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1 Economics of Matching and Property Rights
The past 25 years have witnessed a remarkable revolution in economic theory’s

role within public policy research and institutional design, with matching theory as-

suming a pivotal position. However, what exactly constitutes matching theory, and

how does it stand apart from other studies dedicated to allocating scarce resources, a

fundamental question in economics?

While distinctions between various approaches to allocating indivisible goods are

not always apparent, we can differentiate this chapter’s focus from other scholarship

through several nuanced perspectives. One crucial distinction lies in the high degree

of heterogeneity prevalent in matching markets.

Consider, for instance, the allocation of offices within a company. While each of-

fice may be identical in size and function, they can vary significantly in value to em-

ployees. Preferences diverge widely, with some desiring central locations for active

engagement, others vying for panoramic views, and yet others preferring seclusion

from office chatter. This emphasis on the unique identity of the allocated good, signif-

icantly influencing an agent’s utility, distinguishes matching from markets centered

on trading identical or closely differentiated indivisible goods.

In another scenario, buyers and sellers engage in trading contracts encompassing

various aspects of their agreement for a highly customizable product. These aspects

include the traded good, monetary terms, quantity, and quality, rendering each fea-

sible contract remarkably heterogeneous in its features. Despite this diversity, the

contract itself remains an indivisible entity. Particularly when the set of feasible con-

tracts is limited due to external factors like computational complexities—wherein not

all aspects concerning transferable utility can be accommodated within this set—this

circumstance inclines toward the scholarship of matching theory instead of traditional

general equilibrium theory.

As a result, the technical analysis of matching markets employs a distinct set of

tools and analytical methods, often relying on discrete mathematical or combinatorial

approaches due to the high-dimensional requirements arising from the heterogeneity

within their economic environments.

Consider constrained optimization, a traditional approach utilized by mechanism

designers to address lower-dimensional and less heterogeneous problems, such as

revenue maximization or maximizing additive social welfare, while considering in-

centive and feasibility constraints. In the context of resource allocation, this impor-

tant technical apparatus often involves a utility-transferring numeraire good, typi-

cally money. However, when dealing with matching markets lacking transferable

utility, the pursuit of such objectives is economically not meaningful and technically

infeasible in the design of clearinghouses.
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In such cases, setting-specific objectives—whether positive or normative—are fre-

quently expressed through axioms, proving to be a highly effective approach in yield-

ing tractable and often fruitful models.

The theory of matching markets has significantly evolved through the study of

real-life market dynamics. While this phenomenon holds true to some extent for

other branches of economic theory, such as auction theory, contract theory, and issues

related to asymmetric information prevalent in real-life markets, the symbiotic rela-

tionship between theory and real-world applications has been notably stronger and

arguably more productive in the context of matching theory. Consequently, a positive

feedback loop has emerged, propelling the iterative refinement of both theory and

practical applications. This iterative process involves the design and implementation

of improved mechanisms in the field, along with the development of novel matching

models, potentially opening new application domains and avenues of study.

Specifically, the methodology employed to craft real-world mechanisms using the-

oretical frameworks often aims at rectifying existing real-life systems through mini-

mally invasive changes.1 However, this endeavor necessitates a robust theoretical

foundation tailored precisely to the application at hand for the successful implemen-

tation of a “custom-made” theory. Therefore, for designs to yield fruitful outcomes,

the developed theory must align strongly with the underlying problem.

This positive feedback loop presents challenges in separating discussions purely

centered on theory and applications within matching theory. While efforts will be

made to delineate these discussions, inevitable overlaps may occur between Chapter

1 and Chapter 3 that we author, as well as with other chapters in this handbook.

1.1 Model Classification
Matching models with non-transferable utility can be categorized based on vari-

ous features inherent to these models and their associated applications. Some plausi-

ble criteria for classification include:

1. Property rights: Some matching markets resemble pure exchange economies

with “private-ownership,” such as those involving the exchange of incompat-

ible living donor kidneys for transplantation, where property rights are well-

defined. In contrast, some matching markets may share characteristics with

“fair division problems” featuring “collective-ownership,” as in office alloca-

tion for incoming graduate students. Other markets may exhibit greater com-

plexity in property rights. Consider a school choice setting with both exam

1This approach involves replacing or improving only the components of the system that are responsi-
ble for any divergence from policymakers’ intended goals, facilitating easier adoption of the new design
(Sönmez, 2023).
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and non-exam schools. A high entrance exam score does not guarantee an

exclusive right to attend or trade a school seat when allocating seats in exam

schools. Nevertheless, high scores can still be grounds for objection in scenar-

ios where a student with a lower score is assigned a seat at a highly sought-

after school while a more deserving candidate—possibly benefiting from var-

ious affirmative action measures—is overlooked. In non-exam schools, each

district student might have equal rights to be assigned to any school, making

a fully deterministic allocation potentially unfair.

2. Feasibility of matches and policy objectives restricting outcomes: This crite-

rion considers which matching configurations are permitted or preferred due

to the problem’s setup, agent preferences, or policy objectives. For example,

in living-donor organ exchange, while bilateral trades of compatible donors

between two patient-donor pairs might be allowed, larger exchange cycles in-

volving more pairs may not be feasible due to logistical constraints at the trans-

plant center. Dormitory room allocations to college students might specify that

rooms must only be shared by exactly three roommates, no more and no less.

Moreover, in opposite-sex marriage, heterosexual men prefer to be matched

with women rather than remaining unmatched, but they do not prefer mar-

rying each other. Additionally, government departments in India might be

mandated to hire a minimum number of people with disabilities from among

all applicants while at the same time granting exclusive over-and-above ac-

cess to minorities for certain positions per the Indian Constitution’s provisions.

While policymakers normatively set some of these restrictions as policy objec-

tives, some come naturally as restrictions through the preferences of individu-

als, and yet others arise due to pragmatic, logistical, institutional, political, or

physical constraints and objectives. These distinctions are important and have

to be specified and acknowledged differently.

3. The effects of externalities and other complementarities: Externalities, like

a worker’s preference for not just their office but also their neighboring col-

leagues, or students’ concern for their classmates in school admissions, often

play a pivotal role in matching markets. While some settings internalize these

externalities in preferences, many other settings involving complementarities

and externalities significantly influence outcomes. For instance, when form-

ing a team, a manager might prefer placing an employee in the team only if

another specific employee is also present. Theoretical handling of externalities

and complementarities is often very challenging.

4. Feasibility of multiple contractual terms: This criterion evaluates the flexibil-

ity in defining contract terms between two parties contemplating a match. Full
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flexibility could lead to a transferable utility model if both parties can fully ne-

gotiate on distributing the surplus generated by the match. However, further

restrictions, common in real-life markets, often place these scenarios within

the domain of semi- or non-transferable utility models. For instance, in pub-

lic school admissions, the consumed commodity is free education at a school,

with minimal negotiation between the student and the school regarding at-

tendance. Similarly, in cadet-branch matching in the United States Military

Academy at West Point, feasible contractual terms might be limited to serv-

ing for either 5 or 8 years, with no intermediate options available. Models

with multiple feasible contractual terms between each party are surveyed sep-

arately in Chapter 9.

5. Timing of Transactions: Many matching models can be analyzed in a static

setting. For instance, participants in the discussed matching process, includ-

ing students and workers, typically engage in it only once in their lifetimes,

with transactions organized by centralized mechanisms synchronously. Since

matches usually occur once a year, it may be innocuous to ignore long-term

dynamic effects concerning schools and firms. However, in other markets,

explicit consideration of time and dynamics could be important as the agent

population evolves over time. For example, agents arrive gradually in living-

donor organ exchange clearinghouses. In some of these settings, general

lessons can nevertheless be drawn using static models, whereas this may be

more challenging in others. In our own experience, we found that dynamics

play a more crucial role for the liver than the kidney due to urgency and the

lack of an alternative treatment such as dialysis, even in the context of living-

donor organ exchange. Dynamic models of matching are surveyed in Chapter

12 of this handbook.

We will adopt embedded property rights structures from various models and ap-

plications as the primary classification category and explore the feasibility of differ-

ent matchings within this framework. The formulation of intriguing property right

structures and corresponding solution concepts remains an active area of research (cf.

Ekici, 2013; Balbuzanov and Kotowski, 2019). However, our focus in this chapter

will primarily center on classical structures. We believe that the fundamental concept

of property rights forms a cornerstone for an economic theory chapter on matching.

While certain matching models might employ isomorphic mathematical structures,

the economic distinctions between them play a pivotal role in comprehending the

development trajectory of matching theory and its relevance in policy discussions.

Following this framework, the initial section will delve into matching markets
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that lend themselves to modeling as exchange economies characterized by exclusive

property rights. Subsequently, the second part will pivot towards matching prob-

lems where common ownership stands as the primary feature. The third section will

encompass more intricate property rights, including priority-based entitlements and

normative criteria such as affirmative action.

Our exploration will cover diverse types of property rights, especially when dif-

ferent criteria determine the allocation of distinct goods. For instance, various schools

employing different exams to assess seat eligibility serve as public resources dis-

tributed among students, highlighting the nuanced nature of property rights within

this context. We will address constraints related to feasible matchings right from the

classification stage of our models. Furthermore, we aim to present a nuanced discus-

sion concerning complex restrictions, including affirmative action or other significant

policy constraints.

In addition, we will briefly explore how the presence of complementarities can

frequently result in adverse outcomes in various settings. However, it is worth noting

that numerous positive results with externalities are currently in active development

as of the writing of this chapter.

The last feature regarding the availability of different prices or contractual terms

will not be covered in this section, as a dedicated chapter addressing this issue is

planned separately.2

2 Matching with Private Ownership
In this section, we first introduce a comprehensive model by Sönmez (1999) that

enables the formulation of matching markets without transferable utility as exchange

economies with indivisible goods when agents are endowed with well-defined pri-

vate property rights. Subsequently, we will explore key economic models extensively

examined in the literature using this general formulation, as they will manifest as

specific instances within this overarching framework.3

2In addition to the foundational papers shaping the models and results surveyed in this chapter, three
survey and book sources have significantly influenced various organizational aspects. Chapter 3 of Moulin
(1995) contributed to organizing the entirety of Section 2, Roth and Sotomayor (1990) aided in structuring
Sections 2.3 and 2.4, while Sönmez and Ünver (2011) played a role except those two. It is important to
note that the classification based on property rights is a unique feature of this chapter. Moreover, the
subjective coverage inherently reflects the preferences of the authors conducting this survey. Owing to
space limitations and our chosen structural approach in organizing this chapter, numerous noteworthy
contributions have been omitted or briefly mentioned in passing.

3Chapter 3 of Moulin (1995) provides an excellent presentation of canonical models and numerous re-
sults regarding the core, competitive equilibria, and desirable mechanisms in matching markets.
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2.1 Matching Markets as Exchange Economies
Consider a finite set of agents I = {1, 2, . . . , n} and a finite set of objects H. Each

agent i ∈ I is endowed with a set of distinct objects denoted as ω(i) ⊆ H so that ω =(
ω(i)

)
i∈I is a partition of objects. Agents can trade part or all of their endowments;

ultimately, each will consume a subset of objects. Each agent i ∈ I has a preference
relation over their consumption bundles denoted as a binary relation ≿i⊆ 2H × 2H. Let

≿= (≿i)i∈I denote the preference profile. For each agent i, ≿i is a complete, reflexive,

and transitive relation; its strict (acyclic) part is denoted by ≻i, and its indifference

(cyclic) part is denoted by ∼i.4

An outcome of a market is a matching, which is a function µ : I → 2H such

that it assigns a distinct (but possibly empty) subset of objects to each agent, that

is µ(i) ∩ µ(j) = ∅ for each distinct i, j ∈ I. Thus, endowment ω is a matching.

We sometimes denote a matching µ using the set definition of mathematical func-

tions, i.e., µ =
⋃

i∈I

{(
i, µ(i)

)}
. Moreover, using the range definition of functions, let

µ(J) =
⋃

j∈J µ(j) for any J ⊆ I. Let M∗ be the set of all matchings.

Within this framework, it is conceivable that not all configurations of consump-

tions among agents are permissible due to the exogenous setup of the economy. Let

M ⊆ M∗ represent the set of feasible matchings, such that ω ∈ M. Henceforth,

we will denote each feasible matching simply as a matching. The reference to the list

[I, H, ω,M,≿] shall be termed a generalized matching market.
We exclusively consider Cartesian preference profiles. In other words, given the

list [I, H, ω,M], for each i ∈ I, there exists a set of preferences Pi, and P =×i∈I Pi

denotes the set of preference profiles. Each profile in P induces a market; that is, for

every ≿∈ P , [I, H, ω,M,≿] forms a generalized matching market. Formally we refer

to [I, H, ω,M,P ] as a generalized matching environment.
Many matching markets with private property rights studied in the literature are

special cases of this model:

1. Housing market (Shapley and Scarf, 1974): Each agent has unit demand and

owns a single object, referred to as a house. All trades are permitted as long as

each agent consumes exactly one house.

2. Multi-type goods exchange (Moulin, 1995): Each agent desires to consume a

bundle of various types of goods, one from each type. Each agent initially pos-

sesses such a bundle (for example, a feasible bundle might consist of a house

4We will often, in the subsections, assume preferences are strict (or linear orders) from the get-go, i.e.,
G ∼i F =⇒ G = F for any G, F ⊆ H. Then we denote the preferences through its strict part ≻i, which
becomes a complete (and antisymmetric and transitive) relation, and ⪰i=≿i will denote its induced weak
part: G ⪰i F =⇒ G ≻i F or G = F. Sometimes, we will only focus on choices rather than preferences,
which we will mention when used.
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and a car). Trades are allowed provided that, ultimately, each agent consumes

one good from each type.

3. Roommates problem (Gale and Shapley, 1962): This setup mirrors the housing

market with a restriction on feasible allocations. Each agent possesses unit

demand of an indivisible good termed companionship. Only bilateral trades

are permitted; if an agent consumes another’s companionship (e.g., by sharing

a room), the second agent must also consume the first agent’s companionship.

4. Kidney exchange problem (Roth, Sönmez, and Ünver, 2007): Similar to the

roommates problem setup but potentially with a more flexible restriction on

feasible allocations. Each patient requires a kidney transplant and “possesses”

a paired living donor’s kidney for exchange to acquire a better match (e.g., ex-

changing an incompatible co-registered paired donor for a compatible donor).

However, exchanges of up to k-way are permitted for some k ≥ 2. An ℓ-way

exchange is symbolized as a cycle of ℓ ≤ k patients, where the first patient re-

ceives the second patient’s donor kidney, the second patient receives the third

patient’s donor kidney, and so forth, culminating with the ℓ’th patient receiv-

ing the first patient’s donor kidney.

5. Opposite-sex marriage market (Gale and Shapley, 1962): Resembling the room-

mates problem setup but with additional restrictions on feasible allocations:

Agents are divided into two sets as women and men. Each man can only

be matched with a woman or remain single, and each woman can only be

matched with a man or remain single. When a man is matched with a woman,

the woman is reciprocally matched with the same man, denoting bilateral ex-

changes akin to the roommates problem.

6. College admissions (Gale and Shapley, 1962): Maintaining the two-sided setup

of the opposite-sex marriage market, the two sides differ in the structure of

their feasible assignments. Agents on one side (referred to as colleges) can

be matched with multiple agents from the other side (referred to as students),

while each student, on the other hand, can enroll in at most one college or

remain unmatched.

7. Multi-sided matching problem (Alkan, 1988): Encompassing k categories of

agents for some k > 2. A feasible match constitutes a k-tuple featuring exactly

one agent from each category, such as an orchestra of k musicians playing dif-

ferent instruments.

8. Hedonic coalition formation problem (Banerjee, Konishi, and Sönmez, 2001;

Bogomolnaia and Jackson, 2002): There is a group of agents, and each agent

has preferences over coalitions that include them. A feasible match is a parti-

tion of the set of agents.
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2.1.1 Properties of Matchings and Solution Concepts

What are desirable matchings in a generalized matching market? At the minimum,

since exclusive property rights are the defining feature, no agent should consume a

worse bundle than the best they can get by consuming a subset of their endowment.

We say that matching µ ∈ M is individually rational if for each i ∈ I, µ(i) ≿i G for

every G ⊆ ω(i).
We next define a very mild form of efficiency. A matching µ ∈ M is non-wasteful

if, for each i ∈ I, there is no matching ν ∈ M such that ν(j) = µ(j) for each j ∈ I \ {i}
and ν(i) ≻i µ(i); that is, no agent can receive a strictly preferred assignment through

a feasible matching without interfering with other individuals’ assignments.

A strengthening of non-wastefulness is Pareto efficiency, identifying outcomes that

cannot be improved upon for all agents by an alternative matching. A matching µ ∈
M is Pareto efficient if there is no other matching ν ∈ M such that ν(i) ≿i µ(i) for each

i ∈ I and ν(j) ≻j µ(j) for some j ∈ I.

What outcomes are desirable for a generalized matching market [I, H, ω,M,≿]?

Two potential solution concepts for desirable outcomes are core matchings and

competitive equilibria.5

We next formalize these solution concepts under our notion of property rights.

A subset of agents J ⊆ I and a matching ν ∈ M strongly block a matching µ ∈ M if

(1) ν(J) ⊆ ω(J) and (2) ν(j) ≻j µ(j) for each j ∈ J. The weak core is the set of matchings

that are not strongly blocked. Let MWC ⊆ M denote the weak core.

Although the weak core constitutes a reasonable set of outcomes that cannot be

objected to by any set of agents, a weak-core matching need not be Pareto efficient.

Thus, we strengthen this notion as follows: A subset of agents J ⊆ I and a matching

ν ∈ M weakly block a matching µ ∈ M if (1) ν(J) ⊆ ω(J), (2) ν(j) ≿j µ(j) for each

j ∈ J, and (3) ν(i) ≻i µ(i) for some i ∈ J. The strong core is the set of matchings that

are not weakly blocked. Let MSC ⊆ M denote the strong core.

By definition, every strong block is a weak block; therefore, MSC ⊆ MWC.

When exists, every strong-core matching is Pareto efficient and individually ratio-

nal, while a weak-core matching is only guaranteed to be individually rational.

We next define competitive equilibrium. Suppose a price vector is given as p =

(ph)h∈H ∈ R
|H|
+ , denoting the (fiat money) price of each object. The budget set of agent

5The idea of core in economics goes back to Edgeworth (1881), praised by von Neumann and Morgen-
stern (1947), and was formalized in games with side payments by Gillies (1959) and without side payments
by Aumann (1961).
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i ∈ I at price vector p is defined as

Bi(p) =

{
G ⊆ H : ∑

h∈G
ph ≤ ∑

h∈ω(i)
ph

}
.

Given also a matching µ ∈ M, the pair (µ, p) is a competitive equilibrium (or CE) if

• for each agent i ∈ I,

µ(i) ∈ max
≿i

Bi(p),

and

• for each object h ∈ H,

h /∈ µ(I) =⇒ ph = 0.

The first condition is the utility maximization condition, while the second is the

market clearing condition. Let MCE be the set of CE matchings.

It is easy to show that MCE ⊆ MWC. Contrary to the claim, suppose (µ, p) is a CE

such that µ is not in the weak core. Let pG = ∑h∈G ph for any G ⊆ H. Then, there is a

strong block (J, ν) to µ. Since ν(j) ≻j µ(j) for each j ∈ J, by the utility maximization

condition of a CE, we have pν(j) > pω(j). This leads to pν(J) > pω(J) contradicting

ν(J) ⊆ ω(J), which follows from the definition of a strong block (J, ν).

There may not be an obvious relation between the strong core and CE without

further preference assumptions. Moreover, in general, the existence of CE, weak-core,

and strong-core matchings is an issue without further restrictions on set M or agents’

preferences.

Proposition 1 Given a generalized matching market, MSC ⊆ MWC and MCE ⊆ MWC.
However, each of these sets may be empty.

2.1.2 Direct Mechanisms

Many real-life examples of matching markets surveyed here (and in Chapter 3)

are deployed in centralized markets rather than decentralized ones. One reason is

that the property rights designations we discuss in the next two sections—either too

complex or too weak—sometimes render purely decentralized markets infeasible. In

such cases, at least some centralization becomes necessary for the markets to clear

(e.g., student placement, see Balinski and Sönmez, 1999), and the choice of the correct

mechanism plays a crucial role (e.g., school choice, see Abdulkadiroğlu and Sönmez,

2003b). Another reason is that even when private property rights are established, the

existing heterogeneity of the matches considered can result in congestion (e.g., the old

clinical psychology Ph.D. labor market, see Roth and Xing, 1997) or pose challenges

in contracting, leading to unraveling. This makes it infeasible to realize favorable

outcomes in decentralized markets (e.g., the history of the medical residency market,
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see Roth, 1984b).

In other cases, it is not clear whether we have a market at hand, even though there

are undisputed property rights. Decentralization may lack the power to determine an

optimal outcome due to limitations in contracting, stemming from ethical and insti-

tutional constraints and computational complexity (e.g., kidney exchange, see Roth,

Sönmez, and Ünver, 2004, 2007).

There can be other reasons for implementing centralized clearinghouses for these

markets, as the complex games in decentralized or semi-centralized markets create

challenging strategic considerations for participating agents. A prominent example

is the normative issues regarding strategic complexity in school choice (Pathak and

Sönmez, 2008; Sönmez, 2023). As a result, many real-life markets have started to

employ incentive-compatible direct mechanisms.

From a technical point of view, agents’ preferences are often available as private in-

formation, rendering it challenging to analyze the properties of centralized or decen-

tralized clearinghouses where outcomes are determined through the complex games

they induce.

Finally, many times, direct implementation is also revered by policymakers.

Though much of our focus is on centralized matching markets, in many cases the

models we have in mind are rich enough to cover some semi- or fully decentralized

ones. For example, college admissions are semi- or fully decentralized in some coun-

tries, and our models can be suitable for studying such markets to draw a basic eco-

nomic understanding and study comparative statics. On the other hand, the K-12

school admissions process is centralized in many places, and in such cases, our mod-

els can match the application exactly or to a high degree.

We next define direct mechanisms and their properties. For a fixed environment

[I, H, ω,M,P ], we denote a market only through its preference profile ≿∈ P . A

(direct) mechanism φ : P → M is a function that maps each generalized market to a

matching of this market. Given ≿∈ P , we denote the outcome matching as φ[≿] ∈
M.

One can conceptualize a direct mechanism as follows: Given that preferences are

frequently the missing informational piece in a matching environment, envision a

scenario where agents report their preferences to a central authority. Subsequently, the

authority, whether real or imaginary, establishes a matching for the induced market.

Therefore, the well-defined procedure employed by this central authority, whether

existing in reality or imagination, constitutes a direct mechanism.

We say that a mechanism has a property defined for matchings (such as being in

the weak core, Pareto efficiency, etc.) if, for each market, its outcome has this property.

Given a set of agent K ⊊ I, let −K = I \ K, and let us denote singleton sets such as
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{x} as only x when there is no ambiguity.

Mechanism φ is strategy-proof if, for each preference profile ≿∈ P , for each agent

i ∈ I, there is no individual misreport of preferences ≿′
i∈ Pi such that

φ[≿′
i,≿−i](i) ≻i φ[≿′

i,≿−i](i).

That is, no matter what the preference reports of other agents are, in is in the best

interests of agent i to be truthful truthful about their preferences.

For any generalized matching environment, there is a strong relationship between

the single-valuedness of the strong core and the existence of a Pareto efficient, indi-

vidually rational, and strategy-proof mechanism.

Theorem 1 (Sönmez, 1999) Consider a generalized matching environment [I, H, ω,M,P ]

with strict preferences. Suppose there exists a mechanism φ that is Pareto efficient, individu-
ally rational, and strategy-proof. Then:

1. For any ≿∈ P , |MSC| ≤ 1.
2. For any ≿∈ P with MSC ̸= ∅, φ[≿] ∈ MSC.

Theorem 1 shows that in generalized matching environments that allow multi-

plicity of strong core matchings, there cannot be any mechanism that satisfies all three

of the following compelling properties: Pareto efficiency, individual rationality, and

strategy-proofness. Furthermore, if the generalized matching environment is such

that the strong core has at most one element, then any mechanism that satisfies these

three properties must select the unique matching in the strong core for any market

where the strong core is non-empty.

Later in this section, we will see that Theorem 1 has strong implica-

tions—sometimes positive and sometimes negative—in various canonical generalized

matching environments.

We can extend strategy-proofness to groups of individuals: Mechanism φ is group
strategy-proof if, for each preference profile ≿∈ P , for each group of agents J ⊆ I,

there is no joint report of preferences ≿′
J∈×j∈J Pj such that

φ[≿′
J ,≿−J ](j) ≿j φ[≿J ,≿−J ](j) ∀ j ∈ J, and

φ[≿′
J ,≿−J ](i) ≻i φ[≿J ,≿−J ](i) ∃ i ∈ J.

We say that a mechanism is weakly group strategy-proof if for each group of agents

J ⊆ I, there is no joint report of preferences ≿′
J∈×j∈J Pj such that

φ[≿′
J ,≿−J ](j) ≻j φ[≿J ,≿−J ](j) ∀ j ∈ J.

14



In the rest of this section, we survey the literature on canonical examples of gener-

alized matching markets.

2.2 Pure Exchange Markets with Unit Demand and Endow-

ment: Housing Markets
Housing markets (Shapley and Scarf, 1974) is perhaps one of the most natural

special cases of a generalized matching market.

Consider an environment where I denotes a set of agents, and H denotes a set of

indivisible objects henceforth called houses. Each agent i ∈ I is endowed with a single

house denoted by ω(i) ∈ H, and this initial assignment is captured by the function ω,

defining the endowment matching. The initial endowment ensures that each house

belongs to a specific agent, establishing H as the set of houses endowed to agents, i.e.,

H = ω(I).
In this context, ≻ = (≻i)i∈I represents the profile of agents’ strict preference relations

on houses. This is a binary relation that is complete, antisymmetric, and transitive.

The weak preference relation ⪰i for each agent i is defined such that, for any g, h ∈ H,

g ⪰i h ⇐⇒ g ≻i h or g = h.

Let Pi denote the set of strict preference relations over H for agent i, and P =×i∈I Pi

denote the set of preference profiles.

The four-tuple [I, H, ω ≻] denotes a housing market and [I, H, ω,P ] denotes a hous-
ing market environment. Feasible outcomes are matchings such that each agent is as-

signed a distinct house; let M denote this set. For simplicity, we omit explicit mention

of M in the notation since all matchings that establish one-to-one and onto functions

from I to H are permissible.6

2.2.1 Core and Competitive Equilibria
In one of the classic papers in matching theory, Shapley and Scarf (1974) showed

that the strong core and the set of competitive equilibria of a housing market are non-

empty. They defined an algorithm, attributed to David Gale (Scarf, 2009), to discover

a strong core and a competitive equilibrium matching. This algorithm, henceforth

referred to as the top trading cycles (TTC) algorithm, plays a key role in the matching

literature.

The study and practice of matching theory involve many iterative algorithms to

achieve desired outcomes. Many proofs in this literature are constructive, relying on

these algorithms. Moreover, these algorithms can be, and often are, employed as well-

defined methods to solve real-life problems. It is customary to define such algorithms

6It’s worth noting that in specific subclasses of the general model, certain components of the notation
may be suppressed or modified.
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by providing real-life analogies, making them appear as if they are dynamic processes

occurring with actual agents literally making decisions during their execution. This

method of definition is quite helpful in providing intuition for why these algorithms

work. However, in the end, the majority of implementations of these algorithms will

be computational, merely “imitating” these dynamic processes. The TTC algorithm is

the first one we cover in this chapter.

Given a housing market, this algorithm follows an iterative procedure wherein a

directed graph is generated at each step. In this directed graph, each node represents

an agent, and a directed link from agent i to agent j signifies that, among all the agents

in the graph, agent j owns the most preferred house for agent i. To express a directed

link from agent i to agent j, we will simply state that agent i “points to” agent j.

Gale’s Top Trading Cycles Algorithm.

Step 0. Initially all agents are in the graph.

Step k. (k ≥ 1) Focusing on the agents remaining in the graph and their houses, form

the following directed graph: Each agent points to the owner of their most

preferred house.

Since there is a finite number of agents, there is at least one cycle of distinct

agents (i1, . . . , iℓ) for some ℓ ≥ 1 where each agent im points to agent im+1 for

each m ∈ {1, . . . , ℓ− 1}, and iℓ points to i1. Moreover, no two cycles intersect,

as each agent points to a single agent as they have strict preferences.

Remove all agents in each cycle from the market (and the graph) by matching

each one to the endowed house of the agent to whom they are pointing.

If at least one unmatched agent remains, we proceed with the Step k+1. Oth-

erwise, we terminate the algorithm and finalize the matching.

The following example illustrates how Gale’s TTC algorithm works:

Example 1 Consider a housing market with agents I = {1, . . . , 5} and houses H =

{h1, . . . , h5} such that each agent i ∈ I is endowed with ω(i) = hi. Suppose the prefer-
ences of agents are given as follows:

≻1: h2 h3 h4 . . .

≻2: h3 h1 . . .

≻3: h2 . . .

≻4: h3 h1 . . .

≻5: h3 h2 h5 . . .
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Step 1. The following graph is formed:

1

5

3

4

2

There is only one cycle, (3, 2), which is removed by matching 3 with h2 and 2 with h3.
Step 2. The following graph is formed:

1

5 4
There are two cycles, (1, 4) and (5). The first cycle is removed by matching 1 with h4

and 4 with h1. The second cycle is removed by matching 5 with h5.

The outcome of the algorithm is

µ =
{
(1, h4), (2, h3), (3, h2), (4, h1), (5, h5)

}
.

By construction, an important property of Gale’s TTC is that each agent removed

in a step of the algorithm receives the best house among those not allocated to agents

removed in earlier steps. Therefore, they prefer their house to all houses allocated in

later steps.

First, result is due to Shapley and Scarf (1974):

Theorem 2 (Shapley and Scarf, 1974) Fix a housing market. The outcome of Gale’s TTC
algorithm is in the strong core and is a competitive equilibrium matching.

The proof sketch explaining why the outcome of Gale’s TTC algorithm is a strong-

core matching proceeds as follows:

Suppose, contrary to the claim, there exists a weak block (J, ν) to the outcome

matching µ of TTC. Without loss of generality, assume that ν(i) = µ(i) for any i ∈ I \ J.

In the first step, when dealing with agents in the first cycle (if multiple cycles exist
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in Step 1, arbitrarily order and process them in that order), let’s denote their set as

J1. First, observe that, receiving their top choices under µ, these agents cannot strictly

benefit from the weak block’s matching ν if they were part of it. Next, if one individual

in J1 is part of J, then all individuals in J1 have to be part of J. The reason is the

following. Each agent in J receives their top choice under µ, which is the endowment

of an agent in J1, and since the weak block must weakly improve all of them, we must

have: For each i ∈ J1, µ(i) = ω(j) = ν(i) for some j ∈ J1. Thus, either all agents in J1

are in J and receive the same houses in ν and µ, or they are not in the weak block (and

still receive the same houses in ν and µ). Let’s designate this as Observation 1a.

Next, given Observation 1a, observe that under matching ν, no individual in J \ J1

can receive a house that is the endowment of an individual in J1. Designate this as

Observation 1b.

Once Observation 1b is established, the rest of the argument is similar for agents

in the second cycle, denoted as J2. They cannot benefit from the weak block if they

were part of it either because, under matching µ, each agent in J2 receives their top

choice among houses that are not endowments of the agents cleared in the first cycle,

H \ ω(J1). Therefore, using arguments parallel to those leading to Observation 1a, we

must have: For each i ∈ J2, µ(i) = ω(j) = ν(i) for some j ∈ J1. Thus, either all agents

in J2 are in J and receive the same houses in ν and µ, or they are not in the weak block

(and still receive the same houses in ν and µ). Let’s designate this as Observation 2a.

Similar observations continue to hold for each remaining step of the algorithm.

Consequently, we find that in this weak block, either there is no agent, or each agent

in it receives the same house as they do in the TTC outcome. This contradicts the

assumption that (J, ν) is a weak block, as at least one agent in J must be strictly better

off in ν over µ. This establishes that there cannot be a weak block to the outcome of

TTC.

TTC matching being in a competitive equilibrium is also easy to see: Consider

a strictly positive price vector where the prices of the houses removed in Step k are

all equal and strictly greater than the prices of houses removed in the subsequent

Step k+1, for each Step k of Gale’s TTC algorithm. Take any Step k. Since each agent

cleared in Step k of Gale’s TTC algorithm receives their favorite house under µ among

the remaining houses in Step k, and as they cannot afford the houses removed in any

earlier step, they receive the best house they can afford under matching µ.

Indeed, the above sketch easily reveals that the outcome of the TTC algorithm is

the unique matching in the strong core. A similar result also holds for the competitive

equilibrium matching.

Theorem 3 (Roth and Postlewaite, 1977) Fix a housing market. It has a singleton strong
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core and a unique competitive equilibrium matching.

Thus, by Theorems 2 and 3, Gale’s TTC algorithm’s outcome is the unique strong-

core and competitive equilibrium matching.

However, this result does not hold for the weak core. The weak core can be multi-

valued, with one of the matchings always being the strong core matching.

Example 2 Consider the housing market in Example 1 and the following matching

η =
{
(1, h3), (2, h1), (3, h2), (4, h4), (5, h5)

}
.

This is a weak core matching as there is no strong block to it. Though ({2, 3}, µ), where µ is
the TTC outcome, would constitute a weak block.

2.2.2 The Core as a Direct Mechanism

Since, as per Theorem 3, the strong core is a single-valued solution concept in the

housing market model, it can be used as a direct mechanism where agents report their

preferences to the planner, and the unique strong core matching is implemented as the

outcome of the mechanism. Moreover, according to Theorem 1 presented in Section 2

for general matching environments, this mechanism will be the unique one that sat-

isfies Pareto efficiency, individual rationality, and strategy-proofness, provided that it

is strategy-proof in the first place. The question to answer is then whether it is.

Roth, 1982a answers this question affirmatively.

Theorem 4 (Roth, 1982a) In a housing market environment, the strong core mechanism is
strategy-proof.

The proof of this important result relies on the following key observation regard-

ing the TTC algorithm: Any cycle formed at any step of the algorithm relies solely on

the preferences of agents in that cycle and no one else. Since each agent that leaves

the algorithm at any step receives their top choices, possibly except for the house en-

dowments of agents who left the algorithm in an earlier step, the proof easily follows.

Indeed, this argument reveals that Theorem 4 can be further strengthened.

Theorem 5 (Bird, 1984) In a housing market environment, the strong core mechanism is
group strategy-proof.

Thus far, the strong core mechanism, which is equivalently the competitive mech-

anism according to Theorems 2 and 3, stands out as a natural choice satisfying Pareto

efficiency, individual rationality, and strategy-proofness. Moreover, as per Theorem 1

for general matching environments, there cannot be any other mechanism that satis-

fies all three properties.

The following characterization result was initially demonstrated by Ma, 1994 and
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predates Theorem 1 by Sönmez, 1999, which later establishes it as a corollary.

Theorem 6 (Ma, 1994) In a housing market environment, the strong core mechanism is the
only mechanism that is Pareto efficient, individually rational, and strategy-proof.

Ekici (2024) further refines Theorem 7 by relaxing Pareto efficiency. Consider a

housing market ≻ ∈ P . A matching µ ∈ M is pairwise Pareto efficient if there is no pair

of agents i, j ∈ I such that µ(j) ≻i µ(i) and µ(i) ≻j µ(j). That is, no pair of agents can

swap their matches and improve upon µ.

Theorem 7 (Ekici, 2024) In a housing market environment, the strong core mechanism is
the only mechanism that is pairwise Pareto efficient, individually rational, and strategy-proof.

2.2.3 Extensions
If the Shapley and Scarf (1974) model of housing markets is extended to agents

having multi-unit demand so that individuals have to consume a bundle of different

types of goods, such as a bundle consisting of a car and a house (Moulin, 1995), core

matchings may not exist as shown by Konishi, Quint, and Wako (2001). This result

holds even under additive preferences, which is a relatively restrictive preference do-

main. Partially desirable mechanisms are shown to exist in this setting when each

type of good can only be traded in separate markets (cf. Klaus, 2008; Feng, Klaus, and

Klijn, 2022).

In housing markets with unit demand and indifferences in preferences, the strong

core may be empty, while the weak core is not. However, not all weak-core matchings

are Pareto efficient. Quint and Wako (2004) found a necessary and sufficient condition

for the non-emptiness of the strong core in a housing market and an algorithm to de-

termine whether the strong core is empty or not. Jaramillo and Manjunath (2012) ex-

tended the top-trading cycles algorithm in this domain to introduce a Pareto-efficient,

individually rational, and strategy-proof mechanism.

2.3 Two-sided One-to-One Matching Markets: Opposite-sex

Marriage
The two-sided matching model of Gale and Shapley (1962) is widely considered

the starting point of the literature in the economics of matching with non-transferable

utility. In this subsection of the chapter, we introduce the most important results re-

garding this model and its extensions.7 We begin with the most basic model, one-to-

one matching, and present results about it. Following that, we introduce the many-to-

one matching model in Section 2.4 and discuss the differences in results between this

extension and the one-to-one model.
7Roth and Sotomayor (1990) also includes some of these results but follows a different presentation style

than ours.
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Consider two finite sets of agents denoted by W and M so that W ∪ M is the agent

set. We label each agent in W as a woman and each agent in M as a man. We refer to

each set as a side of the market, clarifying what we mean by two-sided matching. Each

agent would like to be matched with an agent from the other side of the market or

remain unmatched, which we denote as the option ∅ for each agent. This alternative

can also be interpreted as an outside option and weighed in preferences accordingly.

For each agent i ∈ W ∪ M, let Pi denote their set of potential partners, where Pi = M
if i ∈ W and Pi = W if i ∈ M. Each agent i ∈ W ∪ M has a strict preference relation ≻i

over Pi ∪ {∅}, i.e., agents from the other side and the outside option. This is a binary

relation that is complete, antisymmetric, and transitive. Let Pi denote the set of strict

preference relations for each agent i ∈ W ∪ M. We refer to a partner j ∈ Pi as acceptable
for i if j ≻i ∅.8

Given an agent i ∈ W ∪ M and their strict preference relation ≻i∈ Pi, let ⪰i be the

induced weak preference relation: For every j, j′ ∈ Pi ∪ {∅},

j ⪰i j′ =⇒ j ≻i j′ or j = j′.

Let ≻ = (≻i)i∈W∪M denote the preference profile, and P =×i∈W∪M Pi denote the

set of preference profiles.

We refer to [W, M,≻] as an opposite-sex marriage market or simply as market. We

refer to [W, M,P ] as the opposite-sex marriage environment.
Throughout this subsection, fix an environment. Consider a market, denoted by

its preference profile ≻∈ P .

An outcome of an opposite-sex marriage market is a matching, which is a function

µ : W ∪ M → W ∪ M ∪ {∅} that satisfies the following three conditions:

1. For each woman w ∈ W, µ(w) ∈ M ∪ {∅}.

2. For each man m ∈ M, µ(m) ∈ W ∪ {∅}.

3. For each woman w ∈ W and man m ∈ M, µ(m) = w ⇐⇒ µ(w) = m.

The first condition denotes that a man can only be matched with a woman or re-

main unmatched, the second condition denotes that a woman can only be matched

with a man or remain unmatched, and the third condition denotes that a man is

matched with a woman if, and only if, she is also matched with him.

Let M denote the set of matchings for a given market.

2.3.1 Stable Matchings

Gale and Shapley (1962) introduced and extensively analyzed the following

prominent solution concept, which is closely related to the weak core and strong core.

8An alternative way of fitting this model into our generalized matching framework is by denoting ∅ as
i, the endowment of agent i.
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A matching µ ∈ M is blocked by agent i if ∅ ≻i µ(i). A matching is individually
rational if it is not blocked by any agent. A matching µ ∈ M is blocked by woman-main
pair (w, m) if m ≻w µ(w) and w ≻m µ(m). A matching is stable if it is not blocked by

an agent or a woman-man pair.

Thanks to strict preferences, these three solution concepts are all equivalent in an

opposite-sex marriage environment. Furthermore, when considering blocking sce-

narios, the only relevant coalitions in an opposite-sex marriage market are individual

agents and woman-man pairs.

Lemma 1 In an opposite-sex marriage market, a matching is stable if, and only if, it is in the
weak core, if, and only if, it is in the strong core.

We refer to the set of stable matchings as S . Thus, S = MWC = MSC = MCE.

The next natural question is whether stable matchings always exist. Gale and

Shapley (1962) provide an affirmative answer to this question. The proof is construc-

tive and relies on an iterative algorithm, arguably the most celebrated one in matching

theory. Now, we will introduce this algorithm, known as the deferred acceptance (DA)

algorithm. Two versions of the algorithm are obtained by swapping the roles of men

and women, and for brevity, we will present only one version.

Women-proposing Deferred Acceptance Algorithm (Gale and Shapley, 1962).

Step 0. At the initiation, no offers are considered rejected by any woman, and no man

holds an offer from any woman.

Step k. (k ≥ 1) Offer Stage: Each woman who does not have a held offer from the

previous step extends an offer to the most preferred acceptable man who has

not rejected her in a previous step. If such an acceptable man does not exist for

any woman, she leaves the procedure, and remains unmatched at the end of

the algorithm.

Holding and Rejection Stage: Each man evaluates his held offer from the previ-

ous step, if one exists, alongside any possible offer he receives during the offer

stage of this step. He rejects all offers except the one from the most preferred

acceptable woman, holding onto this offer exclusively. If no offer is acceptable,

he rejects all offers.

The algorithm ends after a step in which no rejections occur. We form an outcome

matching by matching each man who is holding an offer with the woman who made

this offer. The men who have no held offers and the women who are rejected by all

acceptable men remain unmatched.

The outcome of this algorithm has several desirable properties.
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Theorem 8 (Gale and Shapley, 1962) Fix an opposite-sex marriage market [M, W,≻].
The outcome of the women-proposing DA algorithm is stable, and for each woman, it is weakly
preferred to any other stable matching. Similarly, the outcome of the men-proposing DA algo-
rithm is stable, and for each man, it is weakly preferred to any other stable matching.

The proof of stability is straightforward to sketch for the women-proposing algo-

rithm, and a similar explanation holds for the men-proposing algorithm: No agent

ever makes an offer to or holds an offer from an unacceptable partner. Therefore, no

agent can block the outcome individually.

Suppose, by way of contradiction, there exists a blocking pair (w, m) in the algo-

rithm outcome. Then woman w should have made an offer to man m, and he should

have rejected her. However, m can only reject w if he has received a better offer at that

point. Since no man is ever matched with a worse option than a woman who makes

him an offer in the algorithm, m is matched with a woman better than w, contradicting

the assumption that (w, m) is a blocking pair.

For brevity, we skip the intuition behind the optimality of the women-proposing

DA outcome for the women among all stable matchings.

Based on Theorem 8, we refer to the outcome of the women-proposing DA algo-

rithm as the women-optimal stable matching and the outcome of the men-proposing DA

algorithm as the men-optimal stable matching.

We present the following example to illustrate the workings of this algorithm.

Example 3 Let W = {w1, w2, w3, w4} and M = {m1, m2, m3, m4, m5} with the preference
profile ≻ such that m3 has arbitrary preferences and

Women :
≻w1 : m1 m4 . . . , ≻w2 : m2 m1 . . . ,

≻w3 : m2 m5 . . ., ≻w4 : m1 m2 . . ..

Men:
≻m1 : w2 w3 w1 w4, ≻m2 : w4 w2 w3 . . .,
≻m4 : w1 w4 . . ., ≻m5 : w2 w4 . . ..

Man m3’s preferences can be arbitrary.
Because there are more men than women, it is clear that at least one man will remain

unmatched. To compute the outcome of women-proposing DA, we consider the following
steps:

Step 1. During the offer stage of the step, women w1 and w4 make offers to man m1, while
women w2 and w3 make offers to man m2.
During the holding and rejection stage of the step, man m1 hold the offer from woman
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w1, whom he prefers to woman w4, and man m2 holds the offer from woman w2, whom
he prefers to woman w3.
Below, the offers are represented on the left by women’s identities next to men in bold-
face, and the rejections are represented on the right by the crossed women in boldface:

Men Offers

m1 w1 w4

m2 w2 w3

m3

m4

m5

Men Rejections

m1 w1 ��w4

m2 w2 ��w3

m3

m4

m5

Step 2. We represent the offers and rejections through two similar tables from now on where
only new offers and rejections are in boldface:

Men Offers

m1 w1 ��w4

m2 w2 ��w3 w4

m3

m4

m5 w3

Men Rejections

m1 w1 ��w4

m2 ��w2 ��w3 w4

m3

m4

m5 w3

Step 3. The offers and rejections are as follows:

Men Offers

m1 w1 ��w4 w2

m2 ��w2 ��w3 w4

m3

m4

m5 w3

Men Rejections

m1 ��w1 ��w4 w2

m2 ��w2 ��w3 w4

m3

m4

m5 w3

Step 4. The offers and rejections are as follows:

Men Offers

m1 w1 ��w4 w2

m2 ��w2 ��w3 w4

m3

m4 w1

m5 w3

Men Rejections

m1 ��w1 ��w4 w2

m2 ��w2 ��w3 w4

m3

m4 w1

m5 w3

As no offers are rejected in Step 4, the algorithm terminates after this step. Women on hold
are matched to men who are holding their offers. The outcome of the women-proposing DA
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algorithm is9

µ =
{
{w1, m4}, {w2, m1}, {w3, m5}, {w4, m2}, {m3, ∅}

}
.

Man m3 remains unmatched as he never gets an offer from an acceptable woman.

Another desirable property is Pareto efficiency.

Proposition 2 In an opposite-sex marriage market, every stable matching is Pareto effi-
cient,10 but the converse is not necessarily true.

We demonstrate the second part of the proposition with an example:

Example 4 Suppose W = {w1, w2} and M = {m1, m2} with preferences

Women: ≻w1 : m1 m2, ≻w2 : m1 m2.

Men: ≻m1 : w1 w2, ≻m2 : w1 w2.

There are two Pareto-efficient matchings:

µ =
{
{w1, m1}, {w2, m2}

}
and ν =

{
{w1, m2}, {w2, m1}

}
.

While ν is not stable as the pair (m1, w1) blocks it, µ is stable.

What other properties do the set of stable matchings have? It turns out that there

is a well-defined partial common preference ordering among men and, conversely,

among women over stable matchings. We already showed in Theorem 8 that there

are side-optimal stable matchings. It turns out that also the best stable matching for

women is the worst stable matching for men, and vice versa.

We first give set-theoretic preliminaries to understand this structure. Suppose X is

a finite set. A partial order ⊵ over X is a binary relation that is reflexive, antisymmetric,

and transitive. Thus, it can be incomplete. (X,⊵) is referred to as a poset.
The meet operator (∧) is a binary operator over the members of the set X and it is

defined as follows: For each x, y ∈ X,

x ∧ y = max
⊵

{z ∈ X : x ⊵ z and y ⊵ z}.

Here, for any Y ⊆ X, the max operator is defined as

max
⊵

Y = {y ∈ Y : for each x ∈ Y, y ⊵ x}.

9In bilateral matching markets including two-sided ones, as matches are bilateral, instead of denoting a
match as

(
i, j) and (j, i) as two separate assignments, we denote it as {i, j} = {j, i}.

10This result is true because of strict preference assumption; otherwise it would not be correct. See Erdil
and Ergin (2017) for a theory of two-sided matching with indifferences.
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The join operator (∨) is a binary operator over the members of the set X and it is

defined as follows: For each x, y ∈ X,

x ∨ y = min
⊵

{z ∈ X : z ⊵ x and z ⊵ y}.

Similarly, for any Y ⊆ X, the min operator is defined as: For any Y ⊆ X,

min
⊵

Y = {y ∈ Y : for each x ∈ Y, x ⊵ y}.

The meet operation gives the greatest lower bound of two members of the set with

respect to the partial order, and the join operation gives the smallest upper bound of

two members of the set.

Observe that for general posets, the outcome of these two operations may not be

uniquely defined or they can be empty. A (finite) lattice is a (finite) poset such that

meet and join operations are uniquely defined among each pair of members of the

set.11

Now, we can relate lattices to our economic theory of two-sided matching. Recall

that S is the set of stable matchings in a market ≻. We define the following partial

order ⊵W over S : for any µ, ν ∈ S ,

µ ⊵W ν ⇐⇒ µ(w) ⪰w ν(w) for each w ∈ W.

We symmetrically define ⊵M. The following result is attributed to John Conway in

Knuth (1976):

Proposition 3 (Knuth, 1976) Fix an opposite-sex marriage market [W, M,≻]. The posets
(S ,⊵W) and (S ,⊵M) are lattices, i.e., for any two stable matching µ, ν ∈ S their respective
meet and join are also stable matchings:

µ ∨W ν ∈ S and µ ∧W ν ∈ S ,

µ ∨M ν ∈ S and µ ∧M ν ∈ S .

Moreover, for any two stable matchings µ, ν ∈ S ,

µ ⊵W ν ⇐⇒ ν ⊵M µ,

and hence,
∨M = ∧W and ∧M = ∨W .

Thus, the stable matchings can be partially ordered with respect to the common pref-

11An alternative definition of a (finite) lattice is a poset with a maximum and minimum element. These
two definitions are equivalent.
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erences of women and this ordering is just the reverse ordering with respect to the

common preferences of men.12

Example 5 (Knuth, 1976) Suppose W = {w1, w2, w3, w4} and M = {m1, m2, m3, m4}.
The preference profile ≻ is given as:

Women:
≻w1 : m4 m3 m2 m1, ≻w2 : m3 m4 m1 m2,

≻w3 : m2 m1 m4 m3, ≻w4 : m1 m2 m3 m4.

Men:
≻m1 : w1 w2 w3 w4 ≻m2 : w2 w1 w4 w3,

≻m3 : w3 w4 w1 w2, ≻m4 : w4 w3 w2 w1.

There are ten stable matchings in this problem, where m1, m2, m3, m4 are matched to:

m1 m2 m3 m4

µ1 : w1 w2 w3 w4

µ2 : w2 w1 w3 w4

µ3 : w1 w2 w4 w3

µ4 : w2 w1 w4 w3

µ5 : w3 w1 w4 w2

µ6 : w2 w4 w1 w3

µ7 : w3 w4 w1 w2

µ8 : w4 w3 w1 w2

µ9 : w3 w4 w2 w1

µ10 : w4 w3 w2 w1.

Here,

µ2 ∧M µ3 = µ2 ∨W µ3 = µ4 µ2 ∨M µ3 = µ2 ∧W µ3 = µ1

µ5 ∧M µ6 = µ5 ∨W µ6 = µ7 µ5 ∨M µ6 = µ5 ∧W µ6 = µ4

µ8 ∧M µ9 = µ8 ∨W µ9 = µ10 µ8 ∨M µ9 = µ8 ∧W µ9 = µ7.

Matching µ1 is the men-optimal stable and matching µ10 is the women-optimal stable
matching. Figure 1 depicts the lattice structures induced by the set of stable matchings in this
problem.

Another intriguing characteristic of stable matchings pertains to the identity of the

agents who are matched with a partner and those who remain unmatched:

12This example from Knuth, 1976 is also given in Roth and Sotomayor (1990).
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µ1

µ2 µ3

µ4

µ5 µ6

µ7

µ8 µ9

µ10

Figure 1: The figure shows in the market given in Example 5 that all men prefer µ4 over either
µ5 or µ6, and both µ5 and µ6 are preferred over µ7. However, there are some men who prefer µ5
over µ6 and vice versa. The maximum of the lattice is the men-optimal stable matching µ1 and the
minimum of the lattice (S ,⊵M) is the women-optimal stable matching µ10.
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Theorem 9 (Lone Wolf Theorem, McVitie and Wilson, 1970) Fix an opposite-sex mar-
riage market and consider any two stable matchings. The set of agents that remain unmatched
in either stable matching is the same.

2.3.2 Desirable Mechanisms and Revelation Games Induced by Mecha-
nisms

Regrettably, neither these two mechanisms nor any other stable mechanism

demonstrates fully satisfactory incentive properties as long as there are at least two

women and two men. Recall that, by Lemma 1, the set of stable matchings is equal

to the set of strong core matchings for any opposite-sex marriage market. Moreover,

when there are at least two women and two men, women-optimal and men-optimal

stable matchings can be distinct, resulting in two or more stable matchings. Therefore,

by Theorem 1 in Sönmez, 1999 (presented in Section 2 for generalized matching mar-

kets), there exists no mechanism in such environments that satisfies Pareto efficiency,

individual rationality, and strategy-proofness.13

This result for the opposite-sex marriage environment was first shown by Alcalde

and Barberà, 1994 extending an earlier result by Roth (1982b) showing a similar in-

compatibility between stability and strategy-proofness.14

Theorem 10 (Alcalde and Barberà, 1994) In an opposite-sex marriage environment
[W, M,P ] with |M| ≥ 2 and |W| ≥ 2, there is no Pareto-efficient, individually rational,
and strategy-proof mechanism.

Even though Theorem 10 is a special case of Theorem 1, we still prove it for |W| =
|M| = 2 through an example to illustrate how such negative results can be proven

using examples.15

Example 6 Suppose W = {w1, w2} and M = {m1, m2} with the preference profile ≻ such
that

≻w1 : m1 m2, ≻w2 : m2 m1,

≻m1 : w2 w1, ≻m2 : w1 w2.

There are two Pareto-efficient (and individually rational) matchings (which both turn out to

13When there is either one man or only one woman, there is a unique stable matching, and the resulting
mechanism is strategy-proof. Therefore, by Theorem 1 in Sönmez, 1999, it is the unique mechanism that
satisfies Pareto efficiency, individual rationality, and strategy-proofness.

14This result by Roth (1982b) established incompatibility between stability and strategy-proofness in the
preference domain when all partners are acceptable and |W| = |M| ≥ 3.

15The proof can easily be generalized for a general size market. See Footnote 16.
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be stable):

µ =
{
{w1, m1}, {w2, m2}

}
and ν =

{
{w1, m2}, {w2, m1}

}
.

Therefore, any Pareto-efficient and individually rational mechanism φ would choose either µ

or ν for this market. Suppose it chooses ν. Then consider the following preference manipulation
≻′

w1
by woman w1: She reports

≻′
w1

: m1 ∅

by omitting m2 as an acceptable match. We have two cases:

• If φ is also stable, then the only stable matching for market [≻′
w1

,≻−w1 ] is ν, and φ

has to select it. We have

φ[≻](w1) = µ(w1) = m1 ≻w1 φ[≻′
w1

,≻−w1 ](w1) = ν(w1) = m2,

contradicting φ is strategy-proof. If φ[≻] = µ, then similarly m1 can profitably
manipulate the mechanism by omitting w1 from his preference list. Thus, this example
shows there is no strategy-proof and stable mechanism.

• If φ is not stable, then there is only one Pareto efficient and individually rational
matching for market [≻′

w2
,≻−w2 ] that does not make woman w1 better off with respect

to µ. Note that, since the mechanism φ is strategy-proof, this manipulation should not
benefit agent w1, and

φ[≻′
w1

,≻−w1 ](w1) = ∅.

Therefore,
φ[≻′

w1
,≻−w1 ] =

{
{w1, ∅}, {w2, m1}, {m2, ∅}

}
.

Now w2 can manipulate by reporting ≻′
w2

such that

m2 ≻′
w2

∅.

There is a unique Pareto efficient and individually rational matching for market
[≻′

w1,w2
,≻−w1,w2 ] and φ selects it:

φ[≻′
w1,w2

,≻−w1,w2 ] =
{
{m1, w1}, {m2, w2}

}
.

However,

φ[≻′
w1

,≻−w1 ](w2) = m1 ≻w2 φ[≻′
w1,w2

,≻−w1,w2 ](w2) = m2,

contradicting φ is strategy-proof. If φ[≻] = µ, then a similar sequence can be con-
structed by first m1 deeming w1 unacceptable and then m2 deeming w2 unacceptable.
Thus, this example shows there is no strategy-proof, Pareto-efficient, and individually
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rational mechanism.16

What about strategic considerations for only one side of the market? Can we, at

the very least, address those? Fortunately, the answer is affirmative.

To explore this, we introduce additional properties.

A mechanism φ is strategy-proof for women if there exists no market ≻∈ P , woman

w ∈ W, and strategy ≻′ w ∈ Pw such that:

φ[≻′
w,≻−w](w) ≻w φ[≻w,≻−w](w).

A mechanism φ is weakly group strategy-proof for women if there is no market ≻∈ P ,

group of women W ′ ⊆ W and strategy profile for them ≻′
W ′∈ PW ′ such that

φ[≻′
W ′ ,≻−W ′ ](w) ≻w φ[≻W ′ ,≻−W ](w) ∀ w ∈ W ′.

We define strategy-proofness for men and weak group strategy-proofness for men analo-

gously.

The following result lends additional support for the side-optimal stable mecha-

nisms.

Theorem 11 (Dubins and Freedman, 1981) Fix an opposite-sex marriage environment.
The women-optimal stable mechanism is weakly group strategy-proof for women and the men-
optimal stable mechanism is weakly group strategy-proof for men.17

Therefore, the women-optimal stable mechanism is strategy-proof for women, and

the men-optimal stable mechanism is strategy-proof for men. This follows as a corol-

lary of Theorem 11, which is independently established in Roth, 1982b. Moreover, a

converse to this milder result also holds.

Theorem 12 (Alcalde and Barberà, 1994) Fix an opposite-sex marriage environment. A
mechanism is stable and strategy-proof for women if, and, only if it is the women-optimal
stable mechanism. Similarly, a mechanism is stable and strategy-proof for men if, and, only if
it is the men-optimal stable mechanism.

16Theorem 10 can be proven by observing that the environment in the example can be embedded in any
other environment with |M| ≥ 2 and |W| ≥ 2 as follows: Consider a market ≻ such that four people
w1, w2, m1, m2, as in Example 6, have exactly the same preferences for acceptable mates, while no other
agent finds anybody acceptable under ≻: for each agent i ∈ (W ∪ M) \ {w1, w2, m1, m2} ∅ ≻i j for each
j ∈ Pi. Then, this modification proves the result in this environment.

17Immorlica and Mahdian (2005) showed that when the number of men each woman finds acceptable
remains fixed, but the number of men and women goes to infinity under some regularity conditions, the
set of stable matchings becomes almost surely a singleton. In a result similar in spirit to Theorem 1 in
Sönmez, 1999 for finite markets, incentive compatibility properties for the men-optimal stable mechanism
for women (and for the women-optimal stable mechanism for men) emerge, as both mechanisms are almost
surely identical. See Chapter 2 of this handbook for more details on large market models in matching.
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By Theorem 10, some members of the opposing side under a side-optimal stable

mechanism may have incentives to misstate their preferences in certain markets. How

can these individuals optimize their assignments by strategically reporting their pref-

erences?

To answer this question, we analyze the equilibria of the preference revelation

games induced by a side-optimal stable mechanism, assuming complete information

about preferences among the agents and using Nash equilibria in undominated strate-

gies as the equilibrium notion. It is worth noting that, by Theorem 11, all undomi-

nated strategies are equivalent to truthful revelation for women under the women-

optimal stable mechanism.

Theorem 13 (Gale and Sotomayor, 1985a) Fix an opposite-sex marriage market environ-
ment [W, M,P ] and a market ≻ ∈ P . Then, men-optimal stable matching φM[≻] is the out-
come of every pure-strategy Nash equilibrium in undominated strategies under the preference
revelation game induced by the women-optimal stable mechanism φW . Similarly, women-
optimal stable matching φW [≻] is the outcome of every pure-strategy Nash equilibrium in
undominated strategies under the preference revelation game induced by the men-optimal sta-
ble mechanism φM.

Thus, if every agent uses undominated strategies, then agents on one side of the

market can force their side’s optimal stable matching under the other side’s stable

mechanism at equilibria.18

2.4 Two-Sided Many-to-One Matching Markets: College Ad-

missions
A natural and practical extension of the opposite-sex marriage environment is the

many-to-one matching setting known as the college admissions model (Gale and Shap-

ley, 1962). The two sides of the market in this setting are labeled as students, denoted

as I, and colleges, denoted as C. A key distinction from the opposite-sex marriage

model is that each college has the capacity to admit multiple students rather than just

one. However, each college c ∈ C has a capacity qc, representing the maximum num-

ber of students it can admit. Each student, on the other hand, can only enroll in at

most one college. Let ≻i denote the preference relation of student i ∈ I over C ∪ {∅}
as before.

2.4.1 Colleges with Responsive Preferences

While students maintain strict preferences over colleges, defining college prefer-

ences involves considering admitted sets of students, introducing an additional layer

18However, it is important to note that, in general, there are additional equilibrium outcomes in the same
preference revelation game.
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of complexity to their preference relation. To handle this complexity, Roth (1985c)

introduces a property that establishes a connection between college preferences over

groups of students and preferences over individual students. This property essen-

tially creates an isomorphism between the original many-to-one matching market and

a suitable constructed opposite-sex marriage market:

Let ≻c denote the strict preference relation of a college c ∈ C over the set 2I of

groups of students. We say that preference relation ≻c is responsive to the college’s

preferences over individual students if,

1. for each pair of students i, j ∈ I and set of students K ⊆ I \ {i, j},

K ∪ {i} ≻c K ∪ {j} ⇐⇒ i ≻c j, 19 and

2. for each student i ∈ I and group of students K ⊆ I \ {i},

K ∪ {i} ≻c K ⇐⇒ i ≻c ∅.

In the context of responsive preferences, desirability of one student over another

remains independent of the composition of other admitted students. Furthermore, a

student deemed acceptable enhances the overall desirability of any group upon their

inclusion.

In this section, we assume that each college c is endowed with a responsive pref-

erence relation ≻c. Let ≻ =
(
(≻i)i∈I , (≻c)c∈C

)
denote the preference profile, and

q = (qc)c∈C denote the capacity vector. Similar to the opposite-sex marriage mar-

ket, the partner set of any student i—equivalent to the set of colleges—is denoted as

Pi = C, and the partner set of any college c—equivalent to the set of students—is

Pc = I.

Let Pc denote the set of strict responsive preferences for college c, whereas Pi

denotes the set of strict preferences for student i. Define P = (×i∈I Pi)× (×c∈C Pc)

as the set of preference profiles.

We refer to [I, C, q,P ] as a college admissions environment with responsive college pref-
erences. We fix an environment [I, C, q,P ], and consider a market ≻ ∈ P , denoted by

its preference profile only.

An outcome of such a college admissions market is a matching, which is a function

µ : I ∪ C →
(
C ∪ {∅}

)
∪ 2I that satisfies the following three conditions:

1. For each student i ∈ I, µ(i) ∈ C ∪ {∅}.

2. For each college c ∈ C, µ(c) ∈ 2I and |µ(c)| ≤ qc.

3. For each student i ∈ I and college c ∈ C, µ(i) = c ⇐⇒ i ∈ µ(c).

Just like in the simpler opposite-sex marriage market environment, Gale and Shap-

19Recall that we denote singleton {x} as x whenever convenient.
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ley (1962) proposed stability as a solution concept for this environment as well. In

this case, potential blocks are defined for individual students, individual colleges, and

student-college pairs.

For any agent a ∈ I ∪ C, a partner b ∈ Pa is acceptable if b ≻a ∅ and unacceptable
if ∅ ≻a b. A matching µ is blocked by an agent a ∈ I ∪ C if they are matched with an

unacceptable partner. A matching µ is blocked by a student-college pair (i, c) if:

1. c ≻i µ(i), and

2. either (a) i ≻c j for some j ∈ µ(c) or (b) |µ(c)| < qc and i ≻c ∅.

A matching is (pairwise) stable if there are no individual blocks and no pairwise

blocks.

Just as in the opposite-sex marriage market environment, stability is equivalent to

a strong core in the college admissions environment with responsive college prefer-

ences. However, in this more general environment, it is stronger than the weak core.

Lemma 2 (Roth, 1985a) Fix a college admissions market with responsive college preferences.
A matching is stable if, and only if, it is in the strong core. If a matching is stable, then it is in
the weak core. However, a matching in the weak core is not necessarily stable.

We denote the set of stable matchings as S . By Lemma 2, S = MSC.

We can adapt the one-to-one Deferred Acceptance (DA) algorithm to accommo-

date colleges with multiple positions, resulting in two versions of the DA algorithm

depending on which side of the market proposes. Both versions yield stable match-

ings (Gale and Shapley, 1962). With the presence of multiple positions at colleges,

these two versions are no longer entirely analogous. Consequently, we present both

versions.

Student-proposing DA algorithm.

Step 0. At the initiation, no offers are considered rejected by any college, and no stu-

dent holds an offer from any college.

Step k. (k ≥ 1) Offer stage: Each student i who does not have a held offer from the

previous step offers a match to their most preferred acceptable college, which

has not rejected them in a previous step. If such a college does not exist, they

remain unmatched at the end of the algorithm.

Holding and Rejection stage: Each college c holds up to the best qc acceptable

offers among those it is holding (if any) from Step (k-1), along with any offers

it received in the offer stage of the current step, rejecting the rest. If all offers

are unacceptable, then it rejects all offers.

The algorithm terminates after a step when there are no rejections. Each student is

matched with the college they have been holding in the last step if there is any. Stu-
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dents without an offer remain unmatched. Colleges without any held offers also re-

main unmatched.

College-proposing DA algorithm.

Step 0. At the initiation, no offers are considered rejected by any student, and no col-

lege holds an offer from any student.

Step k. (k ≥ 1) Offer stage: Each college c with ℓ < qc offers held from Step (k-1) gives

new offers to its most preferred (qc − ℓ) acceptable students who have not

rejected it previously. If there are fewer than (qc − ℓ) acceptable students who

have not rejected it yet, it proposes to all remaining acceptable students.

Holding and Rejection stage: Each student holds the best acceptable college offer

among those they are holding (if any) from Step (k-1), along with any offers

they received in the offer stage of the current step, and rejects the rest.

The algorithm terminates after a step when there are no rejections. Each student

is matched with the college they have been holding in the last step, if there is any.

Students without an offer remain unmatched. Colleges without any held offers also

remain unmatched.

Based on the following result, we refer to the outcomes of these two algorithms as

the student-optimal stable matching and the college-optimal stable matching respectively.

Theorem 14 (Gale and Shapley, 1962; Roth, 1985c) The student-proposing DA algo-
rithm finds a stable matching that is weakly preferred by each student to any other stable
matching, while the college-proposing DA algorithm finds a stable matching that is weakly
preferred by each college to any other stable matching.

The college optimality part of this result requires the responsiveness condition, as

proven by Roth (1985c), while the rest of the theorem was already established in Gale

and Shapley (1962).

Alongside Theorem 14, many other results from the opposite-sex marriage domain

also extend to the college admissions environment. The responsiveness condition

simplifies these extensions by allowing the invocation of existing results in opposite-

sex marriage through the isomorphism described below.

Given a college admissions market [I, C, q,≻], we construct an associated opposite-
sex marriage market [I, C∗,≻∗] as follows (Gale and Sotomayor, 1985b):

• C∗ is the set of positions for all colleges in C, with each college c ∈ C represented

by qc positions labeled as c1, c2, . . . , cqc .

• For each college c ∈ C, the preference relation ≻∗
ck for each college position ck

is identical to the restriction of the “host” college preferences ≻c to I ∪ ∅.

• Each student i ∈ I has a preference relation ≻∗
i obtained from ≻i as follows:
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– for any c, d ∈ C and any two positions ck and dℓ, ck ≻∗
i dℓ ⇐⇒ c ≻i

d,

– for any c ∈ C and any two positions ck and cℓ, ck ≻∗
i cℓ ⇐⇒ k < ℓ,

and ck ≻∗
i ∅ ⇐⇒ c ≻i ∅.

Thus, each college is divided into positions, each able to accommodate one stu-

dent. Each position shares the “same” preferences over students with its host college,

subject to the single capacity of the position. On the other hand, students’ preferences

over these positions are defined in a way that respects the original preferences be-

tween different colleges; additionally, smaller-indexed positions of a college are pre-

ferred to its larger-indexed positions.

Given a matching µ in the college admissions market, we construct an associated

matching µ∗ in the associated opposite-sex marriage market: For each college c ∈ C, if

µ(c) = {i1, . . . , ik} with more preferred students having smaller indices, then µ∗(cℓ) =
iℓ for each ℓ ≤ k. If k < qc, then for each ℓ > k, µ∗(cℓ) = ∅. Thus, better students are

matched to lower-indexed college positions in this conversion.

We present the following lemma relatinging the stable matchings in these two mar-

kets, as observed by Roth, 1985c and Gale and Sotomayor, 1985b:

Lemma 3 Consider a college admissions market with responsive college preferences. A
matching for this market is stable if, and only if, its associated matching is stable in the asso-
ciated opposite-sex marriage market.

Using Lemma 3, Theorem 14 can be directly established by relying on Theorem

8. Furthermore, several other results extend to this domain. Following the same line

of proof, the polarity of interest results and the lattice property of the set of stable

matchings continue to hold. Additionally, the student-optimal stable mechanism is

weakly group strategy-proof for students, extending the result presented by Dubins

and Freedman (1981) to this setting.20

However, in the many-to-one setting, a few important differences emerge. For ex-

ample, the college-optimal stable mechanism is no longer strategy-proof for colleges.

Proposition 4 (Roth, 1985c) Fix a college admissions environment with responsive college
preferences [I, C, q,P ] such that |I| ≥ 4, |C| ≥ 3, and there exists at least one college c ∈ C
such that qc ≥ 2. Then, there is no mechanism that is stable and college-strategy-proof.

Later Kojima (2013) established that even for smaller-size problems, the proposition

holds.

As another distinction between the one-to-one and many-to-one settings, the latter,

20Moreover, Kojima and Pathak (2009) showed that when the number of colleges remains constant, but
the number of students and the positions at colleges goes to infinity under some regularity conditions, good
incentive properties for the college-optimal stable mechanism for students emerge.
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being a richer environment, allows colleges to withhold some of their capacities—a

possibility absent in the former. Consider a scenario where each college reports its

capacity to the centralized mechanism, and all preferences are common knowledge.

In this context, neither the college-optimal nor the student-optimal stable mechanisms

are immune to capacity manipulation: colleges can report a smaller capacity and be

better off in the mechanism outcome compared to the alternative situation when they

are truthful (Sönmez, 1997; Konishi and Ünver, 2006b).

Thanks to the richer structure inherent in many-to-one settings, we obtain the fol-

lowing important result, extending and strengthening the Lone-Wolf Theorem from

McVitie and Wilson, 1970 for one-to-one matching to the context of college admis-

sions:

Theorem 15 (Rural Hospitals Theorem, Roth, 1986) In every stable matching of a col-
lege admissions market with responsive college preferences, the same students are matched,
and the same number of positions are filled at any given college. Furthermore, if a college does
not fill its full capacity in a stable matching, it is matched with the same set of students in all
stable matchings.

2.4.2 Colleges with Substitutable Choice Rules

The responsiveness condition by Roth (1985c) is a demanding one, where students

are evaluated by colleges independently of other students. The primary advantage of

this strong assumption lies in its simplification of many proofs, facilitated by the iso-

morphism presented in Lemma 3. However, this does not mean that responsiveness

is necessary for many results. While the proof technology leveraging Lemma 3 may

no longer apply, most results from the previous subsection generalize when colleges

have a particular class of substitutable preferences, which also includes responsive

ones. This model builds on the work of Kelso and Crawford (1982) (with monetary

transfers), with additional results proven by Roth (1984a, 1985b). Incentive results are

based on Hatfield and Milgrom (2005).

To this end, the best way to proceed is to introduce choice rules for colleges rather

than complete preferences over groups of students. Choice rules, in addition to the

preferences for colleges, have appeared in the literature as early as Roth (1985b). They

became the standard way of modeling college choices in more recent literature with-

out assuming underlying complete preferences for colleges. See Alkan (2001) for one

of the earliest uses.

Choice rules are especially useful due to their notational convenience, particularly

in situations where the underlying rational preferences of a college do not exist. For

instance, if the admitted group of students is selected through a voting method by a

student admissions committee, it is easy to envision a scenario that could lead to the
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famous “Condorcet” cycle. As a result, an underlying transitive preference relation

reflecting the college’s admission preferences over groups of students may not exist,

as implied by Arrow’s Impossibility Theorem (Arrow, 1950).

Given a college c ∈ C, a choice rule is a mapping Cc : 2I → 2I such that, for each

J ⊆ I, Cc(J) ⊆ J. It simply indicates the subset of students that the college would

prefer to admit from any group of applicants.

If a college c already has a strict preference relation ≻c over groups of students,

the induced choice rule Cc can be constructed as follows: For each subset J ⊆ I, define

Cc(J) = max
≻c

2J .

That is, Cc(J) is the most preferred subset of J by c. However, it is important to note

that the converse construction does not always hold: not every choice rule necessarily

induces a complete, antisymmetric, and transitive preference relation.

Let CC denote the set of possible choice rule profiles for colleges, and let PI repre-

sent the set of possible preference profiles for students. We define
[

I, C, q,PI ×CC

]
as

a many-to-one matching environment with college choice rules. In this section, while keep-

ing I, C, and q fixed, we refer to a market as a profile comprising student preferences

and college choice rules, denoted as (≻I , CC) ∈ PI × CC.

Next, we introduce the most general form of stability covered in this chapter.

A matching µ is blocked by a college c if µ(c) ̸= Cc
(
µ(c)

)
. Individual student blocks

are defined as before in Section 2.4.1: µ is blocked by a student i if µ(i) ≻i ∅. A matching

µ is blocked by a college c and a group of students J if:

1. c ≻i µ(i) for each i ∈ J, and

2. J ⊆ Cc
(

J ∪ µ(c)
)
.

Thus, under a group block, each student in set J prefers the college c of the group

to their match under µ, and all students in set J would be chosen by college c when

its applicants consist of both its partners and the students in set J under µ.

A matching is stable if there are no individual or group blocks to it.

Blocks consisting of a college and a single student are called pairwise blocks. A

matching is pairwise stable if there are no individual or pairwise blocks to it.

Without additional constraints on college choice rules, stable matchings may not

exist, and there is no logical relationship between stable matchings, pairwise stable

matchings, and core matchings.21 We introduce crucial properties of choice rules

that ensure the existence of stable matchings and establish logical connections among

these concepts.

21Technically, core matchings are only well-defined when underlying college preferences exist.
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A choice rule Cc satisfies Independence of Rejected Students (IRS) if, for each J ⊆ I
and i ∈ J \ Cc(J), Cc(J) = Cc(J \ i) (Blair, 1988).22 Under this condition, the removal of

an unselected student from the pool of applicants does not affect the pool of selected

students.

A choice rule Cc is substitutable (Kelso and Crawford, 1982; Roth, 1984a) if

for each J ⊊ I, i, j ∈ Cc(J) =⇒ j ∈ Cc(J \ {i}).

A student selected from a set of applicants would remain chosen if another selected

applicant were removed from the set of applicants under this condition.

If a college has a well-defined (complete, antisymmetric, transitive) preference re-

lation over student groups, then the IRS property of its induced choice rule is auto-

matically satisfied.

We also have an interesting equivalence of the conjunction of these two properties

with a choice-theoretic concept. Given a college c, a choice rule Cc is path independent
(Plott, 1973) if for any J ⊊ I and i ∈ I \ J,

Cc(J ∪ {i}) = Cc
(
Cc(J) ∪ {i}

)
.

Lemma 4 (Aizerman and Malishevski, 1981) Given a college c, a choice rule Cc is path
independent if, and only if, it satisfies substitutability and IRS.23

In some settings, this property may be more convenient to use than IRS and sub-

stitutability separately.

Next, we establish a relationship between the strong core, the set of stable match-

ings, and the set of pairwise stable matchings.

Lemma 5 Consider a many-to-one matching market with college choice rules that satisfy
substitutability and IRS. A matching is stable if, and only if, it is pairwise stable. Furthermore,
if each college also has an underlying preference relation over student groups, then a matching
is stable if, and only if, it is in the strong core.

The term substitutability refers to the characteristic of a choice rule that prohibits

22Although Blair did not give a name to this property and referred to it as Condition 2.6, Alkan (2001)
refers to it as consistency, while Aygün and Sönmez (2013) uses it in the matching with contracts framework
and refers to it as the independence of rejected contracts.

23This property was proven using choice theoretic axioms that are isomorphic to substitutability (Cher-
noff, 1954) and IRS (Fishburn, 1975), respectively. See Moulin (1985) and Aizerman and Aleskerov (1995)
as excellent sources for the theory of choice with indifferences over consumption bundles, which can also
be applied to strict choice rules over groups used in matching theory due to mathematical isomorphism
between certain properties of both types of choice. See Alkan (2001) for one of the earliest uses of path in-
dependence as an individual property in matching theory and Chambers and Yenmez (2017) for its further
implications within the matching with contracts model.
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“complementarities,” such as a scenario where a school intends to admit both a high

school valedictorian and a talented athlete into its incoming class. If, in the absence of

the valedictorian, the school becomes unwilling to admit the athlete as well, then these

two students are considered complements. Such complementarities pose challenges

in two-sided matching, leading to issues like the non-existence of stable matchings.

Conversely, in the case of choice rules that satisfy substitutability and IRS, a stable

matching always exists. This sufficiency result was established by Kelso and Craw-

ford (1982) for substitutability under monetary transfers, known as the “gross substi-

tutes” property, and in its present form by Roth (1984a) when an underlying college

preference relation exists for each college. The exact choice rule formulation belongs

to Blair (1988), who proved the result in a more general setting involving many-to-

many matching markets and contractual terms (as covered in Chapter 9 of this hand-

book).24 The maximal domain result was presented in Hatfield and Milgrom (2005).25

More recently, Aygün and Sönmez (2013) proved the necessity of the IRS condition

for the existence of stable matchings in addition to substitutability.

Theorem 16 (Blair, 1988; Hatfield and Milgrom, 2005) In each many-to-one matching
market with college choice rules that satisfy substitutability and IRS, a stable matching exists.
Conversely, for a given college c and any set of students I, if college c has a non-substitutable
preference relation ≻c over subsets of I with capacity qc, then it is possible to construct a
market with the following components, such that, this market has no stable matching:

1. Student set I.
2. The set of colleges C, which includes c along with one or more other colleges, each with

a single capacity.
3. A profile of student preferences ≻I and a profile of preference relations ≻C\{c} for

colleges in C \ {c}.
4. The given non-substitutable preference relation ≻c for college c.

We illustrate the absence of any stable matching in a market where a single college

has a non-substitutable choice rule with the following simple example.26

Example 7 Suppose there are two students i1, i2 and a college c1 with 2 positions and a second

24While Blair additionally assumed the existence of an underlying complete preference relation for col-
leges over groups of students, his results and proofs do not use this stronger assumption.

25Although the result presented in Hatfield and Milgrom (2005) does not hold in the context of matching
with contracts as intended by the authors, it holds in our setting without contracts (Hatfield and Kojima,
2008). A similar result was proven without the contracts by Sönmez and Ünver (2010a).

26This example can be embedded for any possible substitutability violation for a preference relation of
college over any number of students, and can be used to prove the second part of Theorem 16.
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college c2 with a single position. Their preferences are given as

≻i1 : c1 c2 ∅, ≻c1 : {i1, i2} {i2} ∅,

≻i2 : c2 c1 ∅, ≻c2 : i1 i2 ∅.

Observe that the preference relation ≻c1 of college c1 is non-substitutable, because

i1 ∈ Cc1

(
{i1, i2}

)
= {i1, i2} and i1 ̸∈ Cc1

(
{i1}

)
= ∅.

Consider an individually rational matching µ. We have following three scenarios for col-
lege c1:

1. If µ(c1) = {i1, i2}, then µ(c2) = ∅. In this scenario, college c2 and student i2
together block matching µ since i2 ≻c2 µ(c2) = ∅ and c2 ≻i2 µ(i2) = c1.

2. If µ(c1) = {i2}, then µ(i1) = ∅ or µ(i1) = c2. In either case, college c1 and student
i1 together block matching µ since {i1, i2} ≻c1 µ(c1) = {i2} and c1 ≻i1 µ(i1) ∈
{∅, c2}.

3. If µ(c1) = ∅, then there are two possible cases for college c2:

a. If µ(c2) = i1, then µ(i2) = ∅. In this case, college c1 and students i1, i2
together block µ since {i1, i2} ≻c1 µ(c1) = ∅, c1 ≻i1 µ(i1) = c2, and
c1 ≻i2 µ(i2) = ∅.

b. If µ(c2) = i2 or µ(c2) = ∅, then µ(i1) = ∅. In this case, college c2 and
student i1 together block µ since i1 ≻c2 µ(c2) ∈ {∅, i2} and c2 ≻i1 µ(i1) =
∅.

Thus, there is no stable matching.

When college choice rules satisfy substitutability and IRS, the existence of sta-

ble matchings can be shown constructively using appropriately defined student-

proposing and college-proposing DA algorithms, which differ slightly from the ver-

sions stated for responsive college preferences. Consider a market with student pref-

erences and college choice rules (≻I , CC) that satisfy substitutability and IRS.

The description of the student-proposing DA algorithm is modified with the follow-

ing amendment at a generic Step k:

During the holding and rejection stage, each college c ∈ C evaluates the students

who applied to it in this step along with those it has held from Step (k-1). Denote

the union of these two sets of students as Jc. College c rejects students in Jc \
Cc(Jc) and holds the offers from students in Cc(Jc).

Similarly, the description of the college-proposing DA algorithm is modified with the

following amendment at a generic Step k:
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At the offer stage, for each college c ∈ C, denote the set of students to whom it

has not yet proposed as Jc, and the set of students holding its offers from Step

(k-1) as Kc. College c extends proposals to each student in Cc(Jc ∪ Kc), while also

maintaining its held offers from each student in Kc.

It is easy to see that assuming the college choice rule Cc satisfies substitutability

and IRS for each college c ∈ C, both versions of the DA algorithm are well-defined

and generate stable matchings.

The intuition behind the result relies on the following two observations:

• In case of the student-proposing DA algorithm, a college never regrets rejecting

a student:

By substitutability, if a student i is rejected when offers from students J were

available to a college c—i.e., offered in that stage or held from the previous

step—i would still be rejected by the college when an additional offer comes to

the college from some other student j:

i ̸∈ Cc(J) =⇒ i ̸∈ Cc(J ∪ {j}).

Moreover, the number and order of these additional offers coming to i will be

irrelevant under the IRS condition.

• Similarly, in the case of the college-proposing DA algorithm, a college c never

regrets extending an earlier offer to a student i who has held its offer until the

current step:

If i ∈ Cc(J) when J represents the set of students who have not yet rejected

college c in a previous step, then c makes an offer to i in that step. The set of

students who have not yet rejected c weakly shrinks with each additional step.

If J′ ⊆ J is that set in a future step and i is still holding onto c’s earlier offer,

then i ∈ J′. By substitutability, i ∈ Cc(J′), meaning that c will still want to make

an offer to i in the current step.

When college choice rules satisfy substitutability and IRS, one can define appro-

priate lattice operators to establish student-optimal and college-optimal matchings in

this domain, along with the respective properties of the DA algorithms.

Theorem 17 (Blair, 1988) Consider a many-to-one matching market with college choice
rules that satisfy substitutability and IRS. Then the student-proposing DA algorithm finds
the student-optimal stable matching and the college-proposing DA algorithm finds the college-
optimal stable matching.

Here, optimality for colleges requires an additional clarification:
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A stable matching µ is college optimal if for each college c ∈ C and stable matching

ν,

µ(c) = Cc
(
µ(c) ∪ ν(c)

)
.

One may then wonder whether the student-strategy-proofness of the student-

proposing DA algorithm continues to hold in this case. A positive answer depends

on an additional property of the choice rules, first introduced in Alkan (2002).

The choice rule Cc satisfies cardinal monotonicity (or the law of aggregate demand) if,

for each J ⊆ I and J′ ⊊ J,

|Cc(J)| ≥ |Cc(J′)|.

Theorem 18 (Hatfield and Milgrom, 2005) Consider a many-to-one matching environ-
ment with college choice rules that satisfy substitutability and IRS. If the choice rules are
also cardinal monotonic, then the “Rural Hospitals Theorem" remains valid. Furthermore, the
student-optimal stable mechanism is strategy-proof for students.

Conversely, if there is a college with a choice rule that fails cardinal monotonicity, then
there exists no stable mechanism that is strategy-proof for students. In this case, it is possible
to construct a market with other colleges with unit quotas, a student set, and preferences in
such a way that the “Rural Hospitals Theorem" no longer holds.

Importantly, there is a connection between the student-strategy-proofness of a sta-

ble mechanism and the validity of the Rural Hospitals Theorem in the given environ-

ment. When the theorem holds, it provides a means to establish the student-strategy-

proofness of the student-optimal stable mechanism.

2.4.3 Extension: Two-Sided Many-to-Many Matching Markets

While our primary focus has been on the one-to-one and many-to-one versions

of two-sided matching markets, another intriguing variation is the many-to-many

matching market. In such scenarios, both firms and workers seek multiple partners,

as seen in real-life instances like the British medical internship market, where each

doctor pursues two internships upon graduation (Roth, 1991).

In these markets, even with responsive college preferences, the weak core might

be empty (Konishi and Ünver, 2006a). Also, a distinction emerges between pair-

wise stable matchings (which always exist) and group stable matchings (Roth and

Sotomayor, 1990, where each block may involve multiple firms and workers and dis-

tinct from weak core matchings even under responsive preferences), and the potential

non-existence of a group-stable matching.

Unlike the many-to-one lattice structure discussed earlier under substitutable pref-

erences, the lattice structure in many-to-many matching markets differs (Blair, 1988).

Natural distributive lattice properties were proven by imposing an additional restric-
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tion besides substitutability of choice rules as choice rules being quota-filling (Alkan,

2001) and cardinal monotonicity (Alkan, 2002), respectively. Alkan and Gale (2003)

extended the lattice properties to a two-sided schedule matching problem where each

agent is matched only a fraction of their time to an agent on the other side of the

market so that they can be matched with a set of partners, each with a different time

amount.27 Deferred acceptance algorithms (or their extensions) remain instrumental

in finding pairwise stable matchings in these markets.

Various stability concepts, such as setwise stability (Sotomayor, 1999; Echenique

and Oviedo, 2006) and credible group stability (Konishi and Ünver, 2006a), have been

proposed, each equivalent to pairwise stability under appropriately restricted prefer-

ences.

2.4.4 Extension: Fixed-Point Approaches for Characterizing Stable Match-
ings

Inspired by Nash (1950), the seminal works of Arrow and Debreu (1954) and

McKenzie (1954) introduced fixed-point techniques in establishing the existence of

a Walrasian equilibrium in general equilibrium models. Matching theorists have also

sought similar fixed-point interpretations for stable matchings.

Adachi (2000) demonstrated that using the fixed-point theorem of Tarski (1955)

for lattices, one can establish the existence of stable matchings in an opposite-sex mar-

riage market, considering them as fixed points of an appropriately defined monotonic

function on a finite lattice. These methods also directly enable the proof of lattice

properties of stable matchings thanks to Tarski’s fixed point theorem.

Moreover, this monotonic function, starting from the maximum and minimum

points of the defined lattice, if executed repeatedly, precisely aligns with the execution

of the two deferred acceptance algorithms, respectively.

This monotonic function can also be interpreted as a tâtonnement process converg-

ing to an “equilibrium,” starting from an arbitrary demand-supply configuration by

making appropriate budget set adjustments similar to the ones in price theory or, in

more specialized settings, similar to an ascending price auction.

In price theory, price adjustments lead to convergence to a budget configuration

so that supply and demand equate, the market clears, and equilibrium emerges.

In the two-sided matching theory, the analogy is the set of “available partners” to

each agent, which is interpreted as the agent’s budget set. By starting from arbitrary

budget sets and by making correct adjustments in each step, such a matching tâton-

nement function converges to a budget set configuration that can be interpreted as a

27Integer-valued version of this problem was proposed and analyzed by Baïou and Balinski (2002) so that
each agent can be matched with an integer amount with each partner.
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stable matching: each individual is matched with their best partner in their budget

set.

Subsequent works by Echenique and Oviedo (2004) and Echenique and Oviedo

(2006) extended these techniques in two-sided many-to-one and many-to-many

matching markets. Similar methodologies have been applied to define and identify

stable allocations in scenarios involving externalities (Echenique and Yenmez, 2007)

or other coalitional problems with externalities (Inal, 2015). These approaches have

further evolved to handle more intricate matching models, integrating money and ad-

ditional contractual terms (Fleiner, 2003; Hatfield and Milgrom, 2005) and including

trading networks (Ostrovsky, 2008) to facilitate the proof of stable allocation existence

and characterization of their properties.28

2.5 Bilateral Matching Markets with Unit Demand
In this subsection, we generalize the setting of two-sided one-to-one matching

markets, i.e., the opposite-sex marriage markets, by removing the requirement that

there are two sides to the market.

Suppose I = {1, 2, . . . , n} is a set of agents, each of whom can be paired with an-

other agent in the same set or remain unmatched.

A matching is a function µ : I → I ∪ ∅ such that, for any distinct pair of agents

i, j ∈ I,

µ(i) = j ⇐⇒ µ(j) = i.

Thus, agent i is the partner of agent j under a matching if, and only if, j is the partner

of i. If µ(i) = ∅ for an agent i, it means they remain unmatched. Let M be the set of

matchings.

Introduced in the seminal paper of Gale and Shapley (1962) and called the room-
mates problem, this is a model in which a stable matching may not exist in some mar-

kets.

We consider two different preference restrictions for these problems:

1. Strict Preference Domain (Gale and Shapley, 1962). Each agent has a strict pref-

erence relation over (I \ {i}) ∪ {∅}.

2. Dichotomous Preference Domain (Roth, Sönmez, and Ünver, 2005). Preference

relation of each agent is compatibility-based (or dichotomous) over (I \ {i}) ∪
{∅}:

28Also, there is a recent line of papers using Brouwer’s fixed point theorem (Brouwer, 1911) to prove the
existence of stable matchings in large markets under various preference generalizations and externalities
caused by peer effects. Such domains do not allow the existence of stable matchings in finite markets.
Examples of such papers include Che, Kim, and Kojima (2018), Azevedo and Hatfield (2018), Cox et al.
(2023), and Leshno (2022).
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• Each agent is indifferent between all their acceptable partners, and

strictly prefers them to remaining unmatched.

• Each agent strictly prefers remaining unmatched to any unacceptable

partner, and remains indifferent between these unacceptable partners.

While the first model by Gale and Shapley, 1962 leads to the aforementioned neg-

ative result regarding the existence of a stable matching, a stable matching always

exists in the second model by (Roth, Sönmez, and Ünver, 2005). However, unlike the

first model in which a stable matching—whenever one exists—is always Pareto effi-

cient and individually rational, the opposite holds true in the latter model. Moreover,

while all Pareto-efficient and individually rational matchings are stable in this model,

not all stable matchings are Pareto efficient. Hence, for the latter model, we focus on

Pareto-efficient and individually rational matchings rather than stable ones.

2.5.1 Bilateral Matching with Strict Preferences: Roommates Problem

For each agent i ∈ I, let ≻i represent a strict preference relation on I ∪ ∅, and let

⪰i denote the corresponding weak preference relation: for any i, j, k ∈ I:

j ⪰i k ⇐⇒ j ≻i k or j = k.

Let ≻= (≻i)i∈I represent a preference profile, Pi denote the set of preferences for

agent i ∈ I, and P =×i∈I Pi denote the set of preference profiles.

In this context, we refer to a pair [I,≻] as a roommates problem (Gale and Shapley,

1962), and to the pair [I,P ] as a roommates matching environment.

Stability and the Core. Similar to the opposite-sex marriage environment, the

three solution concepts—stability, weak core, and strong core—are all equivalent in

the roommates matching environment.

Lemma 6 Fix a roommates problem. A matching is stable if, and only if, it is in the weak
core, if, and only if, it is in the strong core.

Moreover, the weak core—or equivalently the strong core or the set of stable

matchings—of a roommates problem may be empty as proven by Gale and Shapley

(1962). We present this negative result with the following example.

Example 8 A roommates problem may have an empty weak core. Consider the following
roommates problem. Suppose I = {1, 2, 3} and the preferences are given as:

≻1: 2 3 ∅,
≻2: 3 1 ∅,
≻3: 1 2 ∅.
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For each agent i, define
µi =

{
{i, i + 1}

}
,

where i is denoted in modulo 3.29

Then, for each i ∈ {1, 2, 3}, ({i + 1, i + 2}, µi+1) is a strong block to matching µi as

µi+1(i + 1)︸ ︷︷ ︸
=i+2

≻i+1 µi(i + 1)︸ ︷︷ ︸
=i

and µi+1(i + 2)︸ ︷︷ ︸
=i+1

≻i+2 µi(i + 2)︸ ︷︷ ︸
=∅

,

thus, establishing that the weak core of this roommate problem is empty. Thereby, by Lemma
6, the strong core and the set of stable matchings are also empty, and by Proposition 1,there
exists no competitive equilibria.

Notice that, in Example 8, there exists a “preference cycle” involving all three

agents’ preference relations, leading to the non-existence of a matching in the weak

core:

2 ≻1 3 ≻2 1 ≻3 2.

Interestingly, with four agents, an analogous preference cycle involving all four

would result in a non-empty weak core.

Example 9 Suppose I = {1, 2, 3, 4} and the preferences are given as:

≻1: 2 4 ∅,
≻2: 3 1 ∅,
≻3: 4 2 ∅,
≻4: 1 3 ∅.

In this roommate problem, there are two matchings in the weak core that overlap with both the
set of strong core matchings and stable matchings

µ =
{
{1, 2}, {3, 4}

}
and ν =

{
{1, 4}, {2, 3}

}
.

The next result elucidates the sharp contrast between Examples 8 and 9.

Proposition 5 (Chung, 2000) Consider a roommates problem [I,≻]. The strong core is
non-empty if there is no odd-sized preference cycle, i.e., there is no set of distinct agents
{i1, i2, . . . , ik} for some odd index k such that for all ℓ ∈ {1, 2, . . . , k} modulo k,

iℓ+1 ≻iℓ iℓ−1 ≻iℓ ∅.

Observe that an opposite-sex marriage market can be formulated as a special type

of roommates problem, in which each agent finds other agents on their side unaccept-

29Recall that ℓ in modulo k for integers ℓ and k is defined as ℓ mod k = ℓ−
⌊
ℓ
k

⌋
· k.
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able. As we have seen in Theorem 8 (presented in Section 2.3), opposite-sex marriage

markets always admit a stable matching. This existence result can be obtained as a

corollary to Proposition 5.

Even when there is a preference cycle in an opposite-sex marriage market, by the

above-given formulation, it is always even-sized. To see this, observe that Example

9 can be classified as an opposite-sex marriage market by designating agents 1 and 3

as women and agents 2 and 4 as men. And by the definition of a cycle, one needs to

rotate between men and women in the sequence, i.e., if iℓ is a man, then necessarily

iℓ−1 and iℓ+1 are women, as iℓ+1 ≻iℓ iℓ−1 ≻iℓ ∅.

Apart from Chung, 2000, Tan (1991) and Alcalde (1994) also restrict the prefer-

ence domain to ensure the existence of weak-core matchings. Additionally, Irving

(1985) provides a polynomial-time algorithm to compute a weak-core matching under

arbitrary preferences whenever such a weak-core matching exists (thus determining

whether a problem has an empty weak-core). Moreover, Morrill (2010) introduces an

interesting modification to the roommates’ problem, where initial property rights are

not only on one agent’s endowment but also include a status-quo matching. Hence,

if one needs to move from a room shared with a partner, they also need to find their

current weakly better match. This setup establishes favorable properties regarding

the core.30

Mechanisms. Together with Example 9, which presents a roommates problem

with two weak-core matchings, Theorem 1 (presented in Section 2 for generalized

matching markets) has a strong implication for the roommates matching environ-

ment.

Corollary 1 (Sönmez, 1999) Consider a roommates matching environment with at least
four agents. Then, there exists no mechanism that satisfies Pareto efficiency, individual ra-
tionality, and strategy-proofness.

Therefore, in the absence of additional restrictions on the environment, no mecha-

nism that is both Pareto efficient and individually rational can be strategy-proof. Next,

we present one such class of mechanisms that will be revisited in various matching

models.

A priority order π : I → {1, 2, . . . , |I|} is a one-to-one and onto function. For any

two distinct agents i and j,
π(i) < π(j)

indicates that agent i has a higher priority (or is ordered before) agent j.

30See Gudmundsson (2014) for an excellent survey of the results on the roommates problem.
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For each agent i and each J ⊆ I \ {i}, define

C∗
i [≻, J] =

{
j ∈ J \ {i} : i ≻j ∅ and j ≻i ∅

}
,

representing the set of mutually individually rational matches for agent i within the

partner set J.

Each priority order induces a priority mechanism through the following algorithm:

Priority mechanism induced by π for roommates problem.

Step 0. All agents are available at the initiation.

Step k. (k ≥ 1) The highest-priority agent under π among available agents, say agent j,
is matched with their top-choice mutually individually rational available part-

ner if such a partner exists, and deemed unavailable and remain unmatched if

such a partner does not exist.

If no agent remains available, then we terminate the algorithm; and otherwise,

we proceed with Step k+1.

Although it is Pareto efficient and individually rational, as implied by Corollary

1, a priority mechanism is not strategy-proof in this environment. To see this point

directly, consider the roommates problem in Example 9. Suppose that agents are pri-

ority ordered as 1-2-3-4 under π. Then under the induced priority mechanism, agent

1, who is prioritized over 2, will force a match between them even if agent 1 is not

agent 2’s best mutually individually rational choice, who is agent 3. But then, agent

2 will be matched with agent 3, if they list agent 3 as the only acceptable partner,

declaring agent i as unacceptable.

Theorem 1 from Sönmez, 1999, presented in Section 2 for generalized matching

markets, relies on a relatively rich preference domain assumption that enables agents

to rank their endowments as high as they desire in their actual and submitted pref-

erences. In both opposite-sex marriage and roommates matching environments, this

flexibility in the preference domain implies that agents may strictly prefer remaining

unassigned to some or all potential partners.

Thus, it is of potential interest to explore a version of the problem where all part-

ners are acceptable for an agent. Not only does Theorem 1 no longer apply under this

restriction, but individual rationality also becomes vacuous. Moreover, in this setting,

the priority mechanism becomes strategy-proof for any priority order of individuals.

Indeed, under this generalization, all mechanisms in a more general class that we

introduce next, known as a sequential dictatorship mechanism, become strategy-proof.

A submatching is a matching that involves only a proper subset of agents. For a
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given J ⊊ I, a submatching is a function σ : J → J ∪ {∅} such that, for each i, j ∈ J,

σ(i) = j ⇐⇒ σ(j) = i.

For any J ⊆ I, let MJ denote the set of submatchings that involve the set of agents

J.

For a submatching σ ∈ MJ , we denote the domain of σ as Iσ = J. Similar to

matchings, we also employ set notation for submatchings:

σ =
{
{i, σ(i)}

}
i∈Iσ

.

Let S =
⋃

J⊆I MJ denote the set of submatchings for all subsets of I. It is worth

noting that ∅ ∈ S .

A sequential dictatorship is a function d : S → I such that d(σ) ∈ I \ Iσ for each

σ ∈ S \M. For each submatching σ, including the empty matching, a sequential

dictatorship simply specifies an agent who is not in the domain Iσ of σ.

By making the sequence of agents a function of the submatching already formed,

each sequential dictatorship d induces a generalized priority mechanism:

Generalized priority mechanism induced by sequential dictatorship d for room-
mates problem.

Step 0. Let σ0 = ∅ be the initial submatching.

Step k. (k ≥ 1) Agent d(σk−1) is matched with their top choice in C∗
i [≻,

(
I \ Iσk−1

)
] ∪

{∅}, say x. Let

σk = σk−1 ∪
{
{d(σk−1), x}

}
.

If Iσk = I, we terminate the algorithm; otherwise, we proceed with Step k + 1.

In the roommates matching environment, when all agents are acceptable, we have

the following characterization.

Theorem 19 (Root and Ahn, 2023) Suppose all partners are acceptable in a roommates
problem environment. Then a mechanism is Pareto-efficient and group strategy-proof if, and
only if, it is a generalized priority mechanism.

2.5.2 Bilateral Matching with Compatibility-based Preferences: Pairwise
Kidney Exchange Problem and The Matching Matroid on Graphs

A second variation of the roommates problem is presented by Roth, Sönmez, and

Ünver (2005) within the framework of pairwise kidney exchange, extensively exam-

ined in Chapter 3.31 In this subsection, we focus on an abstract version of the model.

31Bogomolnaia and Moulin (2004) introduced the two-sided version of this model earlier.
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Let I be a set of agents. For each agent i ∈ I, the preference relation ≿i on I ∪ {∅}
is uniquely determined by a partition

{
C[≿i], I[≿i]

}
of the set of agents I, such that:

1. For each j ∈ C[≿i] and k ∈ I[≿i], j ≻i ∅ ≻i k.

2. For each pair j, k ∈ C[≿i], j ∼i k.

3. for each pair j, k ∈ I[≿i], j ∼i k.

Motivated by the kidney exchange application of this setting, set C[≿i] is referred

to as the set of compatible partners under ≿i. Similarly, set I[≿i] is referred to as the set

of incompatible partners under ≿i.

In the current version of the roommates problem, an agent remains indifferent

among all compatible and incompatible partners. Moreover, any compatible partner

is preferred to remaining unmatched, which, in turn, is preferred to any incompatible

partner. For any agent i ∈ I, we denote the resulting set of preference relations as PC
i

and refer to them as compatibility-based (or dichotomous).

Let PC =×i∈I P
C
i denote the set of preference profiles. The pair [I,PC] defines

a pairwise kidney exchange environment. For any preference profile ≿∈ PC, we refer to

[I,≿] as a pairwise kidney exchange problem.

Given an agent i ∈ I and a set of agents J ⊆ I \ {i}, we define the mutually compat-
ible partners of agent i in group J as

C∗
i [≿, J] =

{
j ∈ C[≿i] ∩ J : i ∈ C[≿j]

}
.

Given a matching µ ∈ M, let µ(I) ⊆ I denote the set of agents who are matched

with another agent under µ for the remainder Section 2.5.2.

We next present a preliminary result linking stable matching, weak core, and

strong core.

Lemma 7 Consider a pairwise kidney exchange problem. A matching is stable if, and only if,
it belongs to the weak core. However, while a matching in the strong core is always stable, a
stable matching may not be in the strong core.

In this model, the following fundamental result holds.

Theorem 20 (Bogomolnaia and Moulin, 2004; Roth, Sönmez, and Ünver, 2005) In a
pairwise kidney exchange problem, there exists a Pareto-efficient and individually rational
matching, each of which is in the weak core. However, the strong core may be empty. Moreover,
the number of agents matched in every Pareto-efficient and individually rational matching is
the same.

The proof of the existence of a Pareto-efficient and individually rational matching

is straightforward.

The inclusion of the set of Pareto-efficient and individually rational matchings in
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the weak core is initially established by Bogomolnaia and Moulin (2004) for the two-

sided matching version, and here, we generalize it for the roommates matching ver-

sion. The proof is basic: consider any Pareto-efficient and individually rational match-

ing µ ∈ M. There is no one-agent strong block due to individual rationality. Towards

a contradiction, suppose there exists a strong block ({j1, j2}, ν). Then, for each k mod-

ulo 2, jk+1 ∈ C[≿jk ] and µ(jk) /∈ C[≿jk ]. Thus, j1 and j2 are both unmatched in µ by

its individual rationality. Consequently, we can match them with each other to obtain

an individually rational matching η = µ ∪
{
{j1, j2}

}
∈ M that Pareto dominates µ,

contradicting Pareto efficiency of matching µ. This establishes that µ is in the weak

core.32

The following simple example shows that strong core may be empty.

Example 10 Consider a pairwise kidney exchange problem [I,≿] with I = {i1, i2, i3} and

Ci1 [≿] = {i2}, Ci2 [≿] = {i1, i3}, Ci3 [≿] = {i2}.

There are three individually rational matchings, each of which is weakly blocked.

• µ = ∅ is (weakly) blocked by pair i1, i2 since i2 ≻i1 ∅ and i1 ≻i2 ∅, as well as by pair
i2, i3 since i3 ≻i2 ∅ and i2 ≻i3 ∅.

• µ =
{
{i1, i2}

}
is weakly blocked by pair i3, i2 since i2 ≻i3 ∅ and i3 ∼i2 i1.

• µ =
{
{i2, i3}

}
is weakly blocked by pair i1, i2 since i3 ≻i1 ∅ and i1 ∼i2 ∅.

Thus, the strong core is empty.

The proof of the last statement is the most subtle, and one avenue to establish this

result delves into the theory of a more intricate mathematical structure known as a

matroid.

Matroids. A matroid is a generalization of a matrix’s columns (or rows) and the

linear independence relation between them. Let E be a finite set, and consider a col-

lection of subsets I ⊆ 2E of E. The pair (E, I) is a matroid (Whitney, 1935) if,

1. ∅ ∈ I ,

2. for each J ∈ I , J′ ⊊ J =⇒ J′ ∈ I , and

3. for each J, J′ ∈ I with |J′| < |J|, there exists j ∈ J \ J′ such that J′ ∪ {j} ∈ I .

The collection I is referred to as an independence system, and each element J ∈ I of the

independence system is referred to as an independent set.33

An independent set J ∈ I has maximum cardinality if |J| ≥ |J′| for all J′ ∈ I . An

independent set J ∈ I is maximal if there exists no J′ ∈ I with J ⊊ J′. A maximal

32Since, the relevant coalitions have a size of at most two for the weak core, any larger strong block
coalition (J, ν′) includes a two-agent coalition J′ ⊊ J such that (J′, ν′) is a strong block to µ.

33See Lawler (2001) for an excellent short survey on matroid theory and matching matroids.
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independent set is called the basis of the matroid.

The proof of the last part of Theorem 20, relies on the following important feature

of matroids.

Lemma 8 Let (E, I) be any matroid. Then, for any independent set J ∈ I , there exists a
maximum cardinality independent set J′ ∈ I such that J ⊆ J′. Moreover, an independent set
of the matroid is a basis if, and only if, it has maximum cardinality.

When applied to a matroid structure, the priority algorithm is known as the greedy
algorithm and holds a special place in matroid theory.

Let c : I → R be a one-to-one function, referred to as a strict cost function. Let πc :

I → {1, 2, . . . , n} be the unique priority order, which is a monotonic transformation of

c; i.e.,

πc(i) < πc(j) ⇐⇒ c(i) < c(j) ∀i, j ∈ I.

Suppose we aim to select an independent set J∗ ∈ I that minimizes the total cost

associated with its members, defined as

J∗ = arg min
J∈I ∑

i∈J
c(i).

Our next result states that the greedy algorithm serves this purpose. In fact, the out-

come of this algorithm possesses a much stronger property.

For any two distinct independent sets J, J′ ∈ I , set J Gale-dominates set J′ with

respect to the strict cost function c if there exists an indexing j1, j2, . . . , jk of agents in

J \ J′ along with an indexing j′1, j′2, . . . , j′k′ of agents in J′ \ J such that

1. k ≥ k′, and

2. c(jℓ) < c(j′ℓ) for each ℓ ≤ k′.

Given a strict cost function c, the independent set J ∈ I is called Gale-dominant
if it Gale-dominates every other independent set in I with respect to the strict cost

function c.

The following fundamental algorithm finds the unique independent set fulfilling

the above two objectives.

Matroid greedy algorithm induced by πc (Edmonds, 1971).

Step 0. Let J0 = ∅.

Step k. (k ≥ 1) Let i be the agent with priority order k under πc.

If Jk−1 ∪ {i} ∈ I , then let Jk = Jk−1 ∪ {i}. Otherwise, let Jk = Jk−1.

The outcome of the algorithm is set Jn = J|I|.
The following theorem presents three related results. The first part is from Ed-

monds (1971), and the third part is from Gale (1968). The second part is established

as a corollary of Lemma 8 in conjunction with the third part.
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Theorem 21 Consider a matroid (E, I) and an associated strict cost function c. Let J∗ ∈ I
be the outcome of the greedy algorithm for πc (i.e., the priority order induced by c). Then,

1. J∗ = arg minJ∈I ∑i∈J c(i); that is, J∗ is the cost-minimizing independent set of the
matroid.

2. |J∗| ≥ |J| for each J ∈ I , and J∗ is a basis of the matroid.
3. J∗ is the Gale-dominant independent set of the matroid.

Matching Matroid and Pairwise Kidney Exchange Problem. We next relate

pairwise kidney exchange problem with matroid theory.

Fix a pairwise kidney exchange problem [I,≿] . The set of individually rational

matchings of this problem induces a special type of matroid.

Let

MIR[≿] =
{

µ ∈ M : ∀ i ∈ I, µ(i) /∈ I[≿i]
}

denote the set of individually rational matchings.

Define

I [≿] =
{

J ⊆ I : ∃ µ ∈ MIR[≿] such that J ⊆ µ(I)
}

as the set consisting of groups of agents, where all members of any group in the set

are matched under some individually rational matching.

Proposition 6 (Edmonds and Fulkerson, 1965) The pair
(

I, I [≿]
)

is a matroid.

Proving this result requires showing that the pair (I, I [≿]) satisfies the three ma-

troid properties. First, it is evident that ∅ ∈ I [≿] since the matching that leaves

all agents unassigned is individually rational. The second property of a matroid is

also satisfied by (I, I [≿]) by definition: whenever J ∈ I [≿], the individually rational

matching that includes all individuals in J also matches individuals in every subset of

J.

The third matroid property is more intricate, and it can be established by a tech-

nique called alternating paths (Berge, 1957). Suppose J, J ∈ I [≿] with |J| > |J′|. By

definition, there exists µ, µ′ ∈ MIR[≿] such that J ⊆ µ(I) and J′ ⊆ µ′(I). It suffices to

construct an individually rational matching which matches all agents in J′ and at least

one agent in J \ J′. If µ′ matches at least one agent in J \ J′, then we are done. Thus,

w.l.o.g., assume µ′(I) ∩ (J \ J′) = ∅. Since |J| > |J′|, there exists an agent j0 ∈ J \ J′,
and by assumption, j0 ̸∈ µ′(I). Starting with agent j0, construct the following finite

sequence of agents until the last member of the sequence remains unassigned either

under µ or µ′:

j0, j1 = µ(j0), j2 = µ′(j1), j3 = µ(J2), · · · jℓ ̸∈ µ(I) ∩ µ′(I)
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For our construction to work, ℓ needs to be odd, so that the sequence ends with an

agent in µ(I) \ µ′(I). Since |J| > |J′|, there exists at least one such agent j0 ∈ µ(I) \
µ′(I) who can start this sequence. Construct the following matching ν:

ν(i) = µ(i) for all i ∈ {j0, . . . , jℓ},

ν(i) = µ′(i) for all i ∈ I \ {j0, . . . , jℓ}.

Since µ, µ′ ∈ MIR[≿], we have ν ∈ MIR[≿]. Moreover, all agents in µ′(I) ⊇ J′

and agent j0 ∈ J \ J′ are matched under ν, completing the proof of the third matroid

property.

The pair
(

I, I [≿]
)

is referred to as the matching matroid. The following result es-

tablishes a connection between the pairwise kidney exchange economic problem and

matroid theory:

Proposition 7 (Roth, Sönmez, and Ünver, 2005) In a pairwise kidney exchange problem
[I,≿], a matching µ ∈ M is Pareto efficient and individually rational if, and only if, the
set µ(I) of agents matched under matching µ is a basis of the induced matching matroid(

I, I [≿]
)
.

To see this result, first consider a set of agents matched in a Pareto efficient and

individually rational matching µ, which is denoted as µ(I). It is an independent set

of the matching matroid as µ is individually rational. Moreover, there cannot be an

an independent set J such that J ⊋ µ(I). Otherwise, any matching that matches all

agents in J Pareto dominates µ. Hence, µ(I) is a basis.

Conversely, since a basis J is also a maximum cardinality independent set by

Lemma 8, there is no individually rational matching that matches more agents than

J. Consider an individually rational matching µ that matches agents in J. Then under

any individually rational matching ν that matches an agent in I \ J, at least one agent

in J has to be unmatched. Therefore, ν cannot Pareto dominate µ, and hence, µ is

Pareto efficient.

This proposition and earlier results imply the following corollary and the last state-

ment of Theorem 20:

Corollary 2 (Roth, Sönmez, and Ünver, 2005) In a pairwise kidney exchange problem
[I,≿], a matching µ ∈ M is Pareto efficient and individually rational if, and only if, µ(I) is
a maximum cardinality independent set of the matching matroid

(
I, I [≿]

)
.

The Structure of Pareto-Efficient and Individually Rational Matchings In

addition to the matroid structure, there is an elegant structural characterization result

for Pareto-efficient and individually rational matchings of a given pairwise kidney
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exchange problem. This problem was extensively studied as part of the cardinality
matching problem in graph theory (cf. Gallai, 1963, 1964; Edmonds, 1965).

For a given pairwise kidney exchange problem [I,≿], let MPE&IR denote the set of

Pareto-efficient and individually rational matchings.

Partition the set of agents in I in three groups as follows:

IU =
{

i ∈ I : ∃µ ∈ MPE&IR s.t. µ(i) = ∅
}

IO =
{

i ∈ I \ IU : ∃j ∈ IU ∩ C∗
i [≿, IU ]

}
IP = I \ (IU ∪ IO)

For reasons that will become evident with Theorem 22, agents in IU , IO, and IP are

respectively referred to as underdemanded, overdemanded, and perfectly matched.

Consider a set of agents J ⊆ I: We refer to the set of agents J′ ⊆ J as a component of
J, if for each i ∈ J′, C∗

i [≿, J \ {i}] ⊆ J′ and there is no proper subset of J′ with the same

property. In a component J, all mutually compatible partners of a member i ∈ J are

in the same component, and no proper subset of J′ bears this property. A component

with an odd number of agents is called an odd component, and a component with an

even number of agents is called an even component.
The following result characterizes the identity of partners for agents in each of the

three sets IU , IO, and IP under Pareto-efficient and individually rational matchings.

Theorem 22 (Gallai-Edmonds Decomposition Theorem, Gallai, 1963, 1964, Edmonds, 1965)
Fix a pairwise kidney exchange problem [I,≿]. Let IU , IO, IP be the sets of underdemanded,
overdemanded and perfectly matched agents for this problem. Let µ ∈ MPE&IR be any
Pareto-efficient and individually rational matching. Consider the set of agents J = I \ IO and
its partition to its components.

1. Overdemanded agents: For any i ∈ IO, µ(i) ∈ IU .
2. Underdemanded agents and odd components: For any i ∈ IU , agent i is a member of

an odd component D of J. Conversely all individuals in any odd component of J is a
member of IU . Moreover, for any odd component D of J and any d ∈ D, either

a. µ(d) ∈ IO and µ(j) ∈ D \ {d} for any j ∈ D \ {d}, or
b. µ(d) = ∅ and µ(j) ∈ D \ {d} for any j ∈ D \ {d}.

Furthermore, in case (b), for any agent d′ ∈ D, there exists a Pareto efficient matching
ν such that ν(d′) = ∅, ν(j) ∈ D for any j ∈ D \ {d′}, and ν(j) = µ(j) for any
j ∈ I \ D.

3. Perfectly matched agents and even components: For any i ∈ IP, agent i is a member of
an even component D of J. Conversely all individuals in any even component of J is a
member of IP. Moreover, for any even component D of J and any d ∈ D, µ(d) ∈ D.
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Mechanisms. Numerous Pareto-efficient and individually rational mechanisms

exist within the pairwise kidney exchange environment. One such class, as explored

in Roth, Sönmez, and Ünver (2005), naturally emerges through the matching matroids

associated with each problem and the application of the matroid greedy algorithm.

Fix a pairwise kidney exchange problem [I,≿] and its induced matroid (I, I [≿]).

Priority mechanism induced by π for pairwise kidney exchange problem.
Use the matroid greedy algorithm by induced π to determine a set of agents J∗.

Pick any matching that matches each agent J∗ as the outcome of the mechanism.

A priority mechanism is typically “multi-valued” unlike any other mechanism we

considered until now. However, any of its outcomes matches the same set of agents

J∗, although their particular partners can differ from one matching to the other. Since

every individual in J∗ is matched with a compatible partner, and no agent in I \ J∗ is

matched, all individuals are indifferent among all possible outcomes of this mecha-

nism. Therefore, it does not matter which matching we consider as its outcome.

We have not provided an explicit algorithm to find an outcome, especially since

constructing the induced matching matroid is typically a computationally hard prob-

lem. So, how can we compute the outcome of this mechanism? To find an outcome of

a priority mechanism, there’s no need to construct the independence system I [≿]. In-

stead, in each step of the greedy algorithm, we can check whether the considered set is

independent or not using a computationally efficient algorithm known as the Blossom
Algorithm by Edmonds (1965) and the Gallai-Edmonds Decomposition Theorem (i.e.,

Theorem 22).34

We conclude this subsection with the following incentive property of a priority

mechanism:

Theorem 23 (Roth, Sönmez, and Ünver, 2005) In a pairwise kidney exchange environ-
ment, any priority mechanism is Pareto efficient, individually rational, and strategy-proof.

34Blossom algorithm can be used to construct an arbitrary Pareto-efficient and individually rational
matching µ and can be used to determine the Gallai-Edmonds decomposition structure by elementary
graph theory through matching µ. Then, we execute the greedy algorithm: Initially, we start with set
J0 = ∅ and matching µ0 = µ. Then in each generic Step k, if agent ik is matched under µk−1, they are
immediately included in Jk. Otherwise, they can still be included in Jk provided that we can construct a
new Pareto-efficient and individually rational matching µk that leaves a lower priority underdemanded
agent unmatched and instead match ik without affecting other agents’ match status, as matched or un-
matched, under µk−1. This possibility can once again be easily verified using the alternative path technique
introduced by Berge, 1957, which we previously employed to establish the third matroid property of the
matching matroid in Proposition 6. If this is not possible either, then we skip ik, setting Jk = Jk−1 and
µk = µk−1.
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Extension: Two-Sided Matching with Compatibility Based Preferences.
Bogomolnaia and Moulin (2004) introduced the two-sided variant of the pairwise kid-

ney exchange problem as a opposite-sex marriage market with dichotomous preferences as

a list [W, M,≿] where W is a set of women and M is a set of men, such that each agent

i’s preferences of over the partners on the other side and option ∅ ≿i has only three

indifference classes as in the pairwise kidney exchange problem as acceptable part-

ners, remaining unmatched ∅, and unacceptable partners. Since this environment is

a special case of the pairwise kidney exchange problem, in which all individuals find

the agents on their side unacceptable, all results we established in the pairwise kidney

exchange problem also hold.

Here, we introduce an important property about full matchings, namely, Pareto-

efficient and individually rational matchings that match all agents on one side of the

market. Suppose |W| ≤ |M|. One of the earliest results in matching theory formulates

a necessary and sufficient condition on the structure of mutually compatible sets of

agents for the existence of a full matching that matches each woman

Theorem 24 (Marriage Theorem, Hall, 1935) Consider an opposite-sex marriage market
[W, M,≿] with dichotomous preferences. There is a Pareto-efficient and individually rational
matching that matches all women if, and only if,

∣∣W ′∣∣ ≤ ∣∣∣∣∣ ⋃
w∈W ′

C∗
w[≿, M]

∣∣∣∣∣ ∀ W ′ ⊆ W.

3 Matching with Common or Mixed Ownership
While property rights are commonly regarded as a fundamental aspect of mar-

ket economies by most economists, there exist various matching settings where these

rights are either loosely defined or too complex. One such setting is common own-

ership economies, where property rights are not defined in the problem at all. The

most intuitive modeling approach in such cases is to assign rights to all agents over

all objects, resulting in a joint ownership model.

For instance, when assigning dorm rooms to students, all students within a given

class may possess similar rights to any dorm room. What then are the most sensible

direct mechanisms in these settings? In the context of pandemic triage, is it assumed

that all patients within a specific age group have equal rights to receive the limited

vaccine supply, and if so, how is the priority determined?

Deceased donor organs, regarded as a national treasure for transplantation in

many countries, are subject to similar rights for all transplant patients. However,

the introduction of certain bioethical criteria can lead to more intricate property rights

structures over these invaluable resources.
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3.1 Matching with Common Ownership
The following common ownership model, first introduced in Hylland and Zeck-

hauser, 1979, is similar to the housing markets we presented in Section 2.2, with one

exception: there is no private endowment.

Let I be a set of agents, and H a set of houses. For simplicity, we assume |H| = |I| =
n. Under this restriction, we focus on outcomes where all agents are assigned houses,

and no house remains unoccupied. We represent the profile of strict preference relations
of agents over houses as ≻= (≻i)i∈I . The weak preference relation ⪰i for each agent

i is defined such that, for any g, h ∈ H,

g ⪰i h ⇐⇒ g ≻i h or g = h.

Let Pi denote the set of strict preference relations over H for agent i, and P =×i∈I Pi

denote the set of preference profiles.

We refer to the triple [I, H,≻] as a house allocation problem, and the triple [I, H,P ]

as a house allocation environment. Matchings, mechanisms and their relevant properties

in this environment are defined as in housing markets in Section 2.2.35 We skip these

definitions here.

Throughout Section 3.1, fix a house allocation environment [I, H,P ]. Given the

environment, let a preference profile ≻ ∈ P denote a house allocation problem.

3.1.1 Core from Assigned Endowments

Observe that, a house allocation environment [I, H,P ] and a matching ν ∈
M[I, H,P ] for this environment together define the housing market environment

[I, H, µ,P ]. Since the strong core mechanism is uniquely plausible for the resulting

environment (cf. Theorem 7 in Section 2.2.2), each matching ν induces the following

technocratically natural mechanism for the house allocation environment.

Strong Core from Assigned Endowments (CAE) ν: For any house allocation prob-

lem ≻ ∈ P , interpret matching ν as an initial endowment and select the unique strong

core matching of the resulting housing market.

Let φν denote the CAE mechanism induced by ν. This mechanism has several

desirable properties.

Theorem 25 (Abdulkadiroğlu and Sönmez, 1998) Fix a house allocation environment
[I, H,P ] and a matching ν ∈ M[I, H,P ] for this environment. Then, CAE mechanism
induced by ν is Pareto efficient. Conversely, for any house allocation problem ≻ ∈ P in this
environment and a Pareto-efficient matching µ of this problem, there exists a matching ν such

35The only property which is no longer relevant is individual rationality.
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that
φν[≻] = µ.

Furthermore, CAE mechanism have compelling incentive properties, a result that

easily follows from the strategy-proofness of the core mechanism for the housing mar-

ket environment.

Theorem 26 In a house allocation environment, CAE mechanism is strategy-proof.

3.1.2 Priority Mechanism

One of the most basic house allocation mechanism is a priority mechanism (also

known as a simple serial dictatorship). Formally, a priority order π : I → {1, 2, . . . , |I|}
is a one-to-one and onto function such that for any two distinct agents i, j ∈ I, π(i) <
π(j) means that i has a higher priority than j. We denote a priority order by the

ranking of agents as well, for example, as π = i1 − i2 − . . . − in where π(ik) = k is the

priority order of agent ik.

Given a house allocation environment [I, H,P ], each priority order π induces a

priority mechanism (Svensson, 1994).36 For each house allocation problem ≻∈ P , the

outcome of this mechanism can be obtained through the following simple algorithm.

Priority mechanism induced by π.
Relabel agents so that they are priority ordered based on their indices:

π = i1 − i2 − . . . − in

Step 0. Define H0 = H.

Step k. (k ≥ 1) The k’th ranked agent ik receives their top choice in Hk−1. Denote this

house as hk. Define Hk = Hk−1 \ {hk}.

Let φπ denote this priority mechanism. A priority mechanism has several desir-

able properties.

In the context of Pareto efficiency, we present the following two results, which

can be interpreted as the First and Second Welfare Theorems related to priority-based

allocation, respectively.

Theorem 27 (Svensson, 1994) In a house allocation environment, a priority mechanism is
Pareto efficient. Conversely, for any house allocation problem ≻ ∈ P and a Pareto-efficient
matching µ of this problem, there exists a priority order π such that

φπ[≻] = µ.
36Satterthwaite and Sonnenschein (1981) also introduced such a mechanism in a market different from

house matching.
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Furthermore, priority mechanisms have compelling incentive properties.

Theorem 28 (Svensson, 1994) In a house allocation environment, a priority mechanism is
strategy-proof.37

Although priority mechanisms, regarded as preference revelation mechanisms,

have been explored in economic theory since the 1980s they represent a direct ver-

sion of a much earlier and fundamental mechanism: a queue. When utilizing a queue,

one must establish the sequence in which agents are afforded the opportunity to select

houses. After an agent makes a choice from the available options, their assignment is

solidified. Subsequently, the next agent in the queue is given a turn, and the allocation

process proceeds in a similar manner. Queues can manifest in various forms, ranging

from physical queues established on a first-come-first-serve basis to those determined

through lottery systems.

Allocation processes frequently integrate queues across diverse domains and are

as old as market mechanisms based on prices. For example, even today, the distri-

bution of courses within educational institutions often relies on queues operating on

a first-come-first-serve basis. Thus, despite the absence of initial exogenous property

rights designations, a queue establishes a priority order that can be interpreted as

sequentially organized pseudo property rights.

Queues can also be established through natural hierarchies of agents rather than

being solely determined by arrival priority (Young, 1994). Event though house allo-

cation problems are representative of collective ownership economies in our setting,

specific agents may possess greater pseudo priority in the allocation process than oth-

ers. In Section 4, we explicitly model such exogenously given priorities in the foun-

dational aspects of models, leading to a new class of property rights. Our objective

in this section is to have these pseudo property rights induced by the adoption of a

mechanism, which may or may not be desirable depending on the application. When

they are deemed unacceptable and unfair, queues can be created through lotteries, as

illustrated by the allocation of school seats in numerous localities worldwide.

3.1.3 Lottery Mechanisms: Random Priority and Core from Random En-
dowments

While the priority mechanism stands as the most fundamental Pareto-efficient and

strategy-proof mechanism in common ownership economies, its induced sequential

pseudo property rights structures may be perceived as unfair in various applications.

In an indivisible goods economy without transfers, maintaining fairness and ensuring

equal treatment of agents in scenarios with equal ownership rights may call for a

37Roth (1982b) also establishes this result for the opposite-sex marriage environment. However, technical
arguments for house allocation environment are analogous.
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mechanism with a stochastic outcome rather than a deterministic one.

A lottery is a probability distribution over the set of matchings. A lottery mechanism
is a function that selects a lottery for each house allocation problem. We will formalize

these notions in more detail later.

Our first mechanism is built upon the concept of the priority mechanism. In the

Random Priority (RP) mechanism, also known as the Random Serial Dictatorship, we ran-

domly select a priority order with a uniform distribution and then employ the in-

duced priority mechanism. This mechanism holds significant prominence in real-life

applications of house allocation.

The idea behind our second lottery mechanism parallels the first one, with a twist.

Instead of choosing a random priority order, we opt to select a random matching to be

interpreted as an initial endowment. While interpreting any arbitrary matching as an

initial endowment might seem unnatural in a housing allocation environment, the act

of randomly selecting one may not. The Strong Core from Random Endowments (CRE)
mechanism randomly chooses a matching to be interpreted as the initial endowment

and subsequently identifies the unique strong core matching of the induced housing

market from this selected endowment. Since the core stands as the sole compelling

mechanism in a housing market environment, and the current setting only varies in

the structure of property rights with all individuals collectively owning all houses,

CRE also emerges as a compelling mechanism from a theoretical perspective. It turns

out that these two mechanisms are identical; they both choose the same lottery over

matchings. This result is independently established using different techniques in both

computer science and economics literatures.

Theorem 29 (Abdulkadiroğlu and Sönmez, 1998) Fix a house allocation problem. The
outcome of the RP mechanism is the same lottery as that of the CRE mechanism.

Theorem 29 provides theoretical support for the practical prominence of the RP

mechanism and has been extended by several papers in various environments (Pathak

and Sethuraman, 2011; Carroll, 2014; Lee and Sethuraman, 2014; Pycia, 2019; Bade,

2020; Ekici, 2020).38 A recurring theme in many of these papers is that the RP mecha-

nism is equivalent to any randomized mechanism derived from a deterministic group

strategy-proof and Pareto-efficient mechanism (referred to as a base mechanism) that

assigns roles to agents, where these roles are uniformly and randomly determined.

With this approach, the core from assigned endowments can function as a base mech-

anism since it is group strategy-proof and Pareto efficient in the context of house allo-

38Knuth (1996) proved a dual result to Abdulkadiroğlu and Sönmez (1998). He showed that, given a
housing market and a priority mechanism for a given priority order, when preferences of agents are uni-
formly randomly drawn, the ex-ante probability distribution over matchings induced by the strong core of
the housing market is equivalent to that of the given priority mechanism.
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cation environments. Therefore, Theorem 29 is a corollary of these results.

While the equivalence results may suggest that RP is the only natural choice for

house allocation problems, it does have a shortcoming in terms of efficiency. Indeed,

we have not formally specified a notion of efficiency for lotteries so far.

3.2 Efficiency and Fairness in Random House Allocation

3.2.1 A Stochastic Model of House Allocation Under Utility Representa-
tions

Until now, we have only been concerned with the ordinal aspects of agent pref-

erences. When considering stochastic mechanisms, it becomes necessary to return

to the fundamentals because a mechanism produces a lottery over allocations. Con-

sequently, preferences for agents over random outcomes are no longer well-defined

using ordinal preferences over houses.

As one approach to address this limitation, following the convention in many eco-

nomic models, one can introduce a cardinal representations of agents’ preferences

over houses and employ expected utility to induce preferences over random out-

comes.

Environments. We refer to a probability distribution over houses H as a random
consumption. Let △H denote the set of all random consumptions. Agents have prefer-

ences over random consumptions based on expected utility comparisons.

For each agent i, a von Neumann-Morgenstern utility function is a function ui :

H → R. To compare random consumptions, agents use expected utility. The utility of

agent i over a random consumption ρi = (ρih)h∈H ∈ ∆H is defined as their expected

utility

Eui(ρi) = ∑
h∈H

ρihui(h).

Let u = (ui)i∈I denote the utility profile. A house allocation problem with a utility rep-
resentation is denoted through the triple [I, H, u] and, when I and H are fixed, through

the utility profile u.

Let Ui denote the set of von Neumann-Morgenstern utility functions of agent i,
and U =×i∈I Ui denote the set of utility profiles. The triple [I, H,U ] denotes a house
allocation environment with utility representations.

Lotteries and Random Assignments. Next, we introduce stochastic allocations

with two key concepts for this purpose.

The first concept is a lottery λ = (λµ)µ∈M, representing a probability distribution

over matchings. Here, λµ ∈ [0, 1] indicates the probability of matching µ in the lottery,
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so that ∑µ∈M λµ = 1. The set of lotteries is denoted as ∆M.

For each agent i, let λi = (λih)h∈H represent their random consumption under λ,

where

λih = ∑
µ∈M:µ(i)=h

λµ.

Observe that, ∑h∈H λih = 1 for each agent i ∈ I, and ∑i∈I λih = 1 for each house

h ∈ H, since every agent and every house are assigned in every matching.

Besides lotteries, the next definition is fundamental in our descriptions of stochas-

tic allocations. A random assignment is a profile of random consumptions for agents

ρ = (ρi)i∈I = [ρih]i∈I,h∈H, where ρih ∈ [0, 1] is the probability of agent i receiving

house h, satisfying

∀i ∈ I ∑
h′∈H

ρih′ = 1 and ∀h ∈ H ∑
i′∈I

ρi′h = 1.

We denote the set of all random assignments by R.

A permutation matrix is a random assignment ρ in which each assignment proba-

bility ρih is either 0 or 1. Each matching is represented by a permutation matrix in

random assignment form: For each matching µ, let r(µ) be the permutation matrix

that satisfies rih(µ) = 1 if, and only if, µ(i) = h for each agent i ∈ I and house h ∈ H.

Our first results of this subsection establish a relationship between these two fun-

damental concepts: lotteries and random assignments:

Given a lottery λ = (λµ)µ∈M ∈ ∆M, define

ρ(λ) = ∑
µ∈M

λµr(µ).

Lemma 9 Suppose λ ∈ ∆M is a lottery in a house allocation problem. Then ρ(λ) is a
random assignment.

To see that ρ(λ) is a random assignment, observe that,

∀i ∈ I ∑
h′∈H

[
ρ(λ)

]
ih′

= ∑
h′∈H

∑
µ∈M:µ(i)=h′

λµ = ∑
h′∈H

λih′ = 1, and

∀h ∈ H ∑
i′∈I

[
ρ(λ)

]
i′h

= ∑
i′∈I

∑
µ∈M:µ(i′)=h

λµ = ∑
i′∈I

λi′h = 1.

Now, we know that every lottery induces a random assignment. What about the

converse? The following theorem implies that for any random assignment ρ, there

exists at least one lottery λ that induces ρ.

Theorem 30 (Birkhoff, 1946, von Neumann, 1953) Suppose ρ ∈ R is a random assign-
ment of a house allocation problem. There exists a lottery λ ∈ ∆M such that ρ(λ) = ρ.
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Leveraging the Birkhoff-von Neumann Theorem, the construction of a lottery in-

ducing a random assignment becomes an algorithmic exercise.

Cardinal vs. Ordinal Mechanisms. We are ready to introduce stochastic mech-

anisms in a house allocation environment with utility representations.

A (cardinal) mechanism is a mapping from the set of utility profiles to lotteries over

matchings: φ : U → ∆M. Thanks to the Birkhoff-von Neumann Theorem, for most

purposes, we can use the set of random assignments instead of lotteries in evaluating

a mechanism from agents’ perspective. By slightly abusing notation, we denote a

mechanism also as φ : U → R, thereby denoting the random assignment induced by

lottery φ[u] also as φ[u] for each utility profile u ∈ U . Thus, φi[u] denotes the random

consumption of agent i at the mechanism outcome.

A mechanism φ is strategy-proof if each u ∈ U , i ∈ I, and u′
i ∈ U ,

Eui(φi[ui, u−i]) ≥ Eui(φi[u′
i, u−i]).

Following this brief introduction to cardinal mechanisms, a cautionary note is war-

ranted: In practical scenarios, policymakers frequently employ ordinal mechanisms,

wherein only ordinal preferences over houses are reported. Ordinal mechanisms are

notably simpler and more naturally developed in the matching domain without trans-

ferable utility.39

The utility function ui ∈ Ui represents a strict preference relation ≻i ∈ Pi if, for any

pair of houses g, h ∈ H,

g ≻i h ⇐⇒ ui(g) > ui(h).

A utility profile represents a preference profile if, for each individual, their utility

function represents their preference relation.

A mechanism φ : U → ∆M is ordinal if, for any preference profile ≻∈ P and

two utility profiles u, v ∈ U representing ≻, we have φ[u] = φ[v]. Therefore, we can

represent the preference domain used for ordinal mechanisms by the set of ordinal

preference profiles P instead of cardinal utility profiles. Thus, with a slight abuse of

notation, for any utility profile u ∈ U representing a preference profile ≻∈ P , we

will denote the outcome φ[≻] of an ordinal mechanism φ as φ[≻], thereby using the

induced preference profile as its argument.

39Bogomolnaia and Moulin (2001) write: “It can be justified by the limited rationality of the agents partic-
ipating in the mechanism. There is convincing experimental evidence that the presentation of preferences
over uncertain outcomes by von Neumann-Morgenstern utility functions is inadequate. One interpretation
of this literature is that the formulation of rational preferences over a given set of lotteries is a complex
process that most agents do not engage into if they can avoid it.”
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RP and CRE are two examples of ordinal mechanisms that rely solely on ordinal

preferences over houses for their outcomes.

Ex-post, Ex-ante, SD Efficient Mechanisms under Basic Fairness Properties.
When we broaden the range of outcomes to include lotteries over matchings, it be-

comes important to specify whether agents and the central planner evaluate the lot-

tery before or after the lottery draw. Introducing Pareto efficiency over outcomes after

the resolution of uncertainty leads to a form of efficiency known as ex-post efficiency.

According to this notion, all deterministic outcomes in the support of lotteries are

Pareto efficient.

Formally, a lottery λ is ex-post efficient if each matching µ with λµ > 0 is Pareto

efficient (Hylland and Zeckhauser, 1979). Ex-post efficiency is not well-defined for

random assignments: A random assignment may have two different lotteries that

induce it, one that is ex-post efficient and the other that is not (Abdulkadiroğlu and

Sönmez, 2003a).

A stronger notion of efficiency is ex-ante efficiency, which can be defined for both

lotteries and random assignments. A random assignment ρ′ ex-ante Pareto dominates a

random assignment ρ if

Eui(ρ
′
i) ≥ Eui(ρi) for all i ∈ I,

where the inequality is strict for at least one agent. A random assignment ρ is ex-ante
efficient if it is not ex-ante Pareto dominated by any random assignment ρ′ (Hylland

and Zeckhauser, 1979). A lottery λ is ex-ante efficient if the random assignment ρ(λ) it

induces is ex-ante efficient

Note that both ex-ante efficiency and ex-post efficiency reduce to Pareto efficiency

under deterministic outcomes. Hence, every deterministic Pareto-efficient mecha-

nism is both ex-post and ex-ante efficient. One such mechanism is the priority mech-

anism.

However, the outcome of the priority mechanism can be perceived as “unfair”

to agents with lower priority. With only deterministic mechanisms at our disposal,

finding a solution to this problem is elusive. One of the primary motivations for em-

ploying stochastic mechanisms is to address and overcome fairness issues. We will

now define two basic fairness concepts:

Given a utility profile u ∈ U , a random assignment ρ satisfies equal treatment of
equals (ETE) (or it is symmetric), if for any pair of agent i and j,

ui = uj =⇒ Eui(ρi) = Euj(ρj).
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That is, the expected utility of a random assignment must be the same for agents with

the same utility functions. A lottery satisfies ETE if its induced random assignment

satisfies ETE. A mechanism satisfies ETE if its outcome satisfies ETS for any house

allocation problem.

A stronger fairness concept is anonymity, directly defined for a mechanism:

A mechanism is anonymous, if for any pair of agents i, j ∈ I and any pair of utility

profiles u, v ∈ U ,

vi = uj,

vj = ui, and

vk = uk for any k ∈ I \ {i, j}

 =⇒ Eui(φi[u]) = Evj(φj[v]).

That is, if the utility functions of any two agents are replaced, their utilities in the

resulting random assignment must also be replaced.

Among ex-post efficient mechanisms, RP stands out as a compelling lottery mech-

anism.

Proposition 8 In a house allocation environment with utility representations, random pri-
ority is an ordinal mechanism that satisfies ex-post efficiency, anonymity, and strategy-
proofness.

However, the picture becomes less favorable when we replace ex-post efficiency

with the stronger ex-ante efficiency. In fact, by proving a conjecture in Gale (1987),

Zhou (1990) establishes that no such mechanism exists, even when anonymity is re-

placed with the milder ETE condition.

Theorem 31 (Zhou, 1990) Let [I, H,U ] be a house allocation environment with utility rep-
resentations such that |I| ≥ 3. Then, there exists no mechanism that satisfies ex-ante effi-
ciency, ETE, and strategy-proofness.

This result implies that, despite being strategy-proof and satisfying ETE, RP is not

ex-ante efficient. To understand why, consider the following example from Bogomol-

naia and Moulin (2001).

Example 11 I = {1, 2, 3, 4} and H = {a, b, c, d}. Preferences are given as:

≻1: a b c d
≻2: a b c d

≻3: b a d c
≻4: b a d c

RP induces the following random assignment:
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ρ =

a b c d
1 5/12 1/12 5/12 1/12

2 5/12 1/12 5/12 1/12

3 1/12 5/12 1/12 5/12

4 1/12 5/12 1/12 5/12

.

Let utility functions be such that, for each i ∈ {1, 2},

ui(a) = 20, ui(b) = 10, ui(c) = 5, ui(d) = 0,

and for each i ∈ {3, 4},

ui(a) = 10, ui(b) = 20, ui(c) = 0, ui(d) = 5.

Next consider the lottery

λ = 0.5

(
1 2 3 4

a c b d

)
+ 0.5

(
1 2 3 4

c a d b

)
,

which induces the random assignment

ρ′ =

a b c d
1 1/2 0 1/2 0

2 1/2 0 1/2 0

3 0 1/2 0 1/2

4 0 1/2 0 1/2

.

The expected utilities of each i ∈ {1, 2, 3, 4} under each random assignment are

Eui(ρ
′
i) =

1
2
× 20 +

1
2
× 5 = 12.5 > 11.25 =

5
12

× (20 + 5) +
1
12

× 10 = Eui(ρi),

showing that RP is not ex-ante efficient.

Observe that, in Example 11, each agent receives their first and third choices each

with a probability of 1/2 under the random assignment ρ′. In contrast, under the

random assignment ρ, each agent receives their first choice with a probability of 5/12,

their second choice with a probability of 1/12, their third choice with a probability of

5/12, and their fourth choice with a probability of 1/12.

Thus, while each agent receives their first choice with a probability of 1/2 under

random assignment ρ′, they receive either their first or second choices with a proba-

bility of 1/2 under random assignment ρ. Similarly, whereas each agent receives their

third choice with a probability of 1/2 under random assignment ρ′, they receive ei-

ther their third or fourth choices with a probability of 1/2 under random assignment

ρ. Hence, the conclusion of Example 11 is independent of the utility representation of
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the preference profile ≻. In other words, the deficiency of RP in terms of efficiency is

apparent in Example 11, even without cardinal utilities.

This observation motivates another efficiency notion based on stochastic domi-

nance under ordinal representations of preferences. In ordinal environments of house

allocation, where utility information is not available but only preference information

is, such a notion is especially useful.

Given an agent i ∈ I, a pair of random consumptions ρi, ρ′i ∈ ∆H, and a strict pref-

erence relation ≻i∈ Pi, the random consumption ρi (first order) stochastically dominates
the random consumption ρ′i at preference relation ≻i if

∀h ∈ H, ∑
h′ s.t. h′≻ih

ρih′ ≥ ∑
h′ s.t. h′≻ih

ρ′ih′

with at least one strict inequality for some h ∈ H.

That is, ρi stochastically dominates ρ′i if, for any k ≤ n, the probability of receiving

one of the top k choices is at least as high under ρi as under ρ′i, and strictly higher for

some k.

Given a pair of distinct random assignments ρ, ρ′ and a preference profile ≻ ∈ Pi,

ρ stochastically dominates ρ′ at ≻ if for any agent i either ρi = ρ′i or ρi stochastically

dominates ρ′i at ≻i.

A random assignment ρ is stochastic-dominance (SD) efficient (or ordinally efficient) at

preference profile ≻ if it is not stochastically dominated by any random assignment

at ≻.40

It is easy to see that any lottery supporting an SD-efficient random assignment has

to be ex-post efficient. Equivalently, a random assignment ρ supported by an ex-post

inefficient lottery λ cannot be SD efficient. Otherwise, replacing any Pareto inefficient

matching in the support of λ would result in a lottery λ′, where the induced random

assignment ρ′ stochastically dominates ρ. However, as demonstrated in Example 3 of

Abdulkadiroğlu and Sönmez, 2003a, a random assignment need not be SD efficient,

even if it is solely supported by ex-post efficient lotteries. In that sense, SD efficiency

is a more demanding notion than ex-post efficiency.

Ex-ante efficiency, on the other hand, is a stronger notion than SD efficiency.

First, observe that if a random assignment ρ is not SD efficient at the preference

profile ≻∈ P , then there exists another random assignment ρ′ that stochastically

dominates ρ. This means that, regardless of the utility profile u ∈ U that represents

≻,

Eui(ρ
′
i) ≥ Eui(ρi) for all i ∈ I,

40This notion was originally introduced under the name ordinal efficiency by Bogomolnaia and Moulin
(2001) for house allocation.
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with strict inequality for at least one of the agents.

Secondly, as the next example shows, a random assignment may not be ex-ante

efficient even if it satisfies SD efficiency.

Example 12 I = {1, 2, 3} and H = {a, b, c}. Preferences are given as:

≻1: a b c
≻2: a b c
≻3: a b c

Since all agents have the same preference relation, the following random assignment is SD
efficient regardless of the utility profile:

ρ =

a b c
1 1/3 1/3 1/3

2 1/3 1/3 1/3

3 1/3 1/3 1/3

.

Next, suppose that utilities are given as follows for agent 1,

u1(a) = 20, u1(b) = 1, u1(c) = 0,

and as follows for agents 2 and 3,

u2(a) = u3(a) = 5, u2(b) = u3(b) = 4, u2(c) = u3(c) = 0.

The resulting expected utilities at random assignment ρ are given as,

Eu1(ρ1) = 7, Eu2(ρ2) = Eu3(ρ3) = 3.

Next, consider the following random assignment

ρ′ =

a b c
1 1/2 0 1/2

2 1/4 1/2 1/4

3 1/4 1/2 1/4

,

with the resulting expected utilities

Eu1(ρ
′
1) = 10, Eu2(ρ

′
2) = Eu3(ρ

′
3) = 3.25.

The random assignment ρ′ ex-ante Pareto dominates ρ, which shows that ρ is not ex-ante
Pareto efficient even though it satisfies SD efficiency.

The three efficiency concepts—ex-ante, stochastic dominance, and ex-

post—coincide for deterministic outcomes, i.e., matchings: they are equivalent
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to Pareto efficiency. Therefore, a priority mechanism satisfies these three properties.

However, as noted earlier, a priority mechanism does not satisfy ETE and can thus

be deemed unfair in many situations. The next two subsections focus on ordinal and

cardinal mechanisms that have desirable fairness properties even stronger than ETE.

3.2.2 Probabilistic Serial Mechanism

First, we focus on ordinal mechanisms. In this setting, SD efficiency emerges as a

natural efficiency concept.

What types of random assignments are SD efficient? In deterministic settings, the

answer is simple, as SD efficiency is equivalent to Pareto efficiency.

In order to introduce an SD efficient mechanism, we will first make an observation.

Recall the strong core from random assignments mechanism introduced in Section

3.1.1. The Pareto-efficient outcome of this mechanism can be obtained using Gale’s

TTC algorithm by starting with an arbitrary matching as an initial endowment.

Thus, for any given preference profile ≻∈ P , one way to construct a Pareto ef-

ficient matching is the implementation of Gale’s TTC algorithm, beginning with an

arbitrary matching µ ∈ M. Next, generalize this procedure as follows:

Suppose each agent i points to “all” houses they strictly prefer to µ(i) while µ(i)
points to them. If there exists a cycle, the matching µ is not Pareto efficient; we can

assign each agent the house they are pointing to in the cycle without changing the

other agents’ assigned houses. This new matching Pareto dominates µ. Remove any

cycle and repeat the procedure.41 Once no such improvement cycle exists, the procedure

terminates, leading to a Pareto efficient matching.

Interestingly, a similar approach can be applied to random assignments to assess

whether they are SD efficient. Instead of deterministic cycles, we investigate the pres-

ence of probabilistic improvement cycles.

Consider a preference profile ≻∈ P and a random assignment ρ ∈ R. A probabilis-
tic improvement cycle at ≻ for ρ is a list of house-agent pairs (h1, i1, . . . , hk, ik) such that

ρiℓhℓ > 0 and hℓ+1 ≻iℓ hℓ for all ℓ = 1, . . . , k, where ℓ is taken modulo k.

Notice that each agent iℓ in this cycle can trade a small probability “share” of the

less-preferred house hℓ for an equal probability share of the more-preferred house

hℓ+1. This trade results in a random consumption for agent i that strictly stochastically

dominates the random consumption ρiℓ .

Building on this observation, we next present a characterization result for SD effi-

ciency:

Proposition 9 (Bogomolnaia and Moulin, 2001) In a house allocation problem with util-

41Unlike Gale’s TTC algorithm, this outcome of this procedure depends on the sequence of removed
cycles.
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ity representations [I, H, u], a random assignment is SD efficient if, and only if, it does not
have any probabilistic improvement cycle at the preference profile represented by u.

Indeed, one can start with some random assignment and satisfy a probabilis-

tic trading cycle by conducting the maximum possible probability trade among the

agents, and continue in a similar fashion to find an SD efficient random assignment.

But this does not tell us a systematic way to find a SD efficient outcomes. How should

we select either the initial random assignment or the probabilistic trading cycles in

such a procedure? How can we sustain ETE and other fairness measures with such a

procedure. To tackle these questions, Bogomolnaia and Moulin (2001) introduce the

probabilistic serial mechanism, which satisfies both SD efficiency and ETE.

Probabilistic serial is based on an eating algorithm defined through an (eating) speed
profile, σ =

(
σi(·)

)
i∈I (Bogomolnaia and Moulin, 2001).

In this algorithm, each house is conceptualized as a unit of a divisible good, akin

to a homogeneous “cake.” Each agent i “eats” some cake at an instantaneous speed σi(t)
at each time t ∈ [0, 1]. Specifically, during a time interval [t0, t1], agent i consumes a

total amount represented by the integral
∫ t1

t0
σi(t)dt units of the cake. If their speed is

constant throughout this interval, this consumption is equivalent to (t1 − t0) · σi. The

cumulative amount an agent consumes from the cake is interpreted as the probabil-

ity of being assigned to the corresponding house. Eating speeds are such that, each

agent has the capacity of eating 1 whole unit at the end of time interval [0, 1]; i.e.,∫ 1
0 σi(t)dt = 1.42

Eating Algorithm Induced by Eating Speed Profile σ.

• Each agent i starts eating from their top choice cake with respect to their speed

function σi(.).

• Once any agent’s top available choice cake is completely eaten, they start eat-

ing from their best choice among the remaining cakes which are not fully con-

sumed.

• The process ends when each agent has eaten a total of 1 unit.

The random assignment outcome is determined by calculating the total fraction of

each “cake” that is “eaten” by each agent.

The probabilistic serial (PS) mechanism is defined through the eating algorithm with

equal and uniform eating speeds, i.e., σi(t) = 1 for all i ∈ I and time t ∈ [0, 1].

In Example 11, PS would produce the random assignment matrix ρ′: Agents 1 and

42A priority mechanism is a special case of an eating algorithm where each agent has an “impulse” eating
speed function, i.e., they consume all of their capacity instantaneously at some time t at an infinite speed.
At other times their eating speeds are zero. Specifically, for any agent i with a priority order π(i), the
consumption time of agent i is (π(i)− 1)/n.
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2 would start by eating their top-choice house a, while agents 3 and 4 would begin

with their top choice house b. By time t = 0.5, both houses a and b are completely

depleted, prompting all agents to start eating their top choices among the remaining

two houses, c and d. Therefore, starting at t = 0.5, agents 1 and 2 eat house c, and

agents 3 and 4 eat house d. At time t = 1, all agents have “eaten” half of their first-

choice and half of their third-choice houses.

The next result establishes a close link between eating algorithms and SD efficient

matchings.

Theorem 32 (Bogomolnaia and Moulin, 2001) In a house allocation problem with utility
representations, any eating algorithm produces an SD efficient random assignment. Con-
versely, for any given SD efficient random assignment, there exists an eating algorithm that
generates it.

Intuitively, the reason an eating algorithm is SD efficient is that, at each instant,

each agent consumes a share of their favorite available good. Therefore, to achieve

a stochastically dominating consumption for this agent, we must diminish another

agent’s portion of the house they had already consumed, making them worse off in

a stochastic dominance sense. Furthermore, this characteristic of an eating algorithm,

together with the uniform eating speed for each agent in the PS mechanism, is the

main reason why PS is not strategy-proof, as illustrated in the following example.

Example 13 I = {1, 2, 3, 4} and H = {a, b, c, d}. Preferences are given as:

≻1: a b c d
≻2: a c d b

≻3: b c d a
≻4: b c d a

PS produces the following random assignment if all agents including agent 1 reports their
true preferences:

ρ =

a b c d
1 1/2 0 1/4 1/4

2 1/2 0 1/4 1/4

3 0 1/2 1/4 1/4

4 0 1/2 1/4 1/4

.

Agent 1 receives their top choice house with 1/2 probability, and second choice with 0 prob-
ability under random assignment ρ. Suppose that, agent 1 has the following utility function:

u1(a) = 12, u1(b) = 9, u1(c) = 1, u1(d) = 0.

Thus, agent 1 has a much higher valuation for their top two choices compared to their
bottom two choices, resulting in an expected utility of u1(ρ) = 6.25. Given this utility
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function, if agent 1 instead reports their preferences as ≻′
1: b a c d, then they can consume a

third of their second-choice house b before it is fully depleted by agents 3 and 4, who will not
later compete for house a in any case.

The resulting PS random assignment for house allocation problem (≻′
1,≻−1) is:

ρ′ =

a b c d
1 1/3 1/3 1/12 1/4

2 2/3 0 1/12 1/4

3 0 1/3 5/12 1/4

4 0 1/3 5/12 1/4

.

While agent 1 loses part of their first choice a under random assignment ρ′, they will grab
a bigger part of their second choice b, resulting in an expected utility of u1(ρ

′) = 7.08, and
thereby benefitting from misreporting their preferences as ≻′

1.

We next introduce a stronger version of ETE property, that is compelling for ordi-

nal environments.

For a given preference profile ≻∈ P , a random assignment satisfies ordinal equal
treatment of equals (or OETE) if for each pair of agents i and j,

≻i =≻j =⇒ ρi = ρj.

We have the following result for PS.

Theorem 33 (Bogomolnaia and Moulin, 2001) In a house allocation environment with
utility representations, the probabilistic serial mechanism is an ordinal mechanism that satis-
fies OETE and SD efficiency. However, it is neither strategy-proof nor ex-ante efficient.

One might wonder if there exists an ordinal mechanism that satisfies OETE, SD

efficiency, and strategy-proofness. While PS fulfills these properties when there are

three or fewer agents, the next result provides a negative answer to this question,

when there are four or more agents.

Theorem 34 (Bogomolnaia and Moulin, 2001) Consider a house allocation environment
with utility representations [I, H,U ].

• If |I| < 4, then random priority is the only mechanism that satisfies OETE, SD effi-
ciency, and strategy-proofness.

• If |I| ≥ 4, then there is no ordinal mechanism that satisfies OETE, SD efficiency, and
strategy-proofness.

While probabilistic serial is not generally strategy-proof, it does satisfy this in-

centive property in sufficiently large problem environments, characterized by a large

number of agents and a substantial number of copies of a fixed set of houses. Here, the
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utility function domain is bounded over these fixed house types (Kojima and Manea,

2010b). Furthermore, probabilistic serial converges to the Random Priority mecha-

nism (Che and Kojima, 2010) as the size approaches infinity, subject to certain regu-

larity conditions.43

Stochastic Dominance Envy-freeness. In addition to ETE and OETE, the PS

mechanism satisfies another compelling fairness property.

Given a preference profile ≻, a random assignment ρ is stochastic dominance envy-
free (or SD envy-free) if for all agents i, j ∈ I, the random consumption ρi either stochas-

tically dominates the random consumption ρj at ≻i or is equal to it.

This property ensures that, regardless of their utility functions no agent prefers

another agent’s random consumption to their own. If this relation holds for a spe-

cific utility profile, we refer to the resulting milder condition as ex-ante envy freeness,

formally defined in Section 3.2.3.

Proposition 10 (Bogomolnaia and Moulin, 2001) In a house allocation problem with
utility representations, the probabilistic serial outcome is SD envy-free.

3.2.3 Competitive Equilibrium from Equal Incomes
Theorem 31 by Zhou (1990) establishes the incompatibility of ex-ante efficiency,

ETE, and strategy-proofness. Among these three axioms, the Probabilistic Serial (PS)

mechanism relaxes ex-ante efficiency and sacrifices strategy-proofness.44 How about

cardinal mechanisms that are ex-ante efficient and satisfy ETE?

In their seminal paper introducing house allocation, Hylland and Zeckhauser, 1979

employ a mechanism developed by Varian (1974) for fair division problems, adapting

it to house allocation environments with utility representations. This solution con-

cept turns out to satisfy ex-ante efficiency and the following ex-ante version of envy-

freeness.

Consider an environment [I, H,U ]. For a given utility profile u ∈ U , a random

assignment ρ is ex-ante envy-free at utility profile u if, for any pair of agents i, j ∈ I,

Eui(ρi) ≥ Eui(ρj).

Observe that, since envy-freeness is considered for a given utility profile rather

than any utility profile that represents a given preference profile, this concept is

43In large markets, Liu and Pycia (2016) provided a characterization of the Random Priority mechanism
and probabilistic serial in terms of asymptotic efficiency, equal treatment of equals, and asymptotic strategy-
proofness. Interestingly, they also proved that asymptotically, ex-post efficiency and SD efficiency become
equivalent in this setup (refer to Chapter 2 of this handbook for these models).

44Strictly speaking, Bogomolnaia and Moulin, 2001 show that PS satisfies a weaker version of strategy-
proofness as well.
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weaker than SD envy-freeness, a property satisfied by the PS mechanism. Relaxing

this stronger notion of envy-freeness, however, makes it possible to pursue ex-ante

efficiency—an efficiency notion stronger than SD efficiency—a property that the PS

mechanism fails to satisfy.

We next introduce Hylland and Zeckhauser’s solution concept. Consider a house

allocation problem with utility representations [I, H, u].
We will define a market equilibrium concept for a budget profile B = (Bi)i∈I ∈

(0, 1]n. Here, Bi ∈ (0, 1] represents the budget of agent i in terms of token money,

which has no intrinsic utility for agents.

Specifically, in such a market equilibrium, a price vector-random assignment pair

is sought, denoted as (p, ρ) ∈ Rn
+ ×R. Here, p = (ph)h∈H represents the price vector,

where ph denotes the price of each house h measured in token money units. Given a

price vector p, for each agent i ∈ I, define the budget set of agent i at price p, as

Bi(p) = {ρ′i ∈ ∆H : ∑
h∈H

phρ′ih ≤ Bi}.

The pair (p, ρ) solves the following utility maximization problem for each agent

i ∈ I:

ρi ∈ arg max
ρ′i∈Bi(p)

Eui(ρ
′
i)

such that ρi is the cheapest random consumption among all bundles in the budget set

that maximizes expected utility for agenti.45

We refer to such a pair (ρ, p) as a competitive equilibrium (CE) from the budget profile
B.

In general, the budgets may differ between agents. When the budget Bi is the same

for each agent i ∈ I, we refer to such a CE as a competitive equilibrium from equal incomes
(CEEI). This term is an adaptation of the fair division concept introduced by Varian

(1974) to the current setting.

By drawing a parallel to the existence of competitive equilibrium, Hylland and

Zeckhauser (1979) rely on a fixed point argument to establish that the existence of a

price vector that supports a CE.46

45This cheapest bundle property is needed to guarantee that such a random assignment is ex-ante effi-
cient.

46This theorem does not immediately follow from results known in general equilibrium theory, one of
the oldest and most well-studied areas of economic theory, that demonstrates the existence of a competitive
equilibrium (CE) in a wide variety of settings. The main difficulty in proving the existence of a CE lies in
the restrictions imposed by randomization and unit-demand on individual utility functions. In our setting,
agents have satiated preferences; they desire to consume at most a single deterministic unit of a house but no
more. Thus, each of their consumption vectors should add up to a total probability of assignment equal to
1, but no more. The classical local non-satiation assumption, widely used in general equilibrium theory to
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Theorem 35 (Hylland and Zeckhauser, 1979) In a house allocation scenario character-
ized by utility representations, a CE exists for any token-money budget profile B. Additionally,
the random assignment in any CE derived from B is ex-ante efficient. Moreover, the random
assignment in any CEEI is also ex-ante envy-free.

Observe that under a CEEI, when two agents have the same von Neumann-

Morgenstern utility functions, their expected utilities are identical. Hence, in addition

to satisfying ex-ante efficiency, any mechanism that chooses a CEEI random assign-

ment also satisfies ETE. Therefore, by Theorem 31, any such mechanism fails to satisfy

strategy-proofness when |I| ≥ 3. Hylland and Zeckhauser (1979) conjectured that any

mechanism that chooses the random assignment of a CEEI is incentive compatible in

large markets. By formulating a notion of asymptotic incentive compatibility, He et al.

(2018) subsequently provided a proof of their conjecture.

3.3 Matching with Mixed Ownership
In this subsection, we introduce a matching environment with both private own-

ership of some houses and common ownership of others.

The priority mechanism and its stochastic variant, random priority (RP), are

widely utilized in real-life house allocation environments. Given their prominence,

it is not uncommon for central planners in real-life scenarios to use them as “starting

points” for developing other mechanisms tailored to more complex environments.

3.3.1 House Allocation with a Single Existing Tenant: A Basic Exercise in
Minimalist Market Design

Consider an environment that differs only in the property rights of a single house,

denoted as h ∈ H. In this setting, one of the agents, i ∈ I, privately owns house h,

while all other houses are collectively owned by all agents.

Now, consider a scenario where a central planner intends to allocate several

houses, including house h, to a group of agents, which includes agent i, using the RP

mechanism. However, the central planner encounters a challenge: This task extends

beyond the scope of a typical house allocation problem.

To address this issue, the central planner presents agent i with two options before

employing the RP mechanism: they can either retain ownership of their current house

h and refrain from participating in the allocation of other houses in H \ {h}, or they

can relinquish their property rights over h and actively take part in the allocation of all

houses in H. Regardless of the chosen option, the resulting problem becomes a house

allocation problem, allowing the central planner to proceed with the RP mechanism.

establish the existence of a CE, does not apply here. Consequently, Hylland and Zeckhauser (1979) devise
an alternative proof strategy.
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Let’s call this two-step mechanism random serial dictatorship with squatting rights (RSD-
SR) (Abdulkadiroğlu and Sönmez, 1999).

Note that while the outcome of the RP mechanism is ex-post efficient, the equilib-

rium outcome of RSD-SR may not be. Since there are no guarantees to get a better

house, agent i may choose to keep their house in the first step, which, in turn, may

result in a loss of potential gains from trade. Consider the following example:

Example 14 I = {i1, i2, i3} and {h1, h2, h3}. Agent i1 is a current tenant who “owns” house
h1. Agents i2, i3 are new applicants and houses h2, h3 are vacant. Utilities are given as follows:

h1 h2 h3

i1 3 4 1

i2 4 3 1

i3 3 4 1

Agent i1 has two options: they can keep house h1 or they can give it up and receive a house
through RP. Their utility from keeping house h1 is 3, whereas the following table gives the
possible outcomes, each with 1/6 probability, if they give up their property rights over house
h1:

priority order i1 i2 i3
i1 − i2 − i3 h2 h1 h3

i1 − i3 − i2 h2 h3 h1

i2 − i1 − i3 h2 h1 h3

i2 − i3 − i1 h3 h1 h2

i3 − i1 − i2 h1 h3 h2

i3 − i2 − i1 h3 h1 h2

Agent i1’s expected utility from giving up house h1 can be calculated as follows:

1
6

u1(h1) +
3
6

u1(h2) +
2
6

u1(h3) =
3
6
+

12
6

+
2
6
=

17
6

< 3.

Thus, the optimal strategy for agent i1 is keeping their house h1. When agent i1 keeps
house h1, the eventual outcome is either

µ =
{
(i1, h1), (i2, h2), (i3, h3)

}
or µ′ =

{
(i1, h1), (i2, h3), (i3, h2)

}
both with 1/2 probability since both agent i2 and agent i3 prefer house h2 to house h3. Between
the two, matching µ is Pareto dominated by

ν =
{
(i1, h2), (i2, h1), (i3, h3)

}
,
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establishing that the equilibrium outcome of RSD-SR may not satisfy ex-post efficiency.

Observe that the source of efficiency loss under RSD-SR in Example 14 is agent i’s
optimal decision to refrain from giving up their house to join the second step of the

procedure. This occurs because RSD-SR fails to guarantee agent i1 a house that is at

least as good as their current house h1.

More broadly, since the RP mechanism is defined for house allocation environ-

ments with collective ownership, it refrains from any individual rationality consid-

erations. When we deviate from this ownership structure, a mechanism that directly

uses RP in its second step naturally causes failures of individual rationality.

In Example 14 with a single “existing tenant,” this issue could have been easily

avoided by another mechanism that builds on RP:

1. Just as in RP, priority order the agents with a lottery.

2. Assign the first agent their top choice, the second agent their top choice among

the remaining houses, and so on, until someone demands the house the exist-

ing tenant holds.

(a) If the existing tenant is already assigned a house, then do not disturb

the procedure.

(b) If the existing tenant is not assigned a house, then modify the remainder

of the priority order by inserting him at the top and proceed with the

procedure.

Observe that this mechanism embeds individual rationality considerations within

RP with “minimal interference.” Through this minimalist approach, a new mecha-

nism that satisfies a key property under a ’rudimentary’ generalization of RP is ob-

tained. Formulated in Sönmez, 2023, this approach is referred to as minimalist market
design.

The focus in Sönmez, 2023 is to establish that this framework can be a power-

ful tool for aspiring design economists to influence policy and change institutions as

outsider critics, which may be a more challenging task compared to “commissioned”

insiders. We next illustrate that the same framework is also useful for advancing eco-

nomic theory.

3.3.2 House Allocation with Existing Tenants
Motivated by the efficiency loss observed under the RSD-SR mechanism in Section

3.3.1 and its minimalist resolution, the following hybrid model, which generalizes

both housing markets (Shapley and Scarf, 1974) and house allocation (Hylland and

Zeckhauser, 1979), is introduced in Abdulkadiroğlu and Sönmez (1999):

There is a set of houses H and a set of agents I with |H| = |I|.47

47The assumption regarding the cardinalities of the agent set and the house set is made for convenience
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• Agents in IE ⊆ I are existing tenants, where each existing tenant i ∈ IE initially

occupies a house ωE(i) ∈ H. Define ωE =
{(

i, ωE(i)
)}

i∈IE
.

• Agents in I \ IE are newcomers, and they do not initially occupy any houses.

• Houses in H \ ω−1
E (IE) are vacant, not occupied initially by any agent.

• Each agent is endowed with a strict preference relation ≻i over H.

We use the 5-tuple [I, IE, H, ωE,≻] to denote a house allocation problem with exist-
ing tenants. Additionally, we refer to [I, IE, H, ωE,P ] as a house allocation with existing
tenants environment, where P represents the set of preference profiles.

The distinctive feature of this problem, in contrast to common ownership

economies, is that existing tenants retain the right to keep their endowments (or oc-
cupied houses) and apply for other houses. A matching is individually rational if each

existing tenant is assigned a house at least as desirable as their currently occupied

one.

Generalizing the minimalist resolution of the shortcomings of RSD-SR presented

in Section 3.3.1 for an environment with a single existing tenant, Abdulkadiroğlu and

Sönmez (1999) proposed the following mechanism for each priority order π:

You Request My House-I Get Your Turn (YRMH-IGYT) mechanism induced by
π.

• Initially the queue is determined by the priority order π.

• Mimic the mechanics of the priority mechanism (i.e., assign the first agent their

top choice, the second agent their top choice among the remaining houses, etc.)

until (and if) someone demands the house of an existing tenant (i.e., a house in

ω−1
E (IE)).

• If, at that point, the existing tenant whose house is demanded is already as-

signed a house, then do not disturb the procedure. Otherwise, modify the

remainder of the queue by inserting them at the top and proceed with the pro-

cedure using the modified queue.

• Similarly, insert any existing tenant who is not already served at the top of the

queue once their house is demanded.

• When an agent is encountered for the second time, it indicates the formation

of a cycle exclusively involving existing tenants. Each tenant in this cycle de-

mands the house of the next one. In such cases, remove all agents in the cycle

by assigning them the houses they demand and proceed with the procedure.

only and is not present in Abdulkadiroğlu and Sönmez (1999). With the exception of Theorem 37, all results
directly extend to the more general version of the model.
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The mechanics of the YRMH-IGYT mechanism can be seen in the following exam-

ple:

Example 15 (Sönmez and Ünver, 2005) Existing tenants are agents 1, 2, . . . , 9 and each
existing tenant i occupies house hi. Newcomers are agents 10, 11, . . . , 16 , and vacant houses
are h10, h11, . . . , h16. Preferences are given as follows:

Existing tenants:
≻1: h15 . . .

≻2: h3 h4 . . .

≻3: h1 h3 . . .

≻4: h2 . . .

≻5: h9 . . .

≻6: h6 . . .

≻7: h6 h7 . . .

≻8: h6 h12 . . .

≻9: h11 . . .

Newcomers:
≻10: h7 h3 h12 h10 . . .

≻11: h2 h4 h16 . . .

≻12: h4 h14 . . .

≻13: h6 h13 . . .

≻14: h8 . . .

≻15: h1 . . .

≻16: h5 . . .

Given the priority order

π = 13 − 15 − 11 − 14 − 12 − 16 − 10 − 1 − 2 − 3 − 4 − 5 − 6 − 7 − 8 − 9,

YRMH-IGTY mechanism generates the following matching:{
(1, h15), (2, h4), (3, h3), (4, h2), (5, h9), (6, h6), (7, h7), (8, h12),

(9, h11), (10, h10), (11, h16), (12, h14), (14, h8), (15, h1), (16, h5).

}

The execution of the mechanism’s algorithm can be depicted through a graphical representation
in Figure 2, where blue arrows represent the adjustments in the queue, and the red arrows
represent the finalized assignments.
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Figure 2: Execution of the YRMH-IGYT mechanism for the example in Example 15 .

We have the following theorem:

Theorem 36 (Abdulkadiroğlu and Sönmez, 1999) Fix a house allocation with existent
tenants environment and a priority order for its agents. YRMH-IGYT mechanism is Pareto
efficient, individually rational, and strategy-proof.

Indeed, the YRMH-IGYT mechanism is a generalization of both a priority mecha-

nism for house allocation environments (i.e., when there are no existing tenants) and

the strong core mechanism for the housing market environment (i.e., when there are

no newcomers):

Proposition 11 (Abdulkadiroğlu and Sönmez, 1999) Consider a house allocation with
existing tenants environment [I, IE, H, ωE,P ]. Let π be a priority order over I.

1. If there are no existing tenants, IE = ∅, then YRMH-IGYT mechanism induced by π

is the priority mechanism induced by π.
2. If there are no newcomers, I \ IE = ∅, then YRMH-IGYT mechanism induced by π

is the strong core mechanism.

For the general cases when there are both existing tenants and newcomers, the

YRMH-IGYT mechanism allocates houses in two different ways:

82



1. Cycles: The first type of transaction is exclusively between existing tenants, and

it is simply a house swap (see Figure 3).

i1 h1
h2

i2

iℓ

hℓ

. . .

Figure 3: Cycle (h1, i1, h2, i2, h2, . . . , hℓ, iℓ). Existing tenants and their occupied houses in the cycle
are placed in ovals.

2. Chains: Under the second type of transaction,

• the agent at the end of the chain (agent iℓ in Figure 4) receives an “avail-

able” house (i.e., either a vacant house or an occupied house whose

occupant is already served), and

• any other agent in the chain receives the house of their immediate suc-

cessor (see Figure 4).

i1
h2

i2

iℓ

hℓ

. . .

hv

Figure 4: Chain (i1, h2, i2, . . . , hℓ, iℓ, hv). Existing tenants and their occupied houses in the chain are
placed in ovals.

Two related observations are in order. First, if there are no newcomers or vacant

houses, i.e., in a housing market setting, there will never be a chain in this algorithm.

Instead, there will only be cycles. Moreover, since each occupied house points to its

occupant, each agent and their house can be collapsed into a single node representing

the agent.

Therefore, for any priority order, the resulting YRMH-IGYT mechanism gener-

ates the same cycles that would be produced under Gale’s TTC algorithm, albeit in a

specific sequence. Thus, while initially motivated as a minimalist refinement of the

random priority mechanism that addresses the individual rationality constraints of
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existing tenants, the YRMH-IGYT mechanism also functions as a class of algorithms

explicitly constructing the cycles of Gale’s TTC algorithm in a well-defined manner.

This observation also highlights the role of minimalist market design (Sönmez,

2023) as a framework that can be used to advance economic theory in addition to its

policy role.

The second observation is related to the first. Consider in a chain that if house hv

(either vacant or previously occupied and vacated after its occupant left the market)

pointed to the highest remaining priority agent i1, a full cycle would have formed,

very similar to the cycles in Gale’s TTC algorithm.

In Gale’s TTC algorithm, houses did not need to exist in the mathematical descrip-

tion, as whenever an agent is in a cycle, their house is also part of it, leaving no am-

biguity. However, in the case of the above description, houses have to be represented

as separate entities because agents do not always have inherent private consumption

rights over them. For example, agent i1 could be an existing tenant whose occupied

house h1 becomes vacant after they leave the problem.

Corroborating the first observation, this similarity also indicates an overarching

structure, akin to the idea of trading cycles, providing a second algorithm for this

mechanism (Abdulkadiroğlu and Sönmez, 1999):

Top Trading Cycles Algorithm Induced by π for the YRMH-IGYT mechanism.

Step 0. All agents are initially unmatched.

Step k. (k ≥ 1) Form a directed graph by

• each unmatched agent pointing to the their favorite house among the

unmatched,

• each occupied house, whose occupant is still unmatched, pointing to its

occupant, and

• each unassigned vacant house and each previously occupied but still-

unassigned house pointing to the higher priority unmatched agent with

respect to π.

Since there is a finite number of agents, there is at least one cycle of distinct

agents (h1, i1, . . . , hℓ, iℓ) for some ℓ ≥ 1 where each agent im points to agent

im+1 for each m ∈ {1, . . . , ℓ− 1}, and iℓ points to i1. Moreover, no two cycles

intersect, as each agent points to a single house as they have strict preferences.

Remove each cycle from the market (and the graph) by matching each agent in

a cycle to the house they are pointing to.

If at least one unmatched agent remains, we proceed with Step k+1. Otherwise,

we terminate the algorithm and finalize the matching.
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The central planner may not prefer using a deterministic priority order π for

fairness-related reasons, similar to the reasons associated with a priority mechanism

in a house allocation environment. We can use the random YRMH-IGYT mechanism

by randomly drawing the priority order using a uniform distribution.

Proposition 12 In a house allocation with existing tenants environment, the random
YRMH-IGYT mechanism is individually rational, ex-post efficient, and strategy-proof. More-
over, it ordinally treats newcomers equally.48

In a house allocation with existing tenants environment where there are same

number of agents and houses, we can also potentially use a variant of strong core

from random assignments lottery mechanism to induce another lottery mechanism:

Strong Core from Random Newcomer Endowments (CRNE). Assign uniformly

randomly each vacant house to a newcomer. Assign existing tenants their initially

occupied houses. Then, find the strong core allocation of the induced housing market.

This mechanism may be especially appealing for a technically savvy designer fa-

miliar with the core mechanism for housing markets. Indeed, this mechanism also

has the desirable properties of the random YRMH-IGYT mechanism. Then the ques-

tion lingers. Can we establish a result similar to Theorem 29, proving the equivalence

between random YRMH-IGYT and the above mechanism? The answer turns out to

be negative.

Theorem 37 (Sönmez and Ünver, 2005) In a house allocation with existent tenants prob-
lem, strong core from random newcomer endowments induces the same lottery as the lottery of
the newcomer-biased version of the random YRMH-IGYT in which priority orders uniformly
randomly orders newcomer and place the existing tenants at the end (in any order).

For a central planner who adopts the CRNE mechanism based on the close associ-

ation of this environment with the housing market environment and its unique com-

pelling mechanism, Theorem 37 may serve as a cautionary result. While the CRNE

mechanism is a special case of YRMH-IGYT, it is a highly biased case that gives higher

priority to a newcomer than any existing tenant. Unless this bias is intentional, though

very straightforward for a designer familiar with the housing market literature, the

CRNE mechanism may not be a welcome choice.

Put differently, the role of the priority order in the YRMH-IGYT mechanism is to

assign the rights of vacant houses to agents. For example, in the trading-cycles version

48Ordinal equal treatment of newcomers of a lottery means that the lottery assigns the same random
consumption to any two newcomers with the same preferences.

85



of its algorithm, the vacant houses point to agents according to this priority order. As

a result, by randomly endowing newcomers with these houses, the central authority

forgoes the claims of existing tenants over vacant houses.

3.4 “Trading Houses” in Common Ownership Economies
In this subsection, we introduce the full class of deterministic mechanisms that

satisfy Pareto efficiency and group strategy-proofness. As we have seen in Section 3

for the house allocation with existing tenants model, the analogy of “trading objects”

can be utilized in designing mechanisms with compelling efficiency and incentive

properties. This idea can be further generalized in common ownership economies in

the absence of any elaborate property rights.

Parallel to the analogous concepts we introduced in Section 2.5.1 for the room-

mate matching environment, we introduce a few supplementary concepts in a house

allocation environment [I, H,P ].

For any proper subset of agents J ⊊ I, a submatching for J is a function σ : J → H
such that no two agents in J are matched with the same house. Let Iσ = J be the set

of agents who are matched and Hσ = σ(I) be the set of houses assigned under σ. Let

MJ be the set of submatchings for J. Let S =
⋃

J⊊I MJ be the set of submatchings. For

each house h, let S−h be the set of submatchings that do not assign house h to anyone:

S−h = {σ ∈ S : h /∈ Hσ}.

3.4.1 Hierarchical Exchange Mechanisms

Pápai (2000) introduced a class of mechanisms that generalizes the idea behind the

top trading cycles (TTC) algorithm of the YRMH-IGYT mechanism (cf. Section 3.3.2).

A hierarchical exchange mechanism is described through an iterative algorithm

similar to TTC. However, rather than an exogenous priority order, an exogenously

given rule determines which agent each house will point to in the algorithm in each

step. This is called a control rights profile c = (ch)h∈H, where each ch is a generalization

of a priority order. Formally, once a submatching σ ∈ S is already determined prior

to any non-terminal step of the algorithm assigning houses in Hσ to agents in Iσ, for

any remaining house h ∈ H \ Hσ, the function ch : S−h → I determines the agent

who holds the property rights of house h.49 In this case we say that agent ch(σ) holds

the control rights of house h when submatching σ is determined in the algorithm in its

previous steps.

49Apart from being house specific, this function is analogous to the sequential dictatorship function
which induces a generalized priority mechanism for a roommates matching environment, as discussed
in Section 2.5.1.
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Building on concept of control rights, Pycia and Ünver, 2017 further generalized

the TTC algorithm:

Top Trading Cycles Algorithm induced by c = (ch)h∈H .

Step 0. Let σ0 = ∅.

Step k. (k ≥ 1) We form a directed graph as follows:

• each remaining agent in I \ Iσk−1 points to their favorite house in H \
Hσk−1 , and

• each remaining house h ∈ H \ Hσk−1 points to agent ch(σ
k−1) who holds

its control rights.

There exists at least one cycle. Each resulting cycle is cleared by assigning to

each agent in the cycle the house they point to. Let γ be this submatching.

Define

σk = σk−1 ∪ γ.

We terminate the algorithm if Iσk = I; otherwise, we proceed with Step k + 1.

The outcome of this variant of the TTC algorithm Pareto efficient.

Proposition 13 (Pycia and Ünver, 2017) In a house allocation problem, for any control
rights profile c, the induced top trading cycles algorithm results in a Pareto-efficient matching.

Without any restrictions on the control rights profile, this generalization of TTC

may not be strategy-proof. With appropriate restrictions on the control rights profile,

however, TTC becomes group strategy-proof.

A control rights profile c is consistent if, for each pair of submatchings σ, σ′ ∈ S
such that σ ⊊ σ′ and house h ̸∈ Hσ′ ,

ch(σ) ̸∈ Iσ′ =⇒ ch(σ
′) = ch(σ).

Therefore, under a consistent control rights profile c, if an agent is granted the

control right of a house when some submatching is formed, they retain this control

right until they are matched in the algorithm.

We refer to a consistent control rights profile as an inheritance rule. Each inheri-

tance rule induces a hierarchical exchange mechanism (Pápai, 2000). We can replicate

every mechanism we introduced so far for private, common, and mixed ownership

economies through a hierarchical exchange mechanism induced by an appropriately

defined inheritance rule.

Example 16 Consider the three house matching environments with private ownership, com-
mon ownership, and mixed ownership.
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The strong core mechanism of a housing market environment with endowment ω: For
each agent i ∈ I, define

cω(i) (∅) = i,

with the rest of the inheritance rule c is defined arbitrarily.
The induced TTC algorithm is equivalent to Gale’s TTC algorithm and finds the strong

core of the housing market with the initial endowment ω.

Priority mechanism for a house allocation environment: Let π be a priority order of
agents. We define an inheritance rule c as follows. For each proper submatching σ, let i be the
highest priority agent in I \ Iσ. For each house h ∈ H \ Hσ, define

ch (σ) = i.

This inheritance rule gives control rights of all remaining houses to the highest priority
agent among the remaining agents for each fixed submatching. The induced hierarchical ex-
change mechanism is the priority mechanism induced by π.

YRMH-IGYT mechanism for a house allocation with existing tenants environment
with endowment ωE: Consider a priority order π. We define an inheritance rule c such that

• For each existent tenant i, let
cωE(i) (∅) = i.

• For any proper submatching σ, let i be the highest priority agent in I \ Iσ. For each
house h ∈ H \ Hσ such that h is vacant or initially occupied by an agent in Iσ, let

ch (σ) = i.

The hierarchical exchange mechanism induced by c is the YRMH-IGYT mechanism induced
by priority order π.

Hierarchical exchange mechanisms characterize a special class of group strategy-

proof and Pareto-efficient mechanisms that satisfy the following incentives property:

A mechanism φ is pairwise reallocation-proof if for any preference profile ≻ ∈ P ,

there exists no pair of agents i, j ∈ I and their misreported preferences ≻′
i ∈ Pi,

≻′
j ∈ Pj, such that

1. φ[≻′
{i,j},≻−{i,j}] (j) ⪰i φ[≻] (i) and φ[≻′

{i,j},≻−{i,j}] (i) ≻j φ[≻] (j) , and

2. φ[≻′
i,≻−i] (i) = φ[≻] (i) and φ[≻′

j,≻−j] (j) = φ[≻] (j).

In a pairwise reallocation-proof mechanism, two agents, compared to their truthful

outcomes, cannot “safely” misreport together and be better off after switching their

assignments (Relation 1). Here, a safe misreport means that for either agent, if the

other party does not go along with their plan of misreporting, then they remain unaf-
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fected by a unilateral misreport (Relation 2).

Theorem 38 (Pápai, 2000) In a house allocation environment, a mechanism is pairwise
reallocation-proof, Pareto efficient, and group strategy-proof if, and only if, it is a hierarchical
exchange mechanism.

3.4.2 Trading Cycles Mechanisms
In this section we drop pairwise reallocation-proofness in Theorem 38, and charac-

terize Pareto-efficient and group strategy-proof mechanisms (Pycia and Ünver, 2017)

.

An extended control rights profile now has two components as c = (ch,1, ch,2)h∈H,

where, for each house h, the first component is a function ch,1 : S−h → I and the sec-

ond component is a function ch,2 : S−h → {owned, brokered}. For each submatching

σ ∈ S ,

• agent ch,1(σ) ∈ I \ Iσ is the control right holder for house h, where

• this agent controls house h in the capacity of a broker if ch,2(σ) = brokered and

in the capacity of an owner if ch,2(σ) = owned.

Hence, the extended control rights assign distinctive roles—either a broker or an

owner—to each agent with control over a house.

We focus on extended control rights that satisfy the following properties:

Within-round Requirements. Consider a submatching σ.

(R1) There is at most one brokered house when σ is fixed.

(R2) If i is the only unmatched agent when σ is fixed, then i owns all unmatched

houses.

(R3) If agent i brokers a house when σ is fixed, then i does not control any other

house.

Across-round Requirements. Consider a pair of submatchings σ, σ′ such that

σ ⊊ σ′, and an agent i ̸∈ Iσ′ that owns a house h ̸∈ Hσ′ when the smaller sub-

matching σ is fixed.

(R4) Agent i owns h when σ′ is fixed.

(R5) If i′ brokers house h′ when σ is fixed, and i′ ̸∈ Iσ′ , h′ ̸∈ Hσ′ , then either i′

brokers h′ or i owns h′ when σ′ is fixed.

(R6) If agent i′ ̸∈ Iσ′ controls h′ ̸∈ Hσ′ when σ is fixed, then i′ owns h when

σ ∪ {(i, h′)} is fixed.

We are ready to introduce the trading cycles (TC) algorithm by Pycia and Ünver

(2017). Notably, in this procedure, if the control rights holder of a house is a broker,

then they are unable to consume it, even if it stands as their top preference among the

remaining houses.
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Trading Cycles Algorithm induced by c = (ch,1, ch,2)h∈H .

Step 0. Let σ0 = ∅.

Step k. (k ≥ 1) We form a directed graph as follows.

• A remaining agent i ∈ I \ Iσk−1 points to a house only if they control

some house h ∈ H \ Hσk−1 at σk−1.

• For any such agent i ∈ I \ Iσk−1 with ch,1(σ
k−1) = i for some h ∈ H \

Hσk−1 at σk−1, agent i points to their top choice in

H \
(

Hσk−1 ∪ {g ∈ Hσk−1 : cg,1(σ
k−1) = i and cg,2(σ

k−1) = brokered}
)
.

• Each remaining house h ∈ H \ Hσk−1 points to its control rights holder

ch,1(σ
k−1).

There exists at least one cycle. Each resulting cycle is cleared by assigning to

each agent in a cycle the house they point to. Let γ be this submatching. Let

σk = σk−1 ∪ γ.

We terminate the algorithm if Iσk = I, and otherwise, we continue with Step

k+1.

A broker cannot receive the house they are brokering but can trade it in the algo-

rithm to acquire another. Ownership, on the other hand, refers to the same control

right we discussed in the context of hierarchical exchange mechanisms.

We will explain how this algorithm works with an example.

Example 17 Let I = {1, 2, 3} and H = {h1, h2, h3}. Suppose the extended control rights
profile c is given as follows:

• House h1 is owned by agent 1 as long as agent 1 and house h1 are unmatched, and it is
owned by agent 2 when agent 2 and house h1 are unmatched while agent 1 is matched.

• House h2 is owned by agent 2 as long as agent 2 and house h2 are unmatched, and it is
owned by agent 1 when agent 1 and house h2 are unmatched while agent 2 is matched.

• House h3 is brokered by agent 3 as long as either agent 1 or agent 2 are unmatched,
and it is owned by agent 3 when agents 1 and 2 are matched.

The preferences of the agents are given as follows:

≻1: h3 h1 h2

≻2: h3 h2 h1

≻3: h3 h1 h2

We find the TC outcome as follows:
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Step 1. Since house h3 is brokered by agent 3, and it is their favorite house, agent 3 cannot
point to h3 but instead points to their second choice house h1. Agents 1 and 2 each point to
their favorite house h3. Houses h1, h2, and h3 point to their respective controllers, agents 1, 2,
and 3. There exists one cycle (h1, 1, h3, 3). We remove it by assigning house h1 to agent 3 and
house h3 to agent 1.

Step 2. Agent 2 points to house h2 and receives it since the house points back to them. The
algorithm terminates, generating the outcome

µ =
{
(1, h3) , (2, h2) , (3, h1)

}
.

Observe that a hierarchical exchange mechanism cannot reproduce this outcome. Consider
a modified problem obtained by changing the preferences of agent 3 so that h2 is preferred to
h1:

≻′
3: h3 h2 h1

In this case, the TC outcome is

µ′ =
{
(1, h1) , (2, h3) , (3, h2)

}
.

No hierarchical exchange mechanism can assign h3 to two different agents in these two prob-
lems.

We refer to a mechanism induced by any extended control rights profile that satis-

fies restrictions R1 to R6 a trading cycles (TC) mechanism.

The main result of this subsection is a characterization of Pareto efficient and group

strategy-proof mechanisms for a house allocation environment.

Theorem 39 (Pycia and Ünver, 2017) Consider a house allocation environment [I, H,P ].
Every TC mechanism is Pareto efficient and group strategy-proof. Conversely, if also |H| >
|I| holds, then every Pareto-efficient and group strategy-proof mechanism is a TC mecha-
nism.50

Within-round requirements R1 and R2 for extended control rights are sufficient to

generate Pareto-efficient matchings:

Proposition 14 (Pycia and Ünver, 2017) In a house allocation problem, for any extended
control rights profile c that satisfies within-round requirements R1 and R2, the induced trad-

50The restriction |H| > |I| does not exist in Pycia and Ünver (2017) and is imposed for expositional
simplicity here to define a simpler version of TC mechanisms. When |H| ≤ |I|, there can be additional TC
mechanisms that are Pareto efficient and group strategy-proof and are triggered when a fixed submatching
leaves 3 houses unmatched and at least 3 agents unmatched (cf. Bade, 2020). Pycia and Ünver (2017) gives a
modified TC algorithm, amends R1 to allow 3 brokered houses and 3 brokers to exist simultaneously when
|H \ Hσ| = 3, and also shows that the characterization goes through in this setting as well.
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ing cycles algorithm results in a Pareto-efficient matching.

3.5 Other Remarks

3.5.1 Indifferences in Preferences

What if individual preferences included indifferences among various objects? A

priority mechanism is no longer well-defined as we gave in the text. Svensson

(1994) originally defined the priority mechanism for such an environment, while

Ehlers (2002) proved an almost impossibility result showing that only very particular

types of indifferences in the domain restrictions would allow the existence of group

strategy-proof and Pareto efficient mechanisms. Bogomolnaia, Deb, and Ehlers (2005)

also introduced interesting classes of strategy-proof mechanisms in this domain.

Also, probabilistic methods can be extended to this domain as extensions of prob-

abilistic serial mechanism (Katta and Sethuraman, 2006) and its characterization (Heo

and Yilmaz, 2015) or probabilistic serial mechanism with existent tenants (Yilmaz,

2009, 2010; Athanassoglou and Sethuraman, 2011).

3.5.2 Axiomatic Characterizations of Mechanisms in Common and Mixed
Ownership Economies

Besides the results and models presented in this section, implications of many

other fairness axioms are examined in the common ownership model or the mixed

ownership model with deterministic mechanisms. These axioms include resource

monotonicity (Ehlers and Klaus, 2003b), consistency (Ehlers and Klaus, 2007; Velez,

2014; Sönmez and Ünver, 2010b; Karakaya, Klaus, and Schlegel, 2019), and popula-

tion monotonicity (Ehlers, Klaus, and Pápai, 2002) (also see Thomson, 2011 for an

extended survey of fairness features of these axioms).51

Priority mechanisms, extensively discussed in this section, were characterized as

the only neutral and group strategy-proof mechanisms by Svensson (1999) and as the

only consistent and neutral mechanisms by Ergin (2000). Bade (2015) provides two

characterizations, one for the dynamic implementations of priority mechanisms and

one for priority mechanisms through Pareto efficiency and group-strategy-proofness,

when information regarding one’s own preferences is endogenously acquired.

Moreover, generalized priority mechanisms induced by sequential dictatorships

are characterized by Arrow’s axioms for efficiency and strategy-proofness (Pycia and

Ünver, 2023). In a few papers, outside options are also modeled in house allocation

environments: neutral, non-wasteful, and group strategy-proof mechanisms are char-

51See also Ehlers and Klaus (2023) for a survey of these and additional normative characterizations, in-
cluding Pareto-inefficient mechanisms based on the deferred acceptance algorithm of Gale and Shapley
(1962), such as Kojima and Manea (2010a) and Ehlers and Klaus (2014).
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acterized by an interesting subclass of generalized priority mechanisms (Pycia and

Ünver, 2022).

Characterizations of stochastic mechanisms are generally more recent and repre-

sent an active area of research. Hashimoto et al. (2014) provided two characterizations

of probabilistic serial mechanisms—one using an ordinal property they named ordi-

nal fairness, and another using SD efficiency and SD envy-freeness, along with an in-

variance property regarding truncations of preferences. The second characterization

strengthens a similar one by Bogomolnaia and Heo (2012), which utilizes an invari-

ance property along with SD efficiency and SD envy-freeness. Bogomolnaia (2015)

presented a characterization solely using a lexi-min welfarist fairness property.

Characterizations of the random priority mechanism are more elusive. Pycia and

Troyan (2022) provided a general characterization of the RP mechanism based on ex-

post efficiency, equal treatment of equals, and a stronger incentive property, obvious

strategy-proofness (a property introduced by Li, 2017).

3.5.3 Common Ownership with Multi-Unit Demand

When agents can consume multiple objects in their consumption bundles and they

can have an arbitrary strict preference relation over bundles of objects in a generalized

house allocation problem, generalized priority mechanisms induced by sequential

dictatorships become the only group strategy-proof and Pareto-efficient mechanisms,

as shown by Pápai (2001).52 Hatfield (2009) also explored the same model where

each agent must be assigned exactly k > 1 objects, with an additional restriction on

preferences: only strict responsive preferences over groups of objects were allowed.

The same characterization holds in this domain of preferences as well, resulting in a

stronger characterization. Most recently, Ehlers and Klaus (2003a) and Root and Ahn

(2023) presented related characterizations. Ehlers and Klaus (2003a) also showed that

adding resource monotonicity to these two main axioms, Pareto efficiency and group

strategy-proofness, characterizes priority mechanisms. In Chapter 3, we delve into a

real-life application of a related environment where each object may have the capacity

to be assigned to more than one agent, known as the course allocation problem.

3.5.4 House Allocation Mechanisms under Constraints

In common ownership economies, feasibility constraints that exogenously restrict

the set of matchings commonly exist in many real-life applications, from affirmative

action settings to other institutional or physical constraints.53 An interesting method

52Refer to Section 2.5.1 for a formal definition of sequential dictatorships in roommates matching envi-
ronments, which is extended to house allocation environments in a similar manner.

53As an interesting example, Bó and Chen (2021) report the existence of formal, complex geographical as-
signment constraints historically in job assignments in Imperial China. These constraints forbid applicants
to be assigned to jobs in their home provinces.
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to generate classes of group strategy-proof and Pareto efficient allocation mechanisms

was recently introduced by Root and Ahn, 2023 generalizing the control rights profiles

introduced by Pycia and Ünver (2017) to any infeasible allocation scenario when all

remaining agents cannot be assigned their remaining favorite houses at the same time.

It is more nuanced to construct random assignment mechanisms under ex-ante

and ex-post feasibility constraints, as some constrained random assignments may

not be induced by any lottery over constrained matchings; that is Birkhoff-von Neu-

mann Theorem (Theorem 30) may fail in such settings. Budish et al. (2013) introduced

several lottery mechanisms in restricted common ownership settings by using a de-

composition result that generalizes Birkhoff-von Neumann Theorem (Hoffman and

Kruskal, 1956) under specific constraints called bi-hierarchies. These mechanisms si-

multaneously satisfy desirable ex-ante and ex-post properties, such as different fair-

ness and efficiency notions. Pycia and Ünver (2015) generalized this methodology

for axioms that can be expressed as linear constraints on mechanism outcomes across

different preference profiles, such as strategy-proofness.

4 Matching under Priority-based Entitlements
In this chapter, we explore property rights that cannot be classified as private own-

ership, common ownership, or a mixture of the two. Instead, property rights rely on

exogenous “priorities,” possibly in conjunction with various normative policies of de-

cision makers, sometimes called “controlled choice.” Such policies find application in

real-life settings where decision makers aspire to foster meritocracy, potentially to-

gether with a commitment to equity.

Priority-based property rights are prevalent in markets where agents’ entitlements

to objects are determined by priority orders stemming from various exogenous met-

rics such as results of aptitude tests. These entitlements can be thought of as “ob-

jection rights,” which do not outright grant an agent the right to secure a match but

enable them to object to other individuals’ or their own matches due to the presence of

priority-based entitlements: a higher-priority agent can contest a lower-priority agent

obtaining a match. Depending on what we would like to emphasize we will refer to

these forms of property rights as priority-based entitlements or objection rights.

An example of such entitlements is evident in school admissions that rely on exam

performance, a practice widely adopted in numerous school systems. Exam scores

serve as the basis for ranking students, with those achieving the highest scores being

granted admission. When multiple schools utilize the same exam rankings, a common

mechanism comes into play—the priority mechanism (cf. Section 4): In this system, the

top-scoring student secures a spot in their preferred school, the second-ranked stu-

dent gains admission to the best school with available seats, and the process continues
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accordingly.

Shifting our focus to the context of common ownership, we previously noted that

a priority mechanism might be deemed unfair, while the random priority (RP) mech-

anism possesses several fairness properties, such as anonymity and equal treatment

of equals. However, within our current context, a natural fairness concept can be in-

ferred from the allocation of student seats at schools based on their exam rankings.

Unresponsive to exam rankings, the RP mechanism would inevitably introduce some

unfairness in the assignment process; it would not be just to give the same admission

chance to two students, one with a higher exam score than the other.

Apart from entitlements derived from exams, the literature on matching under

priority-based entitlements has also been highly successful in other settings where

objection rights arise from metrics such as residence proximity to a school or having a

sibling already attending a school. The design literature on school choice mechanisms

using these principles (Abdulkadiroğlu and Sönmez, 2003b, Abdulkadiroğlu et al.,

2005, Abdulkadiroğlu, Pathak, and Roth, 2005) has altered the practice of admissions

to K-12 schools worldwide and is the topic of Chapter 4 of this handbook. Addition-

ally, in centralized or semi-centralized college admissions, institutions that explicitly

or implicitly use this methodology adopt priority-based mechanisms throughout the

world, sometimes with and sometimes without any intervention from economists (see

Balinski and Sönmez, 1999; Biró, 2008; Correa et al., 2019).

But what is this intuitively deduced fairness notion? Our goal in this section is to

explore the theory of priority-based entitlements.

4.1 Student Placement under No Justified Envy
We commence our exploration with a centralized student placement model that

incorporates features from both Gale-Shapley’s college admissions model (cf. Section

2.4) and the house allocation model (cf. Section 3.1). The key departure of the student

placement model from the conventional college admissions model lies in its treatment

of schools as objects rather than autonomous agents. This distinction aligns closely

with the reality in various countries, including China, Chile, Greece, Hungary, Turkey,

etc., where some or all school seats are state-owned or managed resources centrally

allocated to deserving students.

The ranking of students is determined through school-specific exams, with explic-

itly defined tie-breakers. Endowed with their scores, students submit a rank-ordered

list of schools they wish to attend. A centralized mechanism then determines the out-

come matching based on quotas and the selection criteria of schools, as well as the

scores and preferences of students.

We next introduce the formal model. Since the model is originally motivated in
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Balinski and Sönmez (1999) by Turkish college admissions, in the remainder of this

subsection, we refer to schools as colleges.

There is a set I of students who “compete” for the seats of a set C of colleges. Each

student can be assigned at most one college seat, and each college c ∈ C has a capacity
of qc ∈ Z++. Let q = (qc)c∈C denote the capacity vector.

Each student i ∈ I is a (potentially) strategic agent with a strict preference relation

≻i over C ∪ {∅}, where ∅ represents remaining unmatched. For each student i ∈ I,

let Pi denote the set of preferences, and let P =×i∈I Pi denote the set of preference

profiles.

Given a college c ∈ C and student i ∈ I, let si
c ∈ R++ denote the score of student

i ∈ I at college c. For any given college, we assume that no two students have the same

score. For any college c ∈ C, let sc = (si
c)i∈I denote the strict score list of students for

college c, and for any student i ∈ I, let si = (si
c)c∈C denote the vector of student i’s

scores for all colleges. Let S denote the set of all score profiles.

A student placement problem is a 5-tuple [I, C, q, s,≻] and a student placement environ-
ment is a 5-tuple [I, C, q,S ,P ] (Balinski and Sönmez, 1999).

Throughout this subsection, we fix every component of a student placement prob-

lem except ≻ and s.

An outcome of a problem is a matching, which is a function µ : I → C ∪ {∅} such

that |µ−1(c)| ≤ qc for each college c ∈ C. Let M denote the set of all matchings.

4.1.1 Associated College Admissions Problem

As we already emphasized, college seats are interpreted as indivisible objects to

be fairly allocated to students. As such, colleges are neither agents nor strategic. As

for students, they have two types of strategic possibilities. In an effort to improve

their college assignments, students can strategically report their preference relations.

Alternatively, they can strategically lower their scores. While these features distin-

guish student placement from Gale and Shapley’s college admissions, there are also

important similarities or conceptual connections between the two models.

In order to formulate and leverage these connections, the following construction

is helpful:

For any student placement problem [I, C, q, s,≻], construct an associated college admis-
sions problem [I, C, q,≻∗] with responsive college preferences, where:

1. For each student i ∈ I, ≻∗
i = ≻i.

2. For each college c ∈ C and each pair of students i, j ∈ I,

i ≻∗
c j ⇐⇒ si

c > sj
c.

That is, students have the same preferences in a student placement problem and its
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associated college admissions problem, whereas, for any college c ∈ C, its responsive

preference relation ≻∗
c is uniquely constructed from the score vector sc.

Each matching µ in the original student placement problem can be represented as

an associated two-sided matching µ∗ as follows: µ∗(i) = µ(i) for each student i ∈ I and

µ∗(c) = µ−1(c) for each college c ∈ C. Given this straightforward mapping, with a

slight abuse of terminology, we will not differentiate between a matching for a student

placement problem and its associated two-sided matching.

4.1.2 No Justified Envy and Other Axioms

The main axiom that formulates the “objection rights” in the current environment

is no justified envy (Balinski and Sönmez, 1999).54

A matching µ induces justified envy for some student i ∈ I toward another student

j ∈ I \ {i} if, at the college µ(j) = c, not only does student i envy student j (i.e.,

c ≻i µ(i)), but this envy is also justified by the exam score of the students at college

c (i.e., si
c > sj

c). In this situation, college c admitted student j although student i
had a higher score for college c, and student i prefers college c to their assignment.

A matching µ has no justified envy if no student has justified envy toward another

student in this matching.

In addition to no justified envy, the following axioms also play important roles in

this environment.

A matching µ is Pareto efficient if no other matching makes each student weakly

better off, and at least one student strictly better off.

A milder efficiency axiom is the following: A matching µ is non-wasteful if there

is no college c and student i such that c ≻i µ(i) and |µ−1(c)| < qc. At a wasteful

matching, a student is not matched with a college they would prefer attending, even

though the school has an empty seat.

A matching µ is individually rational if µ(i) ⪰i ∅. At an individually rational match-

ing, no student is matched with an unacceptable college.

It is easy to see that Pareto efficiency implies non-wastefulness and individual

rationality in student placement.

Lemma 10 For any student placement problem, if a matching satisfies Pareto efficiency, then
it also satisfies non-wastefulness and individual rationality.

A mechanism chooses a matching for each reported preference list and score pro-

file. We distinguish the strategic ability to affect preferences and scores.

54Originally, this axiom was called fairness in Balinski and Sönmez (1999). The notion of “justified envy”
was coined by Abdulkadiroğlu and Sönmez (2003b), in which the same axiom was called elimination of
justified envy.
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A mechanism satisfies strategy-proofness if truthful reporting of preferences is a

dominant strategy for each student.

A mechanism respects priority improvements if the outcome makes a student weakly

better off when their score improves in every category.

One can interpret this last axiom either as a strategic or normative property: From

a normative perspective, this axiom is grounded in the simple idea that no student

should receive a less favorable assignment solely due to a strictly higher performance.

In its strategic interpretation, a student may choose not to put all the effort into the

exam, and strategically receiving a lower score. In a mechanism that respects priority

improvements, they would never benefit from this lesser effort.

4.1.3 No Justified Envy vs. Stability

Stability is an axiom that is largely grounded in positive economics in two-sided

matching markets. A matching which is not stable is not expected to “survive” in a

two-sided matching market. In the literature, there is occasional confusion between

the normative axiom of no justified envy and stability, with the two concepts mistak-

enly used interchangeably. This confusion is primarily due to the following result,

which relates a student placement problem to its associated college admissions prob-

lem.

Lemma 11 (Balinski and Sönmez, 1999) Consider a student placement problem. A
matching satisfies individual rationality, non-wastefulness, and no justified envy if, and only
if, it is stable for the associated college admissions problem.

It is important to interpret Lemma 11 as a technical tool that connects priority-

based entitlement to a well-analyzed axiom in two-sided matching markets.

To further emphasize the difference between the two axioms, recall that stability is

also motivated by its equivalence to the solution concept of the strong core of the two-

sided matching market. Moreover, the core is motivated by private ownership for

colleges and students for their own matching rights. However, no justified envy (or

non-wastefulness) is not motivated by the property rights of colleges, as they are not

agents in this model but objects. Thus, the core is not a meaningful solution concept

in this problem: the college’s rights over the student can directly be affected by a

student through changing scores, possibly directly affected by the student. A formula

determines how the college ranks students, but this is a direct function of the student’s

score. Thus, one can view no justified envy as respecting the property rights of this

student but not the school, unlike two-sided matching markets.55

55Many studies that employ no justified envy as their primary axiom often refer to the combination of
individual rationality, non-wastefulness, and no justified envy simply as stability. However, to maintain a
clear separation in the interpretation of property rights in the models, we refrain from using this terminol-
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4.1.4 Student Placement with Uniform Scores

When all schools rely on identical scores, (e.g., when they use the same exam to

evaluate the students), the priority mechanism induced by the score ranking satis-

fies individual rationality, non-wastefulness, and no justified envy. Moreover, for any

such student placement problem, it is easy to see that the associated college admis-

sions problem has a unique stable matching. These observations along with Lemma

10 and Lemma 11 easily give the following result:

Proposition 15 (Balinski and Sönmez, 1999) Fix a student placement environment
where all schools use the same scores to evaluate students. Then, a mechanism satisfies Pareto
efficiency and no justified envy if, and only if, it is the priority mechanism induced by the
priority order generated by the score profile s.56

4.1.5 Student-Optimal Stable Mechanism and its Unique Appeal

For a student placement problem with multiple skill categories, the associated

college admissions problem can have multiple stable matchings. Moreover, as long

as there are at least three students and three colleges, Pareto efficiency is no longer

compatible with no justified envy. The following example from Balinski and Sönmez

(1999) is isomorphic to an example in Roth (1984b), earlier presented for the college

admissions environment:

Example 18 Suppose I = {1, 2, 3} and C = {c1, c2, c3}. Each college has a unit capacity.
The score vector si = (si

c1
, si

c2
, si

c3
) of each student i ∈ I is given as follows:

s1 = (10, 6, 8), s2 = (6, 10, 9), s3 = (8, 8, 10).

Student preferences are given as follows:

≻1: c2 c1 c3

≻2: c1 c2 c3

≻3: c1 c2 c3

Only µ has no justified envy, but it is Pareto dominated by ν:

µ =
{
(1, c1), (2, c2) (3, c3)

}
ν =

{
(1, c2), (2, c1), (3, c3)

}
.

To see what is going on in Example 18, let’s try to understand the root cause of

the incompatibility between Pareto efficiency and no justified envy. First, note that

ogy.
56Svensson (1994) presented a model isomorphic to student placement where all schools use the same

scores to evaluate students and proved that the priority mechanism induced by the priority order generated
by the score profile satisfies Pareto efficiency and no justified envy, one direction of this proposition. He
referred to his axiom as weak fairness instead of no justified envy.
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Pareto efficiency implies both non-wastefulness and individual rationality. Hence, in

this argument, we assume these two axioms without loss of generality. Observe that

both student 1 and student 2 are the highest-scoring students for their second-choice

colleges c1 and c2, respectively. Therefore, neither student can receive assignments

that are worse than their second choices under no justified envy. Moreover, colleges

c1 and c2 are the top two choices of both these students. Hence, seats at colleges c1

and c2 need to be assigned to students 1 and 2 under no justified envy. Therefore,

student 3 needs to be assigned the seat at college c3 under no justified envy. Since it is

already established that students 1 and 2 will receive the seats at colleges c1 and c2, it

would be plausible to assign each one their first choices. However, this would create

justified envy for student 3 against student 1 at college c2. Therefore, while it is al-

ready established that student 3 cannot receive a seat at college c2, their presence also

ensures that student 1 cannot receive it either under no justified envy. Both students

1 and 2 have to receive seats at their second choices.

Given this incompatibility, we relax Pareto efficiency to the combination of indi-

vidual rationality and non-wastefulness for more general student placement environ-

ments with multiple skill categories.57

The close connection between student placement and college admission problems

motivates the following mechanism:

Student-Optimal Stable Mechanism (SOSM).58 For each student placement

problem, construct the associated college admissions problem, and select its student-

optimal stable matching.

While no justified envy is not compatible with Pareto efficiency with multiple

skill categories, since colleges are not agents and rather a collection of objects in stu-

dent placement, Lemma 11 and Theorem 14 by Gale and Shapley (1962) immediately

imply the following result: Of all matchings that satisfy individual rationality, non-

wastefulness and no justified envy, there exists one that Pareto dominates any other.

Corollary 3 (Gale and Shapley, 1962) SOSM satisfies individual rationality, non-
wastefulness and no justified envy. Furthermore, for any student placement problem the
outcome of SOSM Pareto dominates any matching that satisfies individual rationality,
non-wastefulness and no justified envy.

57Since priorities are hard-earned through exams in the context of Turkish college admissions, Balinski
and Sönmez (1999) considers no justified envy as an indispensable axiom. In contrast, Abdulkadiroğlu and
Sönmez (2003b) focuses on a school choice setting where priorities can be obtained through factors such
as residence. They regard no justified envy as merely a plausible (but dispensable) axiom and formulate a
Pareto efficient mechanism.

58This mechanism is often called student-proposing deferred acceptance mechanism in the literature
since its outcome can be found by Gale and Shapley’s student-proposing deferred acceptance algorithm.
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Indeed, the second part of this result can be further strengthened.

Theorem 40 (Balinski and Sönmez, 1999) For any student placement problem, the out-
come of SOSM Pareto dominates any matching that satisfies no justified envy.

The next two results easily follow by Lemma 11 along with the corresponding

results for the college admissions environment.

Theorem 41 (Dubins and Freedman, 1981) SOSM is weakly group strategy-proof in a
student placement environment.

Theorem 42 (Alcalde and Barberà, 1994; Balinski and Sönmez, 1999) Consider a stu-
dent placement environment. A mechanism satisfies individual rationality, non-wastefulness,
no justified envy and strategy-proofness if, and only if, it is the SOSM.

Therefore, within mechanisms that satisfy individual rationality, non-wastefulness

and no justified envy, either the Pareto criterion or strategy-proofness lead to SOSM.

Indeed, replacing them with respecting priority improvements also leads to the same

conclusion.

Theorem 43 (Balinski and Sönmez, 1999) A mechanism satisfies individual rationality,
non-wastefulness, and no justified envy, and it respects priority improvements if, and only if,
it is the SOSM.

4.1.6 A Characterization of No Justified Envy Through Cutoffs

Next, we relate priority-based entitlements to the price mechanism. To do this,

we first define a price for each college through a cutoff agent (and their score). These

prices will determine the agent-specific “budget sets” in the following intuitive way:

For any given college c ∈ C ∪ {∅} including the “null college,” each individual with a

score weakly higher than the cutoff score for college c is eligible to attend the college.

To formally define a cutoff, first introduce a null student i∅ with si∅
c = 0 for each

college c ∈ C.

A cutoff fc is an element of I ∪ {i∅} for any c ∈ C ∪ {∅}. Observe that, since

si
c > si∅

c = 0 for each student i ∈ I, all students are eligible to attend a college c ∈ C
whenever its cutoff is the null student ∅.

For each college, cutoff represents the lowest score agent, including the null agent

i∅ with a score of zero, and they play a role akin to prices for exchange economies.

We refer to a list of cutoffs f =
(

fc
)

c∈C∪{∅} as a cutoff vector. Let F be the set of cutoff

vectors.

The next result establishes a close link between cutoff vectors and matchings that

satisfy no justified envy.

Theorem 44 (Balinski and Sönmez, 1999) Consider a student placement problem. A

101



matching µ satisfies no justified envy if, and only if, there exists a cutoff vector f ∈ F such
that for each i ∈ I and c ∈ C,

µ(i) = c =⇒ si
c ≥ s fc

c ,

c ≻i µ(i) =⇒ si
c < s fc

c .

That is, a matching can be supported by a cutoff vector if and only if it satisfies no

justified envy.

If we further assume that f∅ = i∅ as a cutoff for remaining unmatched (i.e., the

null student is the cutoff for the null college), then Theorem 44 has an immediate

counterpart for matchings that satisfy individual rationality in addition to no justified

envy.

Proposition 16 Consider a student placement problem. A matching µ satisfies individual
rationality and no justified envy if, and only if, there exists a cutoff vector f ∈ F such that,

1. f∅ = i∅, and,
2. for each i ∈ I and c ∈ C ∪ {∅},

µ(i) = c =⇒ si
c ≥ s fc

c ,

c ≻i µ(i) =⇒ si
c < s fc

c .

What about cutoffs for schools that do not fill their capacities? This inquiry moti-

vates a price equilibrium-type solution concept based on cutoffs.

4.1.7 Cutoff Equilibria

Thus far, we have considered cutoff scores supporting matchings that satisfy no

justified envy, possibly together with individual rationality. In most real-life applica-

tions, however, we also require non-wastefulness as a minimal efficiency requirement.

We can extend our above normative analysis to cover the competitive equilibrium

equivalent of a normative score equilibrium in student placement.

This exploration for a price-equilibrium type solution is also motivated by the fol-

lowing observation. In many real-life student placement applications, the outcome

is often announced to the public through a system that identifies the lowest priority

agent or score that qualifies for admission to each college. This representation makes

verifying that the outcome was found following the announced policy straightfor-

ward because an individual can compare their priority to the announced cutoffs.

Given a cutoff vector f ∈ F , for any agent i ∈ I, define the budget set of agent i at

cutoff vector f as

Bi( f ) =
{

c ∈ C ∪ {∅} : si
c ≥ s fc

c

}
,

i.e., the set of colleges for which their score is at least as high as the cutoff score of the
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college.

We say that a matching µ is the best affordable matching under a cutoff vector f ∈ F ,

if for every student i ∈ I,

µ(i) = max
≻i

Bi( f ).

A cutoff equilibrium is a pair consisting of a cutoff vector and a matching ( f , µ) such

that

1. µ is the best affordable matching under f , and

2. for each college c ∈ C,

|µ−1(c)| < qc =⇒ fc = i∅.

A cutoff equilibrium is an analog of a competitive equilibrium for the student place-

ment problem system. A cutoff vector-matching pair is a cutoff equilibrium if

1. each student who has a non-empty budget set is matched with the best college

in their budget set, and each student who has an empty budget set remains

unmatched, and

2. each college that has empty seats under this matching has cutoff i∅.

We refer to matching µ also as a cutoff matching. The first condition corresponds to

preference maximization within the budget set, and the second corresponds to the

market clearing condition.

We have the following result that gives a characterization of matchings that sat-

isfy individual rationality, non-wastefulness, and no-justified envy, further refining

Theorem 44 and Proposition 16:59

Theorem 45 (Azevedo and Leshno, 2016) Consider a student placement problem. If a
matching µ satisfies individual rationality, non-wastefulness, and no justified envy, then a
cutoff vector f ∈ F exists such that ( f , µ) is a cutoff equilibrium. Conversely, for every cut-
off equilibrium ( f , µ), matching µ satisfies individual rationality, non-wastefulness, and no
justified envy.

Consider a matching µ that satisfies individual rationality, non-wastefulness, and

no justified envy. While, a cutoff vector f that supports matching µ at a cutoff equilib-

rium ( f , µ) is not unique, there exists a maximum cutoff vector f in the following sense:

For each college c ∈ C and cutoff equilibrium (g, µ), we have s f c
c ≥ sgc

c .

The maximum cutoff vector can be derived as follows: For each college c ∈ C,

f c =

{
arg mini∈µ−1(c) si

c if |µ−1(c)| = qc

i∅ if |µ−1(c)| < qc

59Though Azevedo and Leshno (2016) defines a cutoff vector to be the maximum cutoff equilibrium
vector (which we define below) but not a general cutoff vector as we defined.
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The maximum cutoff for a college serves as a measure of its selectiveness. Any

other equilibrium cutoffs are artificially deflated and only indicate that all individuals

above this cutoff are matched to weakly better options than this college. Some of

these agents, however, would not qualify for this college even if they wanted to, as the

college filled its class with more meritorious students. This explains why the cutoff for

a college are artificially deflated when using cutoff vectors other than the maximum

cutoff vector.

4.1.8 Extension: Weak Priorities

While we have assumed strict priority orders for colleges in this section, it is pos-

sible for multiple students to be in the same coarse priority class. One can use tie-

breaking lotteries to establish a strict priority order for such students, akin to the ran-

dom priority mechanism. However, this approach may introduce inefficiencies in the

system, as different colleges have different priority orders over students. An alterna-

tive is to employ an approach similar to the probabilistic serial mechanism in common

ownership economies. This involves using endogenous tie-breaking to avoid ineffi-

ciencies while preserving other normative appealing properties (cf. Kesten and Ünver,

2015; Han, 2023) or using ex-post improvement of efficiency by preserving no justified

envy based on weak priorities (cf. Erdil and Ergin, 2008).60 Additionally, the compet-

itive equilibrium from equal income (Hylland and Zeckhauser, 1979) is extended to

this setup by He et al. (2018).

4.2 Reserve Systems
Up to this point, we assumed that each agent qualifies for a college purely based on

an exam score (or other objective evaluation criteria). However, in many cases, exam

scores are complemented by other criteria when meritocracy is not the sole objective.

For instance, many countries incorporate affirmative action alongside meritorious ad-

mission criteria.

Affirmative action policies provide preferential treatment to certain historically

or socioeconomically disadvantaged groups in the realms of school admissions and

labor markets. Examples include women and individuals from backward castes in In-

dia for government jobs and public colleges, indigenous ethnicities in South American

countries like Brazil and Chile for college admissions, and residents of the immediate

neighborhood of a school or socioeconomically disadvantaged groups in the US K-12

school admissions, among others. Many of these matching markets, which we refer to

as reserve problems, employ centralized mechanisms known as reserve rules, sometimes

in conjunction with a matching mechanism.

60Also, see notable other approaches to deal with weak priorities by Afacan (2018) and Aziz and Brandl
(2022).
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We start our exploration of the theory of reserve problems in the context of a single

college. In this scenario, individuals essentially face two options: admission to the

college, their preferred outcome, or non-admission. However, students can qualify

for college through various reserve categories, such as a woman category, a category

for people with disabilities, or one or more categories for socioeconomically backward

classes.61

Hafalir, Yenmez, and Yildirim (2013) is one of the first papers to explore reserve

systems in matching markets with baseline priorities, a specialized setting within the

broader framework explored in this chapter. Earlier literature on reserve systems as-

sumed that, in the context of a single college, a choice rule could be employed to

determine who would be admitted (cf. Echenique and Yenmez, 2015). In Section

2.4.2, we previously explored some properties of choice rules within the context of

two-sided matching markets with complex college preferences. These properties can

serve as the foundation for establishing an axiomatic basis for selecting some agents

over others for a job. Thus, a complex choice rule could specify the selection criteria

for the job based on affirmative action policies, reserve systems, and the meritorious

criteria induced by priority orders.

In this section, we delve into a broad range of affirmative action policies, adopt-

ing a model akin to the student placement framework we discussed in Section 4.1.

The key mathematical distinction lies in the fact that all students exhibit indifference

toward positions, while reserve categories (corresponding to colleges in the student

placement context) possess priority orders over individuals. Several concepts and re-

sults introduced for student placement find counterparts in this context, while we also

discuss new ones.

4.2.1 The Model and No Justified Envy under Identical Positions

Building on a general model proposed by Pathak et al. (2023), we introduce reserve

problems. There is a set of agents, denoted as I = {1, 2, . . . , n}, and a total of q∑

identical positions that need allocation. There is a set of reserve categories, represented as

C = {c1, c2, . . . , cm}. Each category c ∈ C has qc reserved positions, where ∑c∈C qc = q∑.

Let q = (qc)c∈C denote the reservation vector.

Priority among agents regarding assignment in each category c ∈ C is determined

by a linear priority order πc over I ∪ {i∅}, where i∅ denotes a “null agent” who is

borderline qualified for category c. This priority order reflects the agents’ relative

entitlements to positions within category c along with their eligibility to qualify for

61For now, we assume that the qualification status for a category is not private information. Later, we
also delve into the scenario where an individual’s qualification for reserve category membership is private
information (subject to final verification); for instance, in India, an individual may choose to apply for a job
using their caste status, but it is not mandatory.
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positions from this category. Here, i πc i∅ indicates that agent i ∈ I is eligible for

category c ∈ C.62 We use πc to denote the weak order induced by πc. Let π = (πc)c∈C

denote the priority profile.

A reserve problem is given by a 4-tuple [I, C, q, π]. Throughout this section, we fix a

problem.

The outcome of a reserve problem, called a matching, is a function µ : I → C∪{∅},

such that |µ−1(c)| ≤ qc for any category c ∈ C. A matching specifies whether an

individual receives a position, and from which category they receive it when they do.

For any agent i ∈ I, µ(i) = ∅ indicates that the agent does not receive a position,

while µ(i) = c ∈ C indicates that the agent receives a position from category c . The

set of all matchings is denoted as M.

In this setting a mechanism that selects a matching for each reserve problem is

referred to as a reserve rule or reserve system.

For any matching µ ∈ M and any subset of agents J ⊆ I, let µ−1(C)∩ J denote the

set of agents in J who are matched with a category under matching µ.

We focus on matchings that assigns positions to qualified individuals without

waste, and subject to priority-based entitlements. To this end, we introduce three

axioms:

A matching µ ∈ M complies with eligibility requirements if, for any i ∈ I and c ∈ C,

µ(i) = c =⇒ i πc i∅.

That is, no position can be assigned to an ineligible agent.

A matching satisfies µ ∈ M is non-wastefulness if, for any i ∈ I and c ∈ C,

i πc i∅ and µ(i) = ∅ =⇒
∣∣∣µ−1(c)

∣∣∣ = qc.

That is, no position can remain idle while there is a qualified agent who does not

receive a position.

A matching µ ∈ M satisfies no justified envy if, for any i, j ∈ I and c ∈ C,

µ(i) = c and µ(j) = ∅ =⇒ i πc j.

That is, no agent j can remain without a position, while another agent i receives one

from a category c for which agent j has higher priority.63 If this were to happen, then

62One difference between this model and student placement (cf. Section 4.1) is that a category can reject
an agent if they are not eligible to receive a position attached to it. In student placement, we did not define
lower scores as unacceptable for some colleges, which could easily be embedded into the model using
college-specific priority orders and acceptability thresholds.

63This property is called respecting priorities in Pathak et al. (2023).
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matching µ would induce justified envy for agent j towards agent i.
In most real-life settings, reserve systems are implemented through cutoffs: a cut-

off vector is announced, and individuals who clear the cutoff in at least one category

they are eligible for are assigned a position. Motivated by this widespread practice,

we present a counterpart of the cutoff equilibria characterization in Theorem 45 in

student placement to the reserve problem.

For any category c, a cutoff fc is an element of I ∪ {i∅} such that fc πc i∅.

We refer to a list of cutoffs f = ( fc)c∈C as a cutoff vector. Let F be the set of cutoff

vectors.

Given a cutoff vector f ∈ F , for each agent i ∈ I,

Bi( f ) = {c ∈ C : i πc fc}

denotes the budget set of agent i at cutoff vector f .

A cutoff equilibrium is a cutoff vector-matching pair ( f , µ) such that:

1. For each agent i ∈ I,

(a) µ(i) ∈ Bi( f ) ∪ {∅}, and

(b) Bi( f ) ̸= ∅ =⇒ µ(i) ∈ Bi( f ).

2. For each category c ∈ C,

|µ−1(c)| < qc =⇒ fc = i∅.

Our next result gives an equivalence between cutoff matchings and matchings that

satisfy our basic axioms.

Theorem 46 (Pathak et al., 2023) Fix a reserve problem. For any matching µ that complies
with eligibility requirements, and satisfies non-wastefulness and no justified envy, there exists
a cutoff vector f that supports the pair ( f , µ) as a cutoff equilibrium. Conversely, for any
cutoff equilibrium ( f , µ), the matching µ complies with eligibility requirements and satisfies
non-wastefulness and no justified envy.

As in a student placement environment, multiple equilibrium cutoff vectors can

support a matching at cutoff equilibria. The maximum cutoff vector definition still

works and often, it is the cutoff vector used in real-life settings.

Each category c ∈ C is represented as a separate college with capacity rc, and

its priority order πc also represents its responsive preferences over agents. In this

construction, there is one crucial difference from our earlier approach in Section 4.1.1:

we establish strict preferences for agents by arbitrarily ranking all categories through

a linear order. Let P be the set of all such possible induced preferences. Through this

construction, (m!)n hypothetical college admission problems become associated with
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our reserve problem. For each such associated college admissions problem, we can

use the agent-proposing DA algorithm to derive a stable matching and subsequently

convert it to a matching for the original reserve problem.

A matching µ ∈ M is called DA-induced if it is the outcome of the agent-proposing

DA for some preference profile ≻∈ P .

We are ready to present a second characterization of matchings that comply with

eligibility requirements, are non-wasteful, and have no justified envy in this model.

Proposition 17 (Pathak et al., 2023) In a reserve problem, a matching complies with eligi-
bility requirements, and it satisfies non-wastefulness and no justified envy, if, and only if, it is
DA-induced.

4.2.2 Sequential Reserve Rules

It is best to interpret Proposition 17 as an abstract result which relates matchings

that satisfy basic desiderata to two-sided matching theory, rather than a recipe to gen-

erate practical reserve systems. In particular, the arbitrary nature of transforming a

reserve problem into a college admissions problem hinders the practical relevance of

this result.

In real-life reserve systems, institutions typically process reserve categories se-

quentially, allocating positions within each category one at a time based on category-

specific priority orders (Kominers and Sönmez, 2016).

A precedence order ▷ is a linear order over C. It indicates the processing sequence of

categories: For any two categories c, c′ ∈ C, the relation c ▷ c′ indicates that category-c
positions are to be allocated before category-c′ positions. In this case, we say category

c has higher precedence than category c′. Let ∆ be the set of all precedence orders.

For a given precedence order ▷ ∈ ∆, the induced sequential reserve matching φ▷, is

constructed as follows:64

Sequential Reserve Rule Induced by ▷.
Suppose categories are sequences as follows under the precedence order ▷:

c1 ▷ c2 ▷ . . . ▷ cm.

Matching φ▷ is derived sequentially in at most m = |C| steps:

Step 0. Let I0 = I.

64Kominers and Sönmez (2016) introduced the concept of precedence order in a more general model
that allows for both slot-specific priorities and multiple contractual terms offered at each institution. Their
model presents a unified analysis of reserve problems and various applications of the matching with con-
tracts model by (Hatfield and Milgrom, 2005), such as cadet-branch matching by (Sönmez and Switzer,
2013). In cases where each category has a single position in a reserve problem, a sequential reserve rule
is a special case of their main solution concept, specifically for a subclass of their model in which a single
institution offers only one contractual term.
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Step k. (k ≥ 1) Following their priority order under πck , category-ck-eligible agents in

Ik−1 are matched with category ck one at a time until either no eligible agent is

left or all category-ck positions are assigned. Let Ik be the set of agents remain-

ing to be matched. If Ik ̸= ∅ and k < m proceed with the next step.

The outcome of a sequential reserve rule directly corresponds to a specific DA-

induced matching.

Proposition 18 (Pathak et al., 2023) In a reserve problem, fix a precedence order ▷ ∈ ∆.
Let the preference profile ≻▷∈ P be such that, for each agent i ∈ I and pair of categories
c, c′ ∈ C,

c ≻▷
i c′ ⇐⇒ c ▷ c′.

Then the sequential reserve matching induced by ▷ is DA-induced from the preference profile
≻▷.

The following result directly follows from Propositions 17 and 18.

Corollary 4 The outcome of a sequential reserve system complies with eligibility require-
ments, and it satisfies non-wastefulness and no justified envy.

We next present a comparative static result regarding the order of precedence in a

sequential reserve rule.

Proposition 19 (Pathak et al., 2023) Fix a reserve problem, and let f
µ

be the maximum
cutoff vector for any cutoff matching µ. Fix two distinct categories c, c′ ∈ C and a pair of
orders of precedence ▷, ▷′ ∈ ∆ such that:

• c′ ▷ c,
• c ▷′ c′, and
• for any ĉ ∈ C and c∗ ∈ C \ {c, c′}

ĉ ▷ c∗ ⇐⇒ ĉ ▷′ c∗.

Thus, ▷′ is obtained from ▷ by only changing the order of c with its immediate predecessor c′.
Then

f
φ▷′
c πc f

φ▷

c .

Thus, the proposition says that processing a category earlier while keeping the prece-

dence order of other categories intact makes the category more competitive.

4.2.3 Reserve Problems under a Baseline Priority Order

In various real-world scenarios involving reserve problems, a natural baseline pri-

ority order πB exists for individuals. This priority order can depend on factors such

as standardized exam scores, random lotteries, application arrival times, or the likeli-
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hood of survival of patients when a medical treatment is used. The baseline priority

order πB is used as the basis to create priority orders for various reserve categories.

To define a subclass of reserve rules which rely on a baseline priority order, we

introduce the concept of a beneficiary group Ic ⊆ I for each category c ∈ C. Here, Ic ⊆ I
includes individuals eligible for category c. Formally, for any c ∈ C and i ∈ Ic:

i πc i∅.

We also designate an all-inclusive category u ∈ C, called the unreserved (or open)

category, which includes all agents and follows the baseline priority order:

Iu = I and πu = πB.

Any other category c ∈ C \ {u}, referred to as a preferential treatment category, has

a more exclusive set of beneficiaries Ic ⊊ I, and it is endowed with a priority order πc

which satisfies the following conditions: For any pair of agents i, j ∈ I,

i ∈ Ic and j ∈ I \ Ic =⇒ i πc j,

i, j ∈ Ic and i πB j =⇒ i πc j,

i, j ∈ I \ Ic and i πB j =⇒ i πc j.

Under priority order πc, beneficiaries of category c ∈ C \ {u} are prioritized over

agents who are not its beneficiaries, but otherwise their relative priority order is de-

termined by the baseline priority order πB.

Let Ig = I \ ⋃c∈C\{u} Ic represent the set of general-community agents, individuals

who are beneficiaries of the unreserved category only.

For any preferential treatment category c ∈ C \ {u} and group of agents J ⊆ I, let

Jc = J ∩ Ic denote the beneficiaries of category c among members of J. Let Jg = J ∩ Ig

denote the general-community agents among members of J.

Two subclasses of such problems find widespread applications in real-life settings:

Hard Reserves: A priority profile π = (πc)c∈C has hard reserves if, for any prefer-

ential treatment category c ∈ C \ {u}:

1. i πc i∅ for any of its beneficiaries i ∈ Ic, and

2. i∅ πc i for any agent i ∈ I \ Ic who is not a beneficiary.

In a hard reserve system, positions in a preferred treatment category are ex-

clusive to the beneficiaries of the category, as in the case of vertical reservations

in India (Sönmez and Yenmez, 2022a) and the H-1B visa allocation in the US

(pathak/rees-jones/sonmez:20).

Soft Reserves: A priority profile π = (πc)c∈C has soft reserves if, for any category
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c ∈ C and any agent i ∈ I:

i πc i∅.

In a soft reserve system, all individuals are eligible for positions in all categories,

and members of a beneficiary group for a preferential-treatment category merely re-

ceive preferential treatment, as in the case of horizontal reservation policies in India

(Sönmez and Yenmez, 2022a).

4.2.4 Sequential Reserve Rules under a Baseline Priority Order

Allocation rules based on sequential reserve matching are commonly used in prac-

tical applications. However, the choice of the precedence order in these problems can

have significant distributional implications, which are sometimes overlooked, caus-

ing unintended consequences (Dur et al., 2018).

We have the following comparative static result regarding the beneficiaries of a

preferential reserve category under a sequential reserve rule:

Proposition 20 (Pathak et al., 2023) Suppose each agent is a beneficiary of at most one pref-
erential treatment category in a reserve problem induced by a baseline priority order. Assume
that either (i) reserves are hard or (ii) reserves are soft and there are at most five preferential
treatment categories. Fix a preferential treatment category c ∈ C \ {u}, another category
c′ ∈ C \ {c}, and a pair of preference orders ▷, ▷′ ∈ ∆ such that:

• c′ ▷ c,
• c ▷′ c′, and
• for any ĉ ∈ C and c∗ ∈ C \ {c, c′},

ĉ ▷ c∗ ⇐⇒ ĉ ▷′ c∗.

Consider the beneficiaries of preferential treatment category c matched under sequential reserve
rules induced by these precedence orders, φ▷′ and φ▷. Then,

φ−1
▷′ (C) ∩ Ic ⊆ φ−1

▷ (C) ∩ Ic.

Pathak et al. (2023) show that the conclusion of Proposition 20 may not hold under

soft reserves with more than five categories.

In settings featuring a baseline priority order, much of the literature has concen-

trated on the following four sequential reserve rules.

Minimum Guarantee Reserve Rules (Hafalir, Yenmez, and Yildirim, 2013) Let

∆u ⊊ ∆ be the set of precedence orders where the unreserved category u is ordered

last. For each ▷u ∈ ∆u, we refer to φ▷u as a minimum guarantee reserve rule.

Over-and-Above Reserve Rules (Dur et al., 2018) Let ∆u ⊊ ∆ be the set of prece-

dence orders where the unreserved category u is ordered first. For each ▷u ∈ ∆u, we
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refer to φ▷u as an over-and-above reserve rule.

c-Optimal Rules (Dur, Pathak, and Sönmez, 2020) Let c ∈ C \ {u} be a preferential

treatment category and ∆u,c ⊊ ∆ be the set of precedence orders where u is ordered

second to last followed by c in the last place. For each ▷u,c ∈ ∆u,c, we refer to φ▷u,c as a

c-optimal rule.

c-Pessimal Rules (Dur, Pathak, and Sönmez, 2020) Let c ∈ C \ {u} be a preferential

treatment category and ∆c,u ⊊ ∆ be the set of precedence orders where c is ordered

first and u is ordered second. For each ▷u ∈ ∆u, we refer to φ▷c,u as a c-pessimal rule.

The naming of these rules will make sense shortly after the following results. To

this end, we introduce an assumption that holds in many real-life settings where ra-

tioning is needed:

There is excess demand for a preferential treatment category c ∈ C \ {u} if qc + qu ≤
|Ic|.

The next lemma states that, assuming there are no overlaps in preferential category

memberships, each rule in any of the above classes of reserve rules is equivalent to

others in the same class, both under hard reserves and under soft reserves with excess

demand.

Lemma 12 Suppose each agent is a beneficiary of at most one preferential treatment category
in a reserve problem induced by a baseline priority order. Assume that, either (i) reserves are
soft and there is excess demand for all preferential treatment categories or (ii) reserves are hard.

Fix a class of precedence orders ∆∗ ∈
{

∆u, ∆u, ∆c,u, ∆u,c
}

. Then for each ▷, ▷′ ∈ ∆∗,

φ▷ = φ▷′ .

Under the same assumptions, we can make the following welfare comparison re-

garding the welfare of general community agents between the minimum-guarantee,

over-and-above, and other sequential reserve rules:

Proposition 21 (Dur, Pathak, and Sönmez, 2020) Suppose each agent is a beneficiary of
at most one preferential treatment category in a reserve problem induced by a baseline priority
order. Assume that, either (i) reserves are soft and there is excess demand for all preferential
treatment categories or (ii) reserves are hard. Let ▷ ∈ ∆, ▷u ∈ ∆u, and ▷u ∈ ∆u. Consider
the general category agents who are matched under the induced minimum guarantee reserve
rule, the sequential reserve rule induced by ▷, and the induced over-and-above reserve rule.
We have

φ−1
▷u
(C) ∩ Ig ⊆ φ−1

▷ (C) ∩ Ig ⊆ φ−1
▷u (C) ∩ Ig.

Given a preferential treatment category c, we can also make a welfare compari-

son regarding its beneficiaries under the c-optimal, c-pessimal, and other sequential
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reserve rules under the same assumptions:

Proposition 22 (Dur, Pathak, and Sönmez, 2020) Suppose each agent is a beneficiary of
at most one preferential treatment category in a reserve problem induced by a baseline priority
order. Assume that, either (i) reserves are soft and there is excess demand for all preferential
treatment categories or (ii) reserves are hard. Let ▷ ∈ ∆, c ∈ C \ {u} be a preferential
treatment category, ▷u,c ∈ ∆u,c and ▷c,u ∈ ∆c,u. Consider the beneficiaries of category c who
are matched under the c-pessimal reserve rule, the sequential reserve rule induced by ▷, and
the c-optimal reserve rule. We have

φ−1
▷c,u(C) ∩ Ic ⊆ φ−1

▷ (C) ∩ Ic ⊆ φ−1
▷u,c

(C) ∩ Ic.

Therefore, processing a preferential treatment category last in a precedence order

for its beneficiaries is optimal, provided that the unreserved category u is processed

just before this category under these assumptions. Thus, the name c-optimal rule

reflects this feature. The intuition is that all higher-priority beneficiaries of other pref-

erential treatment categories are matched early. When u is processed in the algorithm,

beneficiaries of c—who are yet to be matched—gain an advantage in securing u seats,

as the intense competition for these positions from other beneficiary groups has al-

ready been addressed. Then, when c is processed last, according to the assumption,

only the beneficiaries of c will be matched, and even the more competitive among

them have already been matched to u, opening additional seats for potentially less

meritorious beneficiaries of c. Similarly, processing a category first and then process-

ing u is the least favorable option for its beneficiaries under the assumption. The name

c-pessimal reflects this feature.

4.2.5 Limitations of Sequential Reserve Rules

An important drawback of sequential reserve rules is that they may not be Pareto

efficient under hard reserves. Additionally, while sequential reserve rules under soft

reserves are always Pareto efficient, they may not be “meritorious” in the sense that

there could be a way to satisfy no justified envy by admitting better candidates. We

illustrate these points with two examples adopted from Sönmez and Yenmez (2020).

Example 19 Suppose C = {u, c} and I = {i1, i2}. Each category has a capacity of one, and
the baseline priority order is πB = i1 − i2. We have Iu = {c1, c2} and Ic = {i1}. Suppose
reserves are hard, i.e., i2 cannot be assigned the category-c position.

We have the following matchings under the reserve rules induced by the precedence orders
▷u,c ∈ ∆u,c and ▷c,u ∈ ∆c,u:

φ▷u,c =
{
(i1, u)

}
and φ▷c,u =

{
(i1, c), (i2, u)

}
.
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Assigning both agents a position, matching φ▷c,u Pareto dominates matching φ▷u,c which
leaves agent i2 without a position. Therefore matching φ▷u,c is not Pareto efficient.

The issue highlighted in Example 19 is as follows: While the higher base-priority

agent i1 is eligible for both categories, the lower base-priority agent i2 is only eligible

for the unreserved category u. Consequently, when category u is processed first under

the precedence order ▷u,c and its unit is awarded to agent i1 who has the flexibility to

receive positions from either category, no one remains eligible for the remaining unit

from category c. Thus, in a manner of speaking, the flexibility of agent i1 to receive

either position is forfeited under the reserve rule induced by the precedence order

▷u,c.

The next example highlights another issue arising from the “inflexible” processing

order of categories under sequential reserve rules.

Example 20 Suppose C = {u, c} and I = {i1, i2, i3}. Each category has a capacity of one,
and the baseline priority order is πB = i1 − i2 − i3. We have Iu = {i1, i2, i3} and Ic = {i1, i3}.
Suppose reserves are soft.

We have the following matchings under the reserve rules induced by the precedence orders
▷u,c,∈ ∆u,c and ▷c,u ∈ ∆c,u:

φ▷u,c =
{
(i1, u), (i3, c)

}
and φ▷c,u =

{
(i1, c), (i2, u)

}
.

Observe that, while the highest base-priority agent i1 receives a position under both matching,
the lowest base-priority agent receives the second position under matching φ▷u,c , even though it
is feasible to award it to the second-highest base-priority agent i2, as it is done under matching
φ▷c,u . Thus, awarding a unit to a lower-priority agent at the expense of a higher-priority one,
matching φ▷u,c is not as “meritorious” as matching φ▷c,u .

Examples 19 and 20 demonstrate that, while they are the primary reserve rule of

choice in real-life applications, sequential reserve rules (with fixed precedence orders)

may not always be desirable, depending on the objectives of the central authority.

We next introduce another reserve rule in which category selection is “optimized”

to promote efficient and meritorious allocation of positions.

4.2.6 Meritorious Reserve Rules and Transversal Matroids

In this section, we introduce a reserve rule in which the selection of categories

is endogenous to various objectives, such as minimizing the number of idle posi-

tions and promoting their meritorious assignment (Sönmez and Yenmez, 2022a). To

achieve this, we utilize matroid theory, as we did in bilateral matching markets with

compatibility-based preferences in Section 2.5.

Consider a reserve problem [I, C, q, π] with a baseline priority order (cf. Section
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4.2.3). There is an unreserved category u ∈ C, which relies on the baseline priority

order; i.e., πu = πB.

We introduce an appropriately defined matroid as follows:

Let M∗ be the set of matchings where no agent is matched with a preferential

treatment category unless they are its beneficiary:

M∗ = {µ ∈ M : ∀ i ∈ I, ∀ c ∈ C µ(i) = c =⇒ i ∈ Ic}.

Let

I∗ =
{

µ−1(C \ {u}) : µ ∈ M∗}
be the collection of sets of agents who are all matched with a preferential treatment

category in some matching in M∗.

I∗ is an independent set of a well-studied matroid.

Proposition 23 (Edmonds and Fulkerson, 1965) (I, I∗) is a matroid.

Matroid (I, I∗) is known as a transversal matroid. Based on this structure, we can

use the matroid greedy algorithm to find a matching in two steps, generalizing the

meritorious horizontal choice rule in Sönmez and Yenmez (2022a).65

Meritorious Reserve Rule Induced by the Baseline Priority Order πB.

Step 1. Using the matroid greedy algorithm induced by the baseline priority order πB,

construct a matching µ for the transversal matroid (I, I∗).

Step 2a. For the case of a soft reserves problem, if there are any remaining positions in

preferential treatment categories left after matching µ is constructed in Step 1,

then fill them in order of priority under πB with the remaining agents.

Step 2b. Fill the unreserved positions in order of priority under πB with the remaining

agents.

We introduce one additional axiom that can be compelling in certain reserve prob-

lems.

A matching µ is maximal in beneficiary assignment if it maximizes the number of

agents who are assigned to preferential assignment categories. Equivalently, by The-

orem 21 from matroid theory, a matching µ is maximal in beneficiary assignment if

µ−1(C \ {u}) is a basis of the matroid (I, I∗).

Using Theorem 21, we have the following result:66

65Based on the legal requirements in India, Sönmez and Yenmez (2022a) only considered soft reserves in
their paper, but we can directly extend it to hard reserves, as we do here. The term “horizontal” in their
choice rule refers to a specific type of reserve policy used in India for the allocation of public positions and
school seats, as presented in Chapter 3.

66Variants of Theorem 47 are presented in Sönmez and Yenmez (2022a) and Pathak et al. (2023). In Pathak
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Theorem 47 In a reserve problem induced by a baseline priority order, the meritorious reserve
rule complies with eligibility requirements, it satisfies non-wastefulness and no justified envy,
and it is maximal in beneficiary assignment.

Observe that, since the outcome of the meritorious reserve rule is maximal in ben-

eficiary assignment, it avoids the efficiency loss observed in Example 19 due to the

inflexible processing of categories in sequential reserve rules. Furthermore, it also

prevents the non-meritocratic outcomes observed in Example 20 due to the following

result.

Proposition 24 (Sönmez and Yenmez, 2022a) In a reserve problem induced by a baseline
priority order, the outcome of the meritorious reserve rule Gale dominates any other matching
that is maximal in beneficiary assignment.

Smart Reserve Rules. From a technical perspective, the meritorious reserve rule

corresponds to processing the preferential treatment categories “simultaneously” in

Step 1, first allocating them to their beneficiaries, and then to other agents in case

there are any remaining positions from the beneficiaries, followed by the unreserved

category in Step 2. The first step is implemented in a way that maximizes the number

of beneficiaries who receive units from preferential treatment categories, and thus, it

corresponds to a “smart” version of the minimum guarantee choice rule.

Sönmez and Ünver (2022) introduces and examines an over-and-above version of

the meritorious reserve rule in the context of a controversial Constitutional Amend-

ment in India. Additionally, Pathak et al. (2023) further expands on this concept by in-

troducing a spectrum of meritorious reserve rules. This spectrum involves processing

some of the unreserved positions at the beginning of the procedure and the remaining

part at the end, after the preferential treatment units are processed.

4.2.7 Incentives in Reserve Systems Regarding Category Membership
Revelation

So far, we have assumed that beneficiary information is fixed in a reserve problem.

However, in many settings related to affirmative action, agents need to specify in their

applications whether they qualify for any preferential treatment category. Depending

on the reserve rule, it is possible that they may benefit by withholding some or all of

this information. Aygün and Bó (2021) introduced an incentive compatibility prop-

erty along these lines and demonstrated how reserve rules used by certain colleges in

Brazil fail this property. Building on Kominers and Sönmez (2016), they also proposed

a minimalist refinement of these reserve rules that avoids this failure.

et al. (2023), meritorious reserve rule is not defined through a matroid, while the definition of no justified
envy slightly different in Sönmez and Yenmez (2022a).
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In a similar vein, Sönmez and Yenmez (2022a) presented an analogous incentive

compatibility failure along with a more visible failure of no justified envy in a reserve

rule mandated by the Supreme Court of India between 1995 and 2020. This flawed

reserve rule was subsequently revoked by the same court due to these failures.

4.2.8 Reserve Systems with Heterogenous Positions

In various contexts, such as Indian affirmative action (Sönmez and Yenmez, 2022b)

and Chicago and Boston school choice (Dur et al., 2018, Dur, Pathak, and Sönmez,

2020), positions are not identical in reserve system settings.67 Instead, a variant of a

student placement problem arises, where each college employs a reserve rule in se-

lecting students. Consequently, reserve rules can be integrated into these markets

as the choice rules of colleges, resembling a two-sided many-to-one matching mar-

ket with college choice rules (as elaborated in Section 2.4.2), with the exception that

these choice rules define the objection rights of students rather than the preferences of

colleges.

Under baseline priority orders, sequential and smart reserve rules, as examined in

Section 4.2, induce choice rules that satisfy substitutability, independence of rejected

students, and cardinal monotonicity (Sönmez and Yenmez, 2022b). The student-

proposing deferred acceptance algorithm can thus be employed to devise a strategy-

proof mechanism in conjunction with these choice rules. Furthermore, it exhibits fa-

vorable fairness properties aligned with the intended property rights structures of

these settings, demonstrated by the stability of the mechanism concerning the con-

structed choice rules (as implied by results in Section 2.4.2). This parallels the isomor-

phism between the conjunction of the axioms no justified envy, non-wastefulness, and

individual rationality in a student placement problem and the stability axiom for its

associated college admissions problem with responsive college preferences (cf. Sec-

tion 4.1.1).

Additionally, Hafalir et al. (2022) have extended these concepts to more abstract

settings, further demonstrating the applicability of meritorious reserve systems with

heterogeneous positions.
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Atila Abdulkadiroğlu and Tayfun Sönmez (2003a). “Ordinal Efficiency and Domi-

nated Sets of Assignments.” Journal of Economic Theory, 112, 157–172.
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