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Abstract

We analyze contests in which teams compete to win indivisible homogeneous prizes. Teams are

composed of members who may differ in their ability, and who exert effort to increase the success of their

team. Each team member can obtain at most one prize as a reward. As effort is costly, teams use the

allocation of prizes to give incentives and solve the free-riding problem. We develop a two-stage game.

First, teams select a prize-allocation rule. Then, team members exert effort. Members take into account

how their effort and the allocation rule influence the chance they receive a prize. We prove the existence

and uniqueness of equilibrium. We characterize the optimal prize-assignment rule and individual and

aggregate efforts. We then show that the optimal assignment rule is generally not monotonic.
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1 Introduction

Several teams are competing to win one or more prizes. Members of a team exert individual unobservable

costly effort. Aggregate team effort influences the number of prizes won by the team. Free-riding incentives

lead to the standard moral-hazard in teams problem (see Holmstrom 1982). The way the team allocates

prizes won to its members generates incentives and is crucial to increase team effort and team success.

We analyze the optimal intra-team prize allocation rule when teams compete for indivisible homo-

geneous prizes, individual effort is not observable, all prizes won must be allocated between team members,

and each team member can obtain at most one prize. Compared to standard models of moral hazard in

teams, we do not allow for monetary transfers and all incentives are generated by the prospect of winning a

prize.

The main application of the model is electoral competition under (closed-list) proportional representation.

In this electoral system, citizens do not cast votes for individual candidates but for a party and its list of

candidates. Candidates exert effort to increase the electoral appeal of their party. Prizes are parliament seats.

Parties win a random number of seats depending on the aggregate effort of their candidates. Candidates,

who may differ in their ability and in their cost of effort, are motivated by their desire to enter parliament.

Since parliament seats are homogeneous indivisible prizes, an allocation rule selects which candidates go to

parliament for each realized number of seats the party wins. One natural assignment rule is the (closed) list

rule. A list rule orders candidates, and when n seats are won by the party, the first n candidates on the list

go to parliament. Closed lists are used in many democracies relying on proportional representation. In this

paper, we do not restrict attention to list rules and derive the optimal assignment rule that maximizes the

team’s aggregate effort and expected number of prizes won. We allow for any rule that maps the number of

prizes won into a subset of team members with the same cardinality. We also derive conditions under which

the optimal rule is a list rule.

The interplay between intra-team incentives and inter-team competition is also relevant in other con-

texts. For instance, consider two departments within a firm. These departments can be viewed as teams.
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The firm’s CEO designs the hiring and promotion policy to provide incentives to their various employees.

As performance typically correlates positively with the need to expand the size of a department, the number

of positions and promotions going to each department are proportional to the department’s relative perfor-

mance. Then, employees in a department exert effort to boost their department performance. Each of them

hopes to receive one of the prizes won by their department. In this context, what intradepartmental prize

allocation rule should the firm use to maximize team effort?

Another example to consider is the situation in which a central government needs to choose where to

build several local public goods, such as hospitals, schools and/or military bases. As the local public goods

generate both direct and indirect jobs and economic activity for the region in which they are located, each

region in the country would like to see the public goods built on their territory. The different regions thus

lobby to secure the local public goods. Yet, once a region has won some of these goods, the exact location of

these are to be decided among the region’s different cities or municipalities. Regions can thus be described

as teams and, once again, to pin down which intra-team allocation rule maximizes team output, we need to

study the interplay between incentives within regions as well as competition between regions.

We model the contest as a two-stage game. In stage 1, each team chooses simultaneously and indepen-

dently a prize assignment rule to maximize the expected number of prizes it wins. In stage 2, all team

members exert effort to maximize their expected payoff. We assume that the aggregate effort of a team is

the sum of their members’ individual efforts. Team members differ in the productivity of their effort and

the cost of exerting effort. Propositions 1 to 3 characterize the equilibrium of the second stage. We char-

acterize equilibrium efforts for given probabilities of winning for the teams. Then we show through a fixed

point argument that there exists a unique Nash equilibrium for given allocation rules. We then move to the

choice of the prize allocation rule, in stage 1. Theorem 1 provides sufficient conditions for the existence and

uniqueness of equilibrium. Theorem 2 characterizes optimal prize-assignment rules. We need to consider two

cases separately, depending on the convexity of the cost function. When the cost function is less convex than

a quadratic function, the optimal allocation rule gives the highest incentives to exert effort to the best team

members (in terms of productivity over cost). Theorem 2 provides an algorithm to compute the optimal
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allocation rule. When the cost function is more convex, equalizing incentives becomes more important and

the characterization is less clear-cut. In both cases, the optimal allocation rule is usually non-monotonic in

the sense that the probability that a given team member wins a prize is not always increasing in the number

of prizes won by their team. When we impose monotonicity, list rules become optimal and we characterize

the optimal list. We show that in general the best candidates are not put at the top of the list.

The rest of the paper is organized as follows. Section 2 presents a brief review of the literature. Section 3

presents the model. Section 4 solves for the equilibrium choice of effort. In section 5, we analyze the choice

of allocation rule by teams. We characterize the optimal rules. subgame perfect equilibria of this game.

Section 6 discusses the implications of our results.

2 A Brief Literature Review

The paper contributes to the literature on moral hazard and free-riding in teams. (See Alchian and Demsetz,

1972, Holmstrom 1982, and Olson 1971). More specifically, our paper belongs to the literature on team

contests and creates a bridge between two different strands of the literature on contests1: team contests and

contests for multiple prizes. In team contests, several teams compete in order to win one prize, which may be

of a public or private nature, or a mix of both. This strand of the literature focuses on incentives within teams

and more specifically on the sharing rule that splits the single available (private part of the) prize across the

winning team’s members, so as to maximize team output. Important contributions include Nitzan (1991),

Esteban and Ray (2001), Nitzan and Ueda (2011), Balart et al. (2016) and Trevisan (2020). In the literature

on team contests, there are a few papers that analyzed the winning-probability-maximizing prize-allocation

rule when a team effort aggregator function is a CES or linear function while team members have strictly

convex effort cost functions with the same effort elasticity of cost (Crutzen et al. 2020, Simeonov 2020,

Kobayashi and Konishi 2021, and Kobayashi et al. 2023), and showed that the optimal prize-allocation rule

does not depend on the competitiveness of the contests—it depends only on team’s production technologies.

1The literature on contests is too vast to be reviewed here. We refer to Corchon (2007), Konrad (2009), Sisak (2009),

Flamand and Troumpounis (2015) and Vojnovic (2015) for extensive reviews.
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We can also connect the above results with the ones by the predecessors, Nitzan and Ueda (2014) and Esteban

and Ray (2001). Another strand of this literature uses the all-pay auction model to analyze competition

between teams with incomplete information and public good prize (every team member receives the same

reward for the team’s winning); see for instance Barbieri and Malueg (2016), Barbieri, et al. (2019), Barbieri

and Topolyan (2021), and Eliaz and Wu (2017). In contrast, in our model, players have perfect information

about their teammates’ abilities, but the rewards are heterogeneous; an allocation rule determines which

team members win one of the prizes won by the team. Finally, Fu, Lu, and Pan (2015) analyze a multi-

battle team contest in which heterogeneous players from two rival teams form pairwise matches to compete

in distinct component battles. Considering the contest from a designer’s perpsective, Feng, et al. (2022)

study effort-maximizing prize allocation rules by granting a contest organizer full flexibility to reward a team

based on the full path of battle outcomes and its identity. They show that the optimal rule takes the form

of a majority-score rule with a head start score given to the weaker team. In their model, a winning prize

is a public good for the team members, while the prizes are distributed to all participants of the contest as

indivisible (identical) private goods in our model.

We also contribute to the literature on contests for multiple prizes. Most of this literature focuses on

contests between individuals who can win at most one prize; Clark and Riis (1996) and Barut and Kovenock

(1998) analyze the cases with identical and vertically differentiated prizes. The intrateam allocation rules

we consider are not contests given that the allocation does not depend on individual efforts.2 The literature

on how to split a divisible prize to incentivize individual players typically concludes that relying on one

prize only generates more incentives than having multiple smaller prizes (see Sisak 2009 for a survey). For

example, Moldovanu and Sela (2001) consider the way to design prize allocation in a contest. They show that

it is optimal to allocate all the money to a big prize rather than to several smaller prizes. The tournament

literature also considers the case of multiple prizes; see for instance Nalebuff and Stiglitz (1983). One major

advantage of our approach is its analytical tractability that allows for closed-form solutions.

We also contribute to this literature by extending it to the case of multiple indivisible prizes. Crutzen

2Crutzen, Flamand and Sahuguet (2020) analyze a model in which the allocation of prizes within teams is itself a contest.
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et al. (2020) introduced the model of team contest with the allocation of prizes between teams following

a multinomial distribution based on relative team efforts. We extend the model by allowing heterogeneity

among team members in terms of ability and cost of effort, pin down conditions that guarantee existence of

a unique equilibrium and fully characterize it. Crutzen et al. (2020) studied some real-world allocation rules

and compare their effectiveness in terms of providing incentives to candidates. In this paper, we characterize

the optimal allocation rule. We show that it usually provides non-montonic incentives to candidates, in the

sense that a candidate’s probability of winning a seat can decrease as his party wins more seats. This means

that the list rule and the egalitarian rule studied in Crutzen et al. (2020) are genreally not optimal when

we allow for non-monotonic allocation of seats. On the more applied side, our paper contributes to a recent

literature that analyzes the design of lists in proportional electoral systems.3 We relate our findings to that

literature at the end of Section 5.

3 The Model

3.1 Effort, Objectives and Timing of the Contest

J teams are competing in a contest with n identical prizes. Team j = 1, ..., J is composed of nj (productive)

members. Members differ in their ability aij ≥ 0, and their cost of effort parameter cij > 0. We denote by

Nj the set of (productive) team j members (|Nj | = nj). If nj < n, the other n − nj team members are

unproductive dummy members of team j. They don’t exert effort, and we assume that they may win prizes

only when the number of prizes won by team j exceeds nj . Teams compete for n indivisible identical prizes.

The number of prizes won by team j is a random variable. We assume that team j’s probability of winning a

given prize follows a binomial distribution with parameter pj . Parameter pj is the outcome of a generalized

Tullock contest with γ ∈ (0, 1], based on the aggregate effort Ej of each team:

pj =
Eγj

Eγj +
∑
` 6=j E

γ
`

.

The case γ = 1 corresponds to the classic Tullock contest success function (see Tullock 1980).

3See for instance Crutzen et al. (2022), Cox et al. (2021), and Buisseret et al. (2022).
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We assume team j’s aggregate effort Ej to be:

Ej =

nj∑
i=1

aijeij .

where eij is the effort of member i in team j. Every player in team j has the following convex cost of effort

function:

Cij =
1

β
cije

β
ij ,

with β > 1 and cij > 0 for all ij.

Prizes are awarded from independent draws of the distribution (p1, ..., pJ). Thus, team j’s probability of

winning k prizes follows a multinomial distribution and is equal to:

P kj = C(n, k)pkj (1− pj)n−k .

Before members exert effort, teams decide on how to allocate prizes that will be won in the contest. Let

S(k) ≡ {S ⊆ Nj : |S| = k}. A (stochastic) prize assignment rule is a list of functions qj = (qkj )nk=1 such

that qkj : S(k)→ [0, 1] and
∑
S∈S(k) q

k
j (S) = 1 for all k = 1, ..., n. We assume that for all k ≥ nj , q

k
j (S) > 0

implies Nj ⊆ S: that is, the productive members of team j will get a prize for sure as long as the team gets

nj prizes or more. A prize assignment rule assigns probabilities to which subset of k team members win a

prize when k prizes are won in the contest. Member i of team j has the following benefit function

Bij = V

n∑
k=1

∑
S∈Si(k)

qkj (S)P kj (pj),

where Si(k) = {S ∈ S(k) : i ∈ S}.

Knowing their team’s allocation rule, player ij chooses effort to maximize:

Uij = Bij − Cij = V

n∑
k=1

∑
S∈Si(k)

qkj (S)P kj (pj)−
1

β
cije

β
ij .

Players’ efforts (eij)ij∈Nj determine team j’s winning probability P kj (pj) via their impact on Ej and thus

pj . Following Nitzan and Ueda (2011), we assume that team members observe only their own team’s prize

assignment rule, but not those of other teams.

The timeline and the information structure of the two-stage game is as follows:
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1. Stage 1: Teams choose a prize assignment rule (or a randomization over prize assignment rules) to

maximize the expected number of prizes they win.

2. Stage 2: Observing their own team’s assignment rule only, all team members choose their effort simul-

taneously and independently, to maximize their expected payoff.

Following Nitzan and Ueda (2011), we focus on a perfect Bayesian equilibrium with own-action-

independent beliefs. Even if team j’s manager deviates from the equilibrium prize assignment rule qj , the

members of team j react to it without changing the expectations on the choices made in the other teams;

they believe that the deviation does not correlate with the events outside of their own team.4 An equilibrium

consists in an assignment rule profile, and stage 2 equilibrium efforts as a function of the assignment rule

profile, e(q) = (eij (q)). An equilibrium gives rise to an equilibrium function p∗ = (p∗1, ..., p
∗
J) such that for

all j = 1, ..., J , p∗(q) assigns a winning probability profile to each subgame q = (qj)j∈J .

Equilibrium requires that the assignment rule maximizes the teams’ expected number of prizes won given

the other assignment rules chosen by other teams, and the stage-2 effort choices. A player’s effort in stage

2 maximizes his expected payoff for any assignment rule profile, given the effort strategy of other players.

3.2 Prize-Assignment Rule and Prize-Assignment Matrix

An alternative way to describe prize-assignment rules is to use an assignment matrix. Let rij = (rkij)
n
k=1

be a vector where rkij denotes the probability of team member i’s winning a prize when his team wins k

4Nitzan and Ueda (2011) call it a pure strategy perfect Bayesian equilibrium with a “no-signaling-what-you-don’t-know”

condition (see also Fudenberg and Tirole 1991, page 332).
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prizes for each k = 1, ..., n. We can then write an n× n assignment matrix Rj as:

Rj =



r1
1j · · · rk1j · · · rn1j

...
. . .

...
...

r1
ij · · · rkij · · · rnij

...
...

. . .
...

r1
nj · · · rknj · · · rnnj


with rkij ∈ [0, 1] and

∑n
i=1 r

k
ij = k for all k = 1, ..., n. Since players i = nj + 1, ..., n are dummy players who

may win the prizes only when k > nj , we assume rkij = 1 for all k ≥ nj and all i ∈ Nj , and rkij = 1 if and

only if i ≤ k for i = nj + 1, ..., n. A general prize-assignment rule can be represented by a matrix Rj by

setting rkij =
∑
S∈S(k) q

k
j (S) for each i = 1, ..., n and k = 1, ..., n. However, it is not clear whether or not

every Rj can be described by a general prize-assignment rule—can the entire space of Rjs be spanned by

general prize-assignment rules? The following lemma provides a positive answer.

Lemma 1. Any n× n assignment matrix Rj such that (i) rkij ∈ [0, 1] for all i = 1, ..., n, and all k = 1, ..., n,

and (ii)
∑n
i=1 r

k
ij = k for all k = 1, ..., n, can be achieved by some allocation rule qj : S → [0, 1] with∑

S∈S(k) q
k
j (S) = k for all k = 1, ..., n.

Remark 1. In the matching literature, random assignments of indivisible goods often use the property known

as the Birkhoff-von Neumann theorem (Birkhoff 1946, and von Neumann 1953): any bistochastic matrix can

be written as a convex combination of permutation matrices (see, for example, Bogomolnaia and Moulin

2001). Our lemma may appear to be related to this theorem. However, in our model, indivisible prizes are

homogenous and the number of them is stochastic. We do not think that there exists a formal relationship

between the two models.

Thus, without loss of generality, we use assignment matrices in the rest of the paper. The assumption

that dummy members can win a prize only after all productive members of the team win a prize (if k ≥ nj ,

qkj (S) > 0 implies Nj ⊆ S) can be written as rkij = 1 for all i ∈ Nj and all k ≥ nj .
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4 Equilibrium Efforts (Stage 2)

We consider a given profile of assignment rules Rj = (rkij)i,k=1,...,n, and solve for the equilibrium efforts in

stage 2.

The benefit function of member i of team j is:

Bij = V

n∑
k=1

rkijP
k(pj)

= V

nj∑
k=1

rkijP
k(pj) + V

n∑
k=nj+1

P k(pj)

= V

nj∑
k=1

rkijP
k(pj) + V

(
1−

nj∑
k=1

P k(pj)

)

= V

nj∑
k=1

rkijP
k(pj) + V

{
1− (n− nj)C(n, nj)

∫ 1−pj

0

tn−nj−1(1− t)njdt
}
.

The impact of an increase in pj on P k(pj) is not straightforward. P kj does not always increase with an

increase in pj . Differentiating P kj and
∑n
k=nj+1 P

k
j (pj) with respect to pj , we obtain

dP kj
dpj

= C(n, k)pk−1
j (1− pj)n−k−1

(k − npj) for k = 1, ..., n− 1, (1)

dP kj
dpj

= npn−1
j if k = n,

and

d
∑n
k=nj+1 P

k
j (pj)

dpj
= (n− nj)C(n, nj)p

n−nj−1
j (1− pj)nj .

The probability of party j’s winning exactly k prizes decreases with an increase in pi for k < k∗ = bnpic+ 1

(or k < npi), and increases for k ≥ k∗ (or k > npj).

We also have

∂Ej
∂eij

= aij ,

and

∂pj
∂Ej

=
γEγ−1

j (Eγj +
∑
k 6=j E

γ
k )−γEγ−1

j Eγj

(Eγj +
∑
k 6=j E

γ
k )

2 =
γ

Ej
pj (1− pj) ,

resulting in

∂pj
∂eij

=
γaij
Ej

pj (1− pj) . (2)
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Taking the derivative of Bij = V
∑n
k=1 r

k
jP

k(pj) with respect to eij , using (1), (2), and
∂Ej
∂eij

= aij , yields:

∂Bij
∂eij

= V

nj∑
k=1

rki
dP k

dpj

∂pj
∂eij

+ V (n− nj)C(n, nj)p
n−k−1
j (1− pj)k

∂pj
∂eij

=
γV

Ej

nj∑
k=1

rki C(n, k)
{
kpk−1
j (1− pj)n−k − (n− k) pkj (1− pj)n−k−1

}
(1− pj) pjaij

+
γV

Ej
(n− nj)C(n, nj)p

n−nj
j (1− pj)nj+1aij

=
γV

Ej
aij

{
nj∑
k=1

rki C(n, k)pkj (1− pj)n−k (k − npj) + (n− nj)C(n, nj)p
n−nj
j (1− pj)nj+1

}

=
γV

Ej
aij

{
nj∑
k=1

rki µ
k(pj) + νnj (pj)

}

where

µk(pj) ≡ dP k(pj)

dpj
pj (1− pj)

= C(n, k)pkj (1− pj)n−k (k − npj)

and

νnj (pj) ≡
d
∑n
k=nj+1 P

k
j (pj)

dpj
pj (1− pj)

= (n− nj)C(n, nj)p
n−nj
j (1− pj)nj+1

denote the impacts of an increase in pj on P k and
∑n
k=nj+1 P

k
j (pj), respectively.

Thus, tentatively assuming an interior solution, the first order condition reads:

∂Bij
∂eij

− C ′ij(eij) =
γV

Ej
aij

{
nj∑
k=1

rki µ
k(pj) + νnj (pj)

}
− cijeβ−1

ij = 0. (3)

Since C ′′ij(e) > 0 holds for all e > 0, and lime→0 C
′
ij(e) = 0 and lime→∞ C ′ij(e) = ∞, there is a unique

solution for the above problem:

eβ−1
ij =

[
1

cij

γV

Ej
aij

{
nj∑
k=1

rki µ
k(pj) + νnj (pj)

}]

or

eij =

[
1

cij

γV

Ej
aij

{
nj∑
k=1

rki µ
k(pj) + νnj (pj)

}] 1
β−1

.
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Summing team members’ efforts up, we obtain

Ej =

nj∑
h=1

ahj

[
1

chj

γV

Ej
aij

{
nj∑
k=1

rki µ
k(pj) + νnj (pj)

}] 1
β−1

This interior solution for eij only makes sense when
∑nj
k=1 r

k
i µ

k(pj) + νnj (pj) > 0. This condition states

that member j’s probability to win a prize is positively affected by an increase in pj . If the sign of this

expression is negative, then player i’s marginal effort worsens her payoff and eij = 0 must hold. Thus, we

have the following general formula:

Ej =

nj∑
h=1

ahj

[
1

chj

γV

Ej
aij max

{
nj∑
k=1

rki µ
k(pj) + νnj (pj), 0

}] 1
β−1

The first-order conditions identify optimal effort only if the second-order conditions are satisfied. Unfortu-

nately, the second order conditions are not always satisfied for all players. To get a fully general condition on

exogenous parameters, we need to assume a small value of parameter γ. However, the following lemma shows

that the second-order conditions are satisfied for any arbitrary assignment rule ri for reasonable parameter

values.

Lemma 2 (Second-order conditions). Let θij =
aijeij
Ej

denote player i’s effort contribution share in team

j. The second order condition for player i is satisfied if γ ≤
1+

(β−1)
θij

max{nj−npj ,n−nj−npj} .

Remark 2. Consider the following example with the following parameter values: n = 20, nj = 10, pj = 1
4 ,

and β = 2. In the worst-case scenario, when there is no other productive player in the team ( θij = 1), the

above condition reads γ ≤ 2
5 . Considering the standard Tullock contest case γ = 1 the above condition is

satisfied if θij ≤ 1
4 . In this example, the expected number of prizes won is npj = 5 , the number of active

team members is nj = 10 considering a highest effort share of maxi θij = 1
4 appears reasonable in most

cases. Extreme heterogenity in abilities could of course lead to one player having a larger effort contribution

share.

Although the condition for second-order conditions to be satisfied does not appear too restrictive, the

sufficient conditions in Proposition 1 are not expressed in terms of exogenous parameters of the model (pj and
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θij are endogenous variables determined in equilibrium). Thus, for the sake of rigor, we impose the following

simple but restrictive sufficient condition that works for any team member profile and any assignment rule

by setting θij = 1 and pj = 0.5

Assumption 1. The contest success function is sufficiently concave γ ≤ β
max{nj ,n−nj} .

We can now state the following result:

Proposition 1 (Effort choice). Under assumption 1, for each pj ∈ (0, 1), and each assignment matrix

Rj = (rkij)i,k=1,...,n, there is a unique Nash equilibrium, with effort vector e∗i (pj , Rj) ≡ (e∗ij(pj , Rj))i∈Nj : for

all i ∈ Nj ,

e∗ij(pj , Rj) =

(
aβij
cij
ρij(pj , Rj)

) 1
β−1

aij
∑n
h=1

(
aβhj
chj

ρhj(pj , Rj)

) 1
β−1

Ej(pj , Rj).

Team j’s aggregate effort is

Ej(pj , Rj) = (γV )
1

β(β−1)

 nj∑
h=1

(
aβij
cij

ρij(pj)

) 1
β−1


1
β

,

where ρij(pj , Rj) = max
{∑nj

k=1 r
k
i µ

k(pj) + νnj (pj), 0
}

.

We now prove the existence and uniqueness of equilibrium for given assignment rules. As Ej depends

only on pj (Ej = Ej(pj)), we consider the following mapping f (p), with p = (p1, ..., pJ) and

fj(p) =
Eγj (pj)∑J
`=1E

γ
` (pk)

for all j = 1, ..., J . Then f(p) = (f1(p), ..., fJ(p)) is a fixed point mapping from simplex ∆J ≡
{
p ∈ RJ+ :

∑J
k=1 pk = 1

}
to itself, which is a continuous function. Since ∆J is nonempty, compact, and convex, and f : ∆J → ∆J is

a continuous function, there exists a fixed point p∗ = f(p∗) by Brouwer’s fixed point theorem.

5The most difficult second-order conditions to satisfy comes from the following situation. Suppose that nj = n (thus

νnj (pj) = 0) and player i can win a prize only when team j wins all the prizes rkij = 1, that is, if and only if k = n. Moreover,

this player is the only active effort contributor in team i. In this case, Pnj (pj) = C(n, n)pnj is very strongly convex function,

and we need to set γ ≤ β
n

to cancel out this convexity to satisfy concave objective function for such player ij.
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Proposition 2 (Existence). Under assumption 1, there exists a Nash equilibrium for any assignment

matrix profile (Rj)
J
j=1.

We now turn to uniqueness. We consider the equilibrium relationship between pj and Ej . Recall that

Ej(pj , Rj) = (γV )
1

β(β−1)

 nj∑
i=1

(
aβij
cij

ρij(pj)

) 1
β−1


1
β

.

The equilibrium condition is summarized by the following system of n equations:

p∗ = f(p∗).

We will drop the last equation or our equilibrium condition by setting pJ = 1−
∑J−1
j=1 pj (since

∑J
j=1 pj =

1), and we totally differentiate the system. In the proof of Proposition 3 in the Appendixc, we show that

the determinant of the system is strictly positive. Then, we can use the index theorem to prove uniqueness

of equilibrium.

Proposition 3 (Uniqueness) Under assumption 1, for any assignment matrix profile R = (Rj)
J
j=1, there

is a unique Nash equilibrium characterized by an effort vector e∗i (Rj) and a winning probability vector

p∗(R) =
(
p∗j (R)

)J
j=1

. Moreover, p∗(R) is a continuous function.

5 Equilibrium of Choice of Assignment Rule (Stage 1)

5.1 Existence of Equilibrium

We have characterized the second stage equilibrium in Proposition 1, its existence in Proposition 2 and its

uniqueness in Proposition 3. We now turn attention to the choice of assignment rule in stage 1.

Since (P k(p′j))
n
k=1 first-order stochastically dominates (P k(pj))

n
k=1 for p′j > pj , team j should max-

imize pj . As pj =
Eγj

Eγ1 +...+EγJ
, team j should choose rule Rj to maximize Ej given E−j . However,

p = (p1, ..., pj , ..., pJ) is actually determined in the interaction with other teams, so we need to check that

maximizing Ej is equivalent to maximizing the number of prizes won.

14



We consider the following comparative static exercise: we increase rkij by ∆j > 0 and decrease in rkhj by

∆j for some i, h = 1, ..., n with i 6= h and k ∈ {1, ..., n} with
aβij
ci1

>
aβhj
ch1

and µk(pj) > 0. This change in

the assignment rule is assumed to increase aggregate effort Ej for given pj . We show that this change also

increases its winning probability.6

Proposition 4. Under assumption 1, the allocation rules Rj that maximizes

Ej(pj , Rj) = (γV )
1

β(β−1)

 nj∑
h=1

(
aβij
cij

max

{
nj∑
k=1

rkhjµ
k(pj) + νnj (pj), 0

}) 1
β−1


1
β

also maximizes pj .

Now, we can prove the existence of an equilibrium of the two-stage game. In stage 1, each team j selects

an assignment matrix Rj to maximize its aggregate effort Ej :

Ej(Rj , p
∗
j ) = (γV )

1
β(β−1)

 nj∑
h=1

αij

(
max

{
nj∑
k=1

rkijµ
k(p∗j ) + νnj (p∗j ), 0

}) 1
β−1


1
β

where αij ≡ a
β
β−1

ij /c
1

β−1

ij is player i’s effectiveness in making effort. Let R be the collection of all possible

allocation rules R. From Proposition 4, a winning probability maximizing team j solves the following

problem:

max
Rj∈R

Ej(p
∗
j , Rj) s.t.

n∑
i=1

rkij = k for all k = 1, ..., n. (4)

We can prove the existence of an equilibrium, using a fixed point mapping argument.

Theorem 1. Under assumption 1, there exists a perfect Bayesian equilibrium with own action independent

beliefs (R∗; p∗), where R∗ ∈ R is a stage 1 equilibrium assignment matrix profile, R∗−j is the belief for all

team j ∈ J , and p∗ : RJ → ∆J is a stage 2 winning probability mapping defined in Proposition 3.

6The issue at stake is reminisicent of some results in general equilibrium international trade theory. In some cases, economic

growth can result in a country being worse off (see papers on immiserizing growth by Jonhson 1955 and Bhagwati 1958). In

other cases, a country may gain by giving a transfer, that the receiver may lose, and that these two phenomena may appear

at the same time in a three country model (see the paper on transfer paradox by Yano 1983). Our Proposition shows that our

model is well-behaved: when a team designs an assignment rule to increase its aggregate effort, it results in an improvement in

the team’s winning probability.
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Remark 3. The first stage equilibrium matrices R∗ = (R∗1, ..., R
∗
J) requires some explanations. As we will

see in the next section, Ej(p
∗
j , Rj) is concave (convex) in Rj if β ≥ 2 (if 1 < β ≤ 2). Thus, when Ej is

concave, even if R∗j is stochastic, it is a best response to R∗−j which maximizes Ej(p
∗
j , Rj). That is, team

j announces a mixed strategy described by R∗j to their members. In contrast, when Ej is convex, if R∗j is

stochastic, R∗j itself is not a best response, since the best response must be a deterministic matrix due to

convex payoff function. In this case, R∗j must be a convex combination of a set of deterministic matrices

Rd1
j , ..., R

dL
j , each of which is a best response to R∗−j. The team announces to its members one of them

randomly. Thus, when 1 < β ≤ 2, randomization R∗j is introduced only to find a Nash equilibrium played by

J teams—a fixed point R∗ = (R∗1, ..., R
∗
J).

Remark 4. Theorem 1 holds even if we impose constraints on parties’ strategy spaces (as long as the set of

admissible matrices R is a nonempty, compact, and convex set). For example, we can restrict team j to use

only list rules as the support of their mixed strategy. Theorem 1 still holds, and team j uses the optimal list

rule in equilibrium.7

5.2 Optimal Prize-Assignment Matrix

We now characterize these optimal assignment matrices Rj .

As (γV )
1

β(β−1) > 0 is a positive constant and 1
β > 0, team j’s maximization problem (4) can be simplified

to:

max
Rj∈R

πj(p
∗
j , Rj) = max

(rkij)i∈Nj,k=1,...,n

nj∑
i=1

αij

(
max

{
nj∑
k=1

rkijµ
k(p∗j ) + νnj (p∗j ), 0

}) 1
β−1

s.t.

n∑
i=1

rkij = k, ∀k = 1, ..., n

where µk(p∗j ) ≡ C(n, k)p∗kj
(
1− p∗j

)n−k (
k − np∗j

)
.

Note that µk(p∗j ) ≡ C(n, k)p∗kj
(
1− p∗j

)n−k (
k − np∗j

)
changes its sign only once at k∗ ≡

⌊
np∗j
⌋

+ 1, which

is the smallest integer that exceeds np∗j . We have µk(p∗j ) < 0 for all k < k∗, and µk(p∗j ) > 0 for all k ≥ k∗

(µk
∗
(p∗j ) = 0 if k∗ = np∗j ).

7We can also assume that other teams use different rules—an arbitrary rule or the egalitarian rule (every team member wins

a prize with equal probability no matter what the number of prizes won is). Theorem 1 still applies.
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There are two cases to consider depending on the value of β: if 1 < β ≤ 2, 1
β−1 ≥ 1 holds, and πj is

convex in Rj , while if β > 2 then 1
β−1 < 1 holds and πj is concave on Rj . Regarding µk(p∗j )s as constants

around the optimum, the former case requires to assign players with highest effectiveness parameters the

highest total weights. In contrast, in the latter case, mixing is preferable. These two cases correspond to

concave and convex marginal effort cost functions, respectively (see Esteban and Ray 2001, Nitzan and Ueda

2014, and Trevisan 2020).

5.3 Convex Objective Function (1 < β ≤ 2)

In this case, the maximization problem requires to assign players with highest effectiveness parameters to

the highest total weights. Thus, we consider deterministic assignment rules Rj with rkij ∈ {0, 1} for all i, k =

1, ..., n.8 Relabel team members using their “effectiveness” in an descending order: α1j ≥ α2j ≥ ... ≥ αnij .

The power of the parenthesis 1
β−1 in the objective function satisfies 1

β−1 ≥ 1. In that case, putting more

weight r on a player with a higher effectiveness when µk(p∗j ) > 0 increases overall effort. In order to maximize

πj(Rj , pj) =
∑n
i=1 αij

(
max

{∑nj
k=1 r

k
ijµ

k(p∗j ) + νnj (p∗j ), 0
}) 1

β−1 around the equilibrium winning probability

pj = p∗j , team j assigns the highest of the sum of weights to i = 1, and the second highest to i = 2, and so

on. Such an assignment rule R∗j is the best response around the equilibrium p∗j , thus, R∗j is the equilibrium

assignment rule that is in the best response to R∗−j (the linearly approximated best response is the best

response to the original problem in the equilibrium). Notice that in this problem, νnj (p∗j ) is common to all

productive team members, and it will be irrelevant to the choice of optimal assignment matrix. Thus, from

here on, we assume that nj = n without loss of generality.

We first illustrate the optimal assignment rules in the following examples (recall that k∗ ≡
⌊
np∗j
⌋

+ 1).

Example 1. Suppose n(= nj) = 7. We consider two cases: k∗ = 3 and k∗ = 5.

We need to choose k players to win when team j wins k prizes. Starting from the most effective player 1,

we decide sequentially whether or not a player should be awarded a prize for each number of winning prizes

k. Let κ(i) = (κ1(i), ..., κk(i), ..., κn(i)) be the vector describing the number of prizes left to be assigned

8See Remark 3.
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when team member i is considered. For example, κk(i) tells us how many prizes are left to be assigned when

team member i is considered and the team wins k prizes. Thus, initially, we have κ(1) = (1, 2, 3, 4, 5, 6, 7)

seats to assign in the case of team j’s winning k = 1, ..., 7 prizes.

We start with k∗ = 3. This case corresponds to a low value of pj ; team j is not a favorite in the election.

We derive the optimal assignment matrix R∗3 sequentially. Initially, we have κ(1) = (1, 2, 3, 4, 5, 6, 7). We

start with the most effective player 1. As µk(p∗j ) R 0 if and only if k R np∗j or k R k∗ (k∗ ≡
⌊
np∗j
⌋

+ 1),

in order to place the heaviest weights
∑7
k=k∗ µ

k(p∗j ) on player 1, player 1 should win a prize if and only if

team j wins k∗ = 3 or more seats, since µk(p∗j ) > 0 for k ≥ 3, and µ1(p∗j ) < 0 and µ2(p∗j ) < 0. Thus, we

have r1j = (rk1j)
7
k=1 = (0, 0, 1, 1, 1, 1, 1). Then, when player 2’s turn comes, the number of left-over prizes

is κ(2) = (1, 2, 2, 3, 4, 5, 6). So, player 2 still can get the same prize vector r2j = r1j = (0, 0, 1, 1, 1, 1, 1),

and κ(3) = (1, 2, 1, 2, 3, 4, 5) remains. Still, player 3 can get r3j = r1j = (0, 0, 1, 1, 1, 1, 1). However, when

player 4’s turn comes, κ(4) = (1, 2, 0, 1, 2, 3, 4). Therefore player 4 cannot get a prize when k = 3. So, the

highest feasible weight for this player is achieved by r4j = (0, 0, 0, 1, 1, 1, 1), leaving κ(5) = (1, 2, 0, 0, 1, 2, 3).

Thus, player 5 gets r4j = (0, 0, 0, 0, 1, 1, 1). When player 6’s turn comes, κ(6) = (1, 2, 0, 0, 0, 1, 2), but only 2

members (players 6 and 7) are left to be considered. Thus, player 6 needs to get a prize for k = 2 in addition

to positive weights k = 6, 7. Otherwise, when k = 2, two prizes will not be allocated. The following table

summarizes κ(i), χ(i) (the number of players to be considered), and rij at each step i:
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i leftover prizes κ(i) χ(i) assigment rij

1 1 2 3 4 5 6 7 7 0 0 1 1 1 1 1

2 1 2 2 3 4 5 6 6 0 0 1 1 1 1 1

3 1 2 1 2 3 4 5 5 0 0 1 1 1 1 1

4 1 2 0 1 2 3 4 4 0 0 0 1 1 1 1

5 1 2 0 0 1 2 3 3 0 0 0 0 1 1 1

6 1 2 0 0 0 1 2 2 0 1 0 0 0 1 1

7 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1

As a result, the optimal assignment matrix is as follows:

R3∗
j =



0 0 1 1 1 1 1

0 0 1 1 1 1 1

0 0 1 1 1 1 1

0 0 0 1 1 1 1

0 0 0 0 1 1 1

0 1 0 0 0 1 1

1 1 0 0 0 0 1


Bold lettered 1s provide positive incentives to make effort, while normal lettered 1s provide negative incentive

to make effort. R3∗
j gives incentives to high ability members to exert effort, while lower ability team members

get less or no incentive to exert effort.9

We now turn to the case k∗ = 5. With a high value of pj , team j is the favorite in the election. With

k∗ = 5, µk(p∗j ) > 0 only for k ≥ 5. Thus, in order to maximize the weight of the highest member 1, she

should win a prize as long as the number of prizes won is three or more: r1j = (0, 0, 0, 0, 1, 1, 1). The following

table summarizes κ(i), χ(i) (the number of players to be considered), and rij at each step i:

9If there are dummy players and they are allowed to get a prize even when k ≤ nj , then they should get prizes when k < k∗

for the same reason.
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i leftover prizes κ(i) χ(i) assigment rij

1 1 2 3 4 5 6 7 7 0 0 0 0 1 1 1

2 1 2 3 4 4 5 6 6 0 0 0 0 1 1 1

3 1 2 3 4 3 4 5 5 0 0 0 0 1 1 1

4 1 2 3 4 2 3 4 4 0 0 0 1 1 1 1

5 1 2 3 3 1 2 3 3 0 0 1 1 1 1 1

6 1 2 2 2 0 1 2 2 0 1 1 1 0 1 1

7 1 1 1 1 0 0 1 1 1 1 1 1 0 0 1

The same procedure as the above creates the following optimal assignment matrix:

R5∗
j =



0 0 0 0 1 1 1

0 0 0 0 1 1 1

0 0 0 0 1 1 1

0 0 0 1 1 1 1

0 0 1 1 1 1 1

0 1 1 1 0 1 1

1 1 1 1 0 0 1


The highest ability members 1, 2, and 3 win a prize only when their team wins 5 or more prizes. The team

wants the highest ability members to exert effort to win a prize.�

Formally, in order to describe the optimal (deterministic) mechanism, we use an algorithm. For each

k = 1, ..., n, the team needs to allocate k prizes in total. We will assign prizes in a descending order

starting from the highest effectiveness team member i = 1. Recall that for each number of winning prizes

k = 1, ..., n, κ(i) = (κ1(i), ..., κk(i), ..., κn(i)) is the number of prizes left to be assigned when team member i

is considered, and that ν(i) = n− i+ 1 is the number of players left to be considered when member i’s turn

comes. Obviously, before starting (i = 1), κ(1) = (1, 2, ..., n) and χ(1) = n.
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As we are considering deterministic assignments, κk(i) ≤ k is a nonnegative integer for each k. Let

M(i) ≡ {k ∈ {1, ..., n} : κk(i) > 0} be the set of cases k in which team member i can win a prize, let

L(i) ≡ {k ∈ {1, ..., n} : κk(i) = χ(i)} be the set of cases k in which team member i must win a prize (for

feasibility: if not, k members of team j cannot win a prize when k prizes are won). Denote the effort-

maximizing set of cases in which team member j wins a prize by ζ(i) ⊆ {1, ..., k, ..., n}. Let κ(i + 1) =

(κ1(i + 1), ..., κk(i + 1), ..., κn(i + 1)) be such that κk(i + 1) = κk(i) − 1 if k ∈ ζ(i), and κk(i + 1) = κk(i)

otherwise. Initially, κ(1) = (κ1(1), ..., κk(1), ..., κn(1)) = (1, ..., k, ..., n), ν(1) = n, M(1) ≡ {1, ..., n}, and

L(1) ≡ {n} hold. The reason for L(1) ≡ {n} is that if member 1 does not get a seat when n prizes are won,

then it is not possible to distribute all n prizes. The set of cases for team member i to win a prize is defined

by:

ζ(i) = arg max
L(i)⊆K⊆M(i)

∑
k∈K

µk(p∗j )

for i = 1, ..., n. This ζ(i) gives team member i the largest aggregate weights
∑
k∈ζ(i) µ

k(p∗j ) available. The

matrix is completed by setting rkij = 1 if and only if k ∈ ζ(i) for all i = 1, ..., n and all k = 1, ..., n.

Recall that k∗ ≡
⌊
np∗j
⌋

+ 1 is the smallest integer that exceeds np∗j . By the definition of µk(p∗j ), ζ(1) =

{k∗, k∗ + 1, ..., n} as this set collects all positive µk(pj)s without having any negative µk(pj)s. How about

ζ(2)? We have that ζ(2) = {k∗, k∗ + 1, ..., n} as long as k∗ ≥ 2 (κk∗(2) ≥ 1), as (2) ≡ {1, ..., n}.

We need to consider two cases: (Case 1) k∗ ≤ n+1
2 , and (Case 2) k∗ > n+1

2 .

(Case 1: k∗ ≤ n+1
2 ) We can assign the top k∗ members to {k∗, k∗ + 1, ..., n} = ζ(1) = ... = ζ(k∗). After

that, as long as i < n − k∗ + 2, we assign ζ(i) = {i, i + 1, ..., n}. When i = n − k∗ + 2 comes, we assign

ζ(i) = {k∗ − 1} ∪ {i, i+ 1, ..., n}, and for i = n− k∗ + 3, ζ(i) = {k∗ − 2, k∗ − 1} ∪ {i, i+ 1, ..., n}, and so on.

When i = n, ζ(n) = {1, ..., k∗ − 1} ∪ {n}.

(Case 2: k∗ > n+1
2 ) In this case, we can only assign the top n− k∗ team members to {k∗, k∗ + 1, ..., n} =

ζ(1) = ζ(n − k∗). Since κk∗−1(n − k∗ + 1) = κn(n − k∗ + 1) = n − (n − k∗ + 1) + 1 = ν(n − k∗ + 1),

ζ(n− k∗ + 1) = {k∗ − 1, k∗, ..., n}. Similarly, up to i = n− k∗ + 1, ζ(i) = {n− i+ 1, ..., n} is assigned. After

that ζ(i) = {n− i+ 1, ..., k∗ − 1} ∪ {i, ..., n}.

Note that if
∑
k∈ζ(i) µ

k(p∗j ) ≤ 0, then eij = 0 holds. The outcome of this algorithm is an effort-
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maximizing rule. This implies that the highest effectiveness team member wins a prize if and only if

team j wins k∗ =
⌊
np∗j
⌋

+ 1 prizes or more. That is, the highest effectiveness team member gets the same

assignment in the optimal assignment rule and in the optimal list rule.

Theorem 2 (the optimal assignment rule: convex case). Suppose that 1 < β ≤ 2 holds. Then the

optimal assignment rule is described by matrix Rj with rkij = 1 if and only if k ∈ ζ(i) for all i = 1, ..., n and

all k = 1, ..., n.

In Theorem 1, equilibrium strategies are random matrices R∗j s but Theorem 2 argues that the best

response is deterministic rule when 1 < β ≤ 2 holds. As we have mentioned in Remark 3, this is not a

contradiction. From Lemma 1, R∗j is a convex combination of deterministic rules, thus, R∗j can be regarded

as a mix of pure strategies (deterministic rules) that achieve the same winning probability of team j, since 1 <

β ≤ 2 implies that the best responses are in pure strategies. Thus, under this parameter restriction, Theorem

1 asserts the existence of mixed strategy equilibrium of a game in which teams announce a deterministic rule

to their team members. Clearly, teams are is indifferent between the deterministic rules supporting R∗j .

5.4 Concave Objective Function (β ≥ 2)

With rapidly increasing marginal costs of effort, incentives should not be concentrated on a small set of team

members.

Party j’s maximization problem is

max
(rki )

n∑
i=1

αij

[
max

(
n∑
k=1

rkijµ
k(p∗j ), 0

)] 1
β−1

s.t.



(i)

n∑
i=1

rki = k ∀k

(ii) 0 ≤ rki ≤ 1 ∀k, i

The optimal mechanism is the solution of the above problem when β > 2 holds. As k increases the set rki

will face stricter constraints (when k = n, rni = 1 must hold: every team member needs to receive a prize).

However, µk(pj) = dPk

dpj
(1− pj) pj < 0 for all k < k∗ and dPk

dpj
(1− pj) pj > 0 for all k > k∗, and what

matters is just the weighted sum of the shares in the bracket in achieving the optimal allocation. Intuitively,
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there will be freedom using rks for low ks to achieve unequal allocations.

Although the above problem is a well-behaved Kuhn-Tucker constrained optimization problem, it is hard

to obtain intuitive characterization of the optimum. Supposing that the sum of reward R̄ =
∑n
k=1 k

dPk

dpj
(1− pj) pj =∑n

k=1 kµ
k(pj) can be allocated freely to team members according to their abilities, the optimal allocation is

described by solving the following problem.

max
(Ri)ni=1

n∑
i=1

αijr
1

β−1

i s.t.

n∑
i=1

ri = R̄ =

n∑
k=1

kµk(pj)

The first order conditions generate the optimality conditions:

1

β − 1
αijr

1
β−1−1

i =
1

β − 1
αhjr

1
β−1−1

h

or

ri
rh

=

(
αij
αhj

) β−1
β−2

for all i, h = 1, ..., n.

Proposition 5. Suppose β ≥ 2. Whenever feasible, the optimal assignment rule allocates the chances of

team members to get a prize proportionally to their effectiveness (with power β−1
β−2 ).

This result is consistent with Proposition 5 in Crutzen, Flamand, and Sahuguet (2020) when the effort

aggregation function is linear (σ = 0 in their CES function). When team members are homogeneous, ri = rh

holds for all i, h = 1, ..., n when β > 2 (1− σ). Thus qik = k
n for all i, k = 1, ..., n, which generates the

egalitarian rule analyzed in that paper.

Yet, the result in Proposition 5 does not take into account all the constraints in the maximization problem

and also does not consider the fact that negative rewards do not lead to negative effort. We now consider

some examples with 4 prizes and two identical teams to illustrate the optimal rule. We first look at the case

of homogeneous team members and then consider the case with one high ability team member and three low

ability members.

Example 2. Optimal rules with four prizes and all team members having the same effectiveness parameter.
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At a symmetric equilibrium with αij = 1, ∀i, we have that p1 = p2 = 1/2 which allows us to simplify

the effort of a team to E =
(∑

i max
((

V
2n+1

∑n
k=1 rikC

n
k (2k − n)

) 1
β−1 , 0

)) β−1
β

. With n = 4, the objective

function can be further simplified to
∑4
i=1 max

(
(1 + 2 (ri3 − ri1))

1
β−1 , 0

)
.

When β = 2, the optimal allocation rule maximizes
∑4
i=1 max (1 + 2 (ri3 − ri1) , 0). Under the egalitar-

ian allocation rule (which satisfies Proposition 5 by giving all team members the same incentives) we get∑4
i=1 [(1 + 2(ri3 − ri1)] = 8. Yet, this is not the optimal rule. Indeed, we can also consider to give negative

incentives to some team members who, as a consequence, chooses not to exert effort. This frees incentive

tokens that can be redistributed to other team member(s). It is easy to check that one optimal rule is:10

1 1 0 1

0 1 1 1

0 0 1 1

0 0 1 1


.

This allocation rule is non-monotonic in the sense that team member 1 wins a prize if the team wins one

prize but does not win a prize if the team wins three prizes. With that rule,
∑4
i=1 max (1 + 2 (ri3 − ri1) , 0) =

9 > 8. Also, observe that members 2 to 4 are all treated equally (the weights in columns 2 and 4 do not

matter for incentives): the entries in columns 1 and 3 are the same for these players. The incentives of all

team members who exert strictly positive effort satisfy the condition in Proposition 5.

For β > 2, we can pin down the value of β below which it is optimal to depart from the egalitarian rule.

To do this, one need only compare
∑4
i=1(1 + 2 ∗ 1/2)

1
β−1 = 4 ∗ 2

1
β−1 and 3 ∗ (1 + 2 ∗ 1)

1
β−1 = 3 ∗ 3

1
β−1 , where

the effort of only three team members matter for the second team’s output as, under the non-monotonic rule

above, member 1 is inactive. Then, simple algebra implies that the egalitarian rule is suboptimal whenever

4 ∗ 2
1

β−1 < 3 ∗ 3
1

β−1 ⇐⇒ β < ln(3/2)+ln(4/3)
ln(4/3) ' 2.4. The interpretation is straightforward. Non-monotonic

incentives lead to more incentives in total but more unequal incentives. When β is close to 2, the first effect

dominates as convexity is weak.

10This is not the only optimal rule, as optimality puts no constraints on the value the different ri2 can take on.
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Example 3. Optimal rules with four prizes and one team member has high ability.

Assume that in each team α1 > α2 = α3 = α4 = 1. Then, the objective function becomes

a1 max
(

(1 + 2 (r13 − r11))
1

β−1 , 0
)

+
∑4
i=2 max

(
(1 + 2 (ri3 − ri1))

1
β−1 , 0

)
. The condition in Proposition 5

tells us that if all members exert positive effort then we must have:

1 + 2 (r13 − r11)

1 + 2 (ri3 − ri1)
=

(
α1

αi

) β−1
β−2

.

We also have the condition that
∑4
i=i (ri3 − ri1) = 2 as there are two more prizes to allocate when the

team wins 3 rather than 1 prize. The other constraints are that ∆i = (ri3 − ri1) ≤ 1 as this is the maximum

incentive that can be given, going from no prize to getting a prize for sure when the number of prizes won

goes from 1 to 3. We can solve explicitly for the solution of this system of incentives. We have two unknowns

∆1 and ∆2 = ∆3 = ∆4. We get

∆1 =
7a

β
β−2 − 3a

1
β−2

2a
β
β−2 + 6a

1
β−2

∆2 =
5a

1
β−2 − a

β
β−2

2a
β
β−2 + 6a

1
β−2

Easy algebra shows that ∆1 is decreasing in β. More convexity leads to more equal incentives. When β

is close to 2, incentives should be unequal and the constraint ∆1 ≤ 1 is binding. In that case, the optimal

allocation rule is simply ∆1 = 1 and ∆2 = ∆3 = ∆4 = 1/3. Simple algebra shows that the constraint is

always binding if a ≥ 1.8.

Another possible rule selects one of the last three team members and gives him negative incentives, say

∆4 = −1 and give incentives ∆1 = ∆2 = ∆3 = 1 to the other 3 team members. We can compare total effort

under the various cases. We consider the case with a = 1.5. For values of β larger than 4.223, the constraint

∆1 ≤ 1 is not binding. Comparing the aggregate effort team effort under the (∆1 = 1, ∆2 = ∆3 = ∆4 = 1/3)

and (∆1 = ∆2 = ∆3 = 1, ∆4 = −1) allocation rules, simple algebra shows that the latter dominates for

values of β ≤ 2.449.

The interpretation is simple. For values close to β = 2, unequal incentives are optimal. As the incentives

given to the highest ability player are constrained, it it optimal to give highest incentives to three players.
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For higher values of β, it becomes more efficient to give maximum incentives to the high ability player and

give equal incentives to the remaining 3 players. When β is high, the high ability player does not receive the

maximum incentives even if he gets higher incentives than the three other players.

5.5 Monotonic Allocation Rules

We may want to impose monotonicity as a desirable property of prize assignment rules. A rule described by

an assignment matrix Rj is monotonic if and only if rk+1
ij ≥ rkij for all j = 1, ..., n and k = 1, ..., n. Note that

stochastic assignment rules are allowed in this definition. As is seen in Example 1, the optimal assignment

matrix Rj does not necessarily satisfy monotonicity when k∗ > 1. However, monotonicity is a reasonable

requirement. An appealing property of monotonic rules is that every team members exerts positive effort.

Rewriting
∑n
k=1 r

k
ijµ

k(p∗j ):

n∑
k=1

rkijµ
k(p∗j ) = r1

j

n∑
k=1

µk(p∗j ) +
(
r2
j − r1

j

) n∑
k=2

µk(p∗j ) + ...+
(
rnj − rn−1

j

)
µn(p∗j )

By the first order stochastic dominance,
∑n
k=m µ

k(p∗j ) > 0 for allm = 1, ..., n. By monotonicity, rkij−r
k−1
ij ≥ 0

for all k = 1, ..., n (rk0 = 0). Thus, monotonicity implies:

max

(
n∑
k=1

rkijµ
k(p∗j ), 0

)
=

n∑
k=1

rkijµ
k(p∗j ) > 0

Proposition 6. Under any monotonic rule, every team member exerts effort.

Under deterministic rules, monotonicity requires that if team member j wins a prize when m prizes are

won, she will also win a prize if more than m prizes are won. Then, the incentive corresponding to the mth

position on the list can be simplified to:

Mm(p∗j ) =

n∑
k=m

µk(p∗j )

Order Mm(p∗j )s by their values, and define a one-to-one mapping m∗ : {1, ..., i, ..., n} → {1, ..., k, ..., n} such

that

Mm∗(1)(p
∗
j ) ≥ .... ≥Mm∗(j)(p

∗
j ) ≥ ... ≥Mm∗(n)(p

∗
j )
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The following result is then straightforward.

Proposition 7. The list rule m∗ : {1, ..., n} → {1, ..., n} is the optimal monotonic assignment rule.

Note that m∗(1) = k∗. Thus, the assignment of the most able team member is the same in the optimal

deterministic rule as in the optimal list rule. Under the single-crossing condition, it is easy to see that m∗(2)

is either k∗ + 1 or k∗ − 1, and m∗ orders team members in such a way that it forms a single-peaked way at

peak m∗(1) = k∗.11

These findings generate implications for our main application, elections under closed-list proportional

representation. Proposition 7 implies that, when parties decide how to rank their candidates to maximize

effort incentives, candidates should not be ranked in decreasing order of effectiveness. Top spots are safe

seats. Candidates in these positions are sure to get a seat and have little incentive to exert effort. Candidates

in the middle of the list close to the number of seats that the party is expected to win are in hot seats and

have maximal incentives to exert effort.

Yet, real world electoral lists often rank candidates in decreasing in order of effectiveness or competence;

see for example Galasso and Nannicini (2015), Dal Bo et al. (2017), Cirone, Cox and Fiva (2020), Fujiwara

and Sanz (2020), Cox et al. (2021) and Buisseret et al. (2022). This empirical literature also shows that party

leaders and other top brass party members are typically the most competent candidates parties put forward

in elections and are located at the top of the list. Our theory focuses on only one source of incentives,

the prospect of winning a legislative seat. Yet, parties face a menu of incentive devices and constraints.

For example, party leaders and other top brass party members are incentivized by media coverage (which

typically focuses on them) and by the prospect of having access to additional, post-electoral offices or benefits

(on the effects of these incentive levers, see Cox et al. 2021 and Crutzen, Konishi and Sahuguet 2022).

Lists lead by construction to monotonic allocations in which the probability that a candidate wins a seat

increases with the numbers of seats won by her party. Our findings in section 5.3 and 5.4 imply that the

optimal allocation rule is usually non-monotonic (see for example the last rows of the optimal assignment

11An interesting special case is k∗ = 1. Since µk(p∗j ) > 0 for all k = 1, ..., n by single-crossing, we have m∗(i) = i for all

i = 1, ...n, and that list rule is the optimal prize assignment rule.
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matrices in example 1 of section 5.3). One way to reconcile these findings with real-world incentives in closed-

list proportional representation systems is to consider other sources of incentives. Top party candidates

usually keep their (control of the party and) their legislative seat only if the party does well in the election;

see Pilet and Cross (2014) and O’Brien (2015). This means that when the party does not perform well in the

election, these top candidates are replaced. This generates non-monotonic incentives for these replacement

candidates.

6 Concluding Remarks

In this paper, we analyzed a model of team contest for a set of indivisible homogeneous prizes. The number

of prizes won by a team depends on the aggregate effort of its members, and each team member can be

awarded at most one prize. Team members exert effort as a function of the prize allocation rule of their

team. We derive the unique Nash equilibrium of effort choices for any profile of allocation rules. We then

prove that the uniqueness of the perfect Bayesian equilibrium in the two-stage game in which teams choose

allocation rules before team members exert effort. We then characterize the optimal allocation rule as a

function of the abilities of team members. We show that the allocation rule depends in an important way on

the degree of convexity of the cost function. When the cost is not too convex, the allocation rule maximizes

the difference of incentives and gives the strongest incentives to the highest ability players. When the cost

function is very convex, the allocation rules gives incentives to team members in a way that is proportional

to their abilities. In both cases, we show that the optimal rule is in general not monotonic in the sense that

some players can get a prize with a lower probability when their team wins more prizes.

Appendix

Proof of Lemma 1. Without loss of generality, we assume nj = n. To simplify notation, we drop team j

subscripts. We will prove the statement by induction. Let’s start with n = 3. In this case, it is easy to see

(i) if k = 1, then we can set q1({i}) = r1
i for all i = 1, 2, 3, (ii) if k = 2, we can set q2(N\{i}) = 1 − r2

i for
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all i = 1, 2, 3, and (iii) q3({1, 2, 3}) = 1 since r3
i = 1 must hold for all i = 1, 2, 3. Thus, for n = 3 we can find

(qk)3
k=1 for any feasible R.

Now, suppose that for n = m we can find (qk)mk=1 for any m × m matrix R with rki ∈ [0, 1] and∑m
i=1 r

k
i = k for all k = 1, ...,m and i = 1, ...,m. We will show that for n = m + 1 we can find (qk)m+1

k=1 for

any (m+ 1)× (m+ 1) matrix R with rki ∈ [0, 1] and
∑m+1
i=1 rki = k for all k = 1, ...,m+ 1 and i = 1, ...,m+ 1.

Let n = m + 1. As in the case of n = 3, we can see that for k = 1, 2, and m + 1, we can find qks. We

will show for all other k = 2, ...,m, we can find qk : S(k,Ni ∪ {m+ 1}) → [0, 1] with Ni = {1, ...,m} for all

(rk1 , ..., r
k
m+1) with

∑m+1
i=1 rki = k. Let i∗ ∈ arg maxi r

k
i , and let rk−i∗ = (rk1 , ..., r

k
i∗−1, r

k
i∗+1, ..., r

k
m+1).

First, let r̄k = rk−i∗ × k

|rk−i∗ |
. Since r̄k has m arguments, we can find q̄k : S(k,Ni)→ [0, 1] with |Ni| = m

which supports r̄k by our induction hypothesis. Then, we can create q̂k : S(k,Ni ∪ {i∗}) → [0, 1] which

supports r̂k = ( r̄k︸︷︷︸
−i∗

, 0︸︷︷︸
i∗

) by setting q̂k(S) = q̄k(S) for all S ∈ (k,Ni) with q̄k(S) > 0, and q̂k(S) = 0 for

any other S ∈ S(k,Ni ∪ {i∗}).

Second, let r̄k−1 = rk−i∗ × k−1

|rk−i∗ |
. Since r̄k−1 has m arguments and k ≥ 2, we can find q̄k−1 : S(k −

1, Ni) → [0, 1] with |Ni| = m which supports r̄k−1 by our induction hypothesis. Then, we can create

q̌k : S(k,Ni ∪ {i∗}) → [0, 1] which supports řk = (r̄k−1︸︷︷︸
−i∗

, 1︸︷︷︸
i∗

) by setting q̌k(S ∪ {i∗}) = q̄k−1(S) for all

S ∈ (k,Ni) with q̄k−1(S) > 0, and q̂k(S) = 0 for any other S ∈ S(k,Ni ∪ {i∗}).

Clearly, rk = (rk−i∗ , r
k
i∗) can be written as a convex combination of r̂k and řk. This implies that rk can be

supported by a convex combination of q̂k and q̌k. Thus, we proved the induction hypothesis for n = m+ 1.

This completes the proof.�

We now check whether the solution generated from the first-order conditions satisfy the second-order

conditions. The following lemma provides a sufficient condition.

Proof of Lemma 2. From the first-order conditions (3), we have:

∂Bij
∂eij

− c′ij(eij) =
γV

Ej
aij

{
nj∑
k=1

rki µ
k(pj) + νnj (pj)

}
− cijeβ−1

ij = 0.
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nj∑
k=1

rki µ
k(pj) + νnj (pj) =

nj∑
k=1

rki C(n, k)pkj (1− pj)n−k (k − npj) + (n− nj)C(n, nj)p
n−nj
j (1− pj)nj+1 ≥ 0

To analyze the second-order conditions, we differentiate µk(pj) = C(n, k)pkj (1− pj)n−k (k − npj) and

νnj (pj) = (n− nj)C(n, nj)p
n−nj
j (1− pj)nj+1:

dµk(pj)

dpj
= C(n, k)pk−1

j (1− pj)n−k−1
[k(1− pj) (k − npj)− (n− k) pj (k − npj)− npj (1− pj)]

= C(n, k)pk−1
j (1− pj)n−k−1

[
(k − npj)2 − npj (1− pj)

]
= C(n, k)pkj (1− pj)n−k (k − npj)

[
k − npj
pj (1− pj)

− n

k − npj

]

and

dνnj (pj)

dpj
= (n− nj)C(n, nj)p

n−nj−1
j (1− pj)nj [(n− nj) (1− pj)− njpj ]

= (n− nj)C(n, nj)p
n−nj−1
j (1− pj)nj [(n− nj)− npj ]

= (n− nj)C(n, nj)p
n−nj
j (1− pj)nj+1 [(n− nj)− npj ]

pj (1− pj)

Thus, the second-order derivative becomes:
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∂2Bij
∂e2
ij

− c
′′
(eij)

= −γV
a2
ij

E2
j

{
nj∑
k=1

rki µ
k(pj) + νnj (pj)

}
+ γ2V

a2
ij

E2
j

pj (1− pj)

{
nj∑
k=1

rki
dµk(pj)

dpj
+
dνnj (pj)

dpj

}
− (β − 1) cije

β−2
ij

= −γV
a2
ij

E2
j

{
nj∑
k=1

rki µ
k(pj) + νnj (pj)

}
+ γ2V

a2
ij

E2
j

pj (1− pj)

{
nj∑
k=1

rki
dµk(pj)

dpj
+
dνnj (pj)

dpj

}

− (β − 1)

eij

γV aij
Ej

{
nj∑
k=1

rki µ
k(pj) + νnj (pj)

}

= −γV
a2
ij

E2
j

(
1 +

(β − 1)Ej
aijeij

){ nj∑
k=1

rki µ
k(pj) + νnj (pj)

}
+ γV

a2
ij

E2
j

× γpj (1− pj)

{
nj∑
k=1

rki
dµk(pj)

dpj
+
dνnj (pj)

dpj

}

= γV
a2
ij

E2
j

[
−
(

1 +
(β − 1)Ej
aijeij

){ nj∑
k=1

rki µ
k(pj) + νnj (pj)

}

+γ

{
nj∑
k=1

rki µ
k(pj)

(
k − npj −

npj (1− pj)
k − npj

)
+ νnj (pj) [(n− nj)− npj ]

}]

= γV
a2
ij

E2
j

[
nj∑
k=1

rki µ
k(pj)

{
γ

(
k − npj −

npj (1− pj)
k − npj

)
−
(

1 +
(β − 1)

θij

)}
+νnj (pj)

{
γ ((n− nj)− npj)−

(
1 +

(β − 1)

θij

)}]
≤ 0.

where θij ≡ aijeij
Ej

is member i’s effective effort share. Thus,
∂2Bij
∂e2ij

− c′′(eij) < 0 if and only if

nj∑
k=1

rki µ
k(pj)

{
γ

(
k − npj −

npj (1− pj)
k − npj

)
−
(

1 +
(β − 1)

θij

)}
+νk(pj)

{
γ ((n− nj)− npj)−

(
1 +

(β − 1)

θij

)}
< 0.

Ths implies that if (a) γ
(
k − npj − npj(1−pj)

k−npj

)
−
(

1 + (β−1)
θij

)
≤ 0 for each npj < k ≤ nj , and (b)

γ ((n− nj)− npj) −
(

1 + (β−1)
θij

)
≤ 0, the second-order conditions are satisfied. For (a), since k = nj is

the hardest to satisfy, if γ ≤
1+

(β−1)
θij

nj−npj is satisfied, it is sufficient for the contents of the first brace to be

negative, since

γ ≤
1 + (β−1)

θij

nj − npj
<

1 + (β−1)
θij

nj − npj − npj(1−pj)
nj−npj

.

Similarly, for the contents of the second brace to be negative, we need γ ≤
1+

(β−1)
θij

(n−nj)−npj . We conclude that

the second-order conditions are satisfied if γ ≤
1+

(β−1)
θij

max{nj−npj ,n−nj−npj} holds for all i = 1, ..., nj .�
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Proof of Proposition 2.

An equilibrium is described by the following system of equations:12

p1

...

pj

...

pJ


=



Eγ1 (p1)∑J
`=1 E

γ
` (p`)

...

Eγj (pj)∑J
`=1 E

γ
` (p`)

...

EγJ (pJ )∑J
`=1 E

γ
` (p`)


First, we drop the last equation by setting pJ = 1−

∑J−1
j=1 pj , since

∑J
j=1 pj = 1. Let E ≡

∑J−1
`=1 E

γ
` (p`) +

EγJ (1−
∑J−1
j=1 pj). We totally differentiate the system with (p1, ..., pJ−1) to obtain:


dp1

...

dpJ−1

 =



γ
E
γ
1
E1

∂E1
∂p1

E
−
γ
E
γ
1
E1

E
γ
1
∂E1
∂p1

E2 −
γ
E
γ
J

EJ
E
γ
1
∂EJ
∂p1

E2 · · · −
γ
E
γ
J−1

EJ−1
E
γ
1

∂EJ−1
∂pJ−1

E2 −
γ
E
γ
J

EJ
E
γ
1

∂EJ
∂pJ−1

E2

...
. . .

...

−
γ
E
γ
1
E1

E
γ
J−1

∂E1
∂p1

E2 −
γ
E
γ
J

EJ
E
γ
J−1

∂EJ
∂p1

E2 · · ·
γ
E
γ
J−1

EJ−1

∂EJ−1
∂pJ−1

E
−
γ
E
γ
J−1

EJ−1
E
γ
J−1

∂EJ−1
∂pJ−1

E2 −
γ
E
γ
J

EJ
E
γ
J−1

∂EJ
∂pJ−1

E2




dp1

..

.

dpJ−1


Denote the above (J − 1)× (J − 1) matrix by D.

We first show that the determinant of D can be written as:

|D| =
J∏
j=1

(1− γηj)

(
J∑
k=1

pk
1− γηk

)
,

where ηj =
pj∂Ej
Ej∂pj

is party j’s winning probability elasticity of total effort.

First note that
∂EJ (1−ΣJ−1

k=1 pk)

∂pj
= −∂EJ (pJ )

∂pJ
. This implies

γ
EγJ
EJ
Eγj

∂EJ
∂pj

E2
= −

γ
EγJ
EJ
Eγj

∂EJ
∂pJ

E2
= −γpj

pJ
EJ

∂EJ
∂pJ

.

12This analysis is valid for any prize allocation rule and for any functional form of the effort aggregator function.
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Let the matrix in the left-hand side be D, and let ηj =
pj
Ej

∂Ej
∂pj

. Then, the determinant of D is

|D|

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1− γη1 + γp1η1 − γp1ηJ · · · γp1ηj − γp1ηJ · · · γp1ηJ−1 − γp1ηJ
...

. . .
...

...

γpjη1 − γpjηJ · · · 1− γηj + γpjηj − γpjηJ · · · γpjηJ−1 − γpjηJ
...

...
. . .

...

γpJ−1η1 − γpJ−1ηJ · · · γpJ−1ηj − γpJ−1ηJ · · · 1− γηJ−1 + γpJ−1ηJ−1 − γpJ−1ηJ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1− γη1 0 0 − p1
pJ−1

(1− γηJ−1)

...
. . .

...
...

0 1− γηj 0 − pj
pJ−1

(1− γηJ−1)

...
. . .

...
...

0 · · · 0 · · · 1− γηJ−2 − pJ−2

pJ−1
(1− γηJ−1)

γpJ−1η1 − γpJ−1ηJ γpJ−1ηj − γpJ−1ηJ γpJ−1ηJ−2 − γpJ−1ηJ 1− γηJ−1 + γpJ−1ηJ−1 − γpJ−1ηJ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

J−2∏
j=1

(1− γηj) (1− γηJ−1 + γpJ−1ηJ−1 − γpJ−1ηJ ) +

J−1∏
j=1

(1− γηj)
J−2∑
k=1

γpkηk − γpkηJ
1− γηk

=

J−1∏
j=1

(1− γηj) +

J−1∏
j=1

(1− γηj)
(γpJ−1ηJ−1 − γpJ−1ηJ )

1− γηJ−1
+

J−1∏
j=1

(1− γηj)
J−2∑
k=1

γpkηk − γpkηJ
1− γηk

=

J−1∏
j=1

(1− γηj) +

J−1∏
j=1

(1− γηj)
J−1∑
k=1

pk
γηk − γηJ

1− γηk

=
J∏
j=1

(1− γηj)
(

1

1− γηJ
+

1

1− γηJ

J−1∑
k=1

pk
(1− γηJ )− (1− γηk)

1− γηk

)

=

J∏
j=1

(1− γηj)
(

1

1− γηJ
−
∑J−1
k=1 pk

1− γηJ
+

J−1∑
k=1

pk
1

1− γηk

)

=
J∏
j=1

(1− γηj)
(

J∑
k=1

pk

1− γηk

)

Thus, |D| > 0 holds if γηj < 1 is satisfied for all j = 1, ...J .

We now show that γηj < 1 for any assignment matrix Rj if γ ≤ β
max{nj ,n−nj} .
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Recalling Ej(pj , Rj) = (γV )
1

β(β−1)

[∑nj
h=1

(
aβij
cij
ρij(pj)

) 1
β−1

] 1
β

, we have

ηj =
1

β
pj

 nj∑
h=1

(
aβij
cij

ρij(pj)

) 1
β−1


−1
β
 n∑
h=1

(
aβij
cij

ρij(pj)

) 1
β−1


1
β−1  nj∑

h=1

(
aβij
cij

ρij(pj)

) 1
β−1−1(

aβij
cij

ρ′ij(pj)

)

=

∑nj
h=1

(
aβij
cij
ρij(pj)

) 1
β−1−1(

aβij
cij
pjρ
′
ij(pj)

)
β
∑nj
h=1

(
aβij
cij
ρij(pj)

) 1
β−1

=

∑nj
h=1

(
aβij
cij
ρij(pj)

) 1
β−1

pjρ
′
ij(pj)

ρij(pj)

β
∑nj
h=1

(
aβij
cij
ρij(pj)

) 1
β−1

≤ 1

β
max

h=1,...,nj

{
pjρ
′
hj(pj)

ρhj(pj)

}

Since ρij(pj) = max
{∑nj

k=1 r
k
ijµ

k(pj) + νnj (pj), 0
}

, where µk(pj) = C(n, k)pk(1 − pj)
n−k(k − npj) and

νnj (pj) = (n− nj)C(n, nj)p
n−nj
j (1 − pj)

nj+1,
pjρ
′
hj(pj)

ρhj(pj)
is bounded above by max

k≥npj

{
pj∂µ

k(pj)/∂pj
µk(pj)

}
and

pj∂ν
k(pj)/∂pj
νk(pj)

. Direct calculations show:

pj∂µ
k(pj)/∂pj
µk(pj)

=
(k − npj)2 − npj (1− pj)

(1− pj) (k − npj)

=
k − npj
1− pj

− npj
k − npj

≤ nj − npj
1− pj

− npj
nj − npj

<
nj − npj

1− pj
< nj ,

and

pj∂ν
k(pj)/∂pj
νk(pj)

=
(n− nj)− npj

(1− pj)
< n− nj

Thus, we conclude ηj <
max{nj ,n−nj}

β , and γηj < 1 becomes γ < β
max{nj ,n−nj} .

We then use the index theorem (Varian 1975 or Mas-Colell et al (1995) to prove uniqueness of the

equilibrium. Continuity of equilibrium function p∗(R) follows from the implicit function theorem.�

Proof of Proposition 4.
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Totally differentiating the system including ∆j , we obtain:

dp1

...

dpj

...

dpJ−1


=


D





dp1

...

dpj

...

dpJ−1


+



−
γ
E
γ
j
Ej
Eγ1

∂Ej
∂∆

E2

...

γ
E
γ
j
Ej

∂Ej
∂∆

E −
γ
E
γ
j
Ej
Eγj

∂Ej
∂∆

E2

...

−
γ
E
γ
j
Ej
EγJ−1

∂Ej
∂∆

E2



(
aβij
ci1
−
aβhj
ch1

)
µk(pj)d∆j

Rewriting the above by using ηj =
pj
Ej

∂Ej
∂pj

, ϕj =
pj
Ej

∂Ej
∂∆j

and pk =
Eγk
E , we have:

1− γη1 + γp1η1 − γp1ηJ · · · γp1ηj − γp1ηJ · · · γp1ηJ−1 − γp1ηJ

...
. . .

...
...

γpjη1 − γpjηJ · · · 1− γηj + γpjηj − γpjηJ · · · γpjηJ−1 − γpjηJ
...

...
. . .

...

γpJ−1η1 − γpJ−1ηJ · · · γpJ−1ηj − γpJ−1ηJ · · · 1− γηJ−1 + γpJ−1ηJ−1 − γpJ−1ηJ





dp1

...

dpj

...

dpJ−1



= γϕj

(
aβij
ci1
−
aβhj
ch1

)
µk(pj)



−p1

...

1− pj
...

−pJ−1


d∆j

We can prove following result

dpj
d∆j

=
γϕj
|D|

(
aβij
ci1
−
aβhj
ch1

)
µk(pj)

 J∏
k=1,k 6=j

(1− γηk)


J∑

k=1,k 6=j

pk
1− γηk


 .
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Direct calculations yield:

dpj
d∆j

=
γϕj
|D|

(
aβij
ci1
−
aβhj
ch1

)
µk(pj)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1− γη1 + γp1η1 − γp1ηJ · · · −p1 · · · γp1ηJ−1 − γp1ηJ

...
. . .

...
...

γpjη1 − γpjηJ · · · 1− pj · · · γpjηJ−1 − γpjηJ
...

...
. . .

...

γpJ−1η1 − γpJ−1ηJ · · · −pJ−1 · · · 1− γηJ−1 + γpJ−1ηJ−1 − γpJ−1ηJ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

γϕj
|D|

(
aβij
ci1
−
aβhj
ch1

)
µk(pj)

×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1− γη1 0 0 − p1

pJ−1
(1− γηJ−1)

...
. . .

...
...

0 1 0 − pj
pJ−1

(1− γηJ−1)

...
. . .

...
...

0 · · · 0 · · · 1− γηJ−2 −pJ−2

pJ−1
(1− γηJ−1)

γpJ−1η1 − γpJ−1ηJ −pJ−1 γpJ−1ηJ−2 − γpJ−1ηJ 1− γηJ−1 + γpJ−1ηJ−1 − γpJ−1ηJ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

γϕj
|D|

(
aβij
ci1
−
aβhj
ch1

)
µk(pj)

×

 J−2∏
k=1,k 6=j

(1− γηk) (1− γηJ−1 + γpJ−1ηJ−1 − γpJ−1η) +

J−1∏
k=1,k 6=j

(1− γηk)

J−2∑
k=1,k 6=j

γpkηk − γpkηJ
1− γηk


=

γϕj
|D|

(
aβij
ci1
−
aβhj
ch1

)
µk(pj)

 J−1∏
k=1,k 6=j

(1− γηk) +

J−1∏
k=1,k 6=j

(1− γηk)

J−1∑
k=1,k 6=j

γpkηk − γpkηJ
1− γηk


=

γϕj
|D|

(
aβij
ci1
−
aβhj
ch1

)
µk(pj)

 J∏
k=1,k 6=j

(1− γηk)


J∑

k=1,k 6=j

pk
1− γηk


 .

This result shows that when
aβij
ci1

>
aβhj
ch1

,
dpj
d∆j

> 0 holds. It also implies that each party j can increase pj by

adjusting assignment rule R to increase its aggregate effort
∑n
h=1

aβhj
chj

max
{∑n

k=1 r
k
hjµ

k(pj), 0
}

.�

Proof of Theorem 1. Using Proposition 4, let ξ̃j : RJ ×∆J � R be such that ξ̃j(R1, ..., RJ , p1, ..., pJ) =

arg maxRj∈REj(pj , Rj). This is nonempty-valued and upper hemicontinuous by Weierstrass’s theorem and

Berge’s maximum theorem. As will be seen, πj is concave or convex in Rj depending on β > 2 or β ≤ 2.
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If πj is concave, ξj(pj) ≡ ξ̃j(pj) is convex-valued. If πj is convex, the best response is a deterministic:

ξ̃j(pj) ⊂ RD ≡
{
Rj ∈ R : rki ∈ {0, 1}

}
. Let ξj(pj) ≡

{
Rj ∈ R : Rj is a convex combination of ξ̃j(pj)

}
,

which is convex-valued as well. Thus, independent of the value of β, ξj is nonempty-valued, upper hemicon-

tinuous, and convex-valued. Let ξ : RJ ×∆J � RJ be the Cartesian product of ξjs.

Let ψ : ∆J ×RJ → ∆J be such that ψ(p∗1, ..., p
∗
J , R

∗
1, ..., R

∗
J) =

(
Eγ1 (p1,R1)∑J
j=1 E

γ
1 (pj ,Rj)

, ...,
EγJ (p1,R1)∑J
j=1 E

γ
1 (pj ,Rj)

)
. This

is a continuous function by Proposition 3. Let φ : ∆J×RJ � ∆J×RJ be a product of ψ : ∆J×RJ → ∆J and

ξ : ∆J ×RJ � RJ . This is a fixed point mapping that satisfies all conditions of Kakutani’s fixed point theo-

rem. Thus, we have (p∗1, ..., p
∗
J , R

∗
1, ..., R

∗
J) ∈ φ(p∗1, ..., p

∗
J , R

∗
1, ..., R

∗
J). That is, a pair (p∗1, ..., p

∗
J , R

∗
1, ..., R

∗
J) is

the equilibrium path of a subgame perfect equilibrium with p∗(R) in Proposition 3 for all possible subgames

R ∈ RJ . By construction, it is easy to see p∗ ≡ (p∗1, ..., p
∗
J) = p∗(R∗).�
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