the model is misspecified in the sense that the correct link function is not
the logistic function. In this case, maximum likelihood estimates a set of pseudo parameters
that represent the parameters that minimize the Kullback-Leibler distance between the logit
model and the true model (White, 1982). Since the jackknife theory does not rely on any
information equalities, the jackknife bias correction is asymptotically unbiased for these
pseudo parameters. In contrast, the conditional logit estimator estimates a different set of
pseudo parameters, those that minimize the KL distance conditional on zijkl ∈ {−1, 1}, for
a logit regression of zijkl on rijkl. To the best of our knowledge, there is no reason to suspect
that these two sets of pseudo parameters would coincide.

An alternative explanation is that the assumption of independence between dyads is violated
in the data. In this case, the likelihood function for the conditional logit will be incorrect,
since the identity (22) will no longer hold. In this setting the bias correction given by the
jackknife estimator is also likely to be incorrect since it will not account for bias terms
generated by the dependence across dyads.

6 Simulations

Here I demonstrate the effectiveness of the jackknife in simulations. I repeat the simulation
design of Dzemski (2019), which has also been used in a number of other network papers.
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Table 5: Fixed effect distributions

Name C l
N Cu

N Density(a)

bal − log logN log logN 0.50
llog − log logN 0 0.19
slog − log1/2N 0 0.12
log − logN 0 0.03

a Values are the average density over 100 simula-
tions in a network of N = 50 nodes.

The binary outcome Yij is determined by

Yij = 1{θXij + αi + γj > εij}

where θ = 1 and εij ∼ N(0, 1). Individual i is characterized by the binary scalar Xi =

1 − 2 × 1{i is odd}, and the homophily variable is given by Xij = XiXj, i.e. it is one for
pairs with the same sign and minus one for pairs with opposing signs. The fixed effects are
given by

αi = γi = C l
N −

N − i
N − 1

(Cu
N − C l

N)

which is a sequence from C l
N to Cu

N . The value of (C l
N , C

u
N) is intended to control the sparsity

of the network, and we consider four choices, shown in Table 5.

In the balanced setting (‘bal’), fixed effects range between ± log logN , generating a dense
network in which around half of all links are formed. Subsequent settings feature increasingly
sparse networks in which some nodes remain well connected, while others make few links.
In the sparsest setting (‘log’) only around 3 per cent of all links are formed.

I simulate the model 1000 times and compute the MLE, analytical bias-corrected estimate,
and both the standard and weighted jackknife bias-corrected estimates for each fixed effect
distribution.

Table 6 presents the bias, standard deviation, and rejection rates for a 5 per cent test of the
null hypothesis β0 = 1 for each estimator. As expected, the MLE is biased, with the size
of the bias increasing in the sparsity of the network. In each case, the bias is around one
standard deviation in size, resulting in substantial over-rejection. In contrast, the jackknife
estimator is approximately unbiased in the first two designs. In the sparsest design the
jackknife estimator does not appear to perform well, and shows similar bias to the MLE.
The weighted jackknife performs well, even in the sparse designs; it is unbiased in the first
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Table 6: Simulation results

Bias (mean) SD Rejection (5%)
N̄ (b) θ̂MLE θ̂BC θ̂J θ̂wJ θ̂MLE θ̂BC θ̂J θ̂wJ θ̂MLE θ̂BC θ̂J θ̂wJ

bal 50 0.06 0.00 -0.01 0.00 0.04 0.04 0.04 0.04 0.29 0.03 0.03 0.03
llog 50 0.07 0.01 -0.01 0.00 0.06 0.05 0.06 0.05 0.27 0.04 0.04 0.04
slog 50 0.11 0.02 -0.03 0.01 0.10 0.09 0.13 0.12 0.26 0.05 0.05 0.05
log 29 0.51 ~ -1.23 0.04 0.60 ~ 1.37 0.42 0.27 0.23 0.67 0.29
a The top panel is N = 50, lower panel is N = 70; N̄ is the average number of nodes in the connected network
b In sparse settings the analytical correction generated some extreme outliers. Median and 95-5 percentile
range are reported in Table 7.

Table 7: Simulation results - median and range

Bias (median) 95-5 range
N̄ (b) θ̂MLE θ̂BC θ̂J θ̂wJ θ̂MLE θ̂BC θ̂J θ̂wJ

bal 50 0.06 0.00 -0.01 0.00 0.14 0.13 0.13 0.13
llog 50 0.07 0.00 -0.01 0.00 0.19 0.18 0.17 0.18
slog 50 0.10 0.01 -0.03 0.00 0.27 0.25 0.23 0.25
log 29 0.23 0.11 -0.95 -0.06 1.55 1.38 4.24 1.13
a top panel is N = 50, lower panel is N = 70
b N̄ is the average number of nodes in the connected network

three designs, and removes the majority of the bias even in the sparsest design. In each case,
the jackknife estimators have smaller standard deviation than the MLE (with the exception
of the standard jackknife in the sparsest design). Rejection rates are at or below the nominal
level in three of the four settings, although in the sparsest setting all estimators over reject.

Weighted jackknife

To help explain the properties of the weighted jackknife, we investigate how the weight given
to each leave-out estimate β̂(k) correlates with the contribution of that estimate to the total
error of the jackknife estimate. Define

e(k) = (N − 1)β̂MLE − (N − 2)β̂(k) − β0

as the contribution to the error β̂J −β0 from a single leave-out estimate β̂(k). The total error
of the standard jackknife is simply the average of these errors β̂J − β0 = 1

N−1

∑
k e(k), while

the weighted jackknife gives differing weights to different leave-out estimates. Figure 3 plots
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Figure 3: Weights (Ŵ(k)) versus estimates (β̂(k)) in leave-out samples

The y-axis is which measures the absolute error of the jackknife estimator using the single leave-out
estimate. The x-axis is the weight given to that leave-out estimate in the weighted jackknife.

the absolute value of these errors against their weights in the weighted jackknife across the
four simulation designs.

For the balanced design (upper left panel), which is the densest network, the weights are
concentrated around 1

N−1
≈ 0.02 with very little variation. In this case, the weighted jack-

knife is almost identical to the standard jackknife, as is clear in Tables 6 and 7. As the level
of sparsity in the network increases, so does the dispersion in weights and estimates across
the leave-out samples. In the sparsest design, C l

N = − logN (lower right panel), the weights
vary considerably, with many close to zero. Note that the sparser designs also exhibit large
outliers, with extremely large errors, but that these outliers typically receive weights close
to zero. It is this feature that appears to drive the success of the weighted jackknife over the
standard jackknife in the sparser designs (C l

N = −{log1/2N, logN} ) in Tables 6 and 7.

Simulations for leave-l-out style jackknife

Table 8 reports the results of simulations of the leave-l-out style jackknife in a network of
N = 101 nodes. The model is the same as that in the previous section, with fixed effect
distributions given in Table 5. Results are shown for l = {5, 10, 20, 50}, which corresponds
to 20, 10, 5, and 2 leave-out estimates in each case. The leave-l-out jackknife performs well,
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Table 8: Simulation results N = 101

Bias (mean) SD Rejection (5%)
l = 5 10 20 50 5 10 20 50 5 10 20 50

Standard jackknife
bal 0.00 0.00 0.00 0.00 0.02 0.02 0.02 0.02 0.05 0.06 0.04 0.05
llog 0.00 0.00 0.00 -0.01 0.03 0.03 0.03 0.03 0.05 0.05 0.03 0.06
slog -0.01 -0.01 -0.01 -0.01 0.04 0.04 0.04 0.04 0.05 0.04 0.05 0.09
log -0.09 -0.08 -0.13 -0.53 0.21 0.24 0.32 0.65 0.13 0.15 0.27 0.75
Weighted jackknife
bal 0.00 0.00 0.00 0.00 0.02 0.02 0.02 0.02 0.05 0.05 0.04 0.05
llog 0.00 0.00 0.00 0.00 0.03 0.03 0.03 0.03 0.05 0.05 0.03 0.06
slog 0.00 0.00 0.00 -0.01 0.04 0.04 0.04 0.05 0.05 0.05 0.05 0.10
log 0.01 0.02 0.02 -0.53 0.13 0.16 0.20 0.65 0.10 0.10 0.20 0.75

even for l as large as 50 in the dense network scenarios. In the sparsest scenario, the jackknife
performs reasonably well for l as large as 20, but appears to break down for l = 50. For large
l = 50, half of all observations in the network are dropped for each leave-out estimation,
which appears to create some issues when the network is sparse.

Comparison with other jackknife bias corrections

Finally, we compare the jackknife suggested in this paper to previous suggestions. Specifi-
cally, Cruz-Gonzalez et al. (2017) suggest two jackknife bias corrections for network models
of the type considered in this paper.9 The first bias correction is based on a split-sample
approach. Divide the agents into two halves, A1 and A2. Define β̂α,γ/2 = 1

2
(β̂α,γ∈A1 +β̂α,γ∈A2),

where β̂α,γ∈A1 is the estimator that uses only observations in which the receiver is in the first
set of agents A1, and β̂α,γ∈A2 uses only observations in which the receiver is in A2. Similarly,
define β̂α/2,γ = 1

2
(β̂α∈A1,γ + β̂α∈A2,γ) as the average of the two estimators that split the sample

based on sending agents. A split-sample jackknife is given by

β̂ss = 3β̂N − β̂α/2,γ − β̂α,γ/2.

The second bias correction is based on dropping all observations associated with a particular
9Cruz-Gonzalez et al. (2017) suggest these jackknife corrections for the network model although do not

prove their validity. Establishing the validity of the jackknife corrections requires the higher-order asymptotic
expansions that are derived in this paper.
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Table 9: Comparison of jackknife corrections

Bias (mean) SD Rejection (5%)
N̄ (b) θ̂J θ̂wJ θ̂d θ̂ss θ̂J θ̂wJ θ̂d θ̂ss θ̂J θ̂wJ θ̂d θ̂ss

bal 50 -0.01 0.00 0.00 -0.02 0.04 0.04 0.04 0.04 0.03 0.03 0.05 0.06
llog 50 -0.01 0.00 -0.02 -0.04 0.06 0.05 0.05 0.10 0.04 0.04 0.03 0.11
slog 50 -0.03 0.00 -0.09 -0.26 0.11 0.09 0.25 0.31 0.06 0.05 0.07 0.43
log 29 -1.23 0.05 -1.18 -1.51 1.38 0.47 1.55 1.42 0.25 0.28 0.64 0.61
θ̂J and θ̂wJ are the jackknife and weighted jackknife proposed in this paper. θ̂d and θ̂ss are the ‘double’
and ’ss2’ jackknife estimators proposed in Cruz-Gonzalez et al. (2017).

agent. Let β̂(i) be the estimate using only observations in the sub-network that excludes
agent i. Cruz-Gonzalez et al. (2017) define the ‘double’ correction as

β̂d = Nβ̂N − (N − 1)
1

N

∑
i

β̂(i).

Both jackknife corrections differ from β̂J in (8), only β̂J preserves the distribution of fixed
effects in each leave-out estimate. This appears to be an important property for the jackknife
to perform well in settings with substantial unobserved heterogeneity. Table 9 reports results
from simulations of the same model discussed above for the standard and weighted jackknife
estimators as well as the split-sample and double corrections suggested by Cruz-Gonzalez
et al. (2017). As is clear from the results, although the split-sample and double corrections
appear to work well in the densest network DGP, they do not perform well in settings with
more heterogeneity and sparser networks. In particular, the split-sample correction has much
larger variance, and removes less bias than the leave-one-out style corrections (Hughes and
Hahn (2020) derive higher-order bias and variance expressions that explain this phenomenon
in the panel setting).

7 Conclusion

This paper presents a new method for bias correcting nonlinear dyadic network models with
fixed effects. We provide a novel formulation of the jackknife method that applies to networks
with both sender and receiver fixed effects. The jackknife method provides an ‘off-the-shelf’
procedure for bias correction that is easy to apply, and applicable to a wide set of models.
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It allows for discrete multivalued and continuous outcome variables, and is able to obtain
estimates of average effects and counterfactual outcomes.

In addition, we show how the jackknife can be used to bias correct averages of functions that
depend on multiple observations, including dyads, triads, and tetrads in the network. These
averages can be used to produce a wide array of test statistics for the presence of strategic
interactions in the network, such as reciprocity or transitivity. In simulations, we show
that the jackknife performs well, even in relatively low density networks, and outperforms
previous suggestions for jackknife procedures.

There are a number of interesting areas in which the work in this paper might be usefully
extended. The jackknife procedure developed in this paper applies to data on a single
observation of a network. It would be interesting to extend these results to networks observed
over multiple time periods, perhaps with the addition of time fixed effects. It is expected that
a similar jackknife procedure could also be used in this setting, with appropriate splitting
across the time dimension to account for dynamics in the network. The jackknife procedures
proposed in this paper may also be useful in the interactive fixed effect model of Chen et al.
(2021), and establishing their validity in this setting would also be useful.
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A Notation and norms

The notation in the appendices follows that in the main paper. That is, denote partial
derivatives of the objective function using subscripts, so that ∂βL(β, φ) denotes ∂L(β, φ)/∂β

and so on, where φ′ = (α′, γ′). When functions are evaluated at β0, φ0 the dependence on
these arguments is dropped. We also use `ij as shorthand for the function `(Zij, ·), with
Zij = (Yij, Xij). Let

S(β, φ) = ∂φL(β, φ), Sβ(β, φ) = ∂βL(β, φ)

be the first derivatives of the objective function. We also write

H(β, φ) = −∂φφ′L(β, φ)

for the negative of the Hessian with respect to the fixed effects, a 2N × 2N matrix.

We follow Fernández-Val and Weidner (2016) (FVW) in using the Euclidean norm ‖·‖ for
dim β vectors, and the norm induced by the Euclidean norm for matrices and tensors, i.e.

‖∂βββL(β, φ)‖ = max
u,v∈Rdim β :‖u‖=1,‖v‖=1

‖
dimβ∑
k,l=1

ukvl∂ββkβlL(β, φ)‖
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In the proofs we sometimes take β to be a scalar to simplify notation, although the results
apply to any vector of fixed size. Since the number of fixed effect parameters in the model
grows with N , the choice of norm for dimφ vectors and matrices is important. Following
FVW, we choose the `q-norm for dimφ vectors and the corresponding induced norms for
matrices and tensors

‖∂φφφL(β, φ)‖ = max
u,v∈Rdimφ:‖u‖=1,‖v‖=1

‖
dimβ∑
k,l=1

ukvl∂φφkφlL(β, φ)‖q

See FVW for more details on these norms.

We define the sets B(r, β0) = {β : ‖β−β0‖ ≤ r}, for r > 0, and Bq(r, φ0) = {φ : ‖φ−φ0‖q ≤
r}.
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B Asymptotic expansions

B.1 Verifying Assumption B.1 in Fernández-Val andWeidner (2016)

The results in the paper are based on asymptotic expansions of the objective function.
Fernández-Val and Weidner (2016) (FVW) derive expansions for a general class of M-
estimators with multiple incidental parameters, which includes the model studied here. In
order to determine the properties of the jackknife estimator, I extend the expansions in
FVW to higher-order, which requires additional conditions on the number of moments and
derivatives of the objective function that exist. Derivations of higher-order terms and their
bounds are quite long and largely similar to the derivations in FVW, and so are provided
in the Supplementary Appendix. This appendix contains analysis based on the first-order
expansions and focuses on results related to the jackknife, which are of most interest. To do
so, I begin by verifying the conditions in Assumption B.1. of FVW, which will allow us to
use some important results in that paper, including consistency of the common parameter
and vector of fixed effects.

As is the paper, we use Ē to denote expectation conditional on exogenous covariates and
fixed effects. Let H̄ = Ē[H], H̃ = H − H̄, and similarly for other conditional expectations
and their residuals. As in FVW, we may write

H̄ =

[
H̄∗αα H̄∗αγ
H̄∗γα H̄∗γγ

]
+

1

N
bvNv

′
N

where H̄∗αα and H̄∗γγ are the diagonal matrices with elements

(
H̄∗αα

)
ii

= − 1

N − 1

∑
j 6=i

Ē[∂π2`ij]

(
H̄∗γγ

)
ii

= − 1

N − 1

∑
j 6=i

Ē[∂π2`ji]

and H̄∗αγ = (H̄∗γα)′ has off-diagonal entries
(
H̄∗αγ

)
ij

= −Ē[∂π2`ij]/(N − 1) and zeroes in
diagonal entries. As in Lemma D.1 of FVW and Lemma A.1 in Dzemski (2019), we can
show that H̄−1 is dominated by its diagonal elements

‖H̄−1 − diag
(
H̄∗αα, H̄∗γγ

)−1‖max = Op(N
−1) (23)
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We now demonstrate that the conditions in Assumption B.1 of FVW hold; a similar proof
is provided by Dzemski (2019). Given the stronger moment conditions in Assumption 1, we
can choose q = 16, ε = 1/(32 + 2ν), rβ = log(N)N−1/4, and rφ = N−3/16.

Assumption (i) holds trivially since N = T in the network setting, while (ii) follows from
Assumption 1.

For part (iv), by (23), the condition holds by Assumption 1 (v). Condition (v) follows
similarly to the proofs in FVW for the panel case. For example, we have by Assumption 1
(iii) for q ≤ 16

Ē

[
sup

β∈B(rβ ,β0)

sup
φ∈Bq(rφ,φ0)

1

N

∑
i

| 1

N − 1

∑
j 6=i

∂βkπ`ij|q
]

≤ Ē

[
sup

β∈B(rβ ,β0)

sup
φ∈Bq(rφ,φ0)

1

N

∑
i

( 1

N − 1

∑
j 6=i

|∂βkπ`ij|
)q]

≤ Ē

[
1

N

∑
i

1

N − 1

∑
j 6=i

M(Zij)
q

]
= Op(1)

and so

‖∂βkαL‖q =
(∑

i

| 1

N − 1

∑
j 6=i

∂βkπ`ij|q
)1/q

= Op(N
1/q)

and similarly for ‖∂βkγL‖q, and hence ‖∂βkφL‖q. For part (vi) the proofs in the panel case
again carry over, for example see the proof in Lemma A.2 of Dzemski (2019). Inspection of
that proof shows that we can get the bound ‖H̃‖ = Op(N

2ε− 1
2 ), for ε > 1

32
, which will be

useful in the higher-order approximations.

Given Assumptions B.1 (i), (ii), (iv), (v), and (vi) we can apply Theorem B.3 in FVW
to establish consistency of the estimates for common parameters and fixed effects, and to
establish the bounds

sup
β∈B(rβ ,β0)

‖φ̂(β)− φ0‖q = op(rφ)

‖β̂ − β0‖ = Op(N
−1/2)

(24)
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B.2 Asymptotic expansions

The next lemma gives the asymptotic expansion for the estimated fixed effects and common
parameters. It is in part a restatement of Theorem B.1 in Fernández-Val and Weidner (2016),
but the remainder terms are split into two parts. The expressions for the remainder terms are
given in the Supplementary Appendix, and are used to derive the properties of the jackknife
bias correction. The proof of Lemma 1 is provided in the Supplementary Appendix.

Lemma 1. Let Assumption 1 hold. Then,

φ̂− φ0 = H−1S

−W−1H−1(∂βφL)
(
Sβ + (∂βφL)′H−1S

)
+W−1H−1(∂βφL)

1

2

∑
g

(
(∂βφφg) + (∂φφ′φgL)

)
[H−1S]gH−1S

+
1

2
H−1

∑
g

(∂φφ′φgL)[H−1S]gH−1S

+Rφ + R̃φ

= H−1S −W−1H−1(∂βφL)
(
U (0) + U (1)

)
+

1

2
H−1

∑
g

(∂φφ′φgL)[H−1S]gH−1S

+Rφ + R̃φ

and
NW̄N(β̂ − β0) = U (0) + U (1) +Rβ + R̃β

where

U (0) = (∂βL) + (∂βφ′L̄)H̄−1S

U (1) = (∂βφ′L̃)H̄−1S − (∂βφ′L̄)H̄−1H̃H̄−1S

+
1

2

dimφ∑
g=1

(
(∂βφφgL̄) + (∂βφ′L̄)H̄−1(∂φφ′φgL̄)

)[
H̄−1S

]
g
H̄−1S

and the remainders satisfy ‖Rφ‖ = op(1), ‖Rβ‖ = op(1) and ‖R̃φ‖ = op(N
−1), ‖R̃β‖ =

op(N
−1).
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C Jackknife results for β

Here we allow for a more general construction of the leave-out sets, but impose two important
conditions.

Condition 1. Let Ik for k = 1, . . . Nk be a partition of the observations in a network of size
N . Define 1kij = 1{(i, j) 6∈ Ik} as an indicator that the observation (i, j) is not included in
the k-th set. We impose the following conditions on the sets:

(i)
∑Nk

k=1(1− 1kij) = 1 for all (i, j)

(ii)
∑

j 6=i(1− 1kij) =
∑

i 6=j(1− 1kij) = 1 for all i, j, and k.

Condition 1 imposes two important constrains on the sets Ik: (i) that they are mutually
exclusive, such that every edge (i, j) appears in exactly one of the sets, and (ii) that each
set contains exactly one observation related to each of the N sender fixed effects α and each
of the N receiver fixed effects γ. The first condition ensures that all observations are used
equally in the jackknife, and is important for showing that the asymptotic variance of the
estimator is not affected by the jackknife. The second condition ensures that each fixed
effect parameter is affected equally in the leave-out sets, and that H̄(k) is well-defined and
positive definite. We assume in the proofs below that Nk = N − 1 and that we are using
the leave-one-out jackknife. All of the results still hold for the leave-l-out style jackknife for
fixed l.

Some additional notation will also be useful for studying the jackknife estimates. Let A
be some statistic and A(k) the same statistic in the k-th leave-out sample. We define the
jackknife operator J as

J[A] = AJ = (N − 1)A− (N − 2)
1

N − 1

N−1∑
k=1

A(k)

Additionally, we define a set of indicators that count the number of unique leave-out sets Ik
that a group of edges (i1, j1), . . . , (it, jt) are contained in. Let

Ir(i1,j1),...,(it,jt) =

1 (i1, j1), . . . , (it, jt) span exactly r of the sets Ik
0 otherwise
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Assume that the researcher randomizes the ordering of the N node labels by choosing, with
equal probability a labelling from the N ! possible orderings. Since the ordering of nodes
is random, the indicator 1kij is a random variable, with mean equal to the probability that
(i, j) 6∈ Ik across each of the possible orderings. There are N × (N −2)! ways to order the N
nodes keeping (i, j) ∈ Ik for any fixed k, so that E[1kij] = N−2

N−1
. The following lemma states

that the expectation, over the randomness induced by the ordering of nodes, of sums in the
leave-out sets is equal to that in the full sample.

Lemma 2. Let 1kij satisfy Condition 1, and define the sums over random variable Aij in the
full-sample and k-th leave-out sample

A =
1

N − 1

∑
i

∑
j 6=i

Aij

A(k) =
1

N − 2

∑
i

∑
j 6=i

Aij1
k
ij

Then, we have that Ē[A] = Ē[A(k)] for any k = 1, . . . , N − 1.

Proof. The proof follows simply from the fact that E[1kij] = N−2
N−1

, where the expectation is
taken over the randomness induced by the random ordering of nodes. Note that the ordering
of nodes is independent of any other randomness in the sample, so that

Ē[Aij1
k
ij] = E[Aij1

k
ij|Xij, αi, γj]

= E[Aij|Xij, αi, γj]E[1kij]

=
N − 2

N − 1
E[Aij|Xij, αi, γj]

Then we have

Ē[A(k)] =
1

N − 2

∑
i

∑
j 6=i

E[Aij|Xij, αi, γj]
N − 2

N − 1

= Ē[A]

as required.

An important corollary of 2 is that H̄ = H̄(k) and W̄ = W̄(k).
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C.1 Jackknifing first-order expansion terms

We next use this result to show the impact of the jackknife operator on the first-order expan-
sion of N(β̂−β). From the expansion in Lemma 1, we have that a first-order approximation
is given by

NW̄N(β̂ − β) =
(
U (0) + U (1)

)
+ op(1)

where

U (0) = (∂βL) + (∂βφ′L̄)H̄−1S

U (1) = (∂βφ′L̃)H̄−1S − (∂βφ′L̄)H̄−1H̃H̄−1S

+
1

2

dimφ∑
g=1

(
(∂βφφgL̄) + (∂βφ′L̄)H̄−1(∂φφ′φgL̄)

)[
H̄−1S

]
g
H̄−1S

The next lemmas demonstrate the effect of the jackknife on general sums of the forms in
U (0) and U (1).

Lemma 3. Let 1kij satisfy Condition 1. For Aij a mean-zero random variable, let

Ai =
1

N − 1

∑
s 6=i

Ais

A(k),i =
1

N − 2

∑
s 6=i

Ais1
k
is

Define the jackknifed version of Ai as

AJ,i = J[Ai] = (N − 1)Ai − (N − 2)
1

N − 1

N−1∑
k=1

Aki

Then, AJ,i = Ai.
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Proof. First note that by Condition 1,
∑

k 1kis = N − 2. Then,
∑

k A(k),i =
∑

s 6=iAis so that

AJ,i = (N − 1)Ai − (N − 2)
1

N − 1

N−1∑
k=1

A(k),i

= (N − 1)Ai − (N − 2)
1

N − 1

∑
s 6=i

Ais

=
1

N − 1

∑
s 6=i

Ais = Ai

Lemma 4. Let 1kij satisfy Condition 1. For Aij a mean-zero random variable with bounded
fourth moment, let

A =
1

N − 1

(
{
∑
s 6=i

Ais}i=1,...,N , {
∑
s 6=j

Asj}j=1,...,N

)
= (Aα,Aγ)

Ak =
1

N − 2

(
{
∑
s 6=i

Ais1
k
is}i=1,...,N , {

∑
s 6=j

Asj1
k
sj}j=1,...,N

)
= (Aα,k,Aγ,k)

and let B and Bk be similarly defined vectors of sums involving mean-zero random variables
Bij. Assume that (Aij, Bij) are independent of (Ast, Bst) for (i, j) 6∈ {(s, t), (t, s)}. Define
the jackknifed term

J0 =(N − 1)A′MB− N − 2

N − 1

∑
k

A′(k)MB(k)

where M is a non-random matrix that has Op(1) elements on its diagonal and Op(N
−1)

off-diagonal terms. Then we have: (i) Ē
[
J0

]
= op(1), and (ii) J0 = op(1).

Proof. The most common choice of M will be H̄−1, which satisfies the conditions for M by
Assumption 1 and the approximation property in (23). We show the proof using H̄−1, but
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note that it holds for any M satisfying the conditions stated above. We have

A′H̄−1B = A′αH̄−1
ααBα + A′αH̄−1

αγBγ

+ A′γH̄−1
γαBα + A′γH̄−1

γγBγ

Recall that I1
(ij)(st) is one whenever (i, j) and (s, t) are contained in the same Ik, and so∑

k 1kij1
k
st = (N − 2)I1

(ij)(st) + (N − 3)(1− I1
(ij)(st)).

A′αH̄−1
ααBα =

∑
i,j

Aα,i(H̄−1
αα)ijBα,j

=
1

(N − 1)2

∑
i,j

∑
s 6=i

∑
t6=j

(H̄−1
αα)ijAisBjt

1

N − 1

∑
k

A′k,αH̄−1
ααBk,α =

1

(N − 1)(N − 2)2

∑
k

∑
i,j

∑
s 6=i

∑
t6=j

(H̄−1
αα)ijAisBjt1

k
is1

k
jt

=
1

(N − 1)(N − 2)

∑
i,j

∑
s 6=i

∑
t6=j

(H̄−1
αα)ijAisBjtI

1
(is)(jt)

+
N − 3

(N − 1)(N − 2)2

∑
i,j

∑
s 6=i

∑
t6=j

(H̄−1
αα)ijAisBjt(1− I1

(is)(jt))

Then, we have

Jαα =(N − 1)A′αH̄−1
αα′Bα −

N − 2

N − 1

∑
k

A′α,kH̄−1
αα′Bα,k

=
1

(N − 1)(N − 2)

∑
i

∑
j

∑
s 6=i

∑
t6=j

(H̄−1
αα′)ij

(
AisBjt

)
(1− I1

(is)(jt))

Similar computations for the other three elements gives

J0 =(N − 1)A′H̄−1B− N − 2

N − 1

∑
k

A′kH̄−1Bk

=
1

(N − 1)(N − 2)

∑
i

∑
j

∑
s 6=i

∑
t6=j

{
(H̄−1

αα′)ij + (H̄−1
αγ′)it

+ (H̄−1
γα′)sj + (H̄−1

γγ′)st

}(
AisBjt

)
(1− I1

(is)(jt))
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Now, since Ē[AisBjt(1− I1
(is)(jt))] 6= 0 only when (j, t) = (s, i), we have

Ē[J0] =
1

(N − 1)(N − 2)

∑
i

∑
s 6=i

{
(H̄−1

αα′)is + (H̄−1
αγ′)ii

+ (H̄−1
γα′)ss + (H̄−1

γγ′)si

}(
AisBsi

)
=op(1)

since, for for i 6= s, we have (H̄−1
αα′)is = Op(N

−1) and (H̄−1
γγ′)si = Op(N

−1), while (H̄−1
αγ′)ii and

(H̄−1
γα′)ss are both Op(N

−1) also.

Next, let Γijst = (H̄−1
αα′)ij + (H̄−1

αγ′)it + (H̄−1
γα′)sj + (H̄−1

γγ′)st. We have

Γijst =

Op(1) i = j or s = t

Op(N
−1) otherwise

We can decompose J0 as

J0 =
1

(N − 1)(N − 2)

∑
i

∑
j

(∑
s<i

∑
t<j

ΓijstAisBjt +
∑
s<i

∑
t>j

ΓijstAisBjt

+
∑
s>i

∑
t<j

ΓijstAisBjt +
∑
s>i

∑
t>j

ΓijstAisBjt

)
= J0,11 + J0,12 + J0,21 + J0,22
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Then we have

Ē[J 2
0,11] =

1

(N − 1)2(N − 2)2

∑
i

∑
j

∑
k

∑
l

∑
s<i

∑
t<j

∑
p<k

∑
q<l

ΓijstΓklpq

× E
[
AisBjtAkpBlq

]
(1− I1

(is)(jt))(1− I1
(kp)(lq))

=
1

(N − 1)2(N − 2)2

∑
i

∑
j

∑
s<i

∑
t<j

Γ2
ijstĒ[A2

isB
2
jt](1− I1

(is)(jt))

+
1

(N − 1)2(N − 2)2

∑
i

∑
j

∑
s<i

∑
t<j

ΓijstΓstijĒ[AisBisAjtBjt

]
(1− I1

(is)(jt))

=
1

(N − 1)2(N − 2)2

∑
i

∑
s<i

∑
t<i

Γ2
iistĒ[A2

is]Ē[B2
it](1− I1

(is)(it))

+
1

(N − 1)2(N − 2)2

∑
i

∑
j 6=i

∑
s<(i∧j)

Γ2
ijssĒ[A2

is]Ē[B2
js](1− I1

(is)(js))

+
1

N2(N − 1)2(N − 2)2

∑
i

∑
j 6=i

∑
s<i

∑
t<j,t6=s

N2Γ2
ijstĒ[A2

is]Ē[B2
jt](1− I1

(is)(jt))

+
1

(N − 1)2(N − 2)2

∑
i

∑
s<i

∑
t<i

ΓiistΓstiiĒ[AisBis]Ē[AitBit

]
(1− I1

(is)(it))

+
1

(N − 1)2(N − 2)2

∑
i

∑
j 6=i

∑
s 6=(i∧j)

ΓijssΓssijĒ[AisBis]Ē[AjsBjs

]
(1− I1

(is)(js))

+
1

N2(N − 1)2(N − 2)2

∑
i

∑
j 6=i

∑
s<i

∑
t<j,t6=s

N2ΓijstΓstijĒ[AisBis]Ē[AjtBjt

]
(1− I1

(is)(jt))

= Op(N
−1)

Where the last line follows from the properties of Γijst. The same result holds for Ē[J 2
0,12],

Ē[J 2
0,21], and Ē[J 2

0,22], hence J0 = Op(N
−1/2) = op(1).

The following lemma derives the forms of J[U (0)] and J[U (1)].

Lemma 5. Let Assumption 1 hold. Then

J[U (0)] = U (0)

J[U (1)] = op(1)

Proof. For U (0) = (∂βL) + (∂βφ′L̄)H̄−1S we can appeal to Lemma 3 with Ai = (∂βL)i =
1

N−1

∑
j 6=i ∂β`ij and with Ai = Si = 1

N−1

∑
j 6=i ∂π`ij. Note that the jackknife operator is
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linear so that, since (∂βφ′L̄)H̄−1 are fixed across leave-out samples (by Lemma 2),

J[∂βL] =
∑
i

J[(∂βL)i]

J
[
(∂βφ′L̄)H̄−1S

]
= (∂βφ′L̄)H̄−1J[S]

Now, for U (1) we can appeal to Lemma 4. For the first term, (∂βφ′L̃)H̄−1S we set Aij = ∂βπ ˜̀
ij

and Bij = ∂π`ij. For the second term, (∂βφ′L̄)H̄−1H̃H̄−1S we note that

(∂βφ′L̄)H̄−1H̃ =
(
(∂βφ′L̄)H̄−1H̃·,α, (∂βφ′L̄)H̄−1H̃·,γ

)
where the i-th element of (∂βφ′L̄)H̄−1H̃·,α is

(∂βφ′L̄)H̄−1H̃·,αi = (∂βα′L̄)H̄−1
ααH̃ααi + (∂βα′L̄)H̄−1

αγ H̃γαi

+ (∂βγ′L̄)H̄−1
γαH̃ααi + (∂βγ′L̄)H̄−1

γγ H̃γαi

= −(∂βα′L̄)H̄−1
ααi

1

N − 1

∑
j 6=i

∂π2 ˜̀
ij −

1

N − 1

∑
j 6=i

(∂βα′L̄)H̄−1
αγj
∂π2 ˜̀

ij

− (∂βγ′L̄)H̄−1
γαi

1

N − 1

∑
j 6=i

∂π2 ˜̀
ij −

1

N − 1

∑
j 6=i

(∂βγ′L̄)H̄−1
γγj
∂π2 ˜̀

ij

and similarly for elements of (∂βφ′L̄)H̄−1H̃·,γ. So we can let

Aij =
(
(∂βα′L̄)H̄−1

ααi
+ (∂βα′L̄)H̄−1

αγj
+ (∂βγ′L̄)H̄−1

γαi
+ (∂βγ′L̄)H̄−1

γγj

)
∂π2 ˜̀

ij

and Bij = ∂π`ij in Lemma 4. Note that we have Aij and Bij mean zero and the moment
condition also holds by assumption. For the final term, we begin by demonstrating that
both H̄−1

∑
g(∂βφ′φgL̄)H̄−1and H̄−1

∑
g(∂φφ′φgL̄)

[
H̄−1(∂βφL̄)

]
g
H̄−1are matrices that satisfy

the requirements forM in Lemma 4. The proof for the second term is shown, with the result
for the first term following nearly identically. Firstly,∑

g

(∂φφ′φgL̄)
[
H̄−1(∂βφL̄)

]
g

=
∑
s,t

(∂φφ′αsL̄)
(
H̄−1
αα

)
st

(∂βαtL̄) +
∑
s,t

(∂φφ′γsL̄)
(
H̄−1
γα

)
st

(∂βαtL̄)

+
∑
s,t

(∂φφ′αsL̄)
(
H̄−1
αγ

)
st

(∂βγtL̄) +
∑
s,t

(∂φφ′γsL̄)
(
H̄−1
γγ

)
st

(∂βγtL̄)
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Taking the first of these terms, the (i, j) element is given by

[∑
s,t

(∂φφ′αsL̄)
(
H̄−1
αα

)
st

(∂βαtL̄)
]
ij

=
∑
t

(∂φiφ′jαtL̄)
(
H̄−1
αα

)
tt

(∂βαtL̄) +
1

N

∑
t

∑
s 6=t

(∂φiφ′jαsL̄)
(
NH̄−1

αα

)
st

(∂βαtL̄)

Now if φi = φj = αi then∑
t

(∂φiφ′jαtL̄)
(
H̄−1
αα

)
tt

(∂βαtL̄) = (∂α3
i
L̄)
(
H̄−1
αα

)
ii
(∂βαiL̄) = Op(1)

and if φi = φj = γi then∑
t

(∂φiφ′jαtL̄)
(
H̄−1
αα

)
tt

(∂βαtL̄) =
1

N − 1

∑
t 6=i

(∂αtγ2i
¯̀
ti)
(
H̄−1
αα

)
tt

(∂βαtL̄) = Op(1)

Finally, if i 6= j then we have either 0, or

∑
t

(∂φiφ′jαtL̄)
(
H̄−1
αα

)
tt

(∂βαtL̄) =
1

N − 1
(∂παtγi

¯̀
ti)
(
H̄−1
αα

)
tt

(∂βαtL̄) = Op(N
−1)

Identical results apply to the other elements in
∑

g(∂φφ′φgL̄)
[
H̄−1(∂βφL̄)

]
g
and hence we can

conclude that the matrix has Op(1) diagonal elements and Op(N
−1) off-diagonal elements.

It then follows that the same is true of H̄−1
∑

g(∂φφ′φgL̄)
[
H̄−1(∂βφL̄)

]
g
H̄−1. Then, we can

apply Lemma 4 with A = B = S to give the result.

Lemma 6. Let Assumption 1 hold, and let β̂J be the either the jackknife, leave-l-out jack-
knife, or weighted jackknife estimator. Then, a first-order approximation to the estimator is
given by

W̄NN(β̂J − β0) = U (0) + op(1)

where U (0) = (∂βL) + (∂βφ′L̄)H̄−1S.

Proof. Recall from Lemma 1 that

NW̄N(β̂ − β0) = U (0) + U (1) +Rβ + R̃β

Since W̄N is fixed across leave-out samples (Lemma 2), we can focus on the jackknife operator
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applied to the RHS. By Lemma 5 we have that J[U (0) + U (1)] = U (0) + op(1), while in the
Supplementary Appendix (S.4) it is shown that J[Rβ] = op(1). Finally,

J[R̃β] = (N − 1)R̃β − (N − 2)
1

N − 1

∑
k

R̃β,(k)

= op(1)

since each remainder term in the above is op(N−1).

C.2 Approximation of WN

The next two results show that the sample version of the Hessian for the common parameters
β is consistent, and that it is approximately the same across leave-out samples.

Lemma 7. Let Assumption 1 hold. Then, for ε ≥ 1
32

‖WN − W̄N‖ = Op(N
− 1

2
+2ε)

‖WN,(k) − W̄N‖ = Op(N
− 1

2
+2ε)

Let W̃N = WN − W̄N , then

W̃N =
1

N
∂ββL̃+

1

N

(
(∂βφ′L)H−1(∂βφL)− (∂βφ′L̄)H̄−1(∂βφL̄)

)
The first term is 1

N
∂ββL̃ = Op(N

−1), since

1

N2
Ē
[
(∂ββL̃)2

]
=

1

N2(N − 1)2

∑
i,s

∑
j 6=i

∑
t6=s

Ē
[
(∂ββ′ ˜̀ij)(∂ββ′ ˜̀st)

]
=

1

N2(N − 1)2

∑
i

∑
j 6=i

(
Ē
[
(∂ββ′ ˜̀ij)

2
]

+ Ē
[
(∂ββ′ ˜̀ij)(∂ββ′ ˜̀ji)

])
= Op(N

−2)
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For the remaining term, we can decompose it as

1

N
(∂βφ′L)H−1(∂βφL)− 1

N
(∂βφ′L̄)H̄−1(∂βφL̄)

=
1

N
(∂βφ′L̃)H̄−1(∂βφL̄) +

1

N
(∂βφ′L̄)H̄−1(∂βφL̃)

+
1

N
(∂βφ′L̃)H̄−1(∂βφL̃) +

1

N
(∂βφ′L)

(
H−1 − H̄−1

)
(∂βφL)

By Assumption B.1 of FVW we have

1

N
‖(∂βφ′L̃)H̄−1(∂βφL̄)‖ ≤ Op(N

−1/2)

1

N
‖(∂βφ′L̃)H̄−1(∂βφL̃)‖ ≤ Op(N

−1)

Also,

1

N
‖(∂βφ′L)

(
H−1 − H̄−1

)
(∂βφL)‖ ≤ 1

N
‖∂βφ′L‖2‖H−1 − H̄−1‖

= Op(N
− 1

2
+2ε)

So we may write W̃N = Op(N
− 1

2
+2ε). For the leave-out term note that the moment bounds

in Assumption 1 (iii) imply identical bounds in the leave-out samples, simply by replacing
∂βπ`ij with (∂βπ`ij)1

k
ij
N−1
N−2

since we can condition on the node labels so that 1kij
N−1
N−2

is simply
an O(1) constant. We can therefore apply the bounds in Assumption B.1 of FVW to the
leave-out sample, as well as ‖H̃(k)‖ = Op(N

− 1
2

+2ε), and hence ‖H−1
(k) − H̄−1‖ = Op(N

− 1
2

+2ε).
Then, similar steps to the above proof also give ‖WN,(k) − W̄N‖ = Op(N

− 1
2

+2ε).

Lemma 8. Let Assumption 1 hold, then for all k

‖ŴN −WN‖ → 0

‖ŴN,(k) −WN,(k)‖ → 0

Proof. We prove the first statement, since the proof of the second is identical. A first-order
Taylor expansion of ŴN gives

ŴN = WN(β̂, φ̂) = WN(β0, φ0) + ∂βWN(β̄, φ̄)(β̂ − β0)

+ ∂φ′WN(β̄, φ̄)(φ̂− φ0)
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where β̄ and φ̄ are intermediate values between (β0, φ0) and (β̂, φ̂). From Assumption 1 and
the bounds in Assumption B.1 of FVW, we have that WN is differentiable with derivatives
that are Op(1), since

∂βWN =
1

N
∂βββL+

2

N
(∂ββφ′L)H−1(∂βφL)

− 1

N
(∂βφ′L)H−1(∂βφφ′L)H−1(∂βφL)

= Op(1)

where 1
N

(∂βφ′L)H−1(∂βφφ′L)H−1(∂βφL) = Op(1) follows simply by expansion of the matrix
product and the properties of H−1 in (23). Similarly,

(∂φ′WN)(φ̂− φ0) =
1

N
(∂ββφ′L)(φ̂− φ0)

+
2

N
(∂βφ′L)H−1(∂βφφ′L)(φ̂− φ0)

− 1

N

2N∑
g=1

(∂βφ′L)H−1(∂φφ′φgL)H−1(∂βφL)(φ̂g − φg)

≤ 2‖φ̂− φ‖∞|
1

N(N − 1)

∑
i

∑
j 6=i

(∂ββπ`ij)|

+ ‖φ̂− φ‖∞|
2

N

2N∑
g=1

(∂βφ′L)H−1(∂βφφgL)|

+ ‖φ̂− φ‖∞|
1

N

2N∑
g=1

(∂βφ′L)H−1(∂φφ′φgL)H−1(∂βφL)|

= Op(1)× ‖φ̂− φ‖∞

Then, since ‖β̂ − β0‖ → 0 and ‖φ̂− φ‖∞ → 0 by (24), we get the result.
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C.3 Proof of Theorem 1

From Lemma 6 we have that

W̄NN(β̂J − β0) = (∂βL) + (∂βφ′L̄)H̄−1S + op(1)

=
1

N − 1

∑
i

∑
j<i

(
Dβ`ij +Dβ`ji

)
where Dβ`ij = ∂β`ij − ∂π`ijΞij for

Ξij = − 1

N − 1

∑
s

∑
t6=s

ΓijstĒ[∂βπ`st]

Γijst = (H̄−1
αα)is + (H̄−1

γα)js + (H̄−1
αγ )it + (H̄−1

γγ )jt

The result then follows from a standard CLT argument, noting that
(
Dβ`ij + Dβ`ji

)
are

independent over (i, j). For the weighted jackknife, we use the fact that Lemmas 7 and 8,
and the triangle inequality give ‖W̄J − W̄N‖ = op(1) and hence

‖W̄−1
J Ŵ(k) − I‖ ≤ ‖W̄−1

J ‖‖ŴN,(k) − W̄J‖ = op(1)

so that

1

N − 1

∑
k

W̄−1
J Ŵ(k)β̂(k) =

1

N − 1

∑
k

β̂(k) +
1

N − 1

∑
k

(
W̄−1
J Ŵ(k) − I

)
β̂(k)

=
1

N − 1

∑
k

β̂(k) + op(1)

and hence the weighted jackknife is equal to the standard jackknife to first-order.

To show consistency of the plug-in estimator Ω̂N , we note that by Assumption 1 (iii), Dβ`ij

has a first-order Taylor approximation that is a continuously differentiable function of the
parameters. Then by the continuous mapping theorem and the consistency results ‖β̂−β0‖ →
0 and ‖φ̂− φ‖∞ → 0 in (24), Ω̂N → Ω as required (see for example Lemma S.1 in FVW).
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D Jackknife results for average effects

We begin by stating a first-order asymptotic expansion for the average effect estimator
that will be used in the proof of Theorem 2. The proof of this result is provided in the
Supplementary Appendix.

Lemma 9. Let Assumptions 1 and 2 hold. Then

N(∆̂N −∆N) = (∂β∆N)N(β̂ − β) +N(∂φ′∆N)(φ̂− φ)

+
1

2
N(φ̂− φ)′(∂φφ′∆N)(φ̂− φ) +R1

∆ + R̃1
∆

=
[
(∂β∆̄N)− (∂φ′∆̄N)H̄−1(∂βφL̄)

]
W̄−1
N

(
U (0) + U (1)

)
+N(∂φ′∆̄N)H̄−1S

+N(∂φ′∆̃N)H̄−1S −N(∂φ′∆̄N)H̄−1H̃H̄−1S

+
1

2
NS ′H̄−1

(
(∂φφ′∆̄N) +

∑
g

(∂φφ′φgL̄)[(∂φ′∆̄N)H̄−1]g

)
H̄−1S

+R∆ + R̃∆

where ‖R1
∆‖ = op(1), ‖R̃1

∆‖ = op(N
−1), ‖R∆‖ = op(1), and ‖R̃∆‖ = op(N

−1).

In order to establish an equivalent asymptotic expansion for the leave-out estimators ∆̂(k)

we need to determine the value of expectations in the leave-out samples. The next lemma
does this, and is analogous to Lemma 2, which states the same result for averages over single
observations.

Lemma 10. Let 1kij satisfy Condition 1, and define 1kλ =
∏

(i,j)∈λ 1kij for λ a set of r obser-
vations (i, j). Then, for sums

A =
1

|ΛN |
∑
λ

Aλ

A(k) =
N − 1

N − r − 1

1

|ΛN |
∑
λ

Aλ1
k
λ

we have
Ē[A(k)] = Ē[A]

(
1 +O(N−2)

)
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Proof. We will prove that E[1kλ] = N−r−1
N−1

+O(N−2) from which the statement in the lemma
follows since

Ē[A(k)] =
N − 1

N − r − 1

1

|ΛN |
∑
λ

Ē[Aλ]E[1kλ]

=
1

|ΛN |
∑
λ

Ē[Aλ] +
N − 1

N − r − 1

1

|ΛN |
∑
λ

Ē[Aλ]×O(N−2)

= Ē[A]
(
1 +O(N−2)

)
Let Iλ be equal to the number of leave-out sets Ik spanned by the observations in λ. Since
any observation is equally likely to appear in any leave-out set,

E[1kλ] =
r∑
s=1

E[1kλ|Iλ = s]P (Iλ = s)

We begin by arguing that P (Iλ = r) = 1 − O(N−1), that is, the sets λ do not contain
multiple observations from within the same leave-out set with probability approaching one.
It is sufficient to consider sets λ that contain p = 2r unique agents, since this case represents
the most likely scenario for λ containing observations in the same leave-out set as within
a leave-out set no two senders can be the same, and no two receivers may be the same.
There are N !

(N−2r)!
possible choices for the ordered set of agents in λ. Then, there are at most

N(N − 1)(N − 2)(N − 4) · · · (N − 2r+ 2)(N − 3r+ 2) orderings of agents in λ which span r
different leave-out sets (N(N −1) choices for the first observation (i, j), then (N −2)(N −4)

choices for the second observation (s, t) since (s, t) cannot belong in the same leave-out set
as (i, j), and so on). This gives

P (Iλ = r) ≥ N(N − 1)(N − 2)(N − 4) · · · (N − 2r + 2)(N − 3r + 2)

N(N − 1) · · · (N − 2r + 1)

which is the product of 2r ratios each of which is equal to 1 − O(N−1), which implies
P (Irλ = 1) = 1−O(N−1).

Next, note that whenever Iλ = s, we have 1kλ = 1 only if Ik is not one of the s leave-out sets

67



spanned by λ. This happens with probability
(
N−2
s

)
/
(
N−1
s

)
= N−s−1

N−1
.

E[1kλ] =
r∑
s=1

N − s− 1

N − 1
P (Iλ = s)

=
N − r − 1

N − 1

+
r−1∑
s=1

r − s
N − 1

P (Iλ = s)

and so

1

N − 1

(
1− P (Iλ = r)

)
≤ E[1kλ]−

N − r − 1

N − 1
≤ r − 1

N − 1

(
1− P (Iλ = r)

)
Since we have P (Iλ = r) = 1−O(N−1), we can conclude E[1kλ] = N−r−1

N−1
+O(N−2).

Lemma 11. Let λ be a set of r observations (i, j) involving p unique agents, and ΛN be the
collection of all such λ formed by permuting the agents in λ. Then, under Assumption 2,

(i) ∂φ∆̄N has Op(N
−1) elements

(ii) ∂αα′∆̄N , ∂αγ′∆̄N , ∂γα′∆̄N , and ∂γγ′∆̄N each have Op(N
−1) diagonal elements and Op(N

−2)

off-diagonal elements

Proof. Let λα denote the set of pα sender agents in the observations within λ, and λγ the set
of pγ receiving agents. There are |ΛN | = N !

(N−p)! ways of selecting the p agents in λ. Among
these permutations, agent i is a sender pα (N−1)!

(N−p)! times, while node j is the receiver pγ (N−1)!
(N−p)!

times. Using this, the first derivatives of ∆̄N with respect to the fixed effects are

∂αi∆̄N =
1

|ΛN |
∑
λ:i∈λα

∂αim̄λ = Op(N
−1)

∂γi∆̄N =
1

|ΛN |
∑
λ:i∈λγ

∂γim̄λ = Op(N
−1)

where the Op(N
−1) statements come from the fact that pα (N−1)!

(N−p)!/
N !

(N−p)! = pα/N . An identical
result applies to the diagonal elements of ∂φφ′∆̄N , i.e. ∂αiαi∆̄N = Op(N

−1) and ∂γjγj∆̄N =

Op(N
−1) since they are sums over the same sets of λ. Also, if the presence of i as a sender

agent implies that i is also a receiver in λ (e.g. the cyclic triangle {(i, j), (j, k), (k, i)}) then
it will be the case that ∂αiγi∆̄N = Op(N

−1) also (if this is not true it will be lower order).
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Next, consider the off-diagonal components of ∂φφ′∆̄N . If pα = 1 then ∂αiαj∆̄N = 0, other-
wise, there are

(
pα
2

) (N−2)!
(N−p)! permutations that contain both i and j as senders. Similarly, for

pγ ≥ 2, there are
(
pγ
2

) (N−2)!
(N−p)! permutations that contain both i and j as receivers. Finally,

there are at most pαpγ (N−2)!
(N−p)! permutations in which i is a sender and j a receiver (this is an

upper bound since with i in a particular sender position, not all receiver positions may be
valid for j). This, along with Assumption 2, gives the results

∂αiαj∆̄N = Op(N
−2)

∂αiγj∆̄N = Op(N
−2)

∂γiγj∆̄N = Op(N
−2)

which demonstrates the lemma.

Lemma 12. Let 1kij satisfy Condition 1 and let 1kλ =
∏

(i,j)∈λ 1kij. Let Aij be a mean-zero
random variable with bounded fourth moment, and define

A =
1

N − 1

(
{
∑
s 6=i

Ais}i=1,...,N , {
∑
s 6=j

Asj}j=1,...,N

)
= (Aα,Aγ)

Ak =
1

N − 2

(
{
∑
s 6=i

Ais1
k
is}i=1,...,N , {

∑
s 6=j

Asj1
k
sj}j=1,...,N

)
= (Aα,k,Aγ,k)

and let B and Bk be defined as

B =
N

|ΛN |
(
{
∑
s 6=i

∑
λ∈Λis

Bλ}i=1,...,N , {
∑
s 6=j

∑
λ∈Λsj

Bλ}i=1,...,N

)
= (Bα,Bγ)

Bk =
N − 1

N − r − 1

N

|ΛN |
(
{
∑
s 6=i

∑
λ∈Λis

Bλ1
k
λ}i=1,...,N , {

∑
s 6=j

∑
λ∈Λsj

Bλ1
k
λ}i=1,...,N

)
= (Bα,k,Bγ,k)

for mean zero Bλ with bounded fourth moment. Assume that Aij is independent of Ast for
(i, j) 6∈ {(s, t), (t, s)}, and independent of Bλ whenever λ does not contain either (i, j) or
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(j, i). Define the jackknifed term

J0 =(N − 1)A′MB− N − 2

N − 1

∑
k

A′(k)MB(k)

where M is a non-random matrix that has Op(1) elements on its diagonal and Op(N
−1)

off-diagonal terms. Then we have:

(i) Ē
[
J0

]
= op(1),

(ii) J0 = op(1).

Proof. The most common choice of M will be H̄−1, which satisfies the conditions for M by
Assumption 1 and (23). We show the proof using H̄−1, but note that it holds for any M
satisfying the conditions stated above. We have

A′H̄−1B = A′αH̄−1
ααBα + A′αH̄−1

αγBγ

+ A′γH̄−1
γαBα + A′γH̄−1

γγBγ

Let Λis = {λ : (i, s) ∈ λ} be the set of λ containing observation (i, s). The full sample and
leave-out versions of the first term are

A′αH̄−1
ααBα =

∑
i,j

Aα,i(H̄−1
αα)ijBα,j

=
N

(N − 1)|ΛN |
∑
i,j

∑
s 6=i

∑
t6=j

∑
λ∈Λjt

(H̄−1
αα)ijAisBλ

1

N − 1

∑
k

A′k,αH̄−1
ααBk,α

=
N

(N − r − 1)(N − 2)|ΛN |
∑
k

∑
i,j

∑
s 6=i

∑
t6=j

∑
λ∈Λjt

(H̄−1
αα)ijAisBλ1

k
is1

k
λ

=
N

(N − r − 1)(N − 2)|ΛN |
∑
k

∑
i,j

∑
s 6=i

∑
t6=j

∑
λ∈(Λjt∩Λis)

(H̄−1
αα)ijAisBλ1

k
λ

+
N

(N − r − 1)(N − 2)|ΛN |
∑
k

∑
i,j

∑
s 6=i

∑
t6=j

∑
λ∈(Λjt\Λis)

(H̄−1
αα)ijAisBλ1

k
is1

k
λ

Let Iλ be equal to the number of leave-out sets Ik spanned by the r observations in λ so that∑
k 1kλ = N − Iλ − 1. As shown in the proof of Lemma 10, |{λ : Iλ < r}|/|ΛN | → 0, that is,
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the fraction of sets λ that contain two or more observations in the same Ik is a vanishingly
small. Using this, we have

Jαα =(N − 1)A′αH̄−1
αα′Bα −

N − 2

N − 1

∑
k

A′α,kH̄−1
αα′Bα,k

=
N

|ΛN |
∑
i,j

∑
s 6=i

∑
t6=j

∑
λ∈(Λjt∩Λis)

(H̄−1
αα)ijAisBλ

(
1−

∑
k 1kλ

N − r − 1

)
+

N

|ΛN |
∑
k

∑
i,j

∑
s 6=i

∑
t6=j

∑
λ∈(Λjt\Λis)

(H̄−1
αα)ijAisBλ

(
1−

∑
k 1kis1

k
λ

N − r − 1

)
=

N

|ΛN |
∑
i,j

∑
s 6=i

∑
t6=j

∑
λ∈(Λjt∩Λis)

Iλ<r

(H̄−1
αα)ijAisBλ

(
1− N − Iλ − 1

N − r − 1

)

+
N

|ΛN |
∑
k

∑
i,j

∑
s 6=i

∑
t6=j

∑
λ∈(Λjt\Λis)

(H̄−1
αα)ijAisBλ

(
1− N − Iλ − 2

N − r − 1

)

Letting Γijst = (H̄−1
αα′)ij + (H̄−1

αγ′)it + (H̄−1
γα′)sj + (H̄−1

γγ′)st, similar computations for the other
three elements gives

J0 =(N − 1)A′H̄−1B− N − 2

N − 1

∑
k

A′kH̄−1Bk

=
N

|ΛN |
∑
i,j

∑
s 6=i

∑
t6=j

∑
λ∈(Λjt∩Λis)

Iλ<r

ΓijstAisBλ

(
1− N − Iλ − 1

N − r − 1

)
N

|ΛN |
∑
i,j

∑
s 6=i

∑
t6=j

∑
λ∈(Λjt∩Λsi\Λis)

ΓijstAisBλ

(
1− N − Iλ − 2

N − r − 1

)
+

N

|ΛN |
∑
i,j

∑
s 6=i

∑
t6=j

∑
λ∈(Λjt\(Λis∪Λsi))

ΓijstAisBλ

(
1− N − Iλ − 2

N − r − 1

)
= J0,1 + J0,2 + J0,3

Next, recall that Γijst = Op(1) whenever i = j or s = t, and is Op(N
−1) otherwise. Note
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that Ē[J0,3] = 0 since λ does not contain (i, s) or (s, i). Taking expectations we get

Ē[J0] =
N

|ΛN |
∑
i

∑
s 6=i

∑
λ∈Λis:Iλ<r

ΓiissĒ[AisBλ]
( Iλ − r
N − r − 1

)
+

N

|ΛN |
∑
i

∑
s 6=i

∑
t6={i,s}

∑
λ∈(Λit∩Λis):Iλ<r

ΓiistĒ[AisBλ]
( Iλ − r
N − r − 1

)
+

N

|ΛN |
∑
i

∑
j 6=i

∑
s 6={i,j}

∑
λ∈(Λjs∩Λis):Iλ<r

ΓijssĒ[AisBλ]
( Iλ − r
N − r − 1

)
+

N

|ΛN |
∑
i

∑
j 6=i

∑
s 6=i

∑
t6={s,j}

∑
λ∈(Λjt∩Λis):Iλ<r

ΓijstĒ[AisBλ]
( Iλ − r
N − r − 1

)
+

N

|ΛN |
∑
i

∑
s 6=i

∑
t6={i,s}

∑
λ∈((Λit∩Λsi)\Λis)

ΓiistĒ[AisBλ]
(Iλ − r + 1

N − r − 1

)
+

N

|ΛN |
∑
i

∑
j 6=i

∑
s 6={i,j}

∑
λ∈((Λjs∩Λsi)\Λis)

ΓijssĒ[AisBλ]
(Iλ − r + 1

N − r − 1

)
+

N

|ΛN |
∑
i

∑
j 6=i

∑
s 6=i

∑
t6={j,s}

∑
λ∈((Λjt∩Λsi)\Λis)

ΓijstĒ[AisBλ]
(Iλ − r + 1

N − r − 1

)
=op(1)

since, Iλ−r
N−r−1

= O(N−1), Iλ−r+1
N−r−1

= O(N−1), N
|ΛN |
|λ ∈ Λis : Iλ < r| = O(N−2), N

|ΛN |
|λ ∈

(Λit ∩Λis) : Iλ < r| = O(N−3), and so on applying the results on the size of sets Λij, Iλ < r,
and Γijst.
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Then,

Ē[J 2
0,3] =

N2

|ΛN |2
∑
i

∑
j

∑
k

∑
l

∑
s 6=i

∑
t6=j

∑
p 6=k

∑
q 6=l

∑
λ∈(Λjt\(Λis∪Λsi))

∑
λ∈(Λql\(Λpk∪Λkp))

ΓijstΓklpqĒ[AisBλApkBλ′ ]
(Iλ − r + 1

N − r − 1

)(Iλ′ − r + 1

N − r − 1

)
=

N2

|ΛN |2
∑
i

∑
j

∑
l

∑
s 6=i

∑
t6=j

∑
q 6=l

∑
λ∈(Λjt\(Λis∪Λsi))

∑
λ′∈((Λql∩(Λjt∪Λtj))\(Λis∪Λsi))

ΓijstΓilsqĒ[Ais(Ais + Asi)]Ē[BλBλ′ ]
(Iλ − r + 1

N − r − 1

)(Iλ′ − r + 1

N − r − 1

)
+

N2

|ΛN |2
∑
i

∑
j

∑
k

∑
l

∑
s6=i

∑
t6=j

∑
p 6=k

∑
q 6=l

∑
λ∈(Λjt∩(Λpk∪Λkp)\(Λis∪Λsi))

∑
λ∈(Λql(Λis∪Λsi)\(Λpk∪Λkp))

ΓijstΓklpqĒ[AisBλ′ ]Ē[ApkBλ]
(Iλ − r + 1

N − r − 1

)(Iλ′ − r + 1

N − r − 1

)
Note that N

|ΛN |
|λ ∈ (Λjt\(Λis∪Λsi))| = O(N−1), while N

|ΛN |
|λ′ ∈ ((Λql∩(Λjt∪Λtj))\(Λis∪Λsi))|

is O(N−1) if (q, l) equals (t, j) or (j, t), O(N−2) if either q ∈ {t, j} or l ∈ {t, j} and O(N−3)

otherwise. Also,
(
Iλ−r+1
N−r−1

)(
Iλ′−r+1

N−r−1

)
= O(N−2). Combining these facts with, Γijst = Op(1)

whenever i = j or s = t, and Op(N
−1) otherwise gives Ē[J 2

0,3] = op(1).

An almost identical analysis applies to J0,1 and J0,2, giving the result J0 = op(1).

The next lemma states the first-order approximation for the jackknife bias-corrected average
effect estimator.

Lemma 13. Let Assumptions 1 and 2 hold and let ∆̂J be the jackknife bias-corrected esti-
mator in (12). Then,

N(∆̂J −∆N) =
[
(∂β∆̄N)−N(∂φ′∆̄N)H̄−1(∂βφL̄)

]
W̄−1
N U (0)

+N(∂φ′∆̄N)H̄−1S + op(1)
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Proof. We can write an expansion for the leave-out estimate

N(∆̂(k) −∆N) =
[
(∂β∆̄N)− (∂φ′∆̄N)H̄−1(∂βφL̄)

]
W̄−1
N

(
U

(0)
(k) + U

(1)
(k)

)
+N(∂φ′∆̄N)H̄−1S(k)

+N(∂φ′∆̃(k))H̄−1S(k) −N(∂φ′∆̄N)H̄−1H̃(k)H̄−1S(k)

+
1

2
NS ′(k)H̄−1

(
(∂φφ′∆̄N) +

∑
g

(∂φφ′φgL̄)[(∂φ′∆̄N)H̄−1]g

)
H̄−1S(k)

+R(k),∆ + R̃(k),∆

where R(k),∆ = op(1) is the version of R∆ in the leave-out sample and R̃(k),∆ = op(N
−1) is the

leave-out version of R̃∆ combined with the error from replacing terms like ∂β∆̄(k) with ∂β∆̄N

(i.e. applying the result in Lemma 10). Using the expansion for the leave-out estimate, we
can apply the jackknife operator to each line above.

For the first term, we apply the result in Lemma 5 to give

J
[(

(∂β∆̄N)−N(∂φ′∆̄N)H̄−1(∂βφL̄)
)
W̄−1
N

(
U (0) + U (1)

)]
=
(
(∂β∆̄N)−N(∂φ′∆̄N)H̄−1(∂βφL̄)

)
W̄−1
N U (0) + op(1)

Similarly, Lemma 3 implies that jackknifing the second term gives N(∂φ′∆̄N)H̄−1S.

For the third term, we note that by Lemma 11 we can apply Lemma 4 with M = H̄−1,
A = S, and B = N(∂φ′∆̄N)H̄−1H̃, and apply Lemma 12 with M = H̄−1, A = S, and either
B = N(∂φ′∆̃N).

For the fourth term, we first show that

NH̄−1
(

(∂φφ′∆̄N) +
∑
g

(∂φφ′φgL̄)[(∂φ′∆̄N)H̄−1]g

)
H̄−1

satisfies the conditions for M in Lemma 4, from which we will be able to conclude that the
jackknifed term will be op(1). The above expression is non-random (conditional on exogenous
regressors and fixed effects) and so we must demonstrate that it is a 2N × 2N matrix with
Op(1) diagonal elements, and Op(N

−1) off-diagonal elements. Note that if two 2N × 2N

matrices both have Op(1) diagonal elements and Op(N
−1) off-diagonal elements, then their

product also shares this property. Since this is true of H̄−1(see Lemma D.1 in Fernández-
Val and Weidner (2016)), it remains to demonstrate this fact for the terms N(∂φφ′∆̄N) and
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N
∑

g(∂φφ′φgL̄)[(∂φ′∆̄N)H̄−1]g.

By Lemma 11 we have that N(∂φφ′∆̄N) has Op(1) diagonal elements and Op(N
−1) off-

diagonal, with the possible exception of the elements ∂αiγ′i∆̄N . However, this still implies
that NH̄−1(∂φφ′∆̄N)H̄−1 satisfies the condition. For N

∑
g(∂φφ′φgL̄)[(∂φ′∆̄N)H̄−1]g, diagonal

elements are given by (for i ≤ N)[
N
∑
g

(∂φφ′φgL̄)[(∂φ′∆̄N)H̄−1]g

]
ii

= N(∂αiα′
iφ
L̄)H̄−1(∂φ∆̄N)

= N
∑
s,t

(H̄−1
αα)st(∂αiαiαsL̄)(∂αt∆̄N) +N

∑
s,t

(H̄−1
αγ )st(∂αiαiαsL̄)(∂γt∆̄N)

+N
∑
s,t

(H̄−1
γα)st(∂αiαiγsL̄)(∂αt∆̄N) +N

∑
s,t

(H̄−1
γγ )st(∂αiαiγsL̄)(∂γt∆̄N)

=
N

N − 1

∑
t

∑
j 6=i

(H̄−1
αα)it(∂π3 ¯̀

ij)(∂αt∆̄N) +
N

N − 1

∑
t

∑
j 6=i

(H̄−1
αγ )st(∂π3 ¯̀

ij)(∂γt∆̄N)

+
N

N − 1

∑
t

∑
s 6=i

(H̄−1
γα)st(∂π3 ¯̀

is)(∂αt∆̄N) +
N

N − 1

∑
t

∑
s 6=i

(H̄−1
γγ )st(∂π3 ¯̀

is)(∂γt∆̄N)

which is Op(1) since by Lemma 11 and Lemma D.1 in Fernández-Val and Weidner (2016),
and similarly for i > N . Off-diagonal components can be shown similarly, e.g. for i < N

and j > N we have[
N
∑
g

(∂φφ′φgL̄)[(∂φ′∆̄N)H̄−1]g

]
ij

= N(∂αiγ′jφL̄)H̄−1(∂φ∆̄N)

= N
∑
s,t

(H̄−1
αα)st(∂αiγjαsL̄)(∂αt∆̄N) +N

∑
s,t

(H̄−1
αγ )st(∂αiγjαsL̄)(∂γt∆̄N)

+N
∑
s,t

(H̄−1
γα)st(∂αiγjγsL̄)(∂αt∆̄N) +N

∑
s,t

(H̄−1
γγ )st(∂αiγjγsL̄)(∂γt∆̄N)

=
N

N − 1

∑
t

(H̄−1
αα)it(∂π3 ¯̀

ij)(∂αt∆̄N) +
N

N − 1

∑
t

(H̄−1
αγ )st(∂π3 ¯̀

ij)(∂γt∆̄N)

+
N

N − 1

∑
t

(H̄−1
γα)jt(∂π3 ¯̀

ij)(∂αt∆̄N) +
N

N − 1

∑
t

(H̄−1
γγ )jt(∂π3 ¯̀

ij)(∂γt∆̄N)

which is Op(N
−1). Finally, in the Supplementary Appendix (S.4) it is shown that J[R∆] =

op(1), and by R̃∆,(k) = op(N
−1) for each k (and in the full sample) we have that (N −
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2)R̃∆,(k) = op(1) and (N − 1)R̃∆ = op(1) so that the jackknifed version of this term is also
op(1).

D.1 Proof of Theorem 2

We can decompose ∆̂J − ∆̄N into

∆̂J − ∆̄N = (∆̂J −∆N) + (∆N − ∆̄N)

From Lemma 13 we have

N(∆̂J −∆N) =
[
(∂β∆̄N)− (∂φ′∆̄N)H̄−1(∂βφL̄)

]
W̄−1
N U (0)

+N(∂φ′∆̄N)H̄−1S + op(1)

Some tedious matrix algebra shows that this expression is equivalent to

N(∆̂J −∆N) = −N(∂θ∆̄N)(∂θθ′L̄)−1(∂θL)

=
(
−N(∂θ∆̄N)(∂θθ′L̄)−1

) 1

N − 1

∑
i

∑
j 6=i

∂θ`ij

=
1

N − 1

∑
i

∑
j 6=i

h̃ij

where θ′ = (β, φ′), and h̃ij = −N(∂θ∆̄N)(∂θθ′L̄)−1∂θ`ij. Next, let s̃ij = 1
|Λij |

∑
λ∈Λij

(mλ−m̄λ),
where Λij = {λ : (i, j) ∈ λ}. Then

N(∆N − ∆̄N) =
N

|ΛN |
∑
λ

(mλ − m̄λ)

=
1

r

N

|ΛN |
∑
i

∑
j 6=i

∑
λ∈Λij

(mλ − m̄λ)

=
1

N − 1

∑
i

∑
j 6=i

s̃ij
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since |Λij| = r (N−2)!
(N−p)! . We then have

N(∆̂J − ∆̄N) =
1

N − 1

∑
i

∑
j 6=i

(h̃ij + s̃ij) + op(1)

which is asymptotically normal by a standard CLT. We now determine the variance of this
term.

V ar
( 1

N − 1

∑
i

∑
j 6=i

(h̃ij + s̃ij)
)

=
1

(N − 1)2

∑
i

∑
j 6=i

∑
s

∑
t6=s

Ē[(h̃ij + s̃ij)(h̃st + s̃st)]

To compute this, first note that
∑

s

∑
t6=s Ē[h̃ijh̃st] = Ē[h̃ij(h̃ij + h̃ji)]. Also,

∑
s

∑
t6=s

Ē[h̃ij s̃st] =
1

r

(N − p)!
(N − 2)!

∑
s

∑
t 6=s

∑
λ∈Λst

Ē
[
h̃ij(mλ − m̄λ)

]
=

(N − p)!
(N − 2)!

∑
λ

Ē
[
h̃ij(mλ − m̄λ)

]
=

(N − p)!
(N − 2)!

∑
λ∈(Λij∪Λji)

Ē
[
h̃ij(mλ − m̄λ)

]
= Ē[h̃ijsij]

where sij = (N−p)!
(N−2)!

∑
λ∈(Λij∪Λji)

(mλ − m̄λ).

Let D(λ) be the set of dyads formed from the observations in λ, i.e. if (i, j) ∈ λ then
(i, j), (j, i) ∈ D(λ). Assume that λ and λ′ both contain the observations (i, j),(i, k). There
are O(Np−3) sets λ containing the corresponding dyads, so that there are O(N2p−3) such
λ, λ′ pairs (O(N3) choices of (i, j, k) and O(Np−3) choices for each of λ and λ′). Similarly,
there are O(N2p−4) λ, λ′ pairs that share two dyads made up for four agents, (i, j),(k, l).
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Using this,

1

(N − 1)2

(1

r

(N − p)!
(N − 2)!

)2
∑
i

∑
j 6=i

∑
λ∈Λij

∑
s

∑
t6=s

∑
λ′∈Λst

Ē
[
(mλ − m̄λ)(mλ′ − m̄λ′)

]
=

N2

|ΛN |2
∑
λ

∑
λ′

Ē
[
(mλ − m̄λ)(mλ′ − m̄λ′)

]
=

N2

|ΛN |2
∑
λ

∑
λ′:|D(λ)∩D(λ′)|=2

Ē
[
(mλ − m̄λ)(mλ′ − m̄λ′)

]
+

N2

|ΛN |2
∑
λ

∑
λ′:|D(λ)∩D(λ′)|>2

Ē
[
(mλ − m̄λ)(mλ′ − m̄λ′)

]
=

N2

|ΛN |2
∑
i

∑
j<i

∑
λ∈(Λij∪Λji)

∑
λ′:|D(λ)∩D(λ′)|={(i,j),(j,i)}

Ē
[
(mλ − m̄λ)(mλ′ − m̄λ′)

]
+

N2

|ΛN |2
∑
λ

∑
λ′:|D(λ)∩D(λ′)|>2

Ē
[
(mλ − m̄λ)(mλ′ − m̄λ′)

]
=

N2

|ΛN |2
∑
i

∑
j<i

∑
λ∈(Λij∪Λji)

∑
λ′∈(Λij∪Λji)

Ē
[
(mλ − m̄λ)(mλ′ − m̄λ′)

]
− N2

|ΛN |2
∑
i

∑
j<i

∑
λ∈(Λij∪Λji)

∑
λ′∈(Λij∪Λji):
|D(λ)∩D(λ′)|>2

Ē
[
(mλ − m̄λ)(mλ′ − m̄λ′)

]
+Op(N

−1)

=
1

(N − 1)2

∑
i

∑
j<i

Ē[s2
ij] + op(1)

This implies that

V ar
( 1

N − 1

∑
i

∑
j 6=i

(hij + s̃ij)
)

=
1

(N − 1)2

∑
i

∑
j<i

(
Ē[(h̃ij + h̃ji)

2]

+ 2Ē[(h̃ij + h̃ji)sij] + Ē[s2
ij]
)

+ op(1)

=
1

(N − 1)2

∑
i

∑
j<i

Ē
[
(hij + sij)

2
]

+ op(1)

for hij = h̃ij + h̃ji. The asymptotic variance of N(∆̂J − ∆̄N) is given by the limit of this
expression. Assumptions 1 (iii) and 2 (ii) guarantee that both hij and sij have first-order
approximations that are continuously differentiable in the parameters, so that the continuous
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mapping theorem and the consistency results ‖β̂−β0‖ → 0 and ‖φ̂−φ‖∞ → 0 in (24), imply
consistency of the plug-in estimator for V∆ (see for example Lemma S.1 in FVW).

D.2 Proof of Theorem 3

We begin with a U-statistic representation of ∆̄N , which will allow us to apply standard
asymptotic results on U-statistics. We have defined m to be a function of the sets λ,
which depend on an ordered set of p agents. For example the transitive triangle λ =

{(i, j), (i, k), (k, j)} depends on the agents {i, j, k} in a non-symmetric manner. We first
rewrite ∆̄N to be a sum over functions that are symmetric in agents. Denote the set of
agents in λ by N(λ), and let η = {i1, . . . , ip} be some set of p agents. Then we may define
τη = {λ : N(λ) = η} as the collection of all λ that contain the same set of agents. Note that
|τη| = p!. We have, for m̃ = m̄− E[m]

∆̄N − δ =
1

N · · · (N − p+ 1)

∑
λ

m̃λ

=
p!

N · · · (N − p+ 1)

∑
τ

( 1

p!

∑
λ∈τ

m̃λ

)
=

(
N

p

)−1∑
τ

uτ

where uτ = 1
p!

∑
λ∈τ m̃λ. The variable uτ is symmetric function of {β,Xi, αi, γi} for p agents

i. For example, there are 3! = 6 possible transitive triangles using agents {i, j, k} so that u
is the average of the function m evaluated at these 6 different triangles. Assuming that the
{Xi, αi, γi} are i.i.d. over agents, ∆̄N − δ is a U-statistic of order p and we apply standard
theory on such statistics to compute its asymptotic distribution. As in Theorem 12.3 in
van der Vaart (1998) we have

√
N(∆̄N − δ)⇒ N(0, p2ζ1)

where, for τ and τ ′ sharing exactly one agent in common,

ζ1 = Cov(uτ , uτ ′)
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An estimator of ζ1 is

√
N

(
N

p

)−1∑
τ

uτ =
1√
N

∑
i

(
N − 1

p− 1

)−1 ∑
τ :i∈τ

uτ

=
1√
N

∑
i

ti

The variance of ti is given by

V ar(ti) =

(
N − 1

p− 1

)−2 ∑
τ :i∈τ

∑
τ ′:i∈τ ′

E[uτuτ ′ ]

=

(
N − 1

p− 1

)−2 ∑
τ :i∈τ

∑
τ ′:τ∩τ ′={i}

E[uτuτ ′ ]

+

(
N − 1

p− 1

)−2 ∑
τ :i∈τ

∑
τ ′:i∈τ ′
|τ∩τ ′|>1

E[uτuτ ′ ]

=

(
N − 1

p− 1

)−2 ∑
τ :i∈τ

∑
τ ′:τ∩τ ′={i}

E[uτuτ ′ ] + o(1)

=
(N − p)!(p− 1)!

(N − 1)!

(N − p)!
(N − 2p+ 1)!(p− 1)!

ζ1 + o(1)

= ζ1 + o(1)

To explain the final line, there are
(
N−1
p−1

)
ways to choose τ containing i, and

(
N−p
p−1

)
ways

to choose the remaining p − 1 agents in τ ′ so that τ and τ ′ share only agent i in common.
The first term is therefore O(1). Now assume τ and τ ′ share two agents in common (one of
which is i). There are N − 1 choices for the second common agent,

(
N−2
p−2

)
ways to choose τ

containing i and the second common agent, and
(
N−p
p−2

)
ways to choose the remaining agents in

τ ′. This implies that the sum for τ and τ ′ with two agents in common is O(N−1). Similarly,
the sums for three agents in common are O(N−2) and so on.

This implies that the variance of ti converges to ζ1. We can alternatively express this variance
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as

V ar(ti) =

(
N − 1

p− 1

)−2 ∑
τ :i∈τ

∑
τ ′:i∈τ ′

E[uτuτ ′ ]

=

(
N − 1

p− 1

)−2 ∑
τ :i∈τ

∑
τ ′:i∈τ ′

1

p!

∑
λ∈τ

1

p!

∑
λ′∈τ

E[m̃λm̃λ′ ]

=
1

p!2

(
N − 1

p− 1

)−2 ∑
λ:i∈λ

∑
λ′:i∈λ′

E[m̃λm̃λ′ ]

=
1

p2
E
[((N − p)!

(N − 1)!

∑
λ:i∈λ

m̃λ

)2
]

An estimator of p2ζ2
1 is therefore given by

V̂δ =
1

N

∑
i

µ̃2
i

µ̃i =
(N − p)!
(N − 1)!

∑
λ:i∈λ

( ̂̄mλ − µ̂)

µ̂ =
(N − p)!
N !

∑
λ

̂̄mλ

and ̂̄mλ is a plug-in estimator for m̄λ. Assumption 2 and consistency of parameters ‖φ̂ −
φ0‖∞ → 0, ‖β̂ − β0‖ → 0 ensures consistency of m̂λ and hence consistency of V̂δ.
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