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Abstract

Since the initial outbreak of COVID-19 in the United States, researchers from a variety
of scientific disciplines have sought to understand the factors influencing the evolu-
tion of cases and fatalities. This paper proposes a two-stage econometric modeling
approach to analyze a range of socioeconomic, demographic, health, epidemiological,
climate, pollution, and political factors as potential drivers of the spread of COVID-
19 across waves and counties in the United States. The two-step modeling strategy
allows us to (i) accommodate the observed heterogeneity across waves and counties
in the transmissibility of the virus, and (ii) assess the relative importance of the cross-
sectional measures. We leverage the availability of daily data on confirmed cases and
deaths of COVID-19 in counties across the 48 contiguous states and the District of
Columbia, spanning a two-year period from March 2020 to March 2022. We find that
socioeconomic and demographic factors generally had the greatest influence on the
transmissibility of the virus and the associated mortality risk, with health and climate
factors playing a lesser role.
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1 Introduction

“The spread of COVID-19 across the USA confirms that not all Americans are equally at risk

of infection, severe disease, or mortality.” (Chin et al., 2020, p.1)

Since the first COVID-19 deaths were officially reported in February 2020 in Wash-

ington1 by the Centers for Disease Control and Prevention (CDC) and in California,2

COVID-19 became the third leading cause of mortality in 2020 and 2021 (Ahmad et al.,

2022). It surpassed heart disease and cancer during this period. Additionally, COVID-

19 was the number one cause of death for people ages 45–84 in January 2022 (Ortaliza

et al., 2022). During 2022, COVID-19 was ranked as the fourth underlying cause of

death in the U.S. (Ahmad et al., 2023). The course of the novel coronavirus pandemic

in the country varied dramatically over time and geographically.3 By mid-March 2020,

COVID-19 transmission had become widespread, initially clustering in certain urban

areas of high economic activity like New York City, New Orleans, Albany, and Geor-

gia (Mukherji, 2022). This accelerated the spread with case counts rising more than

1,000-fold within weeks. This rapid nationwide transmission deepened the conse-

quences of inequality.4 As the virus spread to afflict more communities over time

- including urban, rural, suburban, and exurban areas - various actions were taken

across the country to slow and contain the coronavirus pandemic. These included

non-pharmaceutical public health interventions,5 as well as vaccination campaigns

for the U.S. public. As a result of these efforts, the geography of COVID-19 infection

and death rates shifted notably over the course of the public health emergency.

Between March 2020 and March 2022, the U.S. experienced six distinct COVID-19

waves, with each wave exhibiting unique complexities and patterns. These episodes

are documented by Jones (2022). To analyze each of these waves individually, we

adopted the following time ranges: March 15–June 30, 2020 for the first wave; July 1–

1The first confirmed case of COVID-19 in the United States was reported in January 2020 in the state of
Washington (Holshue et al., 2020).

2See https://time.com/5825320/california-coronavirus-february-first-death/.
3“The Changing Geography of COVID-19 in the U.S.”, Pew Research Center, at https://www.

pewresearch.org/politics/2020/12/08/the-changing-geography-of-covid-19-in-the-u-s/.
4“As Coronavirus Deepens Inequality, Inequality Worsens Its Spread” at https://www.nytimes.com/

2020/03/15/world/europe/coronavirus-inequality.html?searchResultPosition=1.
5Raifman et al. (2020) provide a comprehensive list of the interventions implemented in each U.S. state

along with their effective dates.
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September 30, 2020 for the second wave; October 1, 2020–March 31, 2021 for the third

wave; April 1–July 31, 2021 for the fourth wave; August 1–November 30, 2021 for the

fifth wave; and December 1, 2021–March 19, 2022 for the sixth wave.6 As of March 17,

2022, the CDC reported a total cumulative number of 79,723,281 confirmed COVID-

19 cases and 971,072 deaths nationwide.7 However, the number of excess deaths (the

number of people who died in a given period compared to the number that would

be expected to die in the same span of time in the past) was even higher (Wang et al.,

2022), totaling 1,105,736 between March 7, 2020 and March 5, 2022 according to CDC

estimates.8 Additionally, provisional COVID-19 deaths from death certificates reached

992,691 by March 19, 2022 according to the National Vital Statistics System.9

From the early stages of the COVID-19 pandemic to the present day, numerous

researchers across a wide range of scientific fields, such as Allcott et al. (2020), Knit-

tel and Ozaltun (2020), Oronce et al. (2020), Wu et al. (2020), Andersen et al. (2021),

Chernozhukov et al. (2021), Liao and De Maio (2021), Papageorge et al. (2021), Baum

and Henry (2022), Carozzi et al. (2022), Desmet and Wacziarg (2022), Welsch (2022),

Bollyky et al. (2023), Haimerl and Hartl (2023) and Ho et al. (2023), have employed

different empirical strategies, data sources, and assumptions to model U.S. COVID-19

cases and deaths. They aimed to uncover the drivers influencing the progression of

both cases and deaths. Unlike most existing literature on this topic, we employ a two-

stage panel plus cross-section sequential modeling approach to identify the drivers

contributing to the progression of COVID-19 cases and deaths in the U.S. over time.

Another important contribution of our paper is the use of daily panel data from March

15, 2020 through March 19, 2022 (a 739-day period). This spans all six identified pan-

demic waves for confirmed cases and deaths attributed to COVID-19 across 3,014 U.S.

counties in the 48 contiguous U.S. states and Washington D.C. Ours is the first study

using such extensive county-level confirmed cases and mortality data covering all six

COVID-19 waves. We employ the one-covariate-at-a-time (OCMT) variable selection

algorithm proposed by Chudik et al. (2018) to guide the choice of drivers that are in-

6Due to irregular data reporting from some states and discontinued updates from Nebraska and Missouri
as of Spring 2022, our study data ends in March 2022.

7Aggregate case and death count data reported to the CDC’s COVID Data Tracker by states, territories,
and other jurisdictions (https://covid.cdc.gov/covid-data-tracker/#datatracker-home).

8More details on the CDC’s methodology for estimating excess deaths is available at https://www.cdc.
gov/nchs/nvss/vsrr/covid19/excess_deaths.htm.

9See https://covid.cdc.gov/covid-data-tracker/#trends_totaldeaths_select_00.
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cluded in the cross-sectional analysis of our second-stage model.

Given the considerable variation in the severity of the COVID-19 pandemic across

the U.S., influenced by evolutionary factors such as emerging viral variants, widespread

vaccinations, and advancements in treatments10 such as Paxlovid,11 our analysis rec-

ognizes the need for a more nuanced modeling approach. Specifically, we employ a

two-stage sequential econometric modeling approach that accounts for the temporal

stability of the estimated models and considers the distinct waves of the COVID-19

pandemic.12

In contrast to most cited studies, analyzing two full years of daily COVID-19 data

requires evaluation of the temporal stability of an estimated model.13 This is due to

evolutionary factors like emerging viral mutations that caused wide swings in cases

and deaths. A single model applied to the entire pandemic history cannot adequately

capture such variations. Therefore, we offer a two-stage sequential econometric mod-

eling approach to examine a number of socioeconomic, demographic, health, epidemi-

ological, climate, pollution, and political drivers of COVID-19 spread across U.S. coun-

ties and pandemic waves. Our econometric modeling approach is conceptually sim-

ilar to that studied by Saxonhouse (1976) and Hornstein and Greene (2012), and has

been used by Giulietti et al. (2014) in studying long-term relationships between pairs

of crude oil prices. We adopt the six distinct pandemic wave definitions from the Pew

Research Center in Jones (2022) and Figure 1 shows the trajectory of deaths across

these waves.

The structure of the paper is as follows. Section 2 provides a brief discussion and

comparison to related economic literature examining the importance of demographic

and socioeconomic factors on the evolution of COVID-19 cases and deaths. Section 3
10The last two factors —widespread vaccinations and advancements in treatments such as Paxlovid—The

are particularly important, as they have reduced the likelihood of mortality for those infected across most
segments of the population.

11The first oral outpatient antiviral for the treatment of mild-to-moderate COVID-19 in adults and pedi-
atric patients (12 years of age and older weighing at least 40 kilograms or about 88 pounds) with positive
results of direct SARS-CoV-2 testing, and who are at high risk for progression to severe COVID-19, including
hospitalization or death. The antiviral was given an FDA emergency use authorization (EUA) on December
22, 2021.

12Martinez-Beneito et al. (2023) examined the first six waves of COVID-19 cases in Barcelona, Spain from
March 2020 to March 2022 using a Bayesian multilevel logistic modeling framework. Their framework
allowed for heterogeneous point estimates by wave in a single model.

13We did not formally test for the coefficient stability across the first stage models. However, Figures
2(a), 2(b), 3(a), and 3(b) provide optical evidence that some of the key coefficients exhibited considerable
variation across waves.
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describes the data and the variables used in our study. Section 4 presents our empirical

modeling strategy, while Section 5 discusses and presents the main results. We con-

clude by summarizing our key findings in Section 6. Replication files and programs

are available upon request from the authors.

2 Related economic literature

There is a limited but important body of economic literature on COVID-19 using a

two-stage sequential modeling approach, including Brown and Ravallion (2020), Aron

and Muellbauer (2022), and Mukherji (2022). However, there are several key differ-

ences between those prior works and our study, including our motivation for adopting

a two-stage modeling approach.

Brown and Ravallion (2020) focused on county-level socioeconomic factors like

median household income, race, income inequality, and poverty, as well as epidemio-

logical and health characteristics. They estimated exponential conditional mean mod-

els for COVID-19 infections and deaths across U.S. counties in the first half of 2020.

To address endogeneity from including cumulative case counts as a covariate in the

second-stage death model, they added a residual-based control function derived from

the first-stage case equation.

Aron and Muellbauer (2022) took a different approach to handling endogeneity

in a two-stage framework. In the first stage, they modeled the time of arrival of a

significant level of COVID-19 infection (timing of onset) for each state from week 9

of 2020 to week 8 of 2021. Using the fitted onset timing as an instrument, they es-

timated a second-stage death model, over the 52-week pandemic period, linking the

derived instrument, 2020 spring temperature, and pre-pandemic socioeconomic, de-

mographic, and political factors to state-level weekly deaths (cumulative per capita

excess (‘all-causes’) deaths, the ratio of the cumulative excess (‘all-causes’) deaths rela-

tive to cumulative normal deaths, and cumulative per capita COVID-19 deaths).

In contrast, Mukherji (2022) used residuals from a first-stage epidemiological panel

data model of early pandemic COVID-19 infections (March 30 to April 19, 2020) to

compute county-level fixed effects and a social vulnerability index for 770 U.S. coun-

ties. In the second stage, the author evaluated the importance of county-level so-

cioeconomic (income, unemployment rate, income inequality, access to housing), de-
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mographic (population size, density), spatial (weighted international air passengers

served by the top international airports in the U.S.), and health factors (e.g., percent-

age of the population that receives the flu vaccine) for this index. The same factors

except the spatial measure, along with a 14-day lagged case covariate, were also used

separately to examine reported deaths in a pooled regression model over the 20-day

period.

Our study updates and complements this COVID-19 economic literature through a

two-stage, county-level panel and cross-section sequential modeling approach. We ex-

ploit the availability of two years of daily confirmed case and death data across 3,014

U.S. counties and all six pandemic waves. Our models allow for county-level ran-

dom effects, lagged cases, and vaccination rates of people who were fully vaccinated

against COVID-19. None of the aforementioned studies include COVID-19 vaccina-

tion measures.

3 Data

This section describes the datasets used to assemble the final dataset utilized for

our study. Detailed information on the data sources, construction, and transforma-

tions is provided in Appendix A.

To construct a consistent final sample of data, we retained 2,215,290 daily obser-

vations for cases, deaths and vaccinations across 3,014 counties with no missing data,

representing 97% of the total 3,108 counties. Table 1 provides descriptive statistics for

the various factors included in our econometric models. Table 2 reports the average

of confirmed cases, deaths, and vaccination rates by wave as well as for low and high

population density counties separately.

3.1 Cases and mortality data

We constructed a county-level panel dataset using daily cumulative counts of con-

firmed COVID-19 cases and deaths from USAFacts. The data covers counties in the

48 contiguous U.S. states and Washington D.C. from March 15, 2020 through March

19, 2022. The resulting longitudinal data include the state abbreviation, the county

name, the Federal Information Processing System (FIPS) codes for states and counties,

the daily calendar date when cases and deaths are reported, and the daily cumulative

confirmed case and death counts attributed to COVID-19.
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During the first two waves of the pandemic (March—September 2020), confirmed

cases were, on average, more prevalent in counties with high population density (fourth

quartile). However, from October 2020 onwards (waves 3–6), counties with lower pop-

ulation density (the first three quartiles) experienced a more rapid increase in cases, as

detailed in Table 2. Similarly, although death rates in high-density counties were ini-

tially on average twice as high those in lower-density areas during the first wave, this

pattern shifted by the third wave. By the sixth wave (beginning December 2021), death

rates in low-density populated counties were 30% higher than those in more densely

populated areas. The early stages of the pandemic were characterized by shortages of

treatment facilities in a number of hard-hit urban areas, so the rates of cases and deaths

in high-density areas in waves 1 and 2 (March-September 2020) is not surprising. Nev-

ertheless, the progression of the pandemic in subsequent waves highlighted dispari-

ties in state-level policies concerning lockdowns, quarantines, and treatment protocols

that were largely political in nature. Lower-density ‘red’ counties generally imposed

fewer restrictions on personal liberty compared to ‘blue’ urban counties. Given these

political dynamics, it is not surprising that the high-density counties exhibited lower

case and death rates from October 2020 onward.

Appendix B contains county-level bivariate maps from Naqvi (2022),14 showing the

interplay of population-adjusted COVID-19 case and death rates across the six waves

with a two-dimensional color legend. Using common color scheme properties, these

maps reveal geographic shifts over time. In the first wave, high cumulative rates con-

centrated along the Atlantic and Gulf coasts. The second wave saw concentration in

the South and Southwest. Coastal states had lower risk of both cumulative cases and

deaths in waves three and four, with a swath along the Mississippi becoming evident.

Despite growing vaccine availability, the fifth wave still saw severe outcomes in some

Mountain states. Finally, the sixth wave displayed relatively low cumulative case rates

but high death rates in states like Georgia and Texas. Overall, the variations in cumu-

lative case and death rates across time and space are evident in these bivariate maps.

14To produce these maps, we used spatial data (the spatial unit identifiers, geographic coordinates, and
geographic entity codes (GEOIDs) (i.e, the FIPS identifier) for each county and the state boundaries, from
the U.S. Census Bureau’s TIGER geographic database. For more details on the construction of the spatial
data see Appendix A.
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3.2 Vaccination data

We obtained county-level data on the daily cumulative vaccination rates of resi-

dents fully vaccinated against COVID-19, with a second dose of a two-dose vaccine or

one dose of a single-dose vaccine, from the CDC Immunization Information Systems.

Appendix C contains bivariate maps visualizing the interplay between population-ad-

justed COVID-19 death rates and vaccination rates across the pandemic waves. In

wave 3, when vaccines became available, Southern states clearly showed low vacci-

nation rates combined with high cumulative death rates. This pattern persisted into

wave 4, while Atlantic coast states hard hit early in the pandemic now had high vac-

cination and death rates. Through waves 5 and 6, states in the Mississippi valley

and other Southern states continued facing low vaccination rates and high cumu-

lative deaths. By the end of wave 6, several states in New England, Florida, and

the Pacific Northwest recorded high vaccination rates and relatively low death rates.

These differences in vaccination rates are also reflected in the comparison of low-

density and high-density counties in Table 2. Specifically, starting with wave 4 (April

2021) and continuing thereafter, counties with higher population densities (catego-

rized in the fourth quartile) exhibit, on average, higher vaccination rates. As previ-

ously mentioned, these discrepancies may have a political basis, with the importance

of widespread vaccination being more prominently emphasized in ‘blue’ states.

3.3 Socioeconomic and demographic data

Using 2020 county-level resident population estimates from the U.S. Census Bu-

reau we gathered demographic information on sex, race, and ethnicity. In addition, we

collected socioeconomic data at the county level, including median household income,

education levels, and poverty rates. Specifically, median income and education data

from the 2022 County Health Rankings. Poverty rates were drawn from the 2020 U.S.

Census Bureau’s Small Area Income and Poverty Estimates (SAIPE) Program. Data on

the percentage of owner-occupied housing in 2018 came from Wu et al. (2020).

Other socioeconomic factors included in our analysis are the Social Vulnerability

Index (SVI), population density, and county-level Democratic vote share in the 2020

presidential election. The 2018 SVI data came from the CDC\ATSDR, providing the

latest available county-level percentile ranking of social vulnerability to disasters like
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pandemics. According to ATSDR, “it [SVI] refers to the potential negative effects on com-

munities caused by external stresses on human health. Such stresses include natural or human-

caused disasters or disease outbreaks.” (Flanagan et al., 2011). We obtained the Democratic

vote shares from the MIT Election Data and Science Lab (2018) county-level dataset.

As described in Appendix A, we constructed the population density measure for each

county.

3.4 Health data

The health factors included county-level data on: the percentage of residents under

65 without health insurance, age-adjusted percentages of adults who currently smoke,

age-adjusted percentages of adults aged 20 and above with diagnosed diabetes, and

the percentage of the population with adequate access to locations for physical activity.

This data came from the 2022 County Health Rankings database. We also added a 2020

county-level Severe COVID-19 Health Risk from PolicyMap (2020), along with mean

county-level estimates of the number of years from birth a person can expect to live

(life expectancy) from Dwyer-Lindgren et al. (2022). Intensive care unit (ICU) bed data

by county came from Kaiser Family Foundation (KFF)’s Kaiser Health News Program.

Finally, we incorporated state-level Medicaid expansion status as of March 2022, also

from KFF.

3.5 Climate and pollution data

For climate and pollution data, we used county-level average seasonal tempera-

ture, relative humidity, and PM2.5 values for 2000–2016. Specifically, we relied on

seasonal estimates produced by Wu et al. (2020) for summer (June to September) and

winter (December to February). The PM2.5 data reflects fine inhalable particulate mat-

ter in the air (aerodynamic diameter ≤ 2.5 micrometers) in units of micrograms per

cubic meter.

4 Econometric modeling strategy

Our econometric strategy employs a two-stage (panel plus cross-section), sequen-

tial modeling approach to examine the drivers described above across COVID-19 waves

and U.S. counties. We start our analysis by estimating separate linear mixed mod-

els for each wave. These models yield autoregressive fixed and random coefficients
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for each of the 3,014 counties. These coefficients then serve as the dependent vari-

ables in the second stage of our cross-sectional analysis, taking into account the uncer-

tainty associated with the estimation of the first-stage coefficients. In the second stage,

we evaluate cross-sectional measures, including socioeconomic, demographic, health,

epidemiological, climate, pollution, and political characteristics, for each county, after

employing the novel OCMT variable selection procedure to identify the most relevant

factors. The second-stage models are estimated by wave, using a weighted seemingly

unrelated regression (SUR) system estimator, allowing for the importance of explana-

tory factors to vary during the course of the pandemic.

4.1 First-stage county-level daily panel analysis

In the first stage, we estimated two linear mixed models utilizing county-level

daily panel data on confirmed cases, deaths, and vaccination rates from March 2020

through March 2022. These data are generated according to the methodology out-

lined in Appendix A. Following Rabe-Hesketh and Skrondal (2022), we used random

coefficient models15 to accommodate the observed heterogeneity across waves and

counties. We estimated the models separately by wave to allow for variations over

those episodes in the transmissibility of the virus, the impact of vaccinations, and im-

provements in treatment regimes. The models employed an unstructured covariance

matrix, providing flexibility for the county-level random effects.

The confirmed cases and deaths series were differenced based on the unweighted

average of the seven prior days’ cumulative count series adjusted for population (see

Appendix A). The first model explains the county-level confirmed case rate as a func-

tion of the same variable lagged j = 14 days. The second model explains the county-

level death rate as a function of the confirmed case rate lagged j = 14 days. Thus, both

models are autoregressive with a single regressor: the county-level confirmed cases

14 days prior, capturing transmissibility of the disease.16 When vaccination rates of

15We assessed the appropriateness of the mixed models using a conservative likelihood-ratio test. We
tested whether the random intercepts and random slopes are needed against a pooled OLS alternative un-
der the null. The null hypothesis was soundly rejected at the 99% confidence level (p-value of zero to four
decimal places) in all cases. Thus, adding random slopes into the mixed models brings significant improve-
ment. For a thorough review of random coefficient models see Hsiao and Pesaran (2008).

16Our choice of a 14-day lag (j = 14) in both mixed models follows the literature using a biweekly data fre-
quency. Earlier pandemic research, when medical resources were extremely stressed and treatment options
limited, proposed an 8-day infection-to-death delay Jin (2021). Later studies, under less resource strain and
with expanded treatments, suggested a delay of 17-21 days IHME (2023). To select a consistent lag across
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people who were fully vaccinated against COVID-19 become available in waves 3–6,

we also included the 14-day lagged county vaccination rate in the models.

Letting i and t denote the county and time subscripts, respectively, the econometric

mixed model for the county-level confirmed case rate, allowing both intercepts and

slopes for cases and vaccines rates lagged 14 days to vary by county, is

cit = α0 + αi + β0ci,t−14 + βici,t−14 + γ0vi,t−14 + γivi,t−14 + ϵit, (1)

where cit and ci,t−14 denote the confirmed cases in county i at time t and t−14, respec-

tively. In turn, vi,t−14 indicates the percentage of county residents that are fully vacci-

nated with a second dose of a two-dose vaccine or a dose of a single-dose vaccine; α0,

β0 and γ0 denote unknown fixed parameters; αi, βi and γi denote county-level random

effects; and ϵit is the disturbance term. Notice that in equation (1), the county-specific

random coefficients relax the homogeneity assumption in the fixed parameters, allow-

ing the impact of the lagged case rate and vaccination rate to vary over both time and

counties.

In order to model the county-level deaths rate in county i at time t, dit, the equiva-

lent mixed model, capturing the mortality risk for those infected, is

dit = δ0 + δi + κ0ci,t−14 + κici,t−14 + λ0vi,t−14 + λivi,t−14 + εit. (2)

Here, δ0, κ0 and λ0 are unknown fixed parameters; δi, κi and λi denote county-level

random effects; and εit is the disturbance term. Notice that in equation (2), deaths are

associated to the county-level confirmed cases 14 days prior.

Using the wave-specific point estimates of β0 and κ0, we computed county-level

composite estimates to take into account the uncertainty associated with the estima-

tion of the first-stage autoregressive coefficients. This calculation is accomplished by

adding the point estimates to the estimated best linear unbiased predictions (BLUPs)

of the county-level random effects. In waves 3–6, county-level composite estimates are

also computed for vaccinations by using the corresponding point estimates of γ0 and

λ0 and the BLUPs of the county-level random effects. The generated county-level and

wave-specific composite estimates

β̂0 + β̂i (3)

all six waves, we chose an intermediate 14-day delay for infections and deaths. We validated our findings
using a 21-day lag; these robustness results are available upon request.
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κ̂0 + κ̂i (4)

γ̂0 + γ̂i (5)

λ̂0 + λ̂i (6)

and their associated precision estimates17 are then stored and merged as a cross-sectional

dataset on 3,014 counties along with the set of time-invariant socioeconomic, demo-

graphic, health, climate, pollution, and political variables shown in Table 1.

The importance of allowing for variations in the two mixed models (1) and (2), over

the six waves, is illustrated in Figures 2(a), 2(b), 3(a), and 3(b). Considerable variation

is evident across waves and between counties with differing levels of population den-

sity. Regarding Figure 2(a), we note that the magnitude of the transmissability coeffi-

cients is always higher in the high population density counties in the fourth quartile of

that empirical distribution. For waves 3–6, we consider the same comparison for the

county-level vaccination coefficients, illustrated in Figure 2(b). As states and counties

had very different stances and policies toward vaccinations, there is considerable vari-

ability in these measures. The variations in the county-level lagged cases coefficients

in the cumulative deaths equation can be visualized in Figure 3(a). Here, too, the co-

efficients gauging mortality rate for those infected are systematically higher in those

counties with high population density, although the differences are less extreme. Like-

wise, Figure 3(b) illustrates the variability in the county-level vaccination coefficients

over waves 3–6, as well as geographic differences related to vaccination efforts.

4.2 Second-stage system cross-section analysis

Using the cross-sectional dataset from the first stage, we assessed the relative im-

portance of the cross-sectional measures (socioeconomic, demographic, health, epi-

demiological, climate, pollution, and political characteristics) in the second stage. The

county-level and wave-specific estimates from eqs. (3) – (6) were used as dependent

variables. To account for the uncertainty associated with the estimation of the first-

stage estimates, each wave’s equation was estimated by weighted least squares (WLS).

The inverse variance weights were applied to the equations of each wave individually,

rather than using a fixed set of weights for the entire estimation.

17The composite precision estimates for (3)–(6) were computed by adding the standard errors of the fixed
effect point estimates to the standard errors of the BLUPs of the random effect standard errors. This assumes
the variance-covariance matrix (VCE) of the error process is separable between fixed and random effects.
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Before estimating the cross-sectional models, we applied the OCMT iterative model

selection procedure18 proposed by Chudik et al. (2018). Both dependent and inde-

pendent variables (including the constant) were inversely weighted, with dependent

variables scaled by 100 for interpretation. We used analytic weights proportional to

the square root of the inverse of the variance of the county-level and wave-specific

composite precision estimates. Using OCMT allowed for the identification of the most

relevant predictors in each wave through a more parsimonious model specification in

which only the selected factors are included in the second-stage models.

As many aspects of both infection and mortality changed during the several waves,

there is no reason to assume that these factors had constant effects on the transmissibil-

ity and mortality risk of the virus. For example, when vaccinations were first available

in the U.S., they were given to the most vulnerable populations: older citizens and

those who were immunocompromised, as well as critical personnel in health care and

public safety roles. We take the county-level age structure as fixed, but recognize that

it may have played different roles before and after vaccinations were available.

4.2.1 SUR for systems estimation

OCMT selected a different set of factors for each wave and cross-sectional depen-

dent variables from eqs. (3) – (6) for the cases and death models, producing varying

coefficients. These cross-section estimates can be considered as a system of six wave

equations with differing specifications and time-varying coefficients. The system of

equations was estimated with a novel application of the Zellner (1962) seemingly un-

related regression (SUR) technique, using the iterative SUR estimator (Oberhofer and

Kmenta, 1974) and WLS. Both dependent and independent variables, including the

constant, were weighted by using the inverse of the county-level and wave-specific

composite precision estimates from the first stage as weights. In our WLS iterated

SUR application, the cross-sectional wave equations correspond to different time pe-

riods. Standard errors for each point estimate were calculated using nonparametric

bootstrapping.19

18See Appendix D and Núñez and Otero (2021) for more details.
19We have also calculated cluster-bootstrap standard errors (clustered by state) based on the argument

that all counties in a state would be subject to the same state-level COVID-19 policies, making it likely that
county-level errors within a state would be correlated. Nevertheless, this approach gave us estimates that
were very imprecisely estimated possibly due to the fact that the clusters are extremely heterogeneous in
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The usual rationale for using SUR as a system estimator is the degree to which each

equation’s error process might be contemporaneously correlated with other units’ er-

rors at each point in time. If those correlations are sizable, SUR can yield efficiency

gains relative to the single-equation estimation of each equation. In our case, the er-

ror correlations that can be exploited are those for each county across the six pandemic

waves. We expect sizable correlations as they reflect unobservable factors at the county

level that have not been captured by the time-invariant regressors selected for each

wave. Correlations of the errors across waves might occur due to omitted common

effects, spatial effects, or as a result of interactions within socioeconomic networks

(Chudik and Pesaran, 2015).

The degree to which the correlations increase the precision of the estimates is eval-

uated by using the Breusch and Pagan (1980) Lagrange multiplier test for error inde-

pendence across equations, with the null hypothesis that the 6× 6 residual correlation

matrix for cases and deaths is diagonal; that is, the errors are independent. For vacci-

nations the residual correlation matrix is 4×4. Under the null, the test statistic follows

a χ2 distribution with (m(m − 1)/2) degrees of freedom, where m is the number of

equations. For each of the outcomes from eqns. (3)–(6), the null hypothesis that the

errors are independent across equations is strongly rejected at the 1% level. There are

statistically significant correlations between the errors in the wave equations, implying

efficiency gains in the SUR estimator relative to estimating each equation separately.

The residual correlations improved the precision of the estimates reported in Tables

3–6.

5 Main Results

This section presents and discusses the main results from the two-stage economet-

ric cases and death models examining the impacts of socioeconomic, demographic,

health, epidemiological, climate, pollution, and political drivers on the evolution of

COVID-19 across U.S. counties and waves. We report the second stage SUR cross-

sectional model results by wave and outcome variable based on the OCMT variable

selection procedure.

each wave. MacKinnon et al. (2023) discusses the consequences of having severely heterogeneous clusters.
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5.1 Cases and Vaccinations

Table 3 reports weighted SUR estimates and the statistical significance for the fac-

tors identified by the OCMT procedure as key determinants in the progression of

county-level confirmed case rates across waves in the case model. Some factors con-

sistently play a crucial role throughout the six waves from March 2020 through March

2022. For example, the proportion of Black residents in each county significantly in-

fluences transmissibility in all waves except for the sixth. Population density also

emerges as a significant positive factor in every wave except the fourth, with very siz-

able effects in waves 1, 2, and 5. The Democratic vote share, used as a proxy for ‘blue’

states, influences transmissibility in all waves except the second, generally increasing

it except in the third wave. The poverty rate, a measure of income inequality after

controlling for median income as discussed by Brown and Ravallion (2020), exhibits

a significant positive impact on cases rates in waves 2 and 3. This observation sug-

gests that U.S. counties with greater income inequality experienced higher infection

rates during these particular waves. The implementation of Medicaid expansion at

the state level, which is also associated with ‘blue’ states, shows sizable significant

positive effects in waves 1 and 4, switching to significantly negative in waves 5 and 6.

These variations may reflect differences in state and local policies such as lockdown

measures and vaccination campaigns. Finally, the average winter temperature in each

county plays a role in affecting transmissibility in all waves, with the impact differing

according to the season.

Table 4 offers insights into the factors that OCMT has identified as crucial in deter-

mining how county-level lagged vaccination rates influence confirmed case rates dur-

ing waves 3 to 6. Notably, the poverty rate is found to significantly decrease the impact

of vaccination on case numbers in waves 3 and 5, while increasing that effect in waves

4 and 6. This may reflect the variations in vaccination initiatives across urban and

rural areas. Other significant determinants include the percentage of uninsured resi-

dents under 65, the percentage of adults aged 20 and older diagnosed with diabetes,

and the percentage of adults who are current smokers within each county. Each of

these factors showed significant effects in two or more waves when vaccinations were

available. Additionally, both summer and winter average temperatures are generally

found to have a significant impact, as is the level of PM2.5 air pollution. A particularly
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striking observation is made in wave 5, which was marked by the prevalence of the

Delta variant. Here, the age distribution, especially for individuals younger than 80

years, is highly significant. This trend suggests that older individuals were less likely

to be vaccinated during this wave, underlining the importance of age as a factor in

vaccination strategies. The racial/ethnic composition of Black and Hispanic residents

is also significant.

5.2 Deaths and Vaccinations

Motivated by the observed patterns in the previous section, results for the deaths

model are presented in Table 5. The OCMT selection procedure, employing the same

tuning parameters δ = 1 and δ⋆ = 2, and a significance level of 0.01 as in the case

model, identified several factors influencing mortality risk from COVID-19 infection

during waves 1 through 3, spanning from the onset through the year 2020. These fac-

tors include the age, race/ethnicity distributions, life expectancy, access to exercise,

median income, as well as weather-related effects. In wave 4, occurring in Spring 2021

when vaccinations became widely available, many fewer factors were identified as in-

fluential; however, Medicaid expansion and the health risk index both have positive

and highly significant effects in wave 4. In wave 5, from late summer 2021 during

the surge of the Delta variant, several factors become relevant. Conversely, wave 6,

spanning from December 2021 to March 2022, revealed an important reduction in the

number of influential factors, likely due to the availability of improved treatment op-

tions during this timeframe. Interestingly, the proportion of males in the population

was negatively correlated with mortality in waves 1, 5, and 6, suggesting a complex

interplay of demographics and health outcomes throughout different phases of the

pandemic. The poverty rate exhibits a significant positive impact on case- rates in

waves 3 and 5, suggesting that U.S. counties with greater income inequality experi-

enced higher mortality rates during these two waves.

Table 6 presents the factors chosen by OCMT as important determinants of the im-

pact of vaccinations on deaths for waves 3–6. Black and Hispanic population fractions

increased the vaccination coefficient in several instances. The percentages of county

residents uninsured, suffering from diabetes or smokers all had significant effects dur-

ing waves 4-6. Medicaid expansion had significant effects: negative in wage 4 but pos-

itive in waves 3, 5 and 6. There is no detectable impact of poverty rate on the impact
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of vaccination rates.

6 Concluding remarks

This study analyzed two years of U.S. county daily data on COVID-19 cases, deaths,

and vaccinations across six distinct waves from March 2020 to March 2022. The two-

stage modeling approach allowed unobservable factors to affect both virus transmissi-

bility and mortality risk in each wave. The cross-sectional coefficients for cases, deaths,

and vaccinations produced in the first stage and used as dependent variables in the

second stage helped identify key socioeconomic, demographic, health, and climate

drivers of the outcomes. This flexible approach with wave-specific models provided

insights into how factors influencing the pandemic’s severity and treatment evolved

over time and space as the virus mutated. The variation in the estimated coefficients

across waves likely reflects increased transmissibility but lower deadliness of new

variants, along with improvements in treatment. By modeling each wave separately,

this study illustrated which factors played significant roles in COVID-19 spread, mor-

tality, and vaccination rates across U.S. counties.

A key finding from this study is that the socioeconomic and demographic factors

that we studied generally had a more significant influence on COVID-19 outcomes

compared to health and climate factors, though those effects weakened at certain

times. In particular, after wave 3 when COVID-19 vaccines were first administered

and in the final wave, the progression from cases to deaths diminished. This suggests

vaccines and improved treatments moderated the effects of risk factors on mortality

as the pandemic progressed. However, socioeconomic and demographic variables re-

mained more influential drivers overall compared to health and climate throughout

the six distinct waves of the sample period.
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Table 1: Descriptive statistics of county-specific drivers (N = 3,014)

Mean SD Min Max

Socioeconomic variables
Age 1-19 yrs (%) 24.24 3.54 5.86 45.31
Age 20-39 yrs (%) 24.00 4.07 10.87 54.35
Age 40-59 yrs (%) 24.48 2.09 10.67 34.27
Age 60-79 yrs (%) 22.44 4.65 5.48 54.64
Black (%) 10.49 14.63 0.05 86.94
Hispanic (%) 9.78 13.60 0.61 96.33
Male (%) 50.04 2.15 43.18 72.96
Median income (log) 10.93 0.23 10.17 11.98
HS completion (%) 0.88 0.06 0.49 0.99
Some college (%) 0.59 0.12 0.19 0.92
Poverty (%) 13.70 5.38 3.00 43.90
Owner-occupied housing (%) 71.52 8.08 19.61 92.40
Democratic share 2020 (%) 33.55 15.80 5.04 92.15
Population density (log) 2.95 1.69 -2.26 10.22
Social vulnerability index 0.50 0.29 0.00 1.00

Health variables
Uninsured (%) 13.88 6.07 2.78 43.45
Diabetes (%) 10.77 2.29 5.50 21.00
Smoking (%) 20.36 4.14 6.50 38.20
Life expectancy (years) 77.38 2.59 64.50 91.72
Health risk index 0.01 1.00 -3.65 3.27
Access to exercise (%) 55.33 23.48 0.00 100.00
ICU (beds per capita) 12.99 23.92 0.00 757.36
Medicaid expansion 0.64 0.48 0.00 1.00

Climate and pollution variables
Summer avg. temperature (◦C) 30.94 3.15 19.40 41.72
Summer rel. humidity (%) 89.03 9.69 31.64 99.78
Winter avg. temperature (◦C) 8.21 6.58 -7.46 26.19
Winter rel. humidity (%) 87.47 4.81 58.16 97.67
PM2.5 (µg per cubic meter) 6.09 1.39 2.49 12.37
Notes: All variables in Table 1 are at the county level, except for the Medicaid
expansion indicator which is at the state level. The sample size N represents
the number of U.S. counties (FIPS) included. SD gives the standard deviation.
HS stands for high school completion. ICU beds per capita are expressed per
100,000 population.
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Figure 1: Daily moving average of COVID-19 deaths in the United States (excluding
U.S. territories and freely associated states) from March 15,2020 through March 19,2022.
The six waves depicted are defined in Jones (2022), with the first wave starting March 15,
2020 and the last ending March 19, 2022. The solid vertical lines denote the beginning
of each new wave. The x-axis shows the month and year. The blue vertical dashed line
indicates December 14, 2020, when COVID-19 vaccine were first administrated to the U.S.
Public. Wave 3 partially captures the initial vaccine rollout in mid-December 2020, wave 5
reflects the Delta variant surge, and wave 6 shows the Omicron variant dominating. The
moving averages were generated using an uncentered 7-term moving average filter. Data
Source: USAFacts and U.S. Department of Health and Human Services.

https://usafacts.org/visualizations/coronavirus-covid-19-spread-map/
https://www.hhs.gov/coronavirus/covid-19-vaccines/index.html
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Table 2: Average of confirmed cases, deaths, and vaccination rates by wave

Wave starting:
(Month/Year) 3/20 7/20 10/20 4/21 8/21 12/21

Cases Total 522.71 1,962.47 9,394.12 10,595.04 15,728.08 23,992.87
Low 479.73 1,959.10 9,573.60 10,731.38 16,117.79 24,172.88
High 651.76 1,972.59 8,855.23 10,185.63 14,557.91 23,452.38

Deaths Total 17.65 43.95 189.10 211.17 284.94 357.31
Low 13.83 41.52 199.08 222.26 303.84 379.28
High 29.12 51.26 159.13 177.85 228.16 291.35

Vaccinations Total 0.00 0.00 13.66 32.65 45.54 50.90
Low 0.00 0.00 13.71 30.89 43.42 48.47
High 0.00 0.00 13.49 37.93 51.91 58.20

Notes: Waves are defined in Jones (2022) with the end date for the last wave on March 19, 2022.
The reported calculations in this table are based on the cumulative cases, cumulative deaths, and
cumulative vaccination rates recorded at the end of each wave within each county. Cases and deaths
reflect variations in population-adjusted cumulative rates by county. Vaccinations are county-level
rates of people who were fully vaccinated against COVID-19. Low and high cases are the average of
cases for counties with population density in the first three quartiles (2,261 counties) and in the fourth
quartile (753 counties), respectively. Similar calculations apply to deaths and vaccinations.



(a) Median of county-level composite case estimates, eq. (3), using 14-day lag.

(b) Median of county-level composite vaccination estimates, eq. (5), using 14-day
lag.

Figure 2: Median of county-level composite estimates from the mixed model results for the
confirmed case rate, equation (1), with 95% confidence intervals by wave for low and high
population density counties (N = 3,014). High density counties are those with population
density in the fourth quartile (753 counties). Low density counties fall in the first three
quartiles (2,261 counties).



(a) Median of county-level composite case estimates, eq. (4), using 14-day lag.

(b) Median of county-level composite vaccination estimates, eq. (6), using 14-day
lag.

Figure 3: Median of county-level composite estimates from the mixed model results for
the confirmed death rate, equation (2), with 95% confidence intervals by wave for low
and high population density counties (N = 3,014). High density counties are those with
population density in the fourth quartile (753 counties). Low density counties fall in the
first three quartiles (2,261 counties).



28

Table 3: Drivers of 14-day lagged case rates in the case model (β̂0 + β̂i in eq. 1)
Wave starting (Month/Year): 3/20 7/20 10/20 4/21 8/21 12/21

Socioeconomic demographic variables

Age 1-19 years (%) 2.3747∗∗∗ 1.3922∗∗∗ 0.0651 1.8694∗∗∗ -0.3896 0.0346
Age 20-39 years (%) -1.2581∗∗∗ -0.9886∗∗ -0.9949 0.1420
Age 40-59 years (%) -1.2873∗ -0.6613 0.1099 0.0345 0.1492 0.1128
Age 60-79 years (%) -0.4904 -0.0714 -0.2938
Black (%) -0.3897∗∗∗ 0.4109∗∗∗ 0.1163∗ 0.4941∗∗ -0.3967∗∗∗ -0.0230
Hispanic (%) -0.1779 0.4199∗∗ 0.5044∗∗∗ 0.3999∗∗ 0.0805
Male (%) 0.2800 0.0870 0.1165 0.6203 -0.4741 -0.2602∗

Median income (log) -7.2108 -1.9213 6.0835 -44.5141∗∗∗ 3.6967
HS completion (%) 21.4376 19.0636 38.9028∗ 45.5196 42.0529∗∗∗ 3.3322
Some college (%) -16.7773 -0.7530 8.1486 -15.1328∗ 4.3463
Poverty (%) 0.6316 0.6147∗∗ 0.5957∗ -0.3337 -0.1166
Owner-occupied housing (%) -0.3257 -0.3216∗∗∗ 0.6845∗∗∗ 0.1910∗∗

Democratic share 2020 (%) 0.4818∗∗∗ -0.1497∗ 0.4675∗∗∗ 0.1663∗∗ 0.1490∗∗

Population density (log) 2.8756∗∗ 4.4504∗∗∗ 2.3250∗∗∗ 0.8094 3.0533∗∗∗ 1.6812∗∗∗

Social vulnerability index -6.0135 -0.2703 22.1052∗∗∗ 8.8651∗∗∗

Health variables

Uninsured (%) -0.2729 -0.7198∗∗∗ -0.4958∗∗∗

Diabetes (%) -4.8183∗∗∗ -0.0906 -13.2329∗∗∗ -0.5232 -1.4475∗∗∗

Smoking (%) -0.0270 1.4753∗ 4.4344∗∗∗ 1.8721∗∗∗ 0.9387∗∗∗

Life expectancy (years) 1.6445∗∗ 0.5559 -0.6823∗ 2.4125∗∗∗ -0.4739
Health risk index -0.9438 0.2177 0.4593 -2.8733 1.6706∗∗ 2.0782∗∗∗

Access to exercise (%) -0.0376 -0.0495 -0.0159
ICU (beds per capita per 100K) -0.0167 0.0400 0.0007 0.0696 0.0213∗

Medicaid expansion 5.6995∗∗ -1.9527 -2.2676 26.3241∗∗∗ -9.0255∗∗∗ -3.3048∗∗∗

Climate and pollution variables

Summer avg. temperature (◦C) 1.0407 0.7719∗ 2.4289∗∗∗ -1.3772∗∗∗

Summer rel. humidity (%) 0.2646 -0.3324∗∗ 0.6984∗∗ -0.4562∗∗∗ -0.1581∗∗∗

Winter avg. temperature (◦C) 1.3312∗∗∗ -0.9743∗∗∗ -1.4947∗∗∗ 3.5748∗∗∗ 0.6113∗∗∗ 0.6807∗∗∗

Winter rel. humidity (%) -0.9555∗∗∗ -0.0657 0.4745∗∗∗ 0.2360∗∗∗

PM2.5 (µg per cubic meter) -1.3700 -0.2569 -0.2336 -2.6660∗ -0.0760 0.9296∗∗∗

Constant 72.9941∗∗∗ 44.2813∗∗∗ 454.0419∗∗∗ 140.3864∗∗∗ 239.7158∗∗∗ 281.0088∗∗∗

N 3,014 3,014 3,014 3,014 3,014 3,014
Notes: The dependent variable (3) was scaled by 100 in estimation to facilitate the interpretation of the
model coefficients. Standard errors for each point estimate were computed by performing nonparametric
bootstrap estimation over 1,000 replications, but these are not reported for brevity. ∗ p < 0.1, ∗∗ p < 0.05,
∗∗∗ p < 0.01.
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Table 4: Drivers of 14-day lagged vaccination rates in the case model (γ̂0 + γ̂i in eq. 1)
Wave starting: (Month/Year) 10/20 4/21 8/21 12/21

Socioeconomic demographic variables

Age 1-19 years (%) 0.0278 0.1479∗∗∗ -0.7588∗∗∗ -0.2742
Age 20-39 years (%) -0.0082 -0.8684∗∗∗ 0.0074
Age 40-59 years (%) -0.8927∗∗∗

Age 60-79 years (%) 0.2404∗∗∗ -0.0068 -0.6310∗∗∗ -0.2790
Black (%) 0.0128∗∗ 0.0007 -0.2415∗∗∗

Hispanic (%) -0.0472∗∗∗ 0.1098∗∗∗ -0.1627∗∗

Male (%) -0.0529 0.4443∗∗∗

Median income (log) -2.2927∗ -0.2054 -2.5085 5.2935∗∗∗

HS completion (%) 9.9755 -3.3032 28.5046∗∗∗ -6.7053
Some college (%) 3.6313 -2.1258∗∗∗ 4.8738∗ -6.9593
Poverty rate (%) -0.2929∗∗∗ 0.0709∗∗∗ -0.1430∗ 0.4635∗∗∗

Owner-occupied housing (%) -0.0231 -0.0426
Democratic share 2020 (%) 0.0767∗∗∗ 0.0360∗ 0.0636
Population density (log) 0.7317∗∗∗ -0.4196∗∗∗ 0.2774 -0.6847
Social vulnerability index 1.5716 -0.9975∗ -0.7633 -3.0629

Health variables

Uninsured (%) 0.0648∗ 0.0236 0.2313∗∗∗ 0.3110∗∗∗

Diabetes (%) 0.5451∗∗ -0.3225∗∗ 0.8442∗∗∗ 0.3513
Smoking (%) 0.0649 -0.8478∗∗∗ -0.4052∗

Life expectancy (years) 0.0638 0.1126 0.0715 -0.0565
Health risk index -1.0438∗∗∗ -0.1650 -0.3710 2.1537∗∗∗

Access to exercise (%) -0.0194∗∗ 0.0000 -0.0164∗∗ 0.0034
ICU (beds per capita per 100K) -0.0056
Medicaid expansion 1.2497∗∗∗ 0.2041 3.0729∗∗∗

Climate and pollution variables

Summer avg. temperature (◦C) -0.5874∗∗∗ 0.0067 1.4884∗∗∗ -0.4456∗∗

Summer rel. humidity (%) 0.1139∗∗∗ -0.1337∗∗∗

Winter avg. temperature (◦C) 0.2510∗∗∗ 0.2361∗∗∗ -1.3917∗∗∗ 0.0809
Winter rel. humidity (%) 0.0869∗∗∗ -0.0387∗∗∗ 0.1352∗∗∗ 0.1063
PM2.5 (µg per cubic meter) 0.2375∗∗∗ -1.0964∗∗∗ -1.9314∗∗∗

Constant -1.2002∗∗∗ -0.7157∗∗ -1.3948∗∗∗ -2.0162∗∗∗

N 3014 3014 3014 3014
Notes: Standard errors for each point estimate were computed by performing non-
parametric bootstrap estimation over 1,000 replications, but these are not reported for
brevity. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table 5: Drivers of 14-day lagged case rates in the death model (κ̂0 + κ̂i in eq. 2)
Wave starting: (Month/Year) 3/20 7/20 10/20 4/21 8/21 12/21

Socioeconomic demographic variables

Age 1-19 years (%) 0.1066∗∗∗ -0.0384 -0.0100
Age 20-39 years (%) 0.0559 0.0538∗∗ -0.0615∗∗

Age 40-59 years (%) -0.0778∗∗ 0.0084
Age 60-79 years (%) 0.1242∗∗ 0.1187∗∗∗ -0.0118
Black (%) 0.0036 0.0050∗ 0.0088∗∗∗ 0.0020∗∗∗

Hispanic (%) 0.0170∗∗∗ 0.0007
Male (%) -0.1411∗∗∗ -0.0247 -0.0092 -0.0283∗∗∗ -0.0037∗∗∗

Median income (log) 1.0144∗ 0.6942∗∗ 0.0006 0.4579∗∗∗

HS completion (%) -6.3305∗ 0.3281 1.7128∗∗

Some college (%) 3.0123∗∗ 0.2246 0.1432 0.0109
Poverty rate (%) 0.0066 0.0463∗∗∗ 0.0168∗∗

Owner-occupied housing (%) -0.0020 0.0150 0.0024∗∗∗

Democratic share 2020 (%) 0.0133 -0.0110∗∗∗

Population density (log) 0.4787∗∗∗ 0.0530 -0.0210
Social vulnerability index 0.1781 0.3161∗∗∗

Health variables

Uninsured (%) -0.0298 -0.0157∗∗ 0.0202∗∗∗

Diabetes (%) -0.0627 0.0045
Smoking (%) 0.0503 -0.0400∗∗ 0.0020 -0.0089
Life expectancy (years) 0.0033 -0.0520∗∗ -0.0435∗∗ -0.0445∗∗∗

Health risk index 0.1312 0.1843∗∗∗ 0.0520
Access to exercise (%) -0.0146∗∗ -0.0047∗∗

ICU (beds per capita per 100K) -0.0109∗ 0.0009
Medicaid expansion -0.1022 0.3100∗∗∗ 0.0087

Climate and pollution variables

Summer avg. temperature (◦C) 0.0421∗∗ -0.0589∗∗∗

Summer rel. humidity (%)
Winter avg. temperature (◦C) 0.0393∗∗ -0.0586∗∗∗ -0.0022
Winter rel. humidity (%) -0.0378∗∗ -0.0095 0.0029 -0.0016
PM2.5 (µg per cubic meter) -0.2080∗ 0.0393∗∗

Constant -15.5367 11.8505 142.4560∗∗∗ 36.7336∗∗∗ 160.7601∗∗∗ 109.3487∗∗∗

N 3014 3014 3014 3014 3014 3014
Note: The dependent variable (4) was scaled by 100 in estimation to facilitate the interpretation of the
model coefficients. Standard errors for each point estimate were computed by performing nonparametric
bootstrap estimation over 1,000 replications, but these are not reported for brevity. ∗ p < 0.1, ∗∗ p < 0.05,
∗∗∗ p < 0.01.
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Table 6: Drivers of 14-day lagged vaccination rates in the death model (λ̂0 + λ̂i in eq. 2)
Wave starting: (Month/Year) 10/20 4/21 8/21 12/21

Socioeconomic demographic variables

Age 1-19 years (%) 0.0201 -0.4221∗ 0.0524
Age 20-39 years (%) -0.7254∗∗∗

Age 40-59 years (%) 0.5771∗∗∗ -0.2453
Age 60-79 years (%) -0.7566∗∗∗ -0.4118∗∗

Black (%) 0.0754∗ 0.1707∗∗∗

Hispanic (%) 0.2498∗∗∗ 0.1172∗∗∗

Male (%) -0.1792 -0.2492
Median income (log) 2.0827 -1.6051 2.4298
HS completion (%) -17.4913∗∗ 4.3661
Some college (%) 9.0750∗ 12.7743∗∗∗ 2.2008
Poverty rate (%) -0.0025 0.1880
Owner-occupied housing (%) -0.1113∗∗ -0.1728∗∗∗ -0.0631
Democratic share 2020 (%) 0.0067 -0.0412
Population density (log) 0.6765∗∗

Social vulnerability index -0.0698 -2.3029

Health variables

Uninsured (%) -0.0134 -0.9247∗∗∗ 0.1194∗ 0.8489∗∗∗

Diabetes (%) -0.0687 -1.4792∗∗∗ -2.3155∗∗∗

Smoking (%) 0.4853∗∗∗ 1.7480∗∗∗

Life expectancy (years) 0.6465∗∗ 0.2584 0.2238
Health risk index 0.4912 -0.6527 3.9141∗∗∗

Access to exercise (%) -0.0218 -0.0296∗∗ -0.0000
ICU (beds per capita per 100K) -0.0253∗

Medicaid expansion 6.3810∗∗∗ -4.2273∗∗∗ 6.5334∗∗∗ 6.1602∗∗∗

Climate and pollution variables

Summer avg. temperature (◦C) -1.0521∗∗∗ -0.5873∗∗∗ 0.0758 0.2286
Summer rel. humidity (%) 0.1823∗∗∗

Winter avg. temperature (◦C) 0.7509∗∗∗ -0.0900 0.2214∗∗∗ 0.8311∗∗∗

Winter rel. humidity (%) -0.0723 -0.1807∗∗∗ -0.2679∗∗

PM2.5 (µg per cubic meter) 0.1191

Constant -23.3391∗ -108.6129∗∗∗ 94.8942∗∗∗ -0.3167

N 3014 3014 3014 3014
Note: The dependent variable (6) was scaled by 100 in estimation to facilitate the in-
terpretation of the model coefficients. Standard errors for each point estimate were
computed by performing nonparametric bootstrap estimation over 1,000 replications,
but these are not reported for brevity. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.



Appendix A Data characteristics and their configuration

All the data below were merged for 3,014 counties (FIPS), out of 3,108 total coun-

ties. We constructed datasets for counties in the 48 U.S. contiguous states and Wash-

ington D.C. with no missing data. The data covers March 15, 2020 through March 19,

2022. Alaska and Hawaii were excluded on the grounds of severe limitations for the

climate and pollution data at the county level. Additionally, one could argue that the

mechanisms that may underpin the propagation of COVID-19 across states within the

United States may not operate in these two states because they are not geographically

contiguous. U.S. territories and associated states were also excluded from the analysis.

Confirmed cases, mortality, and vaccination data

For confirmed cases and deaths, we used USAFacts data. Unlike other similar data

sources (e.g., Johns Hopkins Center for Systems Science and Engineering (CSSE) and

the New York Times data), USAFacts distinguishes cases and deaths in the five New

York City boroughs rather than reporting them as a single entry. Per USAFacts, daily

cases are assigned to the county where the person was diagnosed with COVID-19.

Deaths are counted as COVID-19–related according to the person’s place of residency

and if the virus played a direct role in causing death. This implies that coronavirus

can be one of several causes of death.20

Using the daily cumulative confirmed case and death counts attributed to COVID-

19, we constructed a panel data set for U.S. counties.21 As these data series are not

monotonically increasing in all U.S. counties (FIPS), we applied a backward correction

using the counts to ensure the cumulative series for both cases and deaths increase

monotonically over time in each county. Given sizable differences in population across

counties, the number of confirmed COVID-19 cases and deaths are then expressed as

population-adjusted rate measures in each county by dividing the confirmed counts

by the total population of each county in 2020: the latest county resident population

estimates available from the U.S. Census Bureau, Population Division22 at the time of

20For more details on USAFacts’ COVID-19 data collection process, refer to their methodology and
sources.

21A very few daily death counts (0.001%) were replaced with zero deaths when cases were zero and death
counts were equal to 1.

22Annual Resident Population Estimates for States and Counties [accessed on May 17, 2022], correspond-
ing to POPESTIMATE2020, were used in this paper.
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writing this article. Next, we applied a one-sided seven-day lagged moving average

filter on the population-adjusted rate measures for both cases and deaths to reduce the

variability of the cumulative count series adjusted for population by expressing each

value as a deviation from the unweighted average of the seven prior days’ values.

Finally, we took the difference between the smoothed series and the cumulative count

series adjusted for population in order to capture the changes in the cumulative series,

using a ‘long difference’ approach.

Regarding vaccinations, while the first administration of the COVID-19 vaccine in

the U.S. was officially reported on December 14, 2020,23 the first fully vaccinated indi-

viduals in the 48 contiguous U.S. states and the District of Columbia, with vaccination

rates24 of 0.1%, occurred on December 24, 2020, according to our COVID-19 vaccina-

tion CDC data accessed on May 17, 2022. As a few daily cumulative data series are

not monotonically increasing in some counties, we applied the same backward correc-

tion approach for the daily cumulative vaccination rates to ensure these series increase

monotonically within each of the U.S. counties (FIPS). Missing vaccinations rates were

replaced with zeros.

Socioeconomic and demographic data

Using the 2020 U.S. Census Bureau county-level resident population estimates,25

we gathered information on sex (total male and female population), race (Black or

African American alone or in combination male and female population, and White

alone or in combination male and female population), and ethnicity (Hispanic male

and female population) at the county level across five aggregated age groups.26 These

data are included in the cross-sectional, second-stage analysis in percentage units. The

variables White, Black, and Hispanic include both males and females but do not add

up to 100%, as Hispanic ethnicity may be combined with any or several of the U.S.

Census Bureau racial categories (White, Black or African American, American Indian

or Alaska Native, Asian, and Native Hawaiian or other Pacific Islander).

23See https://www.wsj.com/articles/covid-19-vaccinations-in-the-u-s-slated-to-begin-monday-11607941806.
24Percent of people who have completed a primary series (have a second dose of a two-dose vaccine or

one dose of a single-dose vaccine) based on the jurisdiction and county where vaccine recipient lives.
25Annual County Resident Population Estimates by Age, Sex, Race, and Hispanic Origin, corresponding

to YEAR 13, were used in this paper [accessed on May 17, 2022].
26Below 20 years, between 20 and 39 years, between 40 and 59 years, between 60 and 79 years, and 80

years or more.
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In addition to the demographic information, we gathered socioeconomic county-

level data on median household income and education (high school completion27 and

some college28) from the 2022 County Health Rankings, University of Wisconsin Popu-

lation Health Institute, 2020 poverty rates29 from the U.S. Census Bureau’s Small Area

Income and Poverty Estimates (SAIPE) Program using the official national poverty

line, and the percent of owner-occupied housing in 2018. Median household income

is from the 2020 U.S. Census Bureau SAIPE, education from the 2016-2020 ACS, State-

specific sources and EDFacts, and the owner-occupied housing data from Wu et al.

(2020).30

Other factors that we included are the Social Vulnerability Index (SVI), popula-

tion density and the 2020 presidential election Democratic vote share. The county-

level percentile-ranked metric of social vulnerability to natural disasters (i.e., the SVI)

ranges from 0 to 1, with 1 being the highest level of social vulnerability for a county.

The SVI31 used in this study are for 2018, the latest county-level estimates available

from the CDC\ATSDR. The county population density was constructed by forming

the ratio of the U.S. Census Bureau 2020 county population and its 2020 land area in

square kilometer from the U.S. Census Bureau Gazetteer Files., while the county-level

Democratic share was derived by dividing the number of votes obtained by Joseph R.

Biden Jr. (Democratic Party) in the 2020 presidential election in county i by the total

number of votes recorded in county i in the 2020 presidential election. These data were

27Percentage of adults ages 25 and over with a high school diploma or equivalent.
28Percentage of adults ages 25-44 with some post-secondary education.
29Estimated percent of people of all ages in poverty. The SAIPE program poverty county estimates are

based on the official measure of poverty as defined by the federal government, and derived based on com-
bining direct American Community Survey (ACS) estimates and Empirical Bayes (or "shrinkage") tech-
niques. For the 2020 SAIPE estimates, the official Census Bureau poverty threshold for a family of four
containing two related children under age 18 was $26,246. Hence, a family, and all individuals from the
family, are considered in poverty if their total money income (pre-tax) is less than the poverty threshold for
their family size and age composition.

30See https://github.com/wxwx1993/PM_COVID [accessed on May 17, 2022] and the Supplementary
Materials. A housing unit is owner-occupied if the owner or co-owner lives in the unit, even if it is mort-
gaged or not fully paid for. Mobile homes occupied by owners with installment loan balances also are
included in this category. The homeownership rate is computed by dividing the number of owner-occupied
housing units by the number of occupied housing units or households. For details, see https://www2.
census.gov/programs-surveys/acs/tech_docs/subject_definitions/2020_ACSSubjectDefinitions.pdf.

31This index is based on 15 U.S. Census variables, categorized into one of four themes: socioeconomic sta-
tus (poverty, unemployment, income, no high school diploma), household composition and disability (aged
65 or older, aged 17 or younger, disability, single-parent households), minority status and language (racial
or ethnic minority group, speak English “less than well”), and housing type and transportation (multi-unit
housing, mobile homes, crowded housing, vehicle access, group quarters) Flanagan et al. (2018).
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gathered from the MIT Election Data and Science Lab (2018).32

Health data

The health factors are taken from a variety of data sources. Using the same 2022

County Health Rankings database, we gathered county-level data on the percent of

residents under age 65 lacking health insurance, the percentage of adults who are cur-

rent smokers (age-adjusted), the percentage of adults aged 20 and above with diag-

nosed diabetes (age-adjusted), and the percentage of population with adequate access

to locations for physical activity (exercise opportunities).33 The health uninsured mea-

sure comes from the U.S. Census Bureau’s 2019 Small Area Health Insurance Estimates

Program, the smoking and diabetes prevalence data are taken from the 2019 CDC’s

Behavioral Risk Factor Surveillance System (BRFSS), and the exercise opportunities

information comes from the 2010 & 2021 ArcGIS Business Analyst, ESRI, YMCA &

US Census Tigerline Files. We also added a county-level index of Severe COVID-19

Health Risk from PolicyMap (2020). This index,34 presented in z-score form,35 incor-

porates the prevalence of five health conditions which have been considered as risk

factors for COVID-19 infections36 by the CDC’s BRFSS at the county level. We also

included mean county-level estimates of the number of years from birth a person can

expect to live (life expectancy), produced by Dwyer-Lindgren et al. (2022).37 Finally,

we added the number of Intensive Care Unit (ICU) beds38 by county from the Kaiser

32See https://electionlab.mit.edu/data [accessed on August 20, 2021]. This dataset contains county-level
returns for presidential elections from 2000 to 2020.

33“Counties are assigned a missing value when no locations for access to exercise have been identified in either the
Business Analyst or ESRI Parks datasets. In contrast, counties are assigned a 0% when they have a location for access
to exercise but the county population does not live within the defined buffers of that location.” Genusso et al. (2022)

34The underlying information used to calculate this 2020 index comes from the CDC’s 2018 BRFSS survey,
the CDC’s 2016 Diabetes Atlas, the 2010 U.S. Census Bureau, and the 2014-2018 American Community
Survey.

35“A county’s z score shows how many standard deviations above or below the average a county’s risk level falls. A
score of 0.6, for example, would mean that the county has a higher risk than average, but is still within one standard
deviation of the average and is therefore not unusually high.” PolicyMap (2020)

36Obesity, diabetes, high blood pressure, heart disease, and chronic obstructive pulmonary disease.
Asthma is not included in the health risk index due to data inconsistency on asthma risk.

37Life expectancy estimates in 31 counties, where the average annual population is less than 1000 and in
cases where the width of the uncertainty interval is greater than 10 years, are missing [accessed on July 1,
2022].

38ICU Beds reported by Medicare-certified institutional providers (hospitals) in the Fiscal Years 2018 and
2019 to the Centers for Medicare & Medicaid Services (Healthcare Cost Report Information System; Hospi-
tals - 2010), including the categories “intensive care unit,” “coronary care unit,” “burn intensive care unit”
and “surgical intensive care unit.” It includes coronary, trauma, surgical, burn, and general ICU beds in
community and non-Federal hospitals. Hospitals for veterans run by the Department of Defense are not
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Family Foundation (KFF)’s Kaiser Health News Program and the status of state action

on the Medicaid expansion decision as of March 2022, from KFF.

We converted the counts of ICU beds into per capita ICU beds by dividing the

number of ICU beds in a county over the total population of that county in 2018.

Climate and pollution data

For the climate data, we relied upon 2000–2016 county-level average seasonal tem-

perature and relative humidity panel data as well as measures of PM2.5 air pollution,

produced by Wu et al. (2020)39 for summer (June to September) and winter (Decem-

ber to February). These aggregate measures are a result of averaging maximum daily

temperature and relative humidity information on 4 km × 4 km gridded rasters from

gridMET via Google Earth Engine over the period 2000–2016 and across grid cells in

each county. Using this data, we calculated separate average estimates for summer

and winter for temperature and relative humidity. Finally, because the raw tempera-

ture data is in Kelvin degrees, we converted them into degrees Celsius by subtracting

272.15 from the calculated average temperatures.

The pollution data refers to fine inhalable particular matter in the air, in micro-

grams per cubic meter, with an aerodynamic diameter of 2.5 micrometers and smaller

(PM2.5). The PM2.5 air pollution estimates used in this study for 2018 are publicly

available for each county and produced by Wu et al. (2020).40

Spatial data used for the construction of bivariate maps

Using the geographic identifiers (GEOIDs) (i.e, the FIPS identifier) numeric codes

for each U.S. county from the 2020 U.S. Census Bureau’s TIGER geographic database

(cb_2020_us_county_500k.zip) and the 2020 Cartographic Boundary File with geo-

graphic coordinates for each county, both accessed on June 15, 2022, and after re-

moving the state FIPS identifiers for Alaska, Hawaii, Puerto Rico, and other non-

contiguous territories, we adjusted the geographic U.S. Census Bureau latitude and

longitude of each spatial unit (counties) to Cartesian coordinates (x,y) using the Al-

bers equal-area conic map projection (See Picard and Stepner, 2015), which is one

included in the data. Data accessed on June 11, 2021.
39See https://github.com/wxwx1993/PM_COVID [accessed on May 17, 2022].
40See https://github.com/wxwx1993/PM_COVID [accessed on May 17, 2022]. For more details about

the construction of this measure, see the Supplementary Materials.
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of the most commonly used projections for maps of the conterminous United States

(Snyder, 1984, p.93). The same configuration applies to states, but using the 2020 U.S.

Census Bureau’s TIGER geographic database cb_2020_us_state_500k.zip datafile and

the 2020 Cartographic Boundary File for states. To translate the geographic shape files

contained in the zip files to Stata format, we used the Stata routine spshape2dta.
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Appendix B Bivariate maps for population-adjusted COVID-19 case and
death rates

(a) First wave, March–June 2020

(b) Second wave, July–September 2020
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(c) Third wave, October 2020–March 2021

(d) Fourth wave, April–July 2021



(e) Fifth wave, August–November 2021

(f) Sixth wave, December 2021–March 2022



Appendix C Bivariate maps for population-adjusted COVID-19 death and
vaccination rates

(a) Third wave, September 2020–March 2021

(b) Fourth wave, April–July 2021
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(c) Fifth wave, August–November 2021

(d) Sixth wave, December 2021–March 2022



Appendix D The OCMT variable selection procedure

OCMT is an alternative approach to penalized regression methods (e.g., the Least

Absolute Shrinkage and Selection Operator developed by Tibshirani (1996); LASSO)

and other widely used procedures (e.g., stepwise regressions)41 for variable selection

in high-dimensional linear regression models.42 It selects variables based on multiple-

testing corrected statistical significance. The objective of OCMT is to find a set of

predictors that is sufficient to approximate the true data generating process underly-

ing the variable of interest. Among the several advantages of OCMT over penalized

regression methods, Chudik et al. (2018) highlight its ease of interpretation, its relation

to classical statistical analysis, computational speed, and good performance in small

samples. Moreover, the variable selection under OCMT is separated from the fore-

casting stage, while in the penalized regression methods the variable selection and

estimation are performed simultaneously (Chudik et al., 2023). Unlike OCMT, LASSO

“introduces a penalty term in the minimand used for estimation and calibrates the

extent of penalization by cross-validation (typically 10-fold cross-validation). The use

of cross-validation is supported by Monte Carlo evidence for standard models with

homoskedastic and cross-sectionally independent errors, but both of these assump-

tions are likely to be violated in the case of the panel regressions” on U.S. county-

level data (Ahmed and Pesaran, 2022). For the OCMT implementation, we used the

community-contributed routine ocmt developed for the Stata environment, available

from the Statistical Software Components (SSC) Archive (Núñez and Otero, 2020).

As the name implies, OCMT tests the statistical significance of all covariates one

at a time and selects those whose t-statistics are in absolute value greater than a given

critical value threshold. The critical value is computed using the critical value func-

tion cp(K, δ) = Φ−1
(
1 − p

2f(K,δ)

)
, where Φ−1(·) is the inverse of the standard normal

distribution function; f(K, δ) = cKδ for some positive constant c = 1 and δ, the critical

value exponent; 0 < p < 1 is the nominal size of the individual test statistics; and K is

the number of covariates in the regression model of interest. All of the covariates that

satisfy the stated condition are selected jointly to form the initial specification of the

41Although stepwise regression has been extensively used among practitioners, it does not ensure consis-
tent selection in several situations (Desboulets, 2018).

42Chen et al. (2021), Iregui et al. (2021), Ahmed and Pesaran (2022) and Chudik et al. (2023) constitute
some applications of OCMT.
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model.

In a second stage of the algorithm, OCMT uses this initial specification and once

again tests the statistical significance of the covariates not selected before one at a time.

The procedure continues until there are no more statistically significant covariates.

Chudik et al. (2018) point out that OCMT is fast because the number of covariates

bounds the number of stages required for convergence. To account for the multiple

testing nature of the problem, the critical value function in the second and subsequent

stages of OCMT is given by cp(K, δ⋆) = Φ−1
(
1 − p

2f(K,δ⋆)

)
, where it is required that

δ⋆ > δ. In their Monte Carlo simulations and empirical illustration, Chudik et al. (2018)

set the value of δ = 1, equivalent to applying the well-known Bonferroni adjustment

to the critical value from the standard normal distribution, for a given significance

level p. We follow Chudik et al. (2018) for δ and δ⋆ and set them equal to 1 and 2,

respectively. It proves helpful to think of the positive constants δ and δ⋆ as tuning pa-

rameters that play the role of adjusting the critical values used for inference. To assess

the robustness of our findings, we also set δ⋆ = 1.5, which yielded qualitatively similar

results to those based on δ⋆ = 2. For the statistical significance, we choose p = 0.01,

a significance level that is tighter than the recommended value of p = 0.05, as we

aim to be more conservative when selecting covariates. This higher level of signifi-

cance ensures that only the most robust and reliable relationships between variables

are considered for inclusion in the analysis.
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