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Abstract

We propose a multilayer network approach to alliance formation. In a signed affi nity layer, agents are

partitioned into clusters, with friendly relations within and hostile connections across clusters. Agents

then form defensive collaborations in an alliance layer as follows: Agents in the same cluster form a

nested split graph with degree inversely correlated to the level of hostility, and agents from disparate

clusters with high-degree and low-hostility form cliques. Within cliques, agents from a cluster that is

“intermediate”in terms of discord serve as a bridge to interconnect agents from more “extreme”clusters.
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1 Introduction

This paper is a contribution to the literature on alliance formation under conflict. It explores the incentives

of agents (individuals, groups or nations) to form defense alliances when they are embedded in a pre-existing

network of bilateral affi nities that are friendly, hostile or neutral, and for these affi nities in turn to be revised

following the formation of defense collaborations. This primitive non-empty network (equivalently layer or

graph) of affi nities is assumed to be a possible consequence of political, religious, ideological, cultural or

historical factors.1 It can be formally represented as a signed network in which a positive link between two
∗We would like to express our sincere thanks to the editor, associate editor, and two anonymous referees whose comments

and suggestions have significantly improved the paper. We remain responsible for any remaining errors.
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1Each of these factors could in itself constitute a network or layer that identifies agent-pairs as friendly, hostile or neutral

along the given dimension. There is no reason why these various layers would be congruent. However, in many instances, one
of these layers would be dominant in terms of dictating agents’incentives for alliance formation. For example, it can be argued
that ideological differences motivated the formation of NATO and the Warsaw Pact. Consequently, for ease of analysis, we
restrict attention to a single layer of affi nities.
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agents denotes friends, a negative link denotes enemies, and lack of a link denotes a neutral relationship.2

While there is a large literature on network formation under conflict3, our point of departure is an explicit

two-way interaction between the signed network of affi nities and the network of defense alliances among

friends to thwart potential conflicts with enemies. This interaction is examined through the lens of a

multilayer network. Figure 1 depicts a multilayer network in which the base layer is the affi nity network

(denoted by H) and the accompanying layer is the network of defense alliances (denoted by G). The

affi nity layer is a signed network in which a solid line connecting two agents denotes friendship (a positive

relationship), a dashed line denotes hostility (a negative relationship), and lack of a connection denotes a

neutral (zero) relationship. The alliance layer is an unsigned network in which a (solid) line connecting

two agents denotes a defense collaboration and the absence of a line implies no such collaboration.
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Figure 1: A Multilayer Network

Our paper is motivated by the fact that the complex web of interlocking defense alliances that characterize

the world today can best be understood as a multilayer network building up from base affi nities. The

period of the Cold War was characterized by an affi nity network in which countries were broadly divided

into an Eastern and a Western bloc based on opposing political ideologies. The corresponding alliance

network was bipolar : the Eastern bloc formed the Warsaw Pact while the Western bloc formed NATO,

with no overlap between the two security pacts. The fall of the Berlin Wall altered the affi nity network

with former Eastern bloc countries recalibrating their relationships with the Western bloc. The resulting

alliance network was unipolar with former Warsaw Pact members such as Poland, Hungary, Bulgaria,

2Signed networks are discussed in Cartwright and Harary (1956), Davis (1967), and Easley and Kleinberg (2010, Chapter
5).

3Please see Bloch (2012) and Goyal et al. (2016) for an excellent description of the main lines of research on alliance
formation under conflict.

2



Romania and the Czech Republic joining NATO. The current alliance network is sometimes described

as multipolar, which is inaccurate since nations cannot be divided into mutually exclusive coalitions that

jointly coordinate their actions as a set. Instead, we see nations forming alliances across affi nities. For

example, the Economist4 has noted that the United States has established bilateral alliances with Australia,

Japan, Philippines, South Korea and Thailand in a hub-and-spoke network and quoted the prime minister of

Japan, Kishida Fumio, as saying that promoting alliances among the spokes “will lead to the establishment

of a multilayered network (our emphasis), and by expanding that we can improve deterrence.”

Nations are close to each other in the affi nity network due to commonality in their “norms”and condition

their alliances on these norms. The United States provides a ready example. Its closest ally during the

American Revolution was France. Immediately after the Revolution, John Adams was sent to London to

highlight to the two countries commonalities, shared heritage, and similarities to mollify the contentious

relationship. In response, King George replied, “I was the last to consent to the Separation, but . . . let

the Circumstances of Language; Religion and Blood have their natural and full Effect.”5 Separated by

force, the two countries were intertwined first by culture, then similar legal and political institutions,

related economies and trade, and by the time of the World War II, a formal military alliance. In the

last century, that high-order defense network has evolved into NATO, improved upon by the intelligence

sharing FIVE EYES group, the nuclear-powered submarine fleet-sharing AUKUS, and the ultimate subset,

“special relationship.”Meanwhile France (still a United States ally) has repeatedly threatened or actually

withdrawn from NATO’s command structures.

The norms themselves are not immutable but subject to change, which in turn precipitates changes in the

alliance network. In Western Europe during the Cold War, a common norm centered on security threat

from the Eastern bloc resulted in a mutually connected alliance network in the form of NATO. Contem-

poraneously, the more distributed views of a norm in the Western Pacific and the lack of a pressing threat

prevented the emergence of a NATO-like Pacific Pact and instead created a hub-and-spoke architecture

with the United States as the center and no security alliances among spokes (Australia, Japan, Philippines,

South Korea). However, the increasing military threat from China has led to greater consonance of norms

among the spokes and moved them towards exploring bilateral military alliances. The Philippines provides

an excellent case study.6 In 2022, China’s coast guard fired a military-grade laser at a Filipino coast

guard ship. This converged the Philippine’s norm closer to the United States and other regional states

and prompted it to sign defense agreements with the European Union, India and Britain, and discuss

visiting-forces agreement with Japan, Canada and France.

These issues lead us to address the following questions in the context of a multilayer network. First,

how does the architecture of the affi nity network influence the structure of defense collaborations in the

alliance network? In particular, based on their positions in the affi nity network, who are the agents

assuming a more central position in the alliance network and who are the agents that are more peripheral?

4“America’s Asian Allies are Trying to Trump-Proof their Policies”, Economist, April 9, 2024.
5Letter from John Adams, Minister to Britain, to John Jay, U.S. Secretary of State, 1785, The National Archives.
6“As tensions rise with China at sea, Philippines strikes deals”, The Washington Post, Monday, March 11, 2024.
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Second, under what circumstances will agents have an incentive to revise their relationships in the affi nity

network? Specifically, what are the incentives of agents to mend fences with enemies and transform

hostile relationships into friendships? Third, how will any change in the affi nity network impact defensive

collaborations in the alliance network? Fourth, and finally, who are the agents that serve as “bridges”

in the affi nity network to connect agents who would otherwise remain disconnected due to their mutual

hostility?

We begin with a description of the architecture of the affi nity network H in the initial position. We

assume that the distribution of positive and negative links is such that we can partition agents into non-

empty clusters such that relationships within a cluster are friendly or neutral while relations across clusters

are hostile or neutral. In the terminology of signed graphs following Davis (1967), a network with this

particular distribution of positive and negative links is called weakly balanced (henceforth, simply balanced).

In balanced affi nity networks, each cluster is composed of agents who are friends, friends of friends, friends

of friends of friends... etcetera. Any links connecting agents across distinct clusters are always negative

indicating that the agents are enemies. We assume that the partition of agents into clusters is a consequence

of their disagreement over some norm. Agents within the same cluster subscribe to a common norm or

core belief (for example, ideology, religion or politics) and thus any links that exist within the cluster are

always friendly. Agents in distinct clusters differ in their perception of the norm and this dissonance implies

that any links in H connecting an agent-pair from two separate clusters is always hostile. The norm or

belief is captured by a scalar and thus permits classifying clusters as “close”or “distant”depending on the

difference between their adoptive norms or beliefs.

Cluster 1

Cluster 2

Cluster 3

Friend Enemy

Layer H

i1

i2

Figure 2: A Balanced Affi nity Network

Figure 2 illustrates a balanced affi nity network with three clusters. Each agent i in H is indexed by a

friendship measure, δi, which is the number of i’s friends minus the number of i’s enemies. The higher

the value of δi, the more friends agent i has relative to enemies, and thus the lower is the level of hostility
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faced by agent i in the affi nity network. For example, within cluster 1 in Figure 2, agent i1 is characterized

by δi1 = 3 and faces the least hostility while agent i2 satisfies δi2 = −1 and faces the most hostility.

This indexation by friendship is important in characterizing the identity of agents occupying the different

vertices of the alliance network G. We will need two constructs to enable this characterization. We define

an agent i’s degree as the number of its alliances in G, and the set of allies with whom agent i has a defense

agreement as i’s neighborhood in G. We call a subnetwork in G a nested split graph (NSG) if the set of

agents in the subnetwork together with their links satisfy the property that the neighborhood of a lower

degree agent is contained within the neighborhood of a higher degree agent. Figure 3 provides examples

from the class of NSG networks. It includes at one end the star network in figure 3(a) with agent j1 as the

hub and the other agents (i1 through i6) as spokes, and at the other the complete network in figure 3(d)

in which all pairs of agents are mutually linked. All examples display the property that the neighborhood

of lower degree agents are nested within the neighborhood of higher degree agents. In particular, the

neighborhoods of i-indexed agents are contained within the neighborhood of k-indexed agents which in

turn are subsumed within the neighborhood of j- indexed agents.

i1 i2

j1 j2

k2k1

i1 i2 i3 i4

j1 j2 j3

i5

i1
i2

i3

i4
i5

i6

j1
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(a): Star (b) (c) (d): Complete

Figure 3: Nested Split Graphs

Given an initial non-empty balanced affi nity network H, we show that agents within the same cluster form

an independent, or disconnected, subnetwork in G with the following two characteristics: (i) agents facing

less hostility in the affi nity network (i.e., with a higher friendship measure) have a greater degree, and

(ii) all the allies of an agent with a lower friendship measure are also the allies of an agent with a higher

friendship measure. Therefore, we are able to relate the architecture of the affi nity network to the structure

of defense links in the alliance network: Given a balanced affi nity network, agents within a cluster establish

an NSG subnetwork in the alliance network G with degrees positively correlated with their friendship levels,

and the neighborhood of lower friendship agents nested within the neighborhood of higher friendship agents.

Figure 4 illustrates this result. It shows a cluster in the affi nity network H with the friendship measures

δ1 = 5 > δ2 = 2 > δ3 = 1 > δ4 = −1. The corresponding distribution of degrees —the degree partition

—in the subnetwork of the alliance network G follows the same order and has an NSG architecture. For

instance, the δ1-agent facing the least hostility in H is the most connected in G and has a neighborhood

that contains the neighborhoods of all other agents in the cluster. At the other extreme, the δ4-agent facing
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the most hostility in H is the least connected in G with a neighborhood contained in the neighborhoods

of all other agents.
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Figure 4: Architecture of the Alliance Network

Once the alliance network is formed, we allow agents to revisit their relationships in the affi nity network.

Therefore, we permit a two-way interaction between the affi nity and alliance networks. Once agents have

formed suffi cient alliances within their own cluster, then the ensuing gains from these links can provide

an incentive for well-connected agents in two separate clusters to change an existing hostile relationship

or a neutral one in H into a friendly one. This will be particularly true if the difference between their

perceived norms is suffi ciently small. Of course, agents could also transform a neutral relationship into a

hostile one but in our model there is no incentive to do so. Once these changes in the affi nity network

are implemented, then this revised (and potentially unbalanced) affi nity network will spur a new round

of alliances in the network G. Since new pathways of positive (friendly) links have been created across

disparate pairs of clusters, two suffi ciently well-connected agents from disparate clusters have an incentive

to ally with each other. In particular, we show that if two clusters are suffi ciently close in their perceived

norms, then suffi ciently well-connected agents in the two clusters form a clique in the alliance network. A

clique in G is a set of agents such that every pair of agents in the sets are mutually linked. Thus, despite

their dissonance over the norm, erstwhile hostile agents will have an incentive to ally if their disagreement

over the norm is small.

Since the affi nity network in the initial position is composed of separate clusters connected only by hostile

links, it leads in the first iteration to disconnected subnetworks in the alliance network since defense alliances

are formed within clusters and do not straddle distinct clusters. Thus, both the affi nity and alliance layers

are characterized by structural holes in the following sense: the affi nity network is partitioned into clusters
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separated by hostile links and the alliance network is partitioned into subnetworks of alliances. Thus, both

networks are fragmented. Despite the scale economies generated by alliances within a subnetwork, agents

in two clusters may continue to remain hostile in the affi nity network if the difference in their norms is large

and consequently unlinked in the alliance network as well. It is in this context that the role of moderating

agents who serve as structural bridges in the affi nity network comes to the fore. These are agents who

form a friendly path between two disparate clusters. We show that it is agents who hold an intermediate

position in their perceived norm between two clusters with widely divergent norms that serve as bridges

to connect them in the form of either interlocking or all-inclusive cliques. The case of an all-inclusive

clique is particularly interesting. It is possible that two clusters would never form an alliance since the

difference in their norms makes it unprofitable to incur the cost of transforming their existing relationship

to a friendly one. However, through the auspices of an intermediate cluster with whom both extremes have

developed a positive affi nity link, the well-connected agents in the two extremes may end up participating

in a three-way inter-cluster clique with agents in the intermediate cluster forming the bridge.

We now place our paper in the context of the existing literature. The literature examining strategic behavior

in signed networks is relatively sparse. The definitive papers are Franke and Öztürk (2015), Huremovic

(2015), Hiller (2017) and Kundu and Pandey (2023). Franke and Öztürk (2015) do not explicitly consider

a signed graph but they interpret a link between two agents in an exogenously fixed conflict network as

one of enmity. Thus their conflict network has the flavor of a signed graph in which all existing links are

negative. Two agents connected by a link are involved in a bilateral contest over resources with success

determined by their respective investment in conflict-specific technologies. Their objective is to relate the

architecture of enmity links to the intensity of conflict which is measured as the aggregate investment

by agents in conflict-specific technologies. In a similar vein, König et al. (2017) consider conflict on a

fixed explicit signed graph in which success in a bilateral contest between agents is increasing in their

fighting effort and that of friends and decreasing in the fighting effort of enemies. They examine how the

architecture of the signed graph impacts individual and aggregate fighting efforts. In contrast to these

papers, our focus is not on the investment (effort) involved in conflict but rather on the architecture of

alliances that are engendered in the course of conflict. Specifically we focus on how the topology of signed

relationships influences the endogenous formation of alliances; moreover, we allow changes in the signed

network.

Huremovic (2015) and Hiller (2017) consider the endogenous formation of signed graphs and characterize

the architecture of stable (Nash) networks. Both papers explicitly allow the formation of negative or

enmity links and demonstrate, in substantiation of the thesis of Cartwright and Harary (1956), that stable

(Nash) networks display the balanced property. In contrast, our paper takes a balanced signed network

as given and allows limited changes in its structure while putting the focus on the endogenous formation

of defense alliances. Further, our paper emphasizes a two-way interaction between the signed network of

affi nity relationships and the network of alliances: it examines the impact of signed relationships on the

architecture of defense collaborations, and conversely the role of defensive alliances in shaping affi nities.

Kundu and Pandey (2023) also examine a two-layer network. Similar to our paper, one layer is a signed
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graph. In contrast to our paper, the second layer is also signed and formed endogenously in the course of

pairwise cooperation games between agents. Two agents end up as friends (respectively, enemies) in the

second layer if mutual cooperation is the equilibrium (respectively, not the equilibrium) of the cooperation

game. Their focus is on whether balance in the first layer leads to balance in the second layer. Our emphasis

is not on balance. In fact, an important preoccupation of our paper is how the density of intra-cluster

defensive alliances and the congruence in perceived norms could render the affi nity network unbalanced as

agents transform affi nities in pursuit of allies across clusters.

Our paper also contributes to the limited literature on multigraph formation. In contrast to Joshi et al.

(2020) and Joshi et al. (2023), our paper explicitly incorporates signed graphs into the analysis. Our

paper also contributes to the larger literature on alliance formation under conflict, a small sample of

which includes Bloch (2012), Jackson and Nei (2015) and Goyal et al. (2016).While this literature focuses

exclusively on a single network, our paper emphasizes the multi-network dimension of alliance formation

under conflict and the role of preexisting affi nities.

The paper is organized as follows. The model is presented in Section 2. The characterization of the stable

alliance network for a fixed affi nity network is the objective of Section 3. The two-way interaction between

the affi nity and alliance networks is considered in Section 4. Section 5 presents a selected set of examples

to motivate our main results. Section 6 discusses in greater depth specific aspects of the model. Our

conclusions are contained in Section 7. All proofs are collected in an appendix.

2 The Model

Let N = {1, 2, ..., N}, N ≥ 3, denote the set of agents. A network (equivalently, layer) comprises of the set

N and the collection of bilateral links connecting members of N . When N is unambiguous, the network

is defined by the set of bilateral links. A multilayer network in our context is a set of two layers, with the

same set N of agents inhabiting each layer, but with different bilateral connections on each layer. There

are two types of layers that will preoccupy us. The first layer —the base or primitive layer —denoted by

H is a network of affi nities (historic, cultural or political). The second layer, denoted by G, is a network

of defensive alliances. When N is unambiguous, the multilayer network is given by the tuple (G,H). In

the initial position it is assumed that H is non-empty and G is empty. Subsequently, in a manner to be

specified, agents can affect changes in both networks.

2.1 The Signed Affi nity Network

The agents are assumed to be connected to each other in an initial signed network H = (hij), where hij 6= 0

denotes that agents i and j are linked while hij = 0 indicates that they do not have a link (i and j are

neutral towards each other). If agents i and j are linked, then hij = +1 denotes that they are friends,

while hij = −1 denotes that they are enemies. In other words, a positive link in H indicates that the
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involved agents have an amicable relationship while a negative link reflects their hostility. There are no

self loops and thus hii = 0. Let:

h+
ij = max {hij , 0} , h−ij = −min {hij , 0}

The number of friends of i in H is d+
ij(H) =

∑N
j=1 h

+
ij , and the number of enemies is d

−
ij(H) =

∑N
j=1 h

−
ij .

The difference, δi (H) ≡ d+
ij(H)− d−ij(H), is a measure of friendship faced by agent i in H. The higher the

value of δi (H), i.e., the more net friends agent i has in H, the lower the level of hostility faced by agent i

in H.

A complete network, Hc, is one in which each pair of agents is linked as either friend or enemy; oth-

erwise, the network is incomplete. An empty network, He, is one in which all agents are unlinked and

thus neutral. A path in H connecting i and j, denoted by ρij (H), is a sequence of distinct non-zero links

hii1 , hi1i2 , ..., hin−1in , hinj . A network is connected if there exists a path between any pair of agents; other-

wise, the network is unconnected. We will assume thatH is connected. We will let ρ+
ij (H) denote a path con-

necting agents i and j in which all links are between friends, i..e., hii1 = hi1i2 = · · · = hin−1in = hinj = +1.

Any two agents i and j who are not directly linked are distant friends if there exists at least one path

ρ+
ij (H) connecting them; otherwise, they are distant enemies, i.e., all paths connecting them involve at

least one link among enemies. We will let Fij (H) = +1 if agents i and j are either friends or distant

friends, and Fij (H) = −1 if they are enemies or distant enemies. Since H is connected, even if two agents

are neutral, they will either be distant friends or enemies. Thus, Fij (H) ∈ {−1,+1} for each pair of agents
i, j ∈ N .

A cluster in H is a subnetwork C =
(
N ′, (hij)i,j∈N ′

)
such that hij ∈ {0, 1} for all i, j ∈ N ′. Thus agents

belong to a cluster if they are either mutual friends or neutral. With some abuse of notation, we will

let i ∈ C denote that agent i belongs to cluster C. Inspired by Davis (1967), H is balanced if it can be

partitioned into a set of clusters (Cα : α ∈ {1, 2, ..,M}) such that if i ∈ Cα and j ∈ Cα′ , where α 6= α′, then

either (i) hij = −1, or (ii) hij = 0 and Fij (H) = −1. Therefore, H is balanced if agents can be separated

into clusters such that any link that exists between agents of two distinct clusters is of an enemy. Figure

2 illustrates a balanced signed network. We will assume that the base network H in the initial position is

balanced and denote it as H0.7 Clusters are defined with respect to this primitive H0 and are thereafter

fixed. We will draw attention to this fact by writing clusters as Cα (H0). Even when the affi nity network

H is subsequently transformed with some negative links transformed into positive, the identity of agents

will continue to be determined by the cluster they belonged to in H0. Our assumptions with respect to

H0 are:

Assumption (A.1): The base network H0 in the initial position is non-empty, connected, composed of at

least two clusters, and balanced.

7This is a realistic description of many real-world situations where the universe of agents belong to distinct factions and
there is animosity among factions.
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Agents are assumed to belong to different clusters because of discord over what they believe should be

the norm. The norm is captured by a scalar taking values over an interval
[
θ, θ
]
, where 0 ≤ θ < θ < ∞.

Agents within a cluster Cα (H0), irrespective of whether they are neutral or friends in H0, subscribe to a

common norm θα (H0) ∈
[
θ, θ
]
, and θα (H0) 6= θα′ (H0) if α 6= α′. This norm is assumed immutable and

does not change. The greater the difference, |θα (H0)− θα′ (H0)|, the more agents in clusters Cα (H0) and

Cα′ (H0) differ in terms of core beliefs. We will define for i ∈ Cα (H0) and j ∈ Cα′ (H0):

Θij (H0) =
1

1 + |θα (H0)− θα′ (H0)| (1)

We will use Θij (H0) as a measure of discord between clusters and suppress reference to H0 for brevity. If

agents i and j belong to the same cluster, then Θij = 1 and there is no discord; if they belong to different

clusters, then Θij < 1. Thus, the greater the dispersion in subscribed norms, the lower the value of Θij .

Note that the measure of discord is a property of two clusters and not specifically of agents; in other words,

for distinct agents {i, j, k, l} where i, k ∈ Cα (H0) and j, l ∈ Cα′ (H0), we have Θij = Θkl. Also note that

Θij = Θji. It is important to note once again that the discord between agents is fixed with respect to

their position in H0. Even if subsequently two agents i and j from different clusters establish a friendly

relationship, their mutual discord Θij is not equal to 1, i.e., they are still not in consonance with respect

to their respective subscribed norms.

Agents will be permitted to make limited changes to the primitive H0. A pair of agents i and j can change

the relationship from neutral or enemy to friend, by each side incurring a cost that captures the effort

required to build the necessary trust. Thus, the formation of a friendly link requires bilateral consent of

the pair of agents involved. The individual cost to agents i and j of converting hij ∈ {−1, 0} to hij = +1

is τ > 0.8 We will let H⊕ hij denote the network in which hij ∈ {−1, 0} is transformed to hij = +1 in H.

An agent i can also unilaterally dissolve a neutral or friendly relationship with agent j and convert it into

a hostile link. We will let H 	 hij denote the network in which hij ∈ {0,+1} is transformed to hij = −1

in H. Note that any changes to the primitive link structure of H0 can render it unbalanced.

2.2 The Network of Alliances

Agents can form a network of defensive alliances which is denoted by G = (gij), where gij = 1 denotes

that agents i and j are allies while gij = 0 denotes they are unallied. An alliance can be any formal

agreement between two agents relating to issues such as trade or defense. The formation of an alliance

between two agents requires the acquiescence of both. An existing alliance can also be dissolved. We are

assuming that the dissolution of an existing alliance can be carried out unilaterally. The neighborhood of

agent i, Ni(G) = {j ∈ N\{i} : gij = 1}, is the set of allies of i in G, and ηi (G) denotes the cardinality

of this set and called i’s degree.9 Suppose the distinct positive degrees in G are η(1) < η(2) < · · · < η(m)

8The cost can be expected to be lower if the pair was neutral rather than enemies. However, this complication will not
change the qualitative results.

9Note by definition that i /∈ Ni(G), i.e., i is not included in its own neighborhood. This is in keeping with the standard
formulation in network theory that there are no self-loops and thus gii = 0. Including i in its own neighborhood would not
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and let η(0) = 0 even if there are no isolated agents in G. The degree partition of G is denoted by

D(G) = {D0(G), D1(G), ..., Dm(G)}, where all agents in the element Dk(G) of the partition have the

same degree η(k), k ∈ {0, 1, ...,m}. The definition of path and connectedness are defined analogous to the
case of signed networks. A maximally connected subnetwork G′ in G is called a component of G. Given

networks G and G′, we will say that G is denser than G′ if G′ ⊆ G. We will let G − ij (respectively,
G+ ij) denote the network obtained from G by deleting (respectively, adding) the link ij.

An important network architecture that we will consider is a nested split graph. This network has the

property that if ηi (G) ≤ ηj (G), then Ni(G) ⊆ Nj(G)∪{j}. In other words, the neighborhood of a lower
degree agent is contained within the neighborhood of a higher degree agent. Therefore, all allies of a less

connected agent are also the allies of a more connected agent. Figure 3 illustrates this class of networks.

2.3 Gross Benefits from Alliances

Let Z denote the set of integers and consider the functions ν : Z+ → R+ and w : Z+ → R+. The function

v captures return from own degree while w captures the return from the partner’s degree. Suppose agent

i with degree ηi forms a link with agent j with degree ηj . The incremental gross benefit to agent i from

this link with agent j depends on the degree of both agents involved and is assumed to be given by:

[v (ηi + 1)− v (ηi)] + w
(
ηj + 1

)
(2)

noting that the degree of each agent involved in the link increases by 1. The functions v and w are assumed

to satisfiy the following conditions:

Assumption (A.2): v (0) = w (0) = 0. Further, for all 1 ≤ η < N − 1,

(a) ν (η + 1) > ν (η), w (η + 1) > w (η)

(b) ν (η + 1)− ν (η) > ν (η)− ν (η − 1).

The rationale behind these restrictions is as follows. An agent benefits from having more alliances (degree)

due to “strength in numbers”. Moreover, incremental gross benefits are increasing in own degree because

defensive investment in fixed resources do not have to be replicated when additional alliances are formed

thus yielding economies of scale. An agent also prefers to link with a partner who has more alliances

because it reinforces strength in numbers and also permits indirect access to a larger number of allies. We

now substantiate this assumption with some real-world examples. Within the AUKUS (Australia, UK and

US) military and technology alliance, each nation is able to share the costs of producing an out-the-door

forward deployable nuclear submarine fleet. Australia bears a high marginal share of production costs

and base sharing, but receives unparalleled benefits in technology and knowledge transfers that would

otherwise be unobtainable. Britain receives economies of scale in its defense industry. The United States

gains priority basing rights, and an auxiliary fleet to complement its own, already permanently deployed in

alter any result.
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the region dramatically reducing operating and maintenance costs for its own fleet. Furthermore, there are

indirect benefits from aligning with a higher degree node in G. The AUKUS military alliance came about

as Australia was set to join a looser and more transactional military industrial agreement with France.

Australia’s post-cold war defense strategy concluded that “[Australia is] one of the most secure countries

in the world. . . distant from the main centres of global military confrontation”10. Therefore a relatively

inexpensive and limited agreement with France suited both. However, when Australia perceived China as

a more present threat to Australia’s homeland, the country reneged on the agreement with France and

opted for AUKUS with the two most central nodes in NATO and the western alliance at approximately

five times the monetary cost and incurring significant obligations on its military autonomy and sovereignty.

The benefits of joining the tripartite AUKUS with stronger ties between and emanating from each node

were, ceteris paribus, significantly greater than a bilateral agreement with France.11

Remark: (Separable versus non-separable gross benefits) We have postulated an additively separable in
degrees specification for gross benefits in (2). Such a separable specification allows a transparent exposition

of the main results. A non-separable formulation, in which gross benefit to agent i from a link with agent j

is more generally specified as ψ
(
ηi, ηj

)
, would also yield the same set of results under appropriate conditions

on ψ. We demonstrate this in Section 6.3.

2.4 Cost of Hostility

Recall that agents can only form an alliance in G with those who are friends or distant friends in H and

that an alliance requires mutual consent. By forming an alliance, an agent incurs a cost of linking which

is a function of the hostility faced by the potential partner in H. Letting c : Z → R+ denote this linking

cost function, we will impose the following assumptions on c.

Assumption (A.3): For all δ ∈ Z:
(a) c (δ + 1) < c (δ).

(b) c (δ)− c (δ + 1) > c (δ − 1)− c (δ).

Therefore, the cost to an agent is lower when the potential partner faces less hostility. Further, the cost

reduction realized with a higher friendship partner is greater than with a lower friendship partner. With

a link, each agent assumes some of the risks posed by the hostile relationships of the potential partner.

These risks are consequently lower if each partner has more friends and less enemies. This also explains

10Protection by Projection, The Economist, April 25, 2023.
11Another example substantiating assumption (A.2) is the Nordic fighter fleet agreements signed in spring 2023. The

Nordic nations (Norway, Sweden, Denmark, and Finland), agreed to pool resources creating an integrated air defense. The
Scandinavian peninsula is a great example of this effect. Because the shortest distance from Russian air bases to the allied
coast is from the north, each nation has a relatively small geographic slice of detection zones, but their entire geography is
collectively exposed around the clock. Therefore, the increased number of participants in resource-sharing greatly expands
the benefit to each individual member through burden sharing in time, distance and capacity by eliminating duplications in
detection, early warning, rotating alert and surge units, and command and control infrastructure. A similar dynamic is also
observed in the NATO VJTF, a rotating multinational task force kept on ready alert to spearhead an immediate counter
attack to an invasion. All NATO members rotate units through the VJTF to defend the collective’s eastern perimeter.
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why NATO does not permit admitting nations that are engaged in territorial disputes. A dispute indicates

a high level of hostility towards that potential member and, therefore, a risk of conflict that commits the

entire alliance. A more detailed look at this is NATO’s admission of Finland, before the (presumptive)

admission of Sweden. While both Finland and Sweden distrust Russia, only Sweden has some measure of

hostile links with Turkey (also a NATO member). Finland, with its lower level of hostility, was therefore

prioritized for admission to the military alliance (G) while the hostile link between Sweden and Turkey is

being flipped in H.

Each agent will also face some cost due to its own hostile relations. We will let c0 : Z → R+ denote the

cost to an agent from these hostile relations and assume that c0 also satisfies conditions (a) and (b) of

assumption A.3.

Remark: (Costs that are functions of both hostility and degree) The cost to agent i of linking with agent
j is assumed to be c (δj). It can be argued that this cost to agent i could be lower if j had greater degree,

i.e., the cost function should be c
(
δj , ηj

)
, with c

(
δj , ηj + 1

)
< c

(
δj , ηj

)
. Our results would continue to

obtain under this specification as well as demonstrated in Section 6.3. We note, however, that this effect

is already captured in our basic model if we construe the net cost to agent i ∈ Cα (H0) from linking with

agent j as:

c̃i
(
δj , ηj

)
=


c0 (δj)− v

(
ηj
)
, j = i

c (δj)− w
(
ηj
)
, j ∈ Cα (H0)

c (δj)−Θijw
(
ηj
)
− τh+

ij , j /∈ Cα (H0)

(3)

Recalling assumption A.2(a), c̃i
(
δj , ηj

)
is decreasing in ηj .

Finally, we impose a joint restriction on the cost of forming an alliance in G and the cost of transforming a

relationship in H. This assumption bounds the reduction in alliance costs that can be achieved with agents

changing their affi nity relationship within a cluster from neutral to friendly. The logic is that agents are

already friends or distant friends within a cluster. Thus, any reduction in alliance costs attained within

a cluster by forming a more direct friendly relation is less than the cost τ of transforming an affi nity

relationship. This shifts the impetus of agents to revise links outside rather than inside the cluster in an

affi nity network.

Assumption (A.4): For all δ ∈ Z:
c0 (δ)− c0 (δ + 1) < τ

Henceforth we will use the following notation to denote a unit increase in degree and friendship:

∆v (η) ≡ v (η + 1)− v (η)

∆c (δ) ≡ c (δ)− c (δ + 1)

∆c0 (δ) ≡ c0 (δ)− c0 (δ + 1)

Note that we define ∆c (δ) and ∆c0 (δ) such that they are positive due to A.3(a).
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2.5 Payoffs

In contrast to the contest function approach of the traditional literature, we adopt a reduced form additive

specification of payoffs that reflect the tradeoffs present in the model. There are essentially four factors

at play: (i) the “economies of scale” from allying with those who have high degree in G; (ii) the cost of

allying with a partner facing a given hostility in H; (iii) the level of discord from the potential partner;

and (iv) whether the potential partner is a (distant) friend or (distant) enemy. Recall that Fij = 1 and

Θij = 1 for agents i and j in the same cluster. Further, Fij = 1 if i and j belong to different clusters if

and only if there is at least one friendly link between the two distinct clusters. If this friendly link was

formed by two other distinct agents, then i and j can “free ride”on the path of friendly links connecting

them and not incur costs other than those of linking in G; if i and j were involved in changing a neutral or

hostile relationship to one of friends in H, then each would respectively incur the cost τ > 0. The payoff

of agent i ∈ Cα (H0) is given by:

πi (G,H) = ν (ηi (G))− c0 (δi (H)) +
∑

j∈Ni(G)∩Cα(H0)

[
w
(
ηj (G)

)
− c (δj (H))

]
+

∑
j∈Ni(G)∩Cα′ (H0);Fij(H)=1

[
Θijw

(
ηj (G)

)
− c (δj (H))− τh+

ij

]
(4)

The first term captures the net payoff to agent i from its own degree and own hostility level while the

second term captures the net gain from its links in G with members of the same cluster. The third term

captures the net payoff from linking in G to those in other clusters with whom the relationship in H has

been transformed into one of friends or distant friends. This formulation presumes that a link can only be

formed between two agents in the alliance network if they are friends or distant friends. In particular, two

agents i and j cannot form an alliance in G if they continue to be enemies or distant enemies. Further, the

gross benefit from an alliance across clusters is scaled down by the level of discord between the clusters.

Remarks: We record two facts regarding the payoff specification.
a. (Comparison to payoffs from a standard conflict model) Given our focus on the structure of alliance

networks, we have directly postulated a reduced form payoff function that captures the essential features

of conflict. We demonstrate in Section 6.1 that these payoffs can be derived from a conflict model such

as a hawk-dove game between agents with a negative link. Thus, there is no loss of generality in working

with the specification given by (4).

b. (The free riding assumption) We have assumed that once a friendly link has been formed to connect two
distinct clusters, then other agents in the two clusters can free ride on this friendly link to form alliances

spanning the two clusters. Our qualitative results would continue to hold if we rule out free riding and

require instead that each pair of agents from the two clusters who form an alliance have to first incur

the cost τ of transforming their relationship of neutrality or enmity. The only difference between the two

cases will be in the density of alliances that are formed. Under free riding, a friendly relationship that is

established between two clusters confers a positive externality on all other agents in the two clusters and,

therefore, leads to more alliances being formed than would be the case if all agents had to bear a private
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cost of reaching out beyond their cluster. Specifically, if G̃ (respectively, Ĝ) is the stable alliance network

under free riding (respectively, without free riding), then Ĝ ⊆ G̃.

3 Fixed Affi nity Network

We begin our analysis with the case of a fixed affi nity network H0. We then examine the implications of

this fixed affi nity network on the topology of alliances in G. Therefore, we consider a one-way interaction

between the affi nity and alliance networks. This section can be construed as a short run analysis when the

horizon is suffi ciently small for agents to effect a change in relationships in the affi nity network. We are

assuming here that relationships (whether friend or enemy) embodied in the network H0 have taken time

to coalesce. Within the time frame of the short run, new relations cannot be established in the affi nity

network. The incremental utility to agent i from forging an alliance in G with a member j in its own

cluster is given by:

πi (G+ gij ,H0)− πi (G,H0) = [v (ηi (G) + 1)− v (ηi (G))] +
[
w
(
ηj (G) + 1

)
− c (δj (H0))

]
We will use a definition of stability inspired by Jackson and Wolinsky (1996).

Definition (Pairwise-stability for monolayer networks): Given H0, a network G∗ is pairwise-stable

if:

• No agent i ∈ N has an incentive to unilaterally delete an existing link with agent j in G∗, i.e.,

πi (G∗,H0)− πi (G∗ − gij ,H0) ≥ 0.

• No pair of agents i, j ∈ N who are unlinked in G∗ should have an incentive to bilaterally form a link,

i.e., πi (G∗ + gij ,H0)− πi (G∗,H0) > 0 implies πj (G∗ + gij ,H0)− πj (G∗,H0) < 0.

Note that agents can dissolve alliances unilaterally, but the formation of an alliance requires mutual consent.

Further, according to the given definition of pairwise-stability, if one agent has a strict incentive to form a

link and the other agent has a weak incentive to reciprocate, then the link will be established.

Remark: (Static versus dynamic link formation games) As noted in Jackson and Wolinsky (1996), the
pairwise stability notion is a relatively weak restriction and not tied to any link formation game. For our

main analysis we formulate an explicit dynamic alliance formation game which, starting from an empty

network Ge, shows the emergence of a pairwise-stable network and its relation to the affi nity network H0.

The advantage of such a dynamic formulation is that it outlines in an intuitive step-by-step manner the

evolution of a pairwise-stable network and its underlying connection to the affi nity network via preferential

attachment. An alternative static formulation could be provided via a link announcement game (for

example, Dutta et al. 1998) in which agents simultaneously announce alliances with other agents and only

those alliances that are reciprocated are formed. For the sake of completeness, we analyze such a static

game in Section 6.2.
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3.1 The Basic Link Formation Game

We will examine link formation in G through a dynamic game inspired by Aumann and Myerson (1988).

The advantage of this approach is that it selects one among potentially multiple pairwise stable networks.12

The agents move sequentially in the order of their index (from lowest to highest) to add new links or delete

existing links in G. The game terminates when profitable opportunities to change links are exhausted. We

will assume that information is perfect and agents observe all links that are formed or deleted. Thus, the

information available to an agent with the move —the state of the dynamic game — is described by the

3-tuple of the current architecture of G on which links are being changed, the (fixed) architecture of H0,

and the identity of the agent with the move (the active agent). Agents are myopic and make decisions

to change links on a network depending on its current architecture.13 We characterize this link formation

game as basic since it only considers the one-way impact of H on G. The details of this basic game on G

is as follows:

• The game starts from an empty network G0 (0) = Ge with agent 1 as the active agent, i.e., the

state is (G0 (0) ,H0, 1). The action set of the active agent on network G comprises of two activities

in the following order: deletion of any existing links followed by the possible proposal of a link to

another agent i, the passive agent, who is a friend or distant friend.14 Since G0 (0) is empty, agent

1 has no links to delete and can propose a link to an agent i. The active agent is assumed to choose

an ally generating the highest payoff; if there is more than one yielding the same highest payoff,

then the active agent chooses the one with the highest index. The passive agent i, given the state

(G0 (0) ,H0, 1), has an action set comprising of two possible actions —accept or decline the proferred

link. If i declines, then the network remains empty, G0 (1) = G0 (0) = Ge, while if i accepts, then

the network becomes G0 (1) = Ge + g1i. We will say that G0 (1) is reachable from G0 (0).

• The game moves to the state (G0 (1) ,H0, 2) with agent 2 as the active agent and then to agents

with successive higher indices. After all agents have moved once, the process restarts from state

(G0 (N) ,H0, 1). The sequence of networks, {G0 (κ) ;κ ∈ Z+}, generated in this manner is called
an improving path. Along this path, each network is reachable from the preceding one and is the

consequence of an active agent deleting unprofitable links and/or forming a mutually profitable link

with another agent.

• Following Jackson and Watts (2002, Lemma 1), an improving path can lead to one of two possible
outcomes: (i) a limit network G∗ (H0) such that, for each state {(G∗(H0),H0, i) ; i ∈ N}, no active
agent i has an incentive to delete links or form a mutually profitable link with another agent, or (ii)

a closed cycle. A closed cycle is a set of networks such that there is an improving path between any

12Similar link formation games have been employed by Jackson and Watts (2002), Joshi et al (2020) and Joshi et al (2023),
to characterize pairwise stable networks.
13A myopic formulation is fairly standard in examining dynamic games of network formation due to reasons of tractability

(for example, Jackson and Watts 2002). It presumes that agents highly discount the future.
14Recall that a friend or distant friend is an agent who belongs to the same cluster in H0. Since H0 is assumed fixed in this

section, alliances can only be formed among agents within the same cluster.
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pair of networks in the set and no improving path leading to a network outside the set. We will show

below (Theorem 1) that a closed cycle is not possible in our link formation game. Thus, the only

outcome is convergence to a limit network G∗ (H0).

Theorem 1 The basic link formation game converges to a limit network G∗ (H0) which is a pairwise-stable

network.

Therefore, Theorem 1 also shows the existence of a pairwise-stable network. The proof is based on the

fact that no agent has an incentive to delete a link that it formed along an improving path in G. With

deletions of links ruled out, cycles cannot emerge along an improving path. Therefore, since the number

of network architectures are finite, the link formation game will converge to a pairwise-stable network.

Remark: (Salient features of the basic game) We note two facts about the dynamic game. First, we have
the active agent deleting any unprofitable links and then proposing a new link to a passive agent. However,

it is immaterial in our framework whether agents first delete links and then form a link, or first form a link

and then delete links. This is because the incremental payoff from links that are formed will only increase

by virtue of assumption A.2 as the degree of agents increase. Thus, as noted earlier, formed links are never

subsequently deleted. Second, we allow the active agent to propose at most one link to a potential ally.

We address in the next subsection the proposal of multiple links by an active agent.

3.2 The Pairwise-Stable Architecture of G∗ (H0)

Since friends and distant friends are contained within a cluster from assumption A.1, all alliances are

between members of the same cluster. We will characterize the intra-cluster alliances formed by agents in

G given H0. Consider a given cluster Cα (H0), let Iα = {iα1 , iα2 , ..., iαn} denote the set of agents arranged in
increasing order of their index who belong to this cluster. Let |Cα (H0)| denote the size of this cluster. For
ease of exposition, let us assume without loss of generality that:

δiα1 ≤ δiα2 ≤ δiα3 · ·· ≤ δiαn (5)

with at least one strictly inequality. After obtaining our characterization result (Proposition 3), we discuss

the case where all agents face the same hostility level, i.e., we have equality throughout in (5). Let

δ1 < δ2 < ·· < δs, s ≤ n, denote the distinct values of friendship measures in the cluster Cα (H0).

Definition (Friendship class and partition): A friendship class, ∆α
r (H0), is the set of all agents in

the cluster Cα (H0) with friendship measure δr:

∆α
r (H0) =

{
iαk ∈ Iα : δiαk = δr

}
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The friendship partition, ∆αCα (H0) = {∆α
1 (H0) , ..,∆α

r (H0) , ..,∆α
s (H0)}, is the collection of friendship

classes in Cα (H0).

Friendship classes will play an important role in our characterization result. All agents within the same

friendship class face the same level of hostility. Agents belonging to a lower-index friendship class face

greater hostility than agents belonging to higher-index friendship class. Thus, for example, iαi ∈ ∆α
1 (H0)

and iαn ∈ ∆α
s (H0). Recalling the definition of a degree partition, letDα(G∗) = {Dα

0 (G∗), Dα
1 (G∗), ..., Dα

m(G∗)}
denote the degree partition of agents belonging to Cα (H0) in the limit networkG∗ ≡ G∗ (H0). We will now

examine how agents are distributed across this degree partition as a function of their friendship measure,

i.e., their hostility level. Specifically, we will connect Dα(G∗) to the friendship partition ∆αCα (H0).

We will begin by elaborating on how link formation proceeds according to our dynamic game. Recall that

(active) agents proceed in increasing order of their index and can only propose alliances with those who

belong to their cluster. Therefore, we can consider how links are formed within any given cluster, say

Cα (H0). The first active agent in Cα (H0) to propose an alliance will be iα1 . Note that at this stage, say

G0 (κ), no alliances have been formed and thus ηiα (G0 (κ)) = 0 for all iα ∈ Cα (H0). Of course, if iα1 is

agent 1 in cluster C1 (H0) who initiates the game, then G0 (κ) = Ge. The incremental payoff to agent

iα1 from proposing an alliance with agent iαk is ∆ν (0) + w (1) − c
(
δiαk
)
. Since c

(
δiαn
)
≤ c

(
δiαk
)
for all iαk

∈ Iα\{iα1 , iαk}, it follows that the most profitable alliance is with agent iαn. However, if this alliance yields
a negative payoff to at least one agent, then the link will not be formed. We can of course have isolated

agents in a cluster, i.e., agents who have no alliances. We now offer a suffi cient condition under which

there will be no isolated agents, i.e., Dα
0 (G∗) = ∅. Note that agents characterized by relatively high levels

of hostility (i.e., low δ-values) are unattractive as allies because they expose potential partners to a high

cost of defending an alliance. Thus, low δ-value agents are most likely to be isolated. By the same logic,

an agent with a low level of hostility is an attractive ally permitting partners to harness economies of scale

at a relatively lower cost of defense. Thus, the first step in ensuring that there is no isolated agent is that

there exists at least one agent willing to reciprocate an alliance with someone facing the most hostility. The

agents facing the highest and lowest hostility in Cα (H0) are respectively iα1 ∈ ∆α
1 (H0) and iαn ∈ ∆α

s (H0).

Therefore, suppose that:

∆ν (0) + w (1) ≥ c
(
δiα1
)

(6)

Since c
(
δiα1
)
> c

(
δiαn
)
, it follows from (6), that iα1 has a strict incentive to propose a link to i

α
n, and i

α
n

has a weak incentive to reciprocate the link. Therefore, the alliance will be formed, and giα1 ,iαn = 1 will be

the first link formed in the cluster Cα (H0) and iα1 /∈ Dα
0 (G∗). The next step is to extend this argument to

all agents iαk ∈ Iα\{iα1 , iαn} and thus prove that Dα
0 (G∗) = ∅. The following characterization result will be

useful in this regard.

Proposition 1 (Preferential attachment) Suppose agents i and j in the same cluster have a mutually
profitable link in a network G. Consider an agent k 6= i, j in the same cluster such that δk ≥ δi and

ηk (G′) ≥ ηi (G) where G ⊆ G′. Then agents k and j have a mutually profitable link in G′.

18



Proposition 1 states that if an agent, say j, has a profitable alliance with some agent i, then j will also have

mutually profitable links with all agents who have a friendship measure in H0 and a degree in G at least

as large as that of agent i. Further, this incentive is strengthened as the density of G increases. We will

now employ Proposition 1 to show by induction that since all agents iαk ∈ Iα\{iα1 , iαn} face lower hostility
than iα1 , they will also have a mutually profitable link with i

α
n. Since this is true for agent i

α
1 , now suppose

it is true for agents {iα1 , iα2 , .., iαk}. In particular, iαk formed the link with iαn when it was the active agent
in stage G0 (κ). We will show that it is true for agent iαk+1 when it is the active agent in stage G0 (κ′),

κ′ > κ. Note that:

ηiαn
(
G0

(
κ′
))

= k > ηiα1

(
G0

(
κ′
))

= · · · = ηiαk

(
G0

(
κ′
))

= 1 > ηiαk+1

(
G0

(
κ′
))

= · · · = ηiαn−1

(
G0

(
κ′
))

= 0

Therefore, using (5), it follows that:

∆v (0) + w
(
ηiαn
(
G0

(
κ′
))

+ 1
)
− c

(
δiαn
)
≥ ∆v (0) + w

(
ηiαl

(
G0

(
κ′
))

+ 1
)
− c

(
δiαl
)

for all iαl ∈ Iα\{iαk+1, i
α
n} from A.2(a) and A.3(a). Thus, agent iαn is the most profitable ally for i

α
k+1.

Further, ηiαk (G0 (κ)) = ηiαk+1
(G0 (κ′)) = 0 and iαk had a mutually profitable link with i

α
n in G0 (κ). It

follows from Proposition 1 that iαk+1will also have a mutually profitable link with i
α
n in G0 (κ′). We have

shown that (6) is suffi cient to ensure that the cluster will be connected, i.e., agents participate in at least

one alliance and Dα
0 (G∗) = ∅. Note that this argument also implies that agent iαn is the most connected in

the cluster, i.e., iαn ∈ Dα
m(G∗). In fact, we can prove more generally that all agents in ∆α

1 (H0) have the

fewest number of alliances in the cluster while those in ∆α
s (H0) have the most.

Proposition 2 Suppose (6) is satisfied. Then ∆α
1 (H0) ⊆ Dα

1 (G∗) and ∆α
s (H0) ⊆ Dα

m(G∗).

We now characterize agents facing intermediate levels of hostility. We show that agents facing lower

hostility have more alliances. Further, we show that the pattern of alliances assumes the form of a nested

split graph. Combining these two results, it follows that the allies of an agent facing less hostility will

include the allies of an agent facing greater hostility. This permits us to connect the degree partition

Dα(G∗) in the alliance network to the friendship partition ∆αCα (H0) in the affi nity network.

Proposition 3 The degree partition Dα(G∗) of a cluster Cα (H0) exhibits a NSG architecture. In partic-

ular, if iαk , i
α
l ∈ Cα (H0) such that δiαk ≤ δiαl , then Niαk

(G∗) ⊆ Niαl
(G∗).

Figure 4 illustrates Proposition 3. Note that the agent with the lowest hostility is allied to all, while the

agents with the highest hostility are allied only to the lowest hostility agent. In-between, the number of

alliances is increasing as hostility decreases. Further, the neighborhoods have a nested structure. The

intuition is as follows. An agent with lower hostility poses lower cost in a defensive alliance. Therefore,

a potential partner when choosing an ally between two agents with different hostility levels will ceteris
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paribus choose the one with lower enmity. Thus, at each stage of the link formation game, preferential

attachment implies that an agent facing lower hostility will have at least as many alliances as an agent

facing greater hostility.

Another way to visualize the intra-cluster NSG architecture is as a “core-periphery”subnetwork composed

of a hierarchal order of agents according to their degree. The peripheral agents are those who are connected

only to the core agents but not among themselves; the core agents are connected to all other core agents

and differ only with respect to the peripheral agents they are connected to. Recall the degree partition

Dα(G∗) = {Dα
0 (G∗), Dα

1 (G∗), ..., Dα
m(G∗)} within the cluster Cα (H0) and let bxc denote the largest integer

smaller than or equal to x. The peripheral agents arranged in increasing number of alliances and their set

of allies are as follows:

Table 1: Peripheral Agents in Cα (H0)

Peripheral agents Set of allies

Dα
1 (G∗) Dα

m(G∗)

Dα
2 (G∗) Dα

m(G∗) ∪Dα
m−1(G∗)

Dα
3 (G∗) Dα

m(G∗) ∪Dα
m−1(G∗) ∪Dα

m−2(G∗)

· · · · · ·
Dα
bm2 c

(G∗) Dα
m(G∗) ∪Dα

m−1(G∗) ∪Dα
m−2(G∗) · · ∪Dα

bm2 c+1
(G∗)

The smallest set of peripheral agents are those in Dα
1 (G∗) connected only to the core agents in Dα

m(G∗)

while the largest set of peripheral agents are those in Dα
bm2 c

(G∗) who are connected to all core agents. The

core agents arranged in decreasing number of alliances are as follows:

Table 2: Core Agents in Cα (H0)

Core agents Set of allies

Dα
m(G∗) Dα

1 (G∗) ∪Dα
2 (G∗) ∪Dα

3 (G∗) ∪Dα
4 (G∗) ∪ · · · ∪Dα

m(G∗)

Dα
m−1(G∗) Dα

2 (G∗) ∪Dα
3 (G∗) ∪Dα

4 (G∗) ∪ · · · ∪Dα
m(G∗)

Dα
m−2(G∗) Dα

3 (G∗) ∪Dα
4 (G∗) ∪ · · · ∪Dα

m(G∗)

· · · · · ·
Dα
bm2 c+1

(G∗) Dα
bm2 c

(G∗) ∪Dα
bm2 c+1

(G∗) ∪ · · · ∪Dα
m(G∗)

The agents in Dα
m(G∗) are core agents with the largest number of allies and they are connected to all

agents —whether peripheral or core — in their cluster. Agents in Dα
bm2 c+1

(G∗) are core agents with the

fewest number of allies and, while being connected to all core agents, are only allied with peripheral agents

in the set Dα
bm2 c

(G∗).
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We now identify an interesting symmetry property of a friendship class: all agents in the same friendship

class have the same allies in G∗. In particular, all of them have the same degree. This is once again a

consequence of preferential attachment. Suppose to the contrary that i, j ∈ ∆α
r (H0) but ηi (G∗) > ηj (G∗).

Let G0 (κ) be the first stage in the link formation game when an agent k forms a link with agent i. Thus,

in G0 (κ), both i and j have the same degree η′. Further, by hypothesis, agents i and k have a profitable

link and thus:

min
{

∆v
(
η′
)

+ w (ηk (G0 (κ)) + 1)− c (δk) ,∆v (ηk (G0 (κ))) + w
(
η′ + 1

)
− c (δi)

}
≥ 0 (7)

Also, by hypothesis, since k /∈ Nj(G
∗), it must be true that:

min
{

∆v
(
ηj (G∗)

)
+ w (ηk (G∗) + 1)− c (δk) ,∆v (ηk (G∗)) + w

(
ηj (G∗) + 1

)
− c (δj)

}
< 0 (8)

However, ηj (G∗) ≥ η′, ηk (G∗) ≥ ηk (G0 (κ)), and δi = δj . Therefore, the LHS of (8) is at least as great

as the that of (7), a contradiction. This establishes the symmetry property.

The symmetry property permits us to answer the question posed at the beginning of this subsection, namely

what if (5) holds as an equality throughout in a cluster Cα (H0). In this case, all agents in the cluster

belong to the same friendship class. Thus, all agents will have the same allies in G∗. This implies that all

agents in the cluster will form a dominant group subnetwork in which they are mutually interconnected.

Remarks: We now offer two comments, one with respect to the link formation game and the other with
respect to the characterization result.

a. (Single versus multiple link proposal) Our basic game assumes that the active agent proposes at most a
single link to a passive agent. This allows us to draw out the role of preferential attachment in a transparent

manner. Note, however, that we can permit the active agent to propose multiple links. This will decrease

the number of rounds in the basic game but under our assumptions, particularly (6), will generate the

same qualitative results. To illustrate, since agent iα1 found it profitable to ally with agent i
α
n ∈ ∆α

s (H0)

in the basic game, in the multiple link case iα1 will find it profitable to propose links with all agents in

∆α
s (H0) by virtue of Proposition 1. Since (6) holds, each agent in ∆α

s (H0) will accept iα1’s proposal. Thus,

∆α
s (H0) ⊆ Niα1

(G∗) as in the single link case.

b. (Robustness of the NSG characterization) The pairwise-stability criterion is relatively weak and thus

admits a large number of stable networks. The basic game picks one alliance network from this set and

shows that it possesses an NSG architecture within each cluster. This begs the question of whether the

NSG characterization is a property of all pairwise-stable networks. This is diffi cult to show since the

set of pairwise-stable networks can be large. However, we demonstrate in Section 6.2 that a subset of

pairwise-stable networks —the class of strongly stable networks —display the NSG property.
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4 Variable Affi nity Network

So far we have kept the affi nity network as fixed and examined its influence on the alliance network. How-

ever, it is possible that after harnessing suffi cient economies of scale from their alliances, highly connected

agents in different clusters may look past their differences to transform their hostile or neutral relationship

to a friendly one in the affi nity network. In other words, changing a relationship in the affi nity network

is a prelude to forming connections in the alliance network. Thus, if agent i proposes to transform a rela-

tionship with agent j in network H, then it is with an eye towards forming a subsequent alliance with j in

networkG. We now assume that agents have a suffi ciently long horizon to commit costly resources to build

the necessary trust with an erstwhile enemy. Thus, we now take a long run view of alliance formation that

accommodates a two-way interaction between the affi nity and alliance layers in the multilayer network.

Henceforth, we will denote the incremental utility to i ∈ Cα (H0) from a change in relationship with agent

j ∈ Cα′ (H0) in H and the subsequent alliance with j in G as:

πi (G+ gij ,H⊕ hij)− πi (G,H) = [∆v (ηi (G)) + ∆c0 (δi (H))] +
[
Θijw

(
ηj (G) + 1

)
− c (δj (H) + 1)− τ

]
If agents k ∈ Cα (H0) and l ∈ Cα′ (H0) have already transformed their relationship in H, then there exists

a path in H⊕ hkl through which each pair of agents drawn from the two clusters are distant friends. Let

(i, j) 6= (k, l) denote that either i 6= k, or j 6= l, or both. Thus, if any pair i ∈ Cα (H0) and j ∈ Cα′ (H0)

intend to form an alliance, where (i, j) 6= (k, l), then these agents can form an alliance without having

to incur the cost τ of first revising their affi nity relationship. The incremental utility to agent i (and a

corresponding expression holds for agent j) is given by:

πi (G+ gij ,H⊕ hkl)− πi (G,H) =

{
∆v (ηi (G)) +

[
Θijw

(
ηj (G) + 1

)
− c (δj (H))

]
, j 6= l

∆v (ηi (G)) +
[
Θijw

(
ηj (G) + 1

)
− c (δj (H) + 1)

]
, j = l

We now define pairwise stability for a multilayer network which is an extension of the monolayer case.

Definition (Pairwise-stability for multilayer networks): The multilayer network (G∗,H∗) is pairwise-

stable if:

1. Given the network H∗:

• No agent i has an incentive to delete an existing link with some agent j inG∗, i.e., πi (G∗,H∗)−
πi (G∗ − gij ,H∗) ≥ 0.

• No pair of agents i and j who are unlinked in G∗ should have an incentive to form a link, i.e.,

πi (G∗ + gij ,H
∗)− πi (G∗,H∗) > 0 implies πj (G∗ + gij ,H

∗)− πj (G∗,H∗) < 0.

2. Given the network G∗:

• No pair of agents i and j for whom Fij (H∗) = −1 have an incentive to transform hij ∈ {−1, 0}
to hij = +1, i.e., πi (G∗ + gij ,H

∗ ⊕ hij) − πi (G∗,H∗) > 0 implies πj (G∗ + gij ,H
∗ ⊕ hij) −

πj (G∗,H∗) < 0.
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4.1 The Augmented Link Formation Game

We now consider an augmented sequential link formation game that accommodates changes in both the

affi nity and alliance networks.

• Given a non-empty primitive network H0, link formation starts in the alliance network G starting

from an empty network. The sequential process of link formation on this layer culminates in a limit

network that we now denote as G1 ≡ G (H0).

• The game now shifts to the network H. Players once again move sequentially in the order of their
index starting from the state

(
H

(0)
0 = H0,G (H0) , 1

)
. The action set of the active agent in H is

different from that in G. First, no links in H can be deleted. This is in accordance with our

assumption that affi nity relationships have matured bilaterally over a period of time and thus cannot

be expunged unilaterally. Second, there is no incentive to convert a friend into an enemy because this

makes an agent relatively unattractive as an ally to a potential partner. Third, by virtue of assumption

(A.4), there is no incentive to revise a relationship within a cluster. An agent i can change an existing

neutral relationship with agent j within the cluster to one of direct friends and the consequent increase

in the friendship measure bestows a gain in own costs equal to c0 (δi (H0))−c0 (δi (H0) + 1) < τ . This

is consonant with our formulation that any transformation of affi nity links is a precursor to forging

alliances in the alliance network, and two agents within the same cluster do not have to resort to this

intermediate step in order to connect in G. Therefore, the only choice we allow an active agent is to

commit resources to convert a hostile or neutral relation outside the cluster into a friendly one.

• Suppose agent i ∈ Cα (H0) is the active agent. The active agent i can propose to an agent j ∈ Cα′ (H0),

α 6= α′, with whom hij ∈ {−1, 0} to change the relationship to a friend (i.e., to hij = +1). Note

that if another agent k ∈ Cα (H0) had prior to i’s move already established a friendly relation with

some agent, say l, in Cα′ (H0), then i has no incentive to make an overture to j ∈ Cα′ (H0). This

is because a friendly path between clusters Cα (H0) and Cα′ (H0) has already been created in the

affi nity network through hkl = +1. Thus, agent i can free ride on this link to form alliances in G

with members of Cα′ (H0) without having to first transform an affi nity link with j ∈ Cα′ (H0).

• Suppose, therefore, that when agent i ∈ Cα (H0) is the active agent and proposes to agent j ∈
Cα′ (H0), then there is no friendly path connectiong clusters Cα (H0) and Cα′ (H0). This new rela-

tionship in the affi nity network imposes a cost of τ > 0 but increases i’s friendship measure (lowers

hostility level) to δi (H0) + 1. This increase in the friendship measure confers two benefits to agent

i. First, by virtue of assumption A.3(a), it decreases i’s own costs:

∆c0 (δi (H0)) = c0 (δi (H0))− c0 (δi (H0) + 1) > 0 (9)

Second, by creating a bridge to an agent j in another cluster, it permits the formation of an alliance

with j in G with net benefit:

∆ν (ηi (G1)) +
[
Θijw

(
ηj (G1) + 1

)
− c (δj (H0) + 1)− τ

]
(10)
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The active agent i chooses a potential partner j from another cluster with whom the sum of (9) and

(10) is positive and maximum. If no such agent in another cluster exists, then the active agent does

not propose any revision of links in the affi nity network.

• The action set of the passive agent j is to accept or reject the overture to transform the link in the

affi nity network. Agent j will reciprocate if its incremental payoff is non-negative.

[
∆ν
(
ηj (G1)

)
+ ∆c0 (δj (H0) + 1)

]
+ [Θijw (ηi (G1) + 1)− c (δi (H0) + 1)− τ ] ≥ 0

• If the passive agent rejects, then the relationship continues to be hostile, while if the passive agent
accepts, then the relationship becomes friendly. This change in relationship is observed by all agents.

• The game continues sequentially with the next active agent and continues until no pair of agents have
no incentive to revise affi nity relationships. Let H1 ≡ H (G1) denote the limit network. In H1, for

each state {(H(G1),G1, i) ; i ∈ N}, no active agent i and passive agent j have an incentive to trans-
form a relationship from enemy or neutral to friend. Note that cycles are ruled out because, having

transformed a hostile or neutral relationship into friendly by committing resources and realizing the

attendant benefits, there is no incentive to retransform the relationship back into one of hostility.

• Link formation now moves back to the alliance network. Players move sequentially in the order of
their index starting from the state (G1(0),H1, 1). Suppose i is the active agent. If the active agent

i had transformed relationships in H1 with agents {j1, j2, .., jl}, then i will first propose an alliance
with js ∈ {j1, j2, .., jl} with whom (9) plus (10) is the maximum (with ties broken by choosing the

passive agent with the highest index) and which js will acquiesce.15 In subsequent stages of link

formation, when i is once again the active agent, then it will choose an ally from {j1, j2, .., jl}\{js}
choosing the same principle. If i has exhausted all new alliances with members from {j1, j2, .., jl}, or
i had not been involved in transforming any affi nity relations in H1, then i will choose an ally from

outside or within own cluster from whom it derives the highest payoff. The passive player will accept

or reject the overture leading to the next active agent until all profitable opportunities for alliances

are exhausted.

• The process continues to alternate between the two networks Gr ≡ G (Hr−1) and Hr ≡ H (Gr),

r ≥ 2, in the manner described above. We will prove in Theorem 2 that the process terminates in

a set of networks (G∗ ≡ G (H∗) ,H∗ ≡ H (G∗)) such that there are no profitable opportunities to

amend the architecture on either network. Specifically, given H∗ there are no mutually profitable

links to form or unprofitable links to delete in networkG∗, and givenG∗ there is no hostile or neutral

relationship in networkH∗ that two agents would like to transform into a friendly one. In other words,

it converges to a pairwise-stable multilayer network. The logic follows the argument of Theorem 1

and we now record this formally. It establishes the existence of a pairwise-stable multilayer network.
15Recall that agent i had chosen js to transform their affi nity link because js would yield the highest positive payoff from an

alliance in G. In turn, js had accepted to transform the affi nity relationship because the alliance with i yielded a non-negative
payoff from an alliance in G. Thus, when i and js have the opportunity to cement this alliance during link formation in G,
then they will follow through on this alliance.
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Theorem 2 The augmented link formation game converges to a limit (G∗ ≡ G (H∗) ,H∗ ≡ H (G∗)) which

is pairwise-stable.

4.2 The Pairwise-Stable multilayer Network

We now characterize the pairwise-stable multilayer network (G∗,H∗). Consider the augmented link trans-

formation game when it moves from layer G1 to layer H1. Consider any two clusters Cα (H0) and Cα′ (H0).

Let i ∈ Cα (H0) and j ∈ Cα′ (H0) be the most connected agents in their respective clusters (with the highest

index agent chosen in case of a tie). Note from Proposition 2 that degree correlates positively with friend-

ship, and thus these two agents are also the ones facing the lowest hostility in their respective clusters.

Thus, as the following lemma indicates, these agents are the most likely candidates to transform their rela-

tionship to a friendly one since their realize the highest incremental utilities within their cluster from such a

transformation in H and a subsequent alliance in G. Let Dα(G1) = {Dα
0 (G1), Dα

1 (G1), ..., Dα
m(α)(G1)} de-

note the degree partition of agents belonging to Cα (H0) in the networkG1 and define Dα
′
(G1) analogously.

Also, let ∆α
s(α) (H0) (respectively, ∆α′

s(α′) (H0)) denote the highest friendship class in Cα (H0) (respectively,

Cα′ (H0)). From Proposition 2 we know that ∆α
s(α) (H0) ⊆ Dα

m(α)(G1) and ∆α′
s(α′) (H0) ⊆ Dα′

m(α′)(G1).

Lemma 1 Consider any two clusters Cα (H0) and Cα′ (H0) and let i ∈ Cα (H0)∩∆α
s (H0) and j ∈ Cα′ (H0)∩

∆α′
s (H0). For any k ∈ Cα (H0) and l ∈ Cα′ (H0) :

πk (G1 + gkl,H0 ⊕ hkl)− πk (G1,H0) ≤ πi (G1 + gij ,H0 ⊕ hij)− πi (G1,H0)

πl (G1 + gkl,H0 ⊕ hkl)− πl (G1,H0) ≤ πj (G1 + gij ,H0 ⊕ hij)− πj (G1,H0)

Let ηα and ηα
′
denote the respective degrees inG1 of the maximally connected agents belonging to Cα (H0)

and Cα′ (H0), and δi (H0) ≡ δα and δj (H0) ≡ δα
′
denote their respective friendship levels. Further, let:

Ωα (G1,H0) ≡
[
∆v (ηα) + ∆c0

(
δ
α
)]

(11)

Ωα′ (G1,H0) ≡
[
∆v
(
ηα
′
)

+ ∆c0

(
δ
α′
)]

(12)

Then the maximally connected agent in Cα (H0) will propose to transform a neutral or hostile relationship

with the maximally connected agent in Cα′ (H0) if:

Ωα (G1,H0) + Θijw
(
ηα
′
+ 1
)
− c

(
δ
α′

+ 1
)
− τ > 0 (13)

and the other agent will reciprocate if:

Ωα′ (G1,H0) + Θijw (ηα + 1)− c
(
δ
α

+ 1
)
− τ ≥ 0 (14)
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Now, recalling that w (η + 1) > 0 for all η ≥ 0 by assumption A.2, let us define:

Θαα′ (G1,H0) ≡ min

τ − Ωα (G1,H0) + c
(
δ
α′

+ 1
)

w
(
ηα
′
+ 1
) ,

τ − Ωα′ (G1,H0) + c
(
δ
α

+ 1
)

w (ηα + 1)

 (15)

Θαα′ (G1,H0) is the threshold value of discord at which at least one agent, given their current degree

in G1 and friendship in H0, is indifferent towards transforming a link in H0. An examination of (15)

shows that, ceteris paribus, two agents have an incentive to transform their relationship if its cost τ is low,

the respective hostility levels they face is low (i..e, their δ-values are high), and link formation in G1 has

conferred a high enough degree on each to make it attractive to overcome any hurdle posed by their mutual

discord. If Θij = Θji < Θαα′ (G1,H0), then at least one agent will get a negative payoff from revising

their affi nity relationship and will either not make such an overture (if it is the active agent) or will reject

the overture (if it is the passive agent). From Lemma 1, this is also true for all pairs of agents drawn from

the two clusters. Thus the existing affi nity relationships in H0 between the two clusters will continue to

remain hostile. Recalling (1), we have the following result:

Proposition 4 Consider the affi nity network H0 and suppose that for each pair of clusters Cα (H0) and

Cα′ (H0) the divergence in their core norms satisfies:

|θα (H0)− θα′ (H0)| > 1

Θαα′ (G1,H0)
− 1

Then (G∗ = G1,H
∗ = H0) is the pairwise-stable multilayer network.

If the dissonance in core beliefs is suffi ciently large between each pair of clusters, then agents within a

cluster have no incentive to change their cross-cluster affi nity relationships in H0. Thus the architecture of

H0 remains unchanged. Consequently, the friendship levels of agents continue to remain the same as inH0.

When link formation returns to the alliance layer, then the strategic incentives to form alliances remain

the same as when link formation first started in G. Since all profitable opportunities to form alliances had

already been exhausted in G1, the architecture of the alliance network remains unchanged from G1. Thus,

all alliances that are forged continue to be within clusters and we do not observe any alliances spanning

disparate clusters. Despite the high degrees of potential partners in G1, and the accompanying economies

of scale, all clusters continue to remain hostile and isolated in both the affi nity and alliance layers.

Once again consider i ∈ Cα (H0) and j ∈ Cα′ (H0) who are maximally connected in G1 within their

respective clusters. Now suppose Θij = Θji > Θαα′ (G1,H0), i.e.,

|θα (H0)− θα′ (H0)| < 1

Θαα′ (G1,H0)
− 1

Then, because the difference in their norms is relatively small, the two agents i and j have an incentive to

transform their affi nity relationship. Therefore, there exists at least one agent pair in the two clusters who
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will effect a change in their affi nity relationship. Recall that at most one link between two clusters will be

transformed into a positive one, since other agents in the two clusters can free ride on this “friendly”link

to connect to others in the opposite cluster. Therefore, the pair transforming their link generate positive

externalities for all other agents in the two clusters. Note that H1 6= H0 because at least one neutral or

hostile link in H0 has been transformed to a friendly one. Since this transformation is predicated on the

mutual profitability of an alliance in G, it follows that G2 6= G1. Note an important difference now from

link formation in the very first iteration on G0. In G0, links could only be proposed to an agent within the

cluster; in G1, an active agent can now propose links to agent outside the cluster as well who are distant

friends thus leading to cross-cluster alliances in G2. Since degrees and friendships have now changed,

accounting for these changes in the expressions for (11), (12) and (15) generates a new threshold value of

Θαα′ (G2,H1). As before, if the difference in norms exceeds 1
Θαα′ (G2,H1) − 1 for two separate clusters in

H1, then they will continue to remain disconnected in the affi nity network; if the inequality is strict in

the reverse direction, then at least one agent pair from the two clusters will change their relationship to

a positive one thus engendering further changes in both the affi nity and alliance networks. This process

converges to a limit pairwise-stable multilayer network (G∗,H∗) and we now turn to its characterization.

We begin with G∗. Recall that in G1 all alliances were formed within a cluster that assumed an NSG

structure. Starting from G2, agents can also form alliances outside the cluster with distant friends. We

will thus be interested in the architecture of both intra-cluster alliances as well as inter-cluster alliances

in G∗. With respect to the latter, we will need the following definition.

Definition (Clique): A set of agents {i1, i2, .., ip} and {j1, j2, .., jr} from respectively two distinct clusters
Cα (H0) and Cα′ (H0) form an inter-cluster clique, or simply an (α, α′)-clique, in G if gij = 1 for each

i ∈ {i1, i2, .., ip} and j ∈ {j1, j2, .., jr}. In a clique, all agents are mutually connected in the alliance
network.

Proposition 5 Consider the limit network G∗ in the pairwise-stable multilayer network (G∗,H∗).

(a) The intra-cluster degree partition in G∗ is a nested split graph.
(b) Let ∆α

l (H∗) and ∆α′
l′ (H∗) denote the lowest indexed friendship classes in distinct clusters Cα (H0) and

Cα′ (H0) such that gij = 1 for i ∈ ∆α
l (H∗) and j ∈ ∆α′

l′ (H∗). Then the set of agents ∆α
l (H∗)∪∆α

l+1 (H∗)∪
· · ∪∆α

s(α) (H∗) in Cα (H0) and the set of agents ∆α′
l′ (H∗) ∪∆α′

l′+1 (H∗) ∪ · · ∪∆α′
s(α′) (H∗) in Cα′ (H0) form

an inter-cluster (α, α′)-clique in G∗.

With regard to part (a) of Proposition 5, we know that intra-cluster alliances in G1 had an NSG topology.

We have also seen that in each subsequent iteration Gr+1 first order dominates Gr. An important aspect

of this first order domination is that if an agent i ∈ Cα (H0) belonging to a friendship class, say ∆α
l (H∗),

experiences a strict increase in degree (during the transition from Gr to Gr+1) due to new alliances with

a set of agents {i1, i2, .., is} ⊂ Cα (H0), then all agents in the same friendship class ∆α
l (H∗) will also form

mutually profitable alliances with the set {i1, i2, .., is}. Thus, the nested structure of neighborhoods is
inherited in each successive iteration of the alliance network and, therefore, by the limit G∗.
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Figure 5: Inter-Cluster Clique in the Alliance Network

Part (b) of Proposition 5 states that if two agents from different clusters have formed an alliance, then all

agents in these two clusters with greater degree and greater friendship measure will end up interconnecting

with each other. The incenctives can best be explained with reference to Figure 5. Agent i1 in cluster

1 and agent j1 in cluster 2 have transformed their neutral relationship to friendly in the affi nity network

which is indicated by the double line connecting the two agents. Note that δi1 = δj1 = 1 and ηi1 = ηj1 = 1

prior to transforming their relationship. Suppose i1 was the active agent and j1 was the passive agent

when this relationship was transformed. Therefore, i1’s incremental payoff is:

[∆v (1) + ∆c0 (1)] + [Θ12w (2)− c (1)]− τ (16)

An identical expression holds for agent j1. Now consider agent i2 in cluster 1 who belongs to a higher

friendship class than i1 and also has greater degree. Then i2 will also have a mutually profitable link with

j1 in the alliance network. The incremental payoff to i2 from forming an alliance with j1 is:

∆v (3) + [Θ12w (3)− c (2)] (17)

Agent i2 does not incur the cost τ since it can free ride on the friendship link between i1 and j1.16 We can

now compare term-wise the incremental payoffs of i1 and i2. Note that ∆v (3) > ∆v (1) from A.2(b), and

Θ12w (3)− c (2) > Θ12w (2)− c (1) by virtue of A.2(a) and A.3(a). Further, since ∆c0 (1) < τ from (A.4),

it follows that (17) strictly exceeds (16). An identical argument establishes that j1 will reciprocate the link

with i2, and that mutually profitable links will also form between i1 and j2, and between i2 and j2. Hence,

16Even if i2 had to incur the cost τ , it would still form an alliance with j1 because its incremental payoff given by (17) is
greater than (16) corresponding to i1. The possibility of free riding only strengthens this incentive.
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the transformed link hi1j1 = +1 in the affi nity network spurs the creation of an inter-cluster clique in the

alliance network composed of {i1, i2, j1, j2}. More generally, suppose δα (respectively, δα′) be the agent
with the lowest hostility level in Cα (H0) (respectively, Cα′ (H0)) who are willing to form an alliance with

each other. Then all agents in Cα (H0) with δ-value exceeding δα, and all agents in Cα′ (H0) with δ-value

exceeding δα′ , will also have a mutually profitable alliance. Thus, we have an (α, α′)-clique forming across

two distinct clusters.

We now turn to the characterization of H∗. For each pair of clusters Cα (H0) and Cα′ (H0), define

Θαα′ (G
∗,H∗) as in (15) but with respect to (G∗,H∗). We will letH∗\H0 denote the new friendly relations

that have been created and which did not exist in H0.

Proposition 6 Consider the limit network H∗ in the pairwise-stable multilayer network (G∗,H∗).

(a) Two clusters Cα (H0) and Cα′ (H0) are connected via a transformed friendly link in H∗\H0 if:

|θα (H0)− θα′ (H0)| < 1

Θαα′ (G∗,H∗)
− 1 (18)

(b) Suppose two clusters Cα (H0) and Cα′ (H0) have a mutually friendly link in H∗\H0 and that (without

loss of generality) θα (H0) < θα′ (H0). If there exists an “intermediate” cluster Cα′′ (H0) such that:

θα (H0) < θα′′ (H0) < θα′ (H0) (19)

then both Cα (H0) and Cα′ (H0) have a friendly link with Cα′′ (H0) in H∗\H0.

(c) Two clusters Cα (H0) and Cα′ (H0) are disconnected in H∗ if:

|θα (H0)− θα′ (H0)| > 1

Θαα′ (G∗,H∗)
− 1 (20)

Parts (a) and (c) of Proposition 6 formally reiterates the result that agents in two disparate clusters will be

involved in an alliance if their norms are suffi ciently close and remain separate if their norms are suffi ciently

divergent. Part (c) draws out the role of “bridges”in the affi nity network. A cluster Cα′′ (H0) whose norm

is intermediate between two clusters Cα (H0) and Cα′ (H0) may form a bridge between these two “extremes”

that would otherwise not have an incentive to connect given their level of discord.
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Figure 6: Overlapping Cliques in the Alliance Network

We now draw out the role of bridge agents who facilitate alliances across clusters. Consider Figure 6 which

assumes that the relationship given by (18) holds between clusters 1 and 2, and between clusters 2 and

3. Further, cluster 2 is intermediate between the other two in the sense of (19). Finally, the relationship

between clusters 1 and 3 is characterized by (20). The transformed relationship hi2j2 = +1 (shown by the

double line) in the affi nity network connects clusters 1 and 2 and prompts the creation of the inter-cluster

clique {i1, i2, j1, j2} with agents i1 and j1 free riding on the friendly path created between the two clusters
by hi2j2 = +1. Likewise, the transformed relationship hj1k = +1 precipitates the creation of the inter-

cluster clique {k, j1}; in this particular example, we are assuming that the degree and friendship measure
of j2 is not suffi cient for an alliance with k and the inclusion of j2 in the clique. Also, despite a friendly

path now existing between clusters 1 and 3, the divergence in their core beliefs dissuades agents k and

i1 from forming a link in the alliance network. Thus the two inter-cluster cliques overlap with agent j1
at its intersection. Also note that in the affi nity layer, there is now a friendly path created between the

three clusters with agents j1 and j2 serving as the bridge between clusters 1 and 3. Therefore, it is the

suffi ciently well-connected and low hostility level agents such as j1 and j2 in the intermediate clusters who

serve as conduits —or bridge agents —connecting agents from more extreme clusters. Thus, a bridge agent

connecting two extreme clusters is characterized by three features: (i) a norm that is intermediate between

the norm of the two extreme clusters; (ii) a high friendship measure, i.e., low hostility, within own cluster

in the affi nity network; and (iii) a high degree in the alliance network. It is important to note that all

three features are needed in order for an agent to qualify as a bridge agent. For example, agents j3 and j4
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are also in the intermediate cluster but are not members of the inter-cluster cliques due to high hostility

in the affi nity network and low degree in the alliance network.

The more interesting case is when, despite the relationship between clusters 1 and 3 characterized by

(20), the agents in these two clusters end up forming an alliance through the aegis of agents in cluster 2

who serve as bridge agents. Due to condition (20), agents such as k and i1 are suffi ciently divergent in

terms of their norms such that their incremental payoff does not cover the cost τ of transforming their

relationship. However, with the friendly path that is now created through cluster 2, these agents can

eschew the tranformation cost of τ and free ride to a mutually profitable alliance in the affi nity network.

Therefore, the links hi2j2 = +1 and hj1k = +1 confer positive externalities within clusters as well as across

clusters permitting the formation of alliances between disparate agents who otherwise would not have an

incentive to ally with each other. Therefore, through the bridge provided by agents j1 and j2, we have an

inter-cluster clique {k, i1, i2, j1, j2} that spans three clusters.

5 Motivating Examples

We now provide a set of real world examples to substantiate our main results. To illustrate the emergence

of an NSG alliance structure among agents belonging to the same cluster in the affi nity network with high

centrality (degree) corresponding to greater friendship measure, we look to the Western Pacific and its

overlapping relationships in G in Figure 7. These relationships run largely through the United States in

an NSG type configuration. At the north end of the figure, the NATO security alliance forms a connected

alliance that runs dominantly through the United States to form paths to other states and alliances. Prior to

2023, the graph can be partitioned into a set of cliques (NATO, AUKUS, FIVE EYES) and an independent

set (Japan, Republic of Korea, India, Taiwan, and Micronesia) forming a partial star architecture with the

United States at its center. The United States’position as an economic partner, its cultural ties, and its

role as a democratic security guarantor, imparts to it the highest aggregate ranking of friendship (lowest

hostility). Thus, in accordance with our result, the United States has an exceptionally high centrality in

the affi nity network and is by far the highest degree node in the alliance network.
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Figure 7: Alliance Network in the Pacific

Our model indicates that when two agents belong to separate clusters in the affi nity network, then as

a precursor to forming a link in the alliance network this pair of agents have to establish a bridge in

the affi nity network. In the post-pandemic years (2022-23), Japan made moves in both the H and G

layers. First, Japan and Australia signed a security cooperation agreement (a link in G) that built off

years of increasing economic ties (establishing a bridge in H). Second, Japan and South Korea are making

significant diplomatic and economic investments at the encouragement of the United States in flipping their

negative relationship into a positive one (establishing a bridge in H) as a precursor to security agreements

(connecting in G). These moves are changing the existing star network in the Pacific where the United

States underwrote security for all states (the graph depicted in figure 3(a)) into a more interconnected web

of alliances (figure 3(d)).

A real world application of our result that there is alliance formation among enemies when their disagree-

ment over a norm is relatively small is provided by Balkan conflict from 1992-95 (Becker et al 2023).

In this case, there were three (singleton) clusters, with each cluster corresponding to an ethnic group —

Bosniak, Croat and Serb. Figure 5 depicts the multilayered links between the three ethnic groups indexed

by layer. The period of the conflict (1992-95) can be divided into three periods, indexed by t ∈ {1, 2, 3},
and the alliance structure that prevailed during these three periods is also indicated in figure 5. At the

multilayer network’s most base affi nity layer, all relationships were negative since each group held deep

and lasting animosities towards the others which predated the war by centuries. The other layers indicate

the strategic dimensions that emerged in different periods of the conflict and prompted pairs of otherwise

hostile ethnic groups to forge military alliances based on congruence in their interests in a layer.
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Figure 8: The Balkan Conflict (1992-1995)

At the outset of the war, the Serbs held nearly all pre-existing military hardware and ammunition, while

the Bosniaks had essentially none. This forced the Bosniaks to form a relationship with the Croats in the

economic layer to import (smuggle) weapons through the Croatian coast in contravention of international

arms embargos to the war zone. This tacit partnership quickly dissolved as the Bosniaks and Croats started

competing for the villages they shared in central Bosnia that began to rapidly ethnically segregate. Thus,

the central territory layer was an empty network as the Bosniaks and Croats engaged in an internecine

campaign while the Serbs disengaged to build their own forces and reserves against the other two. In the

external border (west) layer, the Croats formed local partnerships with the proximate Serbs in an effort

to define the Serbian external border with neighboring Croatia and expel Bosniaks. In the external border

(northwest) layer, the Serbs were attempting to unite with a breakaway Serbian region between Croatia

and Bosnia centered around the city of Bihac. Here a small “dissenter” Bosniak group allied with the

Serbs against the Croats. The unique exterior border incentives in and around Bihac allowed the two most

hostile ethnic groups —the Serbs and a small subset of Bosniaks —to form a breakaway alliance. The layer

labeled international attention (Saravejo) shows the alliance between the local Bosniak and Croat forces

in the Bosnian capital of Sarajevo against the besieging Serbs despite the ongoing bitter fighting between

Bosniak and Croat forces in the majority of the country at that time. This was because in Sarajevo, the

international community had daily broadcasts of the siege in a recognizable European capital that had

just held an Olympic games (1984). Neither the Bosniaks or Croats of Sarajevo could afford to break their

partnership and lose the city to the Serbs because the struggle against the Serbs for the city perimeter kept

international attention and support focused on their plight. The same logic precipitated a strong military

alliance between the Bosniaks and Croats for final control of Bosnia against the more powerful Serbs. As

the Bosniaks and Croats degraded their forces fighting each other, they realized the Serbs were becoming a

relatively much stronger and more pressing threat to them both. This “enemy of my enemy is my friend”
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logic became existential, and they formed a unified fighting force that quickly pressed the Serbs to sue

for peace and thus end the war. The war in Bosnia-Herzegovina was a uniquely complex ethnic conflict

within the dissolution of communist Yugoslavia that highlights the role that multilayered links between

competing groups can play in forming stacked alliances starting at the base affi nity layer.

Now consider our result that one of the qualities of a bridge agent is that it is a moderating agent in the

affi nity network that connects more extreme clusters. We often observe this free riding on a “friendly”link

in geopolitics and geoeconomics. In. 2023, Japan and South Korea worked through the United States to

establish “future-oriented”relations. While roughly 60% of South Koreans oppose a close relationship with

Japan, the two American allies have been able to form collective military links through the United States’

positive affi nity network links.17 The Swiss perform the role of an interlocutor prominently in diplomatic

relations. While they occupy a positive space within a western Europe affi nity network, they can branch

more hostile relationship such as between the United States and Iran. This is precisely the reason Geneva

and Vienna host so many international conferences and negotiations, allowing hostile nations in the affi nity

network to connect through the bridge set up by the Swiss and Austrians.

Another telling experiment of this dynamic is China’s diplomatic efforts to be a multinational peace broker

in 2023. At the Munich defense forum, China proposed a peace plan to end the Russian invaision of Ukraine.

However, this proposal was dead on arrival in Ukraine and its western backers. Conversely, only a few

weeks earlier, China brokered a thawing of tensions between Saudi Arabia and Iran, something the United

States led western coalition had failed to do for a generation. Why the counterfactual? As our result on the

role of intermediate agents serving as structural bridges in the affi nity network indicates, China was not an

intermediate cluster between Russia and Ukraine. This was made obvious by the Chinese Ambassador to

France’s remark, “Even these ex-Soviet countries don’t have an effective status in international law because

there was no international agreement to materialize their status as sovereign countries.”Telling Ukraine,

and nearly all of Eastern Europe, that they are not nation-states is an even more extreme position than

Russia’s. Therefore, in accordance with our result on intermediate agents serving as bridges, China could

not serve as a bridging cluster and its peace plan failed. Conversely, China was an intermediate nation

to both Iran and Saudi Arabia. China holds pseudo or outright positive relations with both making it a

moderating presence between the two extremes, thereby providing incentives to both to connect through

China in the alliance network.

6 Discussion

In this section we elaborate upon specific aspects of the main model.

17 Indeed the authors expect, at the time of writing, this dynamic to be repeated with the United States conversely piggy-
backing through South Korea to establish military relationships with the smaller South China Sea nations who are establishing
economic ties with South Korea for their defense industry post Russian invasion of Ukraine (and Chinese aggression in their
Exclusive Economic Zones).
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6.1 Conflict Models

We will show how the reduced form payoff function given by (4) can be deduced from an explicit conflict

model. The conflict game is drawn from Baliga and Sjöstrom (2012). Consider agent i with neighborhood

Ni (G). Then agent i can find itself paired in pairwise conflict games —one with any of its own enemies,

and one with any of the enemies of its allies. Therefore, agent i can be involved pairwise in ηi (G) conflict

games. In each conflict game, the paired agents move simultaneously to choose either an aggressive action

of hawk or a peaceful action of dove. The conflict game, with i playing rows and j playing columns, is

given in strategic form by:

i \ j Hawk Dove

Hawk −c̃i
(
δ′, η′

)
,−c̃j

(
δ′′, η′′

)
µ− c̃i

(
δ′, η′

)
,−ρ

Dove −ρ, µ− c̃j
(
δ′′, η′′

)
0, 0

where µ > 0 and ρ > 0. Recalling (3), agent i incurs a cost c̃i
(
δ′, η′

)
by choosing hawk and no cost by

choosing dove. When j is a direct enemy of i, then c̃i
(
δ′, η′

)
= c̃i (δi, ηi), i.e., i incurs a net cost based on

its own degree and friendship levels. When j is not a direct enemy but an enemy of one of i’s allies, say

agent k ∈ Ni (G), then c̃i
(
δ′, η′

)
= c̃i (δk, ηk); it is the net cost that i incurs by defending the alliance with

k. In a hawk-dove interaction, the agent choosing hawk wins (a value of µ) and dove loses (a value of −ρ).
A hawk-hawk or dove-dove interaction results in a stalemate (a value of 0); thus, hawk-hawk only imposes

costs while dove-dove yields 0 to both agents.

Following Baliga and Sjöstrom (2012), an agent i is coordinating if hawk (dove) is a best response to hawk

(dove). In other words, an aggressive action is met with agression, while a peaceful action is reciprocated

with a peaceful one. We will accordingly assume that for each agent i ∈ N and all (δ, η) ∈ Z× Z+:

µ < c̃i (δ, η) < ρ

There are two pure strategy Nash equilibria —hawk-hawk and dove-dove —and one mixed strategy Nash

equilibrium. In the dove-dove Nash equilibrium, there would be no incentive to form alliances and thus the

alliance network will be empty, a trivial case of the NSG architecture. In the hawk-hawk Nash equilibrium,

agent i will receive a total payoff (the sum of payoffs from each conflict game it is engaged in) equal to:

πi (G,H0) = −
∑

k∈Ni(G)∪{i}
c̃i (δk, ηk) (21)

while in the mixed strategy Nash equilibrium, which can be expected to be focal, the total payoff of agent

i is equal to:

πi (G,H0) =
∑

k∈Ni(G)∪{i}

[
ρµ

ρ− µ −
ρ

ρ− µc̃i (δk, ηk)

]
(22)
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Recalling (3), maximizing payoffs in either the hawk-hawk or mixed strategy Nash equilibrium is equivalent

to maximizing πi (G,H0) given by (4).18 Therefore, our payoff specification is grounded in a proper conflict

game.

Remark: (Other parametric restrictions) Baliga and Sjöstrom (2012) classify agents as opportunistic if

hawk (dove) is a best response to dove (hawk), and hawk-dominant (dove-dominant) if hawk (dove) is

a dominant strategy. The dove-dominant case once again yields an empty affi nity network. The hawk-

dominant case, and the pure strategy Nash equilibria of the opportunistic case yield total payoff given

by (21). Thus, once again our reduced form payoff applies. The mixed strategy Nash equilibrium of the

opportunistic case yields an anomalous result where agents would seek more hostilities and less allies.

6.2 Static Link Formation Game

We will explore a static alliance formation game adapted from Dutta et al. (1998) and show that the set of

strongly stable equilibrium networks display the NSG architecture within each cluster. Thus, we provide

an alternative approach to link formation that is distinct from the dynamic game as well as demonstrate

the robustness of the NSG architecture. Each agent makes an announcement of intended alliances. An

announcement by agent i is of the form si = (aij)j 6=i. The intended alliance aij ∈ {0, 1}, where aij = 1

means that i intends to form an alliance with j, while aij = 0 means that i intends no such alliance. Let

Si denote the set of announcements, or strategies, of agent i. An alliance between agents i and j is formed

if and only if aij = aji = 1. We denote the formed link by gij = 1 and the absence of a link by gij = 0.

A strategy profile s = {s1, s2, ..., sn}, consisting of a strategy for each agent, induces a network G(s). To

simplify the notation we shall often omit the dependence of the network on the underlying strategy profile.

A strategy profile s∗ = {s∗1, s∗2, ..., s∗n} is Nash if and only if πi(G(s∗i , s
∗
−i),H0) ≥ πi(G(si, s

∗
−i),H0), for all

si ∈ Si and for all i ∈ N , where s−i is the strategy profile of all agents other than i. The corresponding
network is referred to as a Nash network. The Nash criterion is, however, not discriminating enough. For

this purpose we will employ a strong stability property to refine the Nash equilibrium. Let S ⊂ N denote

a coalition of agents. A network G′ can be obtained from a network G through deviations by a coalition

S ⊂ N if:

1. gij = 1 in g′ and gij = 0 in G implies that i, j ∈ S. In words, any new alliances added in the

movement from G to G′ can only be formed by agents in the coalition S.

2. gij = 1 in g and gij = 0 in G′ implies that {i, j} ∩ S 6= ∅. In words, if any links are deleted in the
movement from G to G′, then at least one of the agents severing the alliance should be from the

coalition S.
18We would expect the agents to coordinate on the same Nash equilibrium in each of their conflict games. However, even if

agents play different Nash equilibria in different conflict games, the total payoff will be a linear combination of (21) and (22),
and maximizing these total payoffs would be equivalent to maximizing (4).
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Definition (Strong Stability): A network G is said to be strongly stable if for any coalition S and any

G′ that can be obtained from G through deviations by S, πi(G′,H0) > πi(G,H0) for some i ∈ S implies
that πj(G′,H0) ≤ πj(G,H0) for some j ∈ S.

The definition of strong stability that we employ is due to Dutta and Mutuswami (1997). According to

their definition, if a network G is not strongly stable, then there exists a coalition S that can deviate to

some network G′ in which all members of S are strictly better off.

Definition (Equilibrium Network): A network G is an equilibrium network if there is a Nash strategy

profile supporting G, and the network G is strongly stable.

In our network setting, the only unilateral decision that an agent has is to sever alliances. The first

property of an equilibrium network is, therefore, that no agent should have an incentive to delete any

subset of its alliances. Note that forming an alliance is a bilateral decision requiring agreement by both

agents. The second property of an equilibrium network states that, for any coalition, the member agents

have no incentive to bilaterally form alliances that did not exist in the equilibrium network. The second

property permits a refinement of the set of Nash networks that satisfy the first property. The next result

shows that all equilibrium networks display an intra-cluster NSG structure in which the neighborhood of

an agent with a lower friendship measure is nested within the neighborhood of an agent with a higher

friendship measure.

Proposition 7 An equilibrium network exists. In an equilibrium network G, all agents belonging to the

same cluster form an alliance with an NSG architecture such that if δj ≥ δi, then Ni (G) ⊆ Nj (G) ∪ {j}.

6.3 Non-Separable Benefits and Costs

We had assumed additively separable benefit and cost functions. This permitted us to avoid interaction

between degrees of agents, or between degree and hostility. However, our results would continue to hold

under a more general non-separable specification with suitable restrictions on the interaction terms. We

now spell out the precise set of restrictions that are needed. Suppose the gross benefit to agent i from

a link with agent j is more specified as ψ
(
ηi, ηj

)
. the function ψ : Z2

+ → R+ is assumed to satisfy the

following conditions:

Assumption (A.2)*: For all i, j ∈ N :
(a) ψ

(
ηi + 1, ηj

)
≥ ψ

(
ηi, ηj

)
, and ψ

(
ηi, ηj + 1

)
≥ ψ

(
ηi, ηj

)
, for 1 ≤ ηi, ηj < N − 1.

(b) ψ
(
ηi + 2, ηj

)
− ψ

(
ηi + 1, ηj

)
≥ ψ

(
ηi + 1, ηj

)
− ψ

(
ηi, ηj

)
, for 1 ≤ ηi < N − 2 and 1 ≤ ηj ≤ N − 1.

(c) ψ
(
ηi + 1, ηj

)
− ψ

(
ηi, ηj

)
≥ ψ

(
ηj + 1, ηi

)
− ψ

(
ηj , ηi

)
, for 1 ≤ ηj ≤ ηi < N − 1.

(d) ψ
(
ηi + 1, ηj + 1

)
− ψ

(
ηi, ηj + 1

)
≥ ψ

(
ηi + 1, ηj

)
− ψ

(
ηi, ηj

)
, for 1 ≤ ηi, ηj < N − 1.

Thus, (a) gross returns are increasing in the degrees of the partners involved in the alliance; (b) the gross

benefit shows increasing returns with respect to own degree; (c) the gross benefit to an agent i with a
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higher degree from linking to an agent j with a lower degree is at least as great as the gross benefit to j

from linking with i; and (d) gross benefits display the property of increasing differences in degrees
(
ηi, ηj

)
.

Turning to costs, we will impose the following assumptions on the cost function c (δ, η).

Assumption (A.3)*: For all i ∈ N , δi ∈ Z, and 1 ≤ ηi < N − 1

(a) c (δi + 1, ηi) < c (δi, ηi) and c (δi, ηi + 1) < c (δi, ηi).

(b) c (δi, ηi)− c (δi + 1, ηi) ≥ c (δi − 1, ηi)− c (δi, ηi).

(c) c (δi, ηi)− c (δi, ηi + 1) ≥ c (δi, ηi − 1)− c (δi, ηi).

(d) c (δi, ηi + 1)− c (δi + 1, ηi + 1) ≥ c (δi, ηi)− c (δi + 1, ηi).

Therefore, (a) the cost to an agent i is lower when it faces less hostility in H, i.e., it has relatively more

friends than enemies. Further, for the same level of hostility, the cost is less if agent i has more allies;

(b) the incremental cost is decreasing in the friendship measure given degree; (c) the incremental cost is

decreasing in degree given the friendship measure; and (d) the cost function displays increasing differences

in (δi, ηi).

The payoff of agent i ∈ Cα (H0) is now given by:

πi (G,H) =
∑

j∈Ni(G)∩Cα(H0)

[
ψ
(
ηi (G) , ηj (G)

)
− c

(
δj (H) , ηj (G)

)]
+

∑
j∈Ni(G)∩Cα′ (H0);Fij(H)=1

[
Θijψ

(
ηi (G) , ηj (G)

)
− c

(
δj (H) , ηj (G)

)
− τh+

ij

]
(23)

The NSG structure, and the consequent results, follow from Proposition 1 on preferential attachment. We

will show that the non-separable case satisfies a stronger version of this proposition.

Proposition 8 Suppose agents i and j in the same cluster have a mutually profitable link in a network
G. Consider an agent k 6= i, j in the same cluster such that δk ≥ δi and Ni (G) ⊆ Nk (G) ∪ {k}. Then
agents k and j have a mutually profitable link in G′ ⊇ G.

This proposition generates an NSG architecture within each cluster with degree positively correlated with

friendship. For example, consider agent i who forms the first link with agent j when G is empty. Since

trivially Ni (Ge) ⊆ Nk (Ge) = ∅, it follows that agent j will subsequently form an alliance with agent k

satisfying δk ≥ δi. The argument applies to each successive alliance formed by agent i. Thus, an agent k

with a higher friendship measure than agent i measure will have greater degree than i and a neighborhood

nesting that of i. This nested neighborhood result along with Lemma 1 generates the characterization

result on interlocking cliques. We show in the appendix that Lemma 1 also holds in the non-separable case

under A.2∗ and A.3∗.
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6.4 Endogenous Affi nity Network and Norms

We have assumed that in the initial position the affi nity network is given. As a first step towards a

microfounded affi nity network, we can assume that the affi nity network is initially empty, and draw upon the

definitive analysis of Hiller (2017) to augment our link formation game with the prior formation of an affi nity

network. Adapting Hiller, we can craft an affi nity formation game as follows. Let {θ1 (ρ) , θ2 (ρ) , ..., θK (ρ)}
denotes the distribution of norms that separates agents. The parameter ρ captures the dimension on which

the norm is based, i.e., ρ ∈ {culture, ideology, politics, security}. Assume that nk denotes the number of
agents who subscribe to the norm θk (ρ) such that nk ≥ 1, nk 6= nk+1, and

∑K
k=1 nk = N . Each agent

is endowed with a given intrinsic level of strength that is normalized to unity. An agent can augment

this strength through positive connections in the affi nity network with agents who share the same norm.

Formally, the strength gained by an agent i from establishing a positive connection with agent j in the

affi nity network is equal to 1 if θi (ρ) = θj (ρ) and 0 otherwise.

Each agent simultaneously proposes positive (friendship) or negative (enemy) links to other agents in the

affi nity layer. A negative offer is interpreted as an initiation of hostile relations and imposes a cost on the

proposer. A positive connection between two agents is established if both agents extend a positive link to

each other, while a negative connection is formed if at least one agent extended a negative link. A positive

connection does not confer any direct benefit (the payoff is zero from a positive link) but imparts indirect

benefits by increasing the strength of an agent, with aggregate strength in an affi nity network equal to the

sum of own strength and the strengths of friends who share the same norm. The formation of a negative

connection imposes a “conflict cost”on both agents and engages them in a zero-sum game in which the

winner extracts rents from the loser that are increasing (respectively, decreasing) in own (respectively,

enemy’s) aggregate strength.

We can now draw upon Hiller (2017) to characterize the Nash equilibrium of the affi nity announcement

game. Agents will have an incentive to offer a positive link only to those who share the same norm. Thus

all agents who share the same norm, say θk (ρ), will be mutual friends and comprise a cluster Ck whose
aggregate strength is equal to nk. Our assumption that nk 6= nk+1 ensures that the clusters are asymmetric

with respect to size and thus unequal with respect to aggregate strength. Suppose without loss of generality

that n1 < n2 < ·· < nK . Then cluster Ck+1 has higher aggregate strength than Ck. Agents in clusters
with higher aggegate strength extend negative links to those in clusters with lower aggregate strength to

extract rents. Consequently, the affi nity network, say H0, corresponding to the Nash equilibrium is an

endogenously formed balanced layer.

The norm can change due to events, or shocks, that change ρ and can engender changes in the affi nity

network. For example, suppose that after the formation of H0, the new norm is θk (ρ) where ρ reflects a

cluster’s concern over external threats to its security. Let Φkk′ denote the total number of negative links

connecting clusters Ck (H0) and Ck′ (H0) and:

θk (ρ) =
∑
k′ 6=k

ξk
(
k′
)

Φkk′ (24)
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where ξk (k′) is the weight placed by agents in Ck (H0) on the threat posed by those in Ck′ (H0). Thus

agents in lower-indexed clusters (and thus lower aggregate strength) have relatively higher values of the

norm (greater perception of the external threat) than higher-indexed clusters. Now suppose that one such

cluster, say C2 (H0), faces increased hostility from a higher-indexed cluster, say CK (H0). Or, the level of

hostility is the same but the threat perception of C2 (H0), as given by ξ2 (K), increases. Either way, this

will raise the value of θ2 (ρ) and draw it closer to θ1 (ρ), the norm for C1 (H0). Now that their norms

are suffi ciently close, there may be an incentive for bridge agents in the two clusters to transform their

relationship to positive and use this to leverage the formation of security pacts in the alliance network.

The case of Philippines discussed in the introduction corresponds to this case. The confrontation with

China increased the security threat to Philippines in the South China Sea and forced it to reconsider its

affi nities and alliances. In the period following this confrontation, Philippines has signed over 18 security

agreements with other countries.19

The norm could also change due to exogenous shocks. An example is the epoch-making fall of the Berlin

Wall, where clusters were defined by opposing political ideologies. The liberal Western and former Eastern

bloc countries had animosity across and friendship within their clusters. When the Berlin Wall fell, the

demarcation line was redrawn, and the Eastern European nations became part of the liberal world, and the

liberal cluster enlarged. Consequently, we witnessed the formation of alliances between former enemies with

Poland, Hungary, Bulgaria, Romania and the Czech Republic joining NATO. How about shocks that do

not alter the memberships within clusters but increase intra-cluster friendships within the affi nity network.

Under these circumstances, hostility declines, or the costs of forming a link in the alliance network declines.

As a result, a denser intra-cluster NSG becomes possible.

7 Conclusion

This paper aims to show that the defensive alliances between nations can be modeled as a multilayer network

of signed relationships. But unlike previous economic studies, we identify a multilayer of relationships and

order them with a foundational affi nity network (H) that, through non-cooperative gameplay, results in a

higher-level defense alliance layer (G). The implications of our findings are broad and show how nations

can build security alliances based on their position in an affi nity network connecting all nations. We hope

that future research will extend these results from two layers to multiple ordered layers of relations with

specific parameters tied to economic, cultural, education, geographic, and political layers. Further, while

we have offered a preliminary discussion of a microfounded affi nity network and endogenously changing

norms, a systematic analysis incorporating the co-evolution of affi nities, norms and alliances is a productive

avenue for further research.

19The Washington Post (“As tensions rise with China at sea, Philippines strikes deals”, Monday, March 11, 2024) explicitly
refers to the new defense pacts of the Philippines as a “network of alliances”to deter Chinese aggression.
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8 Appendix

Proof of Theorem 1: We will show that cycles cannot emerge along an improving path in G. Let gij = 1

be the first link that is deleted along an improving path when the state is (Gq(κ),H0, i). The active agent

i will delete the link with j only if:

∆ν (ηi (Gq(κ))− 1) +
[
w
(
ηj (Gq(κ))

)
− c (δj)

]
< 0 (25)

Suppose (Gq(κ
′),H0, k ∈ {i, j}), κ′ < κ, was the state at an earlier stage when the link gij = 1 was

established with either i or j as the active agent. Since the link between i and j is the first link that is

deleted, it must be true that ηk (Gq(κ)) ≥ ηk (Gq(κ
′)) for all k ∈ N and ηk (Gq(κ)) > ηk (Gq(κ

′)) for

k ∈ {i, j}. From A.2(a) and A.2(b) respectively:

w
(
ηj (Gq(κ))

)
> w

(
ηj
(
Gq(κ

′)
))
, ∆ν (ηi (Gq(κ))− 1) ≥ ∆ν

(
ηi
(
Gq(κ

′)
))

(26)

Since agent i had accepted the link in state (Gq(κ
′),H0, k ∈ {i, j}):

∆ν
(
ηi
(
Gq(κ

′)
)
− 1
)

+
[
w
(
ηj
(
Gq(κ

′)
))
− c (δj)

]
≥ 0 (27)

It follows from (25)-(27) that:

0 > ∆ν (ηi (Gq(κ))− 1)+
[
w
(
ηj (Gq(κ))

)
− c (δj)

]
> ∆ν

(
ηi
(
Gq(κ

′)
)
− 1
)
+
[
w
(
ηj
(
Gq(κ

′)
))
− c (δj)

]
≥ 0

which is a contradiction. Therefore, no links will be deleted along an improving path and thus no cycles

will emerge in G. It follows that the link formation game will converge where the limit will satisfy the

conditions of pairwise stability. �

Proof of Proposition 1: Since agents i and j have a mutually profitable link in G:

[v (ηi (G+ gij))− v (ηi (G))] +
[
w
(
ηj (G+ gij)

)
− c (δj)

]
≥ 0[

v
(
ηj (G+ gij)

)
− v

(
ηj (G)

)]
+ [w (ηi (G+ gij))− c (δi)] ≥ 0

and at least one inequality is strict. Since ηk (G′) ≥ ηi (G), ηj (G′) ≥ ηj (G), and δk ≥ δi, it follows for

agent k from A.2(b) and A.2(a) respectively that:

[
v
(
ηk
(
G′ + gkj

))
− v

(
ηk
(
G′
))]

+
[
w
(
ηj
(
G′ + gkj

))
− c (δj)

]
≥ [v (ηi (G+ gij))− v (ηi (G))] +

[
w
(
ηj (G+ gij)

)
− c (δj)

]
≥ 0
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while for agent j it follows from A.2(b), A.2(a) and A.3(a) that:

[
v
(
ηj
(
G′ + gkj

))
− v

(
ηj
(
G′
))]

+
[
w
(
ηk
(
G′ + gkj

))
− c (δk)

]
≥
[
v
(
ηj (G+ gij)

)
− v

(
ηj (G)

)]
+ [w (ηi (G+ gij))− c (δi)] ≥ 0

and at least one LHS is strictly positive. Therefore, agents k and j have a mutually profitable link in G′.

�

Proof of Proposition 2: We will first prove that ∆α
1 (H0) ⊆ Dα

1 (G1). Suppose to the contrary that

i ∈ ∆α
1 (H0) ∩ Dα

l (G1) for l ≥ 2. Thus, ηi (G1) > ηj (G1) for j ∈ Dα
1 (G1). Let k ∈ Ni (G1) \Nj (G1)

denote the agent with whom i formed a link when it had ηj (G1) number of links, i.e, the same number

of links as j. Let G0 (κ) denote the stage along the improving path when this link was formed, and so

ηj (G1) = ηi (G0 (κ)). Therefore:

∆v (ηi (G0 (κ))) + [w (ηk (G0 (κ)) + 1)− c (δk)] ≥ 0 (28)

∆v (ηk (G0 (κ))) + [w (ηi (G0 (κ)) + 1)− c (δi)] ≥ 0 (29)

and at least one inequality is strict. Since k /∈ Nj (G1) in the limit network G1, it must be true that agents

j and k do not have a mutually profitable link in G1:

min
{

∆v (ηk (G1)) +
[
w
(
ηj (G1) + 1

)
− c (δj)

]
,∆v

(
ηj (G1)

)
+ [w (ηk (G1) + 1)− c (δk)]

}
< 0 (30)

However, since δj ≥ δi (given that i ∈ ∆α
1 ) and G0 (κ) ⊆ G1, it follows from ηj (G1) = ηi (G0 (κ)) and

A.3(a) that:

∆v
(
ηj (G1)

)
+ [w (ηk (G1) + 1)− c (δk)] ≥ ∆v (ηi (G0 (κ))) + [w (ηk (G0 (κ)) + 1)− c (δk)] ≥ 0

∆v (ηk (G1)) +
[
w
(
ηj (G1) + 1

)
− c (δj)

]
≥ ∆v (ηk (G0 (κ))) + [w (ηi (G0 (κ)) + 1)− c (δi)] ≥ 0

which contradicts (30). Thus, ηi (G1) ≤ ηj (G1) for all j ∈ Dα
1 (G1) and i ∈ ∆α

1 (H0), and hence ∆α
1 (H0) ⊆

Dα
1 (G1). We now prove that ∆α

s (H0) ⊆ Dα
m(G1). We have already shown in the main text that in ∈

∆α
s (H0) and in ∈ Dα

m(G1). The same argument can be repeated for each member of ∆α
s (H0) in declining

order of index to show that ∆α
s (H0) ⊆ Dα

m(G1). �

Proof of Proposition 3: Suppose ik, il ∈ Cα (H0) such that δik ≤ δil . Let i
(1) ∈ Nik (G∗) denote the

first partner for ik and G0

(
κ(1)

)
be the stage along the improving path when this link was established.

There are two cases to consider: (i) Suppose ik was the active player when the link was formed. Note

that ηik
(
G0

(
κ(1)

))
= 0 ≤ ηil

(
G0

(
κ(1)

))
since i(1) is the first partner for ik. Consider a subsequent

stage G0

(
κ(1)′) when il is the active agent. Then, from Proposition 1, i(1) and il also have a mutually

profitable link and thus i(1) ∈ Nil (G∗). (ii) Suppose i(1) is the active player. Along an improving path,

ηik
(
G0

(
κ(1)

))
≤ ηil

(
G0

(
κ(1)

))
. Thus, the payoff from linking with il is weakly greater than linking with

ik, and from the construction of the link formation game, agent i(1) would have approached il before ik.
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Thus i(1) ∈ Nil (G∗).

Now suppose this property is true for agents i(1), i(2), ..., i(r) ∈ Cα, i.e., these agents are the first r partners
of ik and belong to Nik (G∗)∩Nil (G∗). Consider the next partner i(r+1) of agent ik and suppose this link

was formed in stage G0

(
κ(r)

)
along the improving path. Suppose ik was the active player when this link

was formed. Since ηik
(
G0

(
κ(r)

))
= r ≤ ηil

(
G0

(
κ(r)

))
, it follows from Proposition 1 that i(r+1) and il

also have a mutually profitable link when il is the active agent. Now suppose i(r+1) was the active agent

when the link with ik was formed. Then, similar to the reasoning with i(1), agent i(r+1) would have first

formed this link with il. Therefore, i(r+1) ∈ Nil (G∗). This completes the induction step and proves the

nestedness property. �

Proof of Theorem 2: In the augmented link formation game, as each iteration of link formation occurs
in the alliance network Gr, r ≥ 1, potentially new alliances are added but none of the existing links are

deleted. Therefore, letting the vector d(G) = {d1(G), d2(G), ..., dN (G)} denote the degree distribution of
agents in G, it follows that d(Gr) first order dominates d(Gr−1), i.e., di(Gr) ≥ di(Gr−1) for all agents

i ∈ N and r ≥ 1. We will write this formally as Gr � Gr−1. Now consider the affi nity network and

let the vector δ(H) = {δ1(H), δ2(H), ..., δN (H)} denote the friendship distribution of agents in H. In
each iteration of affi nity transformation that occurs in the affi nity network Hr, r ≥ 1, hostile or neutral

links are converted into friendly ones but no existing relationships can be obviated. Consequently, δ(Hr)

first order dominates δ(Hr−1) for all r ≥ 1. We will write this formally as Hr � Hr−1. Extending

to the multilayer, we will say that (Gr,Hr) � (Gr−1,Hr−1). Thus, the sequence {(Gr,Hr) ; r ∈ Z+} is
monotonically increasing in the sense of first order dominance. Since the set of multilayer networks is finite,

this sequence will converge and the limit is a pairwise-stable multilayer network. �

Proof of Lemma 1: Note that πi (G1 + gij ,H0 ⊕ hij)− πi (G1,H0) is equal to:

[v (ηi (G1 + gij))− v (ηi (G1))] + [c0 (δi (H0))− c0 (δi (H0) + 1)] +
[
Θijw

(
ηj (G1) + 1

)
− c (δj (H0))

]
Since ηi (G1) ≥ ηk (G1), it follows from A.2(b) that:

v (ηi (G1 + gij))− v (ηi (G1)) ≥ v (ηk (G1 + gkl))− v (ηk (G1))

Since i ∈ Cα (H0) ∩∆α
s (H0), it follows that δi (H0) ≥ δk (H0). Therefore, from A.3(b):

c0 (δi (H0))− c0 (δi (H0) + 1) ≥ c0 (δk (H0))− c0 (δk (H0) + 1)

Finally, since ηj (G1) ≥ ηl (G1), δj (H0) ≥ δl (H0) and Θij = Θkl, it follows from A.2(a) and A.3(a) that:

Θijw
(
ηj (G1) + 1

)
− c (δj (H0)) ≥ Θklw (ηl (G1) + 1)− c (δl (H0))

Therefore:

πi (G1 + gij ,H0 ⊕ hij)− πi (G1,H0) ≥ πk (G1 + gkl,H0 ⊕ hkl)− πk (G1,H0)
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The verification for agents j and l is identical. �

Proof of Proposition 4: The proof is provided in the main text. �

Proof of Proposition 5:
a. We have proved in Proposition 3 that G1 has an NSG architecture in each cluster. Now suppose this is

true for Gr, r ≥ 2. We will prove it for Gr+1 by contradiction. Suppose there exists a cluster Cα (H0) with

agents i and j such that ηi (Gr+1) ≤ ηj (Gr+1) but Ni (Gr+1) * Nj (Gr+1). In particular, there exists an

agent k ∈ Cα (H0) such that k ∈ Ni (Gr+1) \Nj (Gr+1). Since Cα (H0) has an NSG structure in Gr, and

Gr ⊆ Gr+1, the link gik = 1 must have been added when link formation was occurring in Gr+1. Thus,

ηi (Gr) < ηj (Gr). Recalling Proposition 3 which demonstrated that degree is positively correlated with

friendship, it follows that δi ≤ δj . Now suppose the network is Gr+1 (κ) when the link gik = 1 is formed

in Gr+1. There are two possible cases.

Case I: Suppose i was the active agent and k acquiesced as the passive agent. Then, in some subsequent
state (Gr+1 (κ′) ,Hr, k), i.e., when k is the active agent, then k will have a mutually profitable link with j.

πk
(
Gr+1

(
κ′
)

+ gkj ,Hr

)
− πk

(
Gr+1

(
κ′
)
,Hr

)
= ∆v

(
ηk
(
Gr+1

(
κ′
)))

+
[
w
(
ηj
(
Gr+1

(
κ′
))

+ 1
)
− c (δj)

]
From A.2(b):

∆v
(
ηk
(
Gr+1

(
κ′
)))
≥ ∆v (ηk (Gr+1 (κ)))

and, since ηi (Gr) < ηj (Gr+1 (κ′)), from A.2(a) and A.3(a):

w
(
ηj
(
Gr+1

(
κ′
))

+ 1
)
− c (δj) > w (ηi (Gr) + 1)− c (δi)

Therefore:

πk
(
Gr+1

(
κ′
)

+ gkj ,Hr

)
− πk

(
Gr+1

(
κ′
)
,Hr

)
> ∆v (ηk (Gr+1 (κ))) + w (ηi (Gr) + 1)− c (δi) ≥ 0

where the second strict inequality follows from the fact that agent k had acquiesced to a link with i when

the network was Gr+1 (κ). Agent j will reciprocate because:

πj
(
Gr+1

(
κ′
)

+ gkj ,Hr

)
− πj

(
Gr+1

(
κ′
)
,Hr

)
= ∆v

(
ηj
(
Gr+1

(
κ′
)))

+
[
w
(
ηk
(
Gr+1

(
κ′
))

+ 1
)
− c (δk)

]
> ∆v (ηi (Gr)) + [w (ηk (Gr+1 (κ)) + 1)− c (δk)] > 0

where the last strict inequality follows since i had proposed a link to k in Gr+1 (κ). Therefore, it cannot

be the case that when all profitable opportunities have been exhausted in Gr+1 then agents k and j will

remain unlinked.

Case II: Suppose k was the active agent when the network was Gr+1 (κ). Then, according to the link
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formation protocol, k would have proposed a link with agent j rather than i because:

πk (Gr+1 (κ) + gkj ,Hr)− πk (Gr+1 (κ) ,Hr) = ∆v (ηk (Gr+1 (κ))) +
[
w
(
ηj (Gr+1 (κ)) + 1

)
− c (δj)

]
> ∆v (ηk (Gr+1 (κ))) + [w (ηi (Gr) + 1)− c (δi)]

and once again agent j will accept the proposal. Therefore, once again we have a contradiction.

It follows that each intra-cluster architecture in Gr+1 will have an NSG architecture. Since G∗ is reached

in a finite number of steps, it follows that the result also holds for G∗.

b. Let i ∈ Cα (H0) ∩∆α
l (H∗) and j ∈ Cα′ (H0) ∩∆α′

l′ (H∗). Let H∗−α,α′ denote the affi nity network H
∗ in

which there is no friendly link between clusters Cα (H0) and Cα′ (H0). There are two possible cases:

Case I: Suppose i and j incurred the cost τ of transforming their affi nity relationship allowing all other
agents in the two clusters to free ride on the friendly path they have created. Following the same argument

as Lemma 1, for any k1 ∈ Cα (H0) \{i} and k2 ∈ Cα′ (H0) \{j}:

πk1
(
G∗,H∗−α,α′ ⊕ hk1k2

)
− πk1

(
G∗ − gk1k2 ,H∗−α,α′

)
≥ πi

(
G∗,H∗−α,α′ ⊕ hij

)
− πi

(
G∗ − gij ,H∗−α,α′

)
≥ 0

πk2
(
G∗,H∗−α,α′ ⊕ hk1k2

)
− πk2

(
G∗ − gk1k2 ,H∗−α,α′

)
≥ πj

(
G∗,H∗−α,α′ ⊕ hij

)
− πj

(
G∗ − gij ,H∗−α,α′

)
≥ 0

where at least one of the last inequality in each case is strictly positive. Since k1 and k2 free ride, it follows

that:

πk1 (G∗,H∗)− πk1 (G∗ − gk1k2 ,H∗) > πk1
(
G∗,H∗−α,α′ ⊕ hk1k2

)
− πk1

(
G∗ − gk1k2 ,H∗−α,α′

)
> 0

πk2 (G∗,H∗)− πk2 (G∗ − gk1k2 ,H∗) > πk2
(
G∗,H∗−α,α′ ⊕ hk1k2

)
− πk2

(
G∗ − gk1k2 ,H∗−α,α′

)
> 0

and the result follows.

Case II: Suppose a pair of agents, where at least one agent differs from i or j, were the ones transforming

their affi nity relationship. Call this pair of agents transforming their affi nity relationship as ĩ ∈ Cα (H0) ∩
∆α
s (H∗) and j̃ ∈ Cα (H0)∩∆α′

s′ (H∗), where s ≥ l and s′ ≥ l′. Following the same argument as that in Case
I, all agents with friendship measures greater than or equal to those of ĩ and j̃ will also have an incentive

to form an alliance. Now consider agents i and j from the statement of the proposition. These two agents

will free ride on the friendly link created by ĩ and j̃ and have a profitable alliance by hypothesis. Thus,

for any two agents k1 and k2 whose friendship measures are greater than or equal to those of i and j and

who also free ride, we have:

πk1 (G∗,H∗)− πk1 (G∗ − gk1k2 ,H∗) ≥ πi (G∗,H∗)− πi (G∗ − gij ,H∗) ≥ 0

πk2 (G∗,H∗)− πk2 (G∗ − gk1k2 ,H∗) ≥ πj (G∗,H∗)− πj (G∗ − gij ,H∗) ≥ 0

where at least one of the last inequality in each case is strictly positive. This proves the result. �
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Proof of Proposition 6: The proof follows from the definition of the threshold value, Θαα′ (G
∗,H∗). �

Proof of Proposition 7: To save space, we will suppress reference to H0.

(Existence): We first establish existence. Recall that all alliances are formed within clusters. Consider the

network in which each cluster Cα is complete, i.e., all agents in each cluster are mutually interconnected.
Denote this network as Gc. If it is an equilibrium, then we are done. Otherwise, there exists a coalition

S′ and a network G′ that can be obtained from Gc by S′ such that πi(G′) > πi(G
c) for all i ∈ S′. Since

all alliances are intra-cluster, it implies that S′ ⊂ Cα for some cluster Cα. Specifically:

πi(G
′) =

[
v
(
ηi
(
G′
))
− c0 (δi)

]
+

∑
j∈Ni(G′)

[
w
(
ηj
(
G′
))
− c (δj)

]
> πi(G

c), i ∈ S′

Since no new links could be added in Gc, the deviation must involve members in S′ deleting their links.

This implies in particular that in the cluster Cα:

∆v (|Cα| − 2) + [w (|Cα| − 1)− c (δj)] < 0, i ∈ S′, j ∈ Ni(G
c)\Ni(G

′) (31)

If G′ is an equilibrium, then we are done. Otherwise, there exists a coalition S′′ that can obtain a network

G′′ in which each member is strictly better off. We claim that this movement from G′ to G′′ can only

involve a deletion of links. Suppose to the contrary that the movement from G′ to G′′ involves addition of

links and let S′ ∩ S′′ denote the non-empty subset of agents who are involved in forming alliances, either
among themselves or with others in S′′\S′ in the move from G′ to G′′. Note that this intersection cannot

be empty because firms in Cα\S′ are completely connected among themselves; thus a member of S′ has to
be involved if new links are created starting from G′. Consider any i ∈ S′ ∩ S′′. Since i was completely
connected in Gc, and deleted links in the move to G′, any new alliance that it forms in the move to

G′′ must be with some agent j ∈ Ni(G
c)\Ni(G

′) with whom it earlier dissolved an alliance. Since the

deviation to G′′ is strictly profitable:

∆v
(
ηi
(
G′′
)
− 1
)

+
[
ηj
(
G′′
)
− c (δj)

]
> 0 (32)

However, ηi (G′′)− 1 ≤ |Cα| − 2 and ηj (G′′) ≤ |Cα| − 1. Therefore, using A.2(a), (31) and (32):

0 < ∆v
(
ηi
(
G′′
)
− 1
)

+
[
w
(
ηj
(
G′′
))
− c (δj)

]
≤ ∆v (|Cα| − 2) + [w (|Cα| − 1)− c (δj)] < 0

a contradiction. Thus, the move from G′ to G′′ involves only deletion of links by agents. If G′′ is an

equilibrium then we are done, otherwise another coalition could profitably deviate by further deleting

links. Since the number of networks are finite, this process of deletion will eventually converge to some

G 6= Ge or to Ge from which no coalition can gain through additional deletions. The same argument as

the one above establishes that no new links will be formed either. Thus this limit network is an equilibrium

network.

(Proof that δj ≥ δi implies Ni(G) ⊆ Nj(G)) Suppose to the contrary that Ni(G)\Nj(G) 6= ∅ in an
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equilibrium network G. Index the agents such that:

1, 2, ..., L ∈ Ni(G)\Nj(G)

L+ 1, L+ 2, ...L′ ∈ Ni(G) ∩Nj(G)

L′ + 1, L′ + 2, ..., L′′ ∈ Nj(G)\Ni(G)

Let G′ = G −
∑L

l=1 gil denote the network in which agent i has deleted all the links in Ni(G)\Nj(G).

Since agent i has no incentive to delete any subset of links:

πi(G)−πi(G′) =
[
v (ηi (G))− v

(
ηi
(
G′
))]

+
L∑
l=1

[w (ηl (G))− c (δl)]+
L′∑

l=L+1

[
w (ηl (G))− w

(
ηl
(
G′
))]
≥ 0

Now consider the coalition S = {j} ∪Ni(G)\Nj(G) and let G′′ = G′ +
∑L

l=1 gjl denote the network in

which each agent l ∈ Ni(G)\Nj(G) deletes its alliance with i and forms an alliance with j. Note that

ηl (G
′′) = ηl (G) = ηl (G

′) + 1 for l ∈ Ni(G)\Nj(G). Further, ηi (G′) = ηj (G) and ηi (G) = ηj (G′′). For

agent j:

πj(G
′′)− πj(G) =

[
v
(
ηj
(
G′′
))
− v

(
ηj (G)

)]
+

L∑
l=1

[w (ηl (G))− c (δl)]

+

L′∑
l=L+1

[
w
(
ηl
(
G′′
))
− w (ηl (G))

]
+

L′′∑
l=L′+1

[
w
(
ηl
(
G′′
))
− w (ηl (G))

]
Comparing terms, it follows that πj(G′′)−πj(G) > πi(G)−πi(G′) ≥ 0. Therefore j has a strict incentive

to form links with all agents in Ni(G)\Nj(G) and move from network G to G′′. We now show that each

agent l in Ni(G)\Nj(G) has a strict incentive to reciprocate the alliance with j. From the equilibrium

property of G, l will not delete the link with i:

πl(G)− πl(G− gil) = [v (ηl (G))− v (ηl (G− gil))] + [w (ηi (G))− c (δi)] ≥ 0

By forming an alliance with j by joining the coalition S:

πl(G
′′)− πl(G) =

[
v
(
ηl
(
G′′
))
− v (ηl (G))

]
+
[
w
(
ηj
(
G′′
))
− c (δj)

]
From A.2(b), v (ηl (G

′′)) − v (ηl (G)) > (ηl (G)) − v (ηl (G
′)). Further, from A.3(a), c (δj) ≤ c (δi) since

δj ≥ δi. Finally, w (ηi (G)) = w
(
ηj (G′′)

)
since ηi (G) = ηj (G′′). Therefore, πl(G′′) − πl(G) > 0.

Therefore, given the network G, we have identified a coalition S, and a network G′′ that can be obtained

from G, such that all agents in S are strictly better off. This contradicts the starting hypothesis that G

is an equilibrium network.

(NSG characterization) The method of proof differs from that in Propositions 2 and 3 which depended

on the specifics of the link formation game. Dropping reference to H0, consider the cluster Cα. To
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avoid trivialities, assume no agent is isolated in G. Let ∆αCα = {∆α
1 , ..,∆

α
r , ..,∆

α
s } denote the friendship

partition and Dα(G) = {Dα
0 (G), Dα

1 (G), ..., Dα
m(G)} denote the degree partition of agents belonging to Cα.

Consider i ∈ ∆α
s and note that δi ≥ δj for all j ∈ Cα\{i}. Thus, Nj (G) ⊆ Ni (G) for all j ∈ Cα\{i} implies

∪j 6=iNj (G) ⊆ Ni (G). Since there are no isolated agents, it follows that agents in ∆α
s are connected to all

agents in Cα and thus ∆α
s ⊆ Dα

m(G). Now consider an agent i ∈ ∆α
1 . Since δi ≤ δj for all j ∈ Cα\{i}, it

follows thatNi (G) ⊆ Nj (G). We now claim thatNi (G) = Dα
m(G). Suppose k /∈ Dα

m(G) but k ∈ Ni (G).

Then, k ∈ Ni (G) ⊆ Nj (G) for all j ∈ Cα\{i}. Therefore, k ∈ Dα
m(G), a contradiction. It also follows

that ∆α
1 ⊆ Dα

1 (G) establishing that the characterization of Proposition 2 holds.

We now turn to the intermediate elements of the degree partition Dα(G). Let l1, l2, ..., lm denote agents

from Dα
1 (G), Dα

2 (G), ..., Dα
m(G) respectively who have the lowest friendship measure in their set. Consider

l2 ∈ Dα
2 (G) and note that Dα

m(G) ⊂ Nl2(G). It is a proper subset because we have already established that

Dα
m(G) is also the neighborhood for agents inDα

1 (G) and l2 has strictly more alliances than those inDα
1 (G).

We now argue that the additional alliances of l2 must be with agents in Dα
m−1(G). Suppose to the contrary

that k ∈ Nl2(G) but k /∈ Dα
m−1(G)∪Dα

m(G). Then, ηk (G) < ηlm−1 (G). Since δl2 ≤ δl3 ≤ ·· ≤ δlm−1 ≤ δlm ,
we have k ∈ Nl2(G) ⊆ Nl3(G) ⊆ · · · ⊆ Nlm(G). Therefore, Nk(G) = Dα

2 (G) ∪ Dα
3 (G) ∪ · · ∪Dα

m(G).

We have already proved that Nlm−1(G) ∩ Dα
1 (G) = ∅ and, therefore, Nlm−1(G) ⊆ Dα

2 (G) ∪ Dα
3 (G) ∪ · ·

∪Dα
m(G) = Nk(G). Thus, ηk (G) ≥ ηlm−1 (G), a contradiction to ηk (G) < ηlm−1 (G). nlm−1(g) ≤ nk(g),

a contradiction. Therefore, Nl2(G) = Dα
m−1(G)∪Dα

m(G) for l2 ∈ Dα
2 (G). Continuing inductively, for any

i ∈ Dα
x+1(G), 1 ≤ x <

⌊
m
2

⌋
, Ni(G) = Dα

m−x(G) ∪ Dα
m−x+1(G) ∪ · · · ∪ Dα

m−1(G) ∪ Dα
m(G), and for any

j ∈ Dα
m−x(G), Nj(G) = Dα

x+1(G) ∪Dα
x+2(G) ∪ · · · ∪Dα

m−1(G) ∪Dα
m(G). This proves the NSG property.

�

Proof of Proposition 8: It will be convenient to let:

∆ψ
(
η, η′

)
= ψ

(
η + 1, η′

)
− ψ

(
η, η′

)
Agents i and j have a mutually profitable link in G. Noting that j /∈ Ni (G), and dropping reference to

G to simplify the notation:∑
l∈Ni(G)

∆ψ (ηi, ηl) +
[
ψ
(
ηi + 1, ηj + 1

)
− c

(
δj , ηj + 1

)]
≥ 0 (33)

∑
l∈Nj(G)

∆ψ
(
ηj , ηl

)
+
[
ψ
(
ηj + 1, ηi + 1

)
− c (δi, ηi + 1)

]
≥ 0 (34)

and at least one of the inequalities is strict. Letting η′l denote the degree of agent l in G
′ ⊇ G (where once

again reference to the network G′ is dropped), η′l ≥ ηl for all l ∈ N . The incremental payoffs to agents k
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and j respectively from forming a link in G′ is equal to:∑
l∈Nk(G′)

∆ψ
(
η′k, η

′
l

)
+
[
ψ
(
η′k + 1, η′j + 1

)
− c

(
δj , η

′
j + 1

)]
(35)

∑
l∈Nj(G′)

∆ψ
(
η′j , η

′
l

)
+
[
ψ
(
η′j + 1, η′k + 1

)
− c

(
δk, η

′
k + 1

)]
(36)

Note that Ni (G) ⊆ Nk (G′) and Nj (G) ⊆ Nj (G′). For all l ∈ Ni (G), since η′k ≥ ηi, it follows

from respectively parts (b) and (d) of A.2∗ that ∆ψ (η′k, η
′
l) ≥ ∆ψ (ηi, η

′
l) ≥ ∆ψ (ηi, ηl). Further, from

A.2∗(a), ψ
(
η′k + 1, η′j + 1

)
≥ ψ

(
ηi + 1, η′j + 1

)
≥ ψ

(
ηi + 1, ηj + 1

)
. Further, since η′j ≥ ηj , from A.3∗(a),

c
(
δj , η

′
j + 1

)
≤ c

(
δj , ηj + 1

)
. Therefore, each term in (35) dominates the corresponding term in (33).

Likewise, noting that δk ≥ δi, each term in (36) dominates the corresponding term in (34). This proves

the result. �

Proof of Lemma 1 for the Non-separable Case: Dropping reference to G1, we will let ηi = ηi (G1)

and ηi + 1 = ηi (G1 + gij). Then, πi (G1 + gij ,H0 ⊕ hij)− πi (G1,H0) is equal to:∑
h∈Ni(G1)

∆ψ (ηi, ηh) + [c (δi, ηi)− c (δi + 1, ηi + 1)] +
[
Θijψ

(
ηi + 1, ηj + 1

)
− c

(
δj ,ηj + 1

)]
Similarly, πk (G1 + gkl,H0 ⊕ hkl)− πk (G1,H0) is equal to:∑

h∈Nk(G1)

∆ψ (ηk, ηh) + [c (δk, ηk)− c (δk + 1, ηk + 1)] + [Θklψ (ηk + 1, ηl + 1)− c (δl,ηl + 1)]

Since there is an NSG structure within each cluster with degree positively related to friendship, Nk (G1) ⊆
Ni (G1) and thus ηi ≥ ηk. It follows from parts (b) and (c) respectively of A.2∗ that:∑

h∈Ni(G1)\{k}
∆ψ (ηi, ηh) + ∆ψ (ηi, ηk) ≥

∑
h∈Nk(G1)\{i}

∆ψ (ηk, ηh) + ∆ψ (ηk, ηi)

Since i ∈ Cα (H0) ∩∆α
s (H0), it is true that δi ≥ δk. Combining with ηi ≥ ηk, it follows that:

c (δk + 1, ηi + 1)− c (δi + 1, ηi + 1) ≥ c (δk + 1, ηi)− c (δi + 1, ηi) ≥ c (δk, ηi)− c (δi, ηi)

where the first and second inequalities follow respectively from parts (d) and (b) of A.3∗. Rearranging the

terms:

c (δi, ηi)− c (δi + 1, ηi + 1) ≥ c (δk, ηi)− c (δk + 1, ηi + 1) (37)

Further, note that:

c (δk + 1, ηk + 1)− c (δk + 1, ηi + 1) ≥ c (δk, ηk + 1)− c (δk, ηi + 1) ≥ c (δk, ηk)− c (δk, ηi)

where the first and second inequalities follow respectively from parts (d) and (c) of A.3∗. Rearranging the
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terms:

c (δk, ηi)− c (δk + 1, ηi + 1) ≥ c (δk, ηk)− c (δk + 1, ηk + 1) (38)

From (37) and (38), it follows that:

c (δi, ηi)− c (δi + 1, ηi + 1) ≥ c (δk, ηk)− c (δk + 1, ηk + 1)

Finally, note that Θkl = Θij , ηj ≥ ηl and δj ≥ δl. Therefore, from A.2∗(a):

ψ
(
ηi + 1, ηj + 1

)
≥ ψ

(
ηk + 1, ηj + 1

)
≥ ψ (ηk + 1, ηl + 1)

and from A.3∗(a):

c
(
δj ,ηj + 1

)
≤ c

(
δl,ηj + 1

)
≤ c (δl,ηl + 1)

It follows that:

πi (G1 + gij ,H0 ⊕ hij)− πi (G1,H0) ≥ πk (G1 + gkl,H0 ⊕ hkl)− πk (G1,H0)

The verification for agents j and l is identical. �
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