
Valuing Prearranged Paired Kidney Exchanges: A Stochastic Game Approach

Valuing Prearranged Paired Kidney Exchanges:
A Stochastic Game Approach

Murat Kurt {muk7@pitt.edu}
Department of Industrial Engineering, University of Pittsburgh, Pittsburgh, PA 15261

Mark S. Roberts {mroberts@pitt.edu}
Department of Health Policy and Management, University of Pittsburgh, Pittsburgh, PA 15261

Andrew J. Schaefer {schaefer@ie.pitt.edu}
Department of Industrial Engineering, University of Pittsburgh, Pittsburgh, PA 15261
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Abstract

End-stage renal disease (ESRD) is the ninth-leading cause of death in the U.S. Transplantation is
the most viable renal replacement therapy for ESRD patients, but there is a severe disparity between
the demand for kidneys for transplantation and the supply. This shortage is further complicated by
incompatibilities in blood-type and antigen matching between patient-donor pairs. Paired kidney ex-
change (PKE), a cross-exchange of kidneys among incompatible patient-donor pairs, overcomes many
di�culties in matching patients with incompatible donors. In a typical PKE, transplantation surgeries
take place simultaneously so that no donor may renege after her intended recipient receives the kid-
ney. Therefore, in a PKE, the occurrence of a transplantation requires compatibility among the pairs’
willingnesses to exchange. We consider an arbitrary number of autonomous patients with probabilisti-
cally evolving health statuses in a prearranged PKE, and model their transplant timing decisions as a
discrete-time non-zero-sum noncooperative stochastic game. We explore necessary and su�cient con-
ditions for patients’ decisions to be a stationary-perfect equilibrium, and formulate a mixed-integer
linear programming representation of equilibrium constraints, which provides a characterization of
the socially optimal stationary-perfect equilibria. We carefully calibrate our model using a large scale
nationally representative clinical data, and empirically confirm that randomized strategies, which are
less consistent with clinical practice and rationality of the patients, do not yield a significant social
welfare gain over pure strategies. We also quantify the social welfare loss due to patient autonomy and
demonstrate that maximizing the number of transplants may be undesirable. Our results highlight
the importance of the timing of an exchange and the disease severity on matching patient-donor pairs.

Keywords: medical decision making, paired kidney exchange, game theory, Markov decision processes,
integer programming

1. Introduction

End-stage renal disease (ESRD) typically occurs when the kidneys’ functionality is less than
10 % of normal [28]. More than 500,000 Americans have ESRD and the size of this population is
expected to grow to 2.24 million by 2030 [54, 56].
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There are two viable treatment alternatives for ESRD patients: Dialysis and transplantation.
Due to insu�cient supply of kidneys for transplantation dialysis is a common intermediary step.
However, transplantation is the preferred choice of treatment as it provides improved long-term survival
rates and a higher quality of life than dialysis [23, 60, 61]. In the U.S., an ESRD patient must join
a waiting list administered by the United Network for Organ Sharing (UNOS) to be eligible for a
cadaveric kidney transplantation. Because people can function normally on only one kidney, it is
also possible for an ESRD patient to receive a kidney from a living-donor, and transplants from
such donors generally yield better survival outcomes than those from cadaveric donors [17, 55]. Over
93,000 patients in the U.S. are currently awaiting a kidney transplant, but in 2010, only 15,430 patients
received transplants, 5,700 of which were from living-donors [58].

Blood type and human leukocyte antigen (HLA) incompatibilities are the two main factors that
make kidneys di�cult to match, and due to such di�culties new clinical strategies have been proposed
to alleviate the shortage of kidneys [26, 30, 42, 63]. A paired kidney exchange (PKE) is a cross-
exchange of kidneys among incompatible patient-donor pairs (see Figure 1 for an illustration). PKEs
typically reduce the waiting time for transplantation as well as the length of dialytic therapy, thereby
reducing healthcare costs and productivity losses [24, 25, 43, 44]. PKEs have grown rapidly over
the last two decades to overcome the di�culties in matching kidneys [46], and it has been estimated
that they can raise the number of transplants up to 90 % [38]. The significant potential of PKEs
[36, 46, 47] has also led to the establishment of several regional kidney exchange clearinghouses in the
U.S. that expand the pool of living-donors by organizing the registry of patients and donors [5, 29, 57].

Patient 1 Patient 2
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Figure 1: An illustration of a two-way
kidney exchange. The donors are incom-
patible with their intended recipients,
but Donor 1 is compatible with Patient 2
and Donor 2 is compatible with Patient
1.

PKEs have been on the focus of several studies, and
mainly analyzed as a matching and/or a mechanism de-
sign problem [1, 35, 37, 59]. There have also been var-
ious e↵orts in the medical literature to weigh the rel-
ative merits and shortcomings of current PKE practice
[11, 15, 16, 27, 36, 39, 40, 43, 45]. The Operations Re-
search literature on modeling organ allocation decisions can
be classified in three main strands. Research from an in-
dividual patient’s perspective focuses on how an individual
patient should act within a given organ allocation scheme
[3, 4, 8, 21, 22, 41]. Research from the social perspective
seeks organ allocation schemes to maximize one or more
social objectives [9, 10, 33, 64, 65, 66, 67]. Lastly, the joint
perspective recognizes possibly conflicting interests of the
society and individual patients, but there has not been any
discussion of the timing of transplantation among the pairs
who have been already matched [51, 52, 53]. Also, in almost all PKEs, all exchange surgeries take
place simultaneously, so that no donor may renege after her intended recipient receives the kidney
[32, 34]. For this reason, in a PKE, the occurrence of a transplantation requires compatibility among
the pairs’ willingnesses to exchange and existing optimal organ transplantation timing models in the
literature do not apply in this context.

While potential kidney exchanges have been formulated as finding matchings in a graph [37]
there has not been any emphasis of the timing of transplantation and the e↵ects of disease severity
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on patients’ decisions. In this paper, we consider an arbitrarily sized group of matched incompatible
patient-donor pairs for whom the only feasible exchange of kidneys is a cyclic exchange. Because
the patients’ health statuses are dynamic, and transplantation surgeries take place simultaneously, we
model the patients’ transplant timing decisions as a noncooperative stochastic game. In Section 2, we
present the stochastic game formulation for which we present our equilibrium analyses in Section 3.
In Section 4, we gain insights by illustrating our model with real clinical data for a large, nationally
representative cohort. Finally, in Section 5 we conclude the paper by highlights.

2. Model Formulation

We consider N � 2 self-interested patient-donor pairs where Patient i is compatible for an
exchange with Donor i+1 for i = 1, 2, ..., N�1 and Patient N is compatible with Donor 1. Periodically,
each patient must decide whether to o↵er to exchange or wait, as her health evolves stochastically,
and an exchange occurs only if all patients o↵er to exchange. After making the decision, each patient
receives a reward that depends on her current health status. If an exchange occurs, each patient
receives a lump-sum terminal reward (e.g. quality-adjusted post-transplant survival) and terminates
the process; otherwise, she accrues an intermediate reward and revisits the same decision subsequently.
We assume the kidney quality of each donor is static over time and that once a patient dies, her donor
will not donate her kidney, rendering an exchange for the other patients infeasible. Furthermore, if a
patient dies prior to an exchange, the other patients will never receive a transplant.

We consider an infinite decision horizon with discrete, equidistant time periods (e.g. daily or
weekly) and model the transplant timing decisions that patients face in such a prearranged PKE
as a non-zero-sum stochastic game, G. We represent the set of patients in the exchange cycle by
N =

�
1, 2, ..., N

 
, and for any Patient i 2 N , we let N�i = N \

�
i
 
. Also, when N = {1, 2}, for

i 2 N , we let subscript �i refer to j, where j 2 N \ {i}. We describe the components of game G, all
of which are assumed to be completely observable by each patient, as follows:

States: The state of the system is an ordered N -tuple of the patients’ individual health states,
s = (s1, s2, ..., sN ) 2 S , where for each i 2 N , si 2 ⌦ denotes the health state of Patient i, ⌦ =
{1, ..., S} (with S < 1) refers to the set of health states for each individual patient, and S = ⌦N

is the system’s state space. For any patient i 2 N , si = S refers to the (absorbing) death state and
� = ⌦ \ {S} represents the set of living states. We denote the set of states in which at least one of
the patients is dead by D = S \ �N .

Strategies: Non-zero-sum stochastic games typically admit a large number of equilibria in non-
stationary strategies, which may be hard to implement in practice due to their time-nonhomogeneous
structure. Stationary strategies can restrict patients’ dynamic interactions by constraining each of
them to choose her actions in a time-independent manner, and are more consistent with clinical
practice.

When Patient i follows strategy ai =
⇥
ai(s)

⇤
s2S

, ai(s) 2 [0, 1] refers to the probability that
she o↵ers to exchange whenever the game occupies state s 2 S . For any Patient i 2 N , given the
combination of the other patients’ strategies a�i =

�
aj
 

j2N�i
, we let A = (ai,a�i) represent the

resulting strategy profile. Also, for a strategy profile (ai,a�i) we let (a0i,a�i) denote the strategy
profile that results from replacing ai by a strategy a0i.

Rewards: We define ui(s, 0) to be the immediate reward of Patient i (e.g quality-adjusted life
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days or weeks) accrued in state s 2 S given an exchange does not occur. We also define ui(s, 1) as the
expected post-transplant reward (e.g. expected quality-adjusted post-transplant survival) of Patient
i 2 N given an exchange occurs in s 2 S . Note that for each patient i 2 N and state s 2 S ,
ui(s, 1) is a one-time lump-sum reward, where for each i 2 N , ui(s, 1) = 0 for all s 2 D as there is
no possibility for an exchange in such states for the surviving patients. We assume that each patient
i 2 N discounts her future rewards by a factor �i 2 (0, 1).

Probabilities: The state of the system evolves stochastically until an exchange occurs, or at
least one of the patients dies, whichever occurs sooner, where each patient’s health evolves according
to a discrete-time finite-state Markov chain independent of the others’. Given an exchange does not
occur in state s = (s1, s2, ..., sN ) 2 S , the system moves to state s0 = (s01, s02, ..., s0N ) 2 S with
probability P(s0|s) =

Q
i2N Pi(s0i|si), where Pi(s0i|si) denotes the probability that Patient i 2 N will

be in health state s0i 2 ⌦ at epoch t + 1 given she is in state si 2 ⌦ at epoch t.
In the remainder of the paper, we let the terms in bold refer to a real-valued hypermatrix, i.e.,

v refers to the hypermatrix
⇥
v(s)

⇤
s2S

. For convenience, for each patient i 2 N , given a real-valued
hypermatrix v and state s 2 S , we let Fi(s,v) = ui(s, 0)+�i

P
s02S

P(s0|s)v(s0). We interpret Fi(s,v)
as the total expected discounted reward of Patient i given an exchange does not occur starting in state
s 2 S and the underlying strategy profile induces v as her expected rewards.

We let gi(s,ai,a�i) represent the total expected discounted payo↵ (e.g. total discounted quality-
adjusted life expectancy) for Patient i 2 N starting in state s 2 S under strategy profile A. Note
that under strategy profile A, an exchange occurs in state s 2 S with probability

Q
j2N aj(s). Then,

because Fi
�
s,gi(ai,a�i)

�
represents the expected future reward of Patient i given an exchange does

not occur immediately when the system starts in state s under strategy profile (ai,a�i), the payo↵s
are recursively defined as follows:

gi(s,ai,a�i) = ui(s, 1)
Y

j2N
aj(s) +

0

@1�
Y

j2N
aj(s)

1

AFi
�
s,gi(ai,a�i)

�
for s 2 S , i 2 N . (1)

We assume that game G is of perfect recall so that each patient has a perfect memory of her
previous actions and those of all other patients. Furthermore, each patient is assumed to behave
rationally only for her self-interest during the course of the game. In the rest of the paper, we
represent componentwise relations between given two hypermatrices in matrix notation. For instance,
given v1 and v2, v1 = v2 refers to v1(s) = v2(s) for all s 2 S .

3. Equilibrium Analysis

In this section, we provide an extensive equilibrium analysis of game G. Nash equilibrium is
the most commonly used solution concept to analyze the outcomes of noncooperative games [14]. In
our context, in a Nash equilibrium, no patient may gain by changing her own strategy unilaterally.
Because our focus is on stationary strategies, our analyses involve only Nash equilibria that are in
stationary strategies, known as stationary equilibria. A strategy profile A is a stationary equilibrium
of game G if for all i 2 N :

gi(ai,a�i) � gi(a0i,a�i) for all a0i. (2)

Note that a strategy profile satisfying (2) is a Nash equilibrium of game G independent from the initial
state of the game, i.e., neither of the patients can be better o↵ in any state s 2 S by only changing
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her strategy unilaterally. Therefore, strategy profiles satisfying (2) are also known as stationary-
perfect equilibria in the economics literature. In the remainder of the paper, unless otherwise stated,
we let the terms “strategy” and “equilibrium” refer to “stationary strategy” and “stationary-perfect
equilibrium”, respectively.

Recall that an exchange can occur in state s 2 S only if all patients choose a positive probability
to o↵er to exchange. Therefore, a single patient can not a↵ect the outcome as long as one of the other
patients chooses to wait. As an intuitive consequence, Theorem 1 provides necessary and su�cient
conditions for a strategy profile to be an equilibrium of game G.

Theorem 1 : A strategy profile A is an equilibrium of game G if and only if for all s 2 S and i 2 N :

gi(s,ai,a�i) = max
⇢

Fi
�
s,gi(ai,a�i)

�
,

ui(s, 1)
Y

j2N�i

aj(s) +
✓

1�
Y

j2N�i

aj(s)
◆

Fi
�
s,gi(ai,a�i)

��
. (3)

Because Nash equilibria are immune only to unilateral deviations, game G may admit a large
number of pathological equilibria that make little clinical sense. For instance, by Theorem 1, any
strategy profile under which at least two arbitrary, but not necessarily the same, patients o↵er to
exchange with probability 0 in every state s 2 S denotes an equilibrium of game G. Furthermore,
as di↵erent equilibria may imply di↵erent payo↵ outcomes, due to vast multiplicity of equilibria that
game G can admit, a complete characterization of such equilibria is computationally prohibitive. As
such, we consider equilibrium selection and motivate the following question: Given the game starts
in state bs 2 S , which equilibrium maximizes the social welfare, i.e., the sum of the patients’ total
expected payo↵s? Specifically, we let � denote the set of equilibria of game G, and are interested in
the equilibria of game G that represents an optimal solution to: maxA2�

⇥P
i2N gi(bs,ai,a�i)

⇤
. In the

remainder of the paper, we will refer to a social welfare maximizing equilibrium a “socially optimal
equilibrium”.

Equilibria of non-zero-sum discounted stochastic games with finite state and/or action spaces
can be characterized by mathematical programs. The problem of computing an equilibrium of a
finite discounted stochastic game is equivalent to finding the global optima of a nonlinear program
with linear constraints [7, 12, 13]. The computation of the global optima of such mathematical
programs requires the construction of algorithms that are free of convergence problems [6, 19, 20, 31].
However, for general non-zero-sum discounted stochastic games there is no known way of selecting a
best equilibrium with respect to a given optimality criteria, short of enumeration. Therefore, from
an algorithmic point of view our equilibrium selection requires a deeper exploration of the underlying
model structure.

Lemma 1 (i) states that in an equilibrium, an exchange can not occur in a particular state s 2 S

as long as there are some patients who are strictly better o↵ waiting in that state. Therefore, by Lemma
1 (ii), in an equilibrium, a patient strictly randomizes between waiting and o↵ering to exchange in
state s 2 S , only when she is indi↵erent between her expected post-transplant reward and expected
payo↵-to-go, and each of the other patients o↵ers to exchange with some positive probability in that
state. Note that by (1), statewise exchange occurrence probabilities su�ciently describe the payo↵
profile of a strategy profile, i.e., two di↵erent strategy profiles A and A0 induce the same payo↵
profile if

Q
j2N aj(s) =

Q
j2N a0j(s) for all s 2 S . Therefore, for any equilibrium we can construct
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an alternative equilibrium with an equivalent payo↵ profile in which there is no more than a single
patient who randomizes in any state s 2 S , which we formally state in Lemma 1 (iii). For a given
strategy profile A, for s 2 S , let Ys(A) =

�
i 2 N|ai(s) 2 (0, 1)

 
denote the set of patients that

randomize between waiting and o↵ering to exchange in state s.

Lemma 1 : Suppose A 2 �. Then:
(i) For any s 2 S , if max

i2N

⇥
gi(s,ai,a�i)� ui(s, 1)

⇤
> 0 then

Q
j2N aj(s) = 0.

(ii) For any s 2 S , if
Q

j2N aj(s) 2 (0, 1) then for any i 2 N , ai(s) 2 (0, 1) implies ui(s, 1) =
Fi
�
s,gi(ai,a�i)

�
.

(iii) There exists A0 2 � with gi(a0i,a
0
�i) = gi(ai,a�i) for all i 2 N and |Ys(A0)|  1 for all s 2 S .

Next, we will present a family of mixed-integer linear programming (MIP) models to choose
among equilibria. When there are two patients, these MIP models can find the socially optimal
randomized or pure equilibria. When there are three or more patients, these MIP models can find
the socially optimal pure equilibrium and provide an upper bound on the socially optimal randomized
equilibrium. As an aside, our MIP models can also optimize over other objectives that are linear
in the patients’ expected payo↵s. Our models require the set of hypermatrices

�
Vi
 

i2N , where for
each patient i 2 N , Vi(s) = max {ui(s, 1), Fi(s,Vi)} for s 2 S . The payo↵ matrix Vi represents the
optimal value function of Patient i when the autonomy of the other patients are suppressed over the
course of the game.

Lemma 2 : For any Patient i 2 N , Vi � gi(ai,a�i) for all A 2 �.

For the decision variables w =
�
wi
 

i2N , y =
�
yi
 

i2N and z, we consider the following set of
inequalities:

wi(s) � Fi(s,wi) 8s 2 S , i 2 N , (4a)

wi(s)  Fi(s,wi) + ui(s, 1)yi(s) 8s 2 S , i 2 N , (4b)

wi(s) � ui(s, 1)
⇥
yj(s)� yi(s)

⇤
8s 2 S , i 2 N , j 2 N�i, (4c)

wi(s) �

0

@1�N +
X

j2N
yj(s)

1

Aui(s, 1) 8s 2 S , i 2 N , (4d)

wi(s)  ui(s, 1)z(s) + Vi(s)
⇥
1� z(s)

⇤
8s 2 S , i 2 N , (4e)

z(s) � yi(s) 8s 2 S , i 2 N , (4f)

(N � 1)z(s) 
X

i2N
yi(s) 8s 2 S , (4g)

yi(s) 2 {0, 1} 8s 2 S , i 2 N , (4h)

z(s)  1 8s 2 S , (4i)

wi(s) � 0 8s 2 S , i 2 N . (4j)

We denote ⇤ :=
�
(w,y, z)|(4a) � (4j)

 
. Given a feasible solution (bw, by,bz) to ⇤, we interpret

the values of the variables as follows: The variable bw denotes a payo↵ profile, so that Fi(s, bwi) denotes
the expected payo↵-to-go for Patient i 2 N starting in state s 2 S . The variable by denotes statewise
randomization indicators, that is, in a particular state s 2 S , byi(s) = ` for all i 2 N means that the
exchange occurrence probability is equal to ` in that state. Otherwise, i.e., if byi(s) 6= byj(s) for some
i, j 2 N , then any Patient i 2 N with byi(s) = 1 o↵ers to exchange with probability 1 whereas any
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Patient j 2 N with byj(s) = 0 randomizes between waiting and o↵ering to exchange. The variable bz
enforces logical relationships among the byi variables for i 2 N .

Theorem 2 reveals the relationship between equilibria of game G and feasible solutions to ⇤. For
any equilibrium bA of game G, one can construct a feasible solution (bw, by,bz) to ⇤ from bA in which bw
represents the payo↵ profile of bA. As a special case, when there are two patient-donor pairs, for any
pair (bw, by,bz) satisfying (4a)-(4j) one can construct an equilibrium bA of game G from bw and by with
a payo↵ profile equivalent to bw. Note that for a feasible solution (bw, by,bz) to ⇤, while bw represents
the payo↵ profile of the equilibrium that (bw, by,bz) induces, as by involve only binary values, it may not
necessarily represent the strategies of the resulting equilibrium.

Theorem 2 : (i) For any bA 2 �, there exists (bw, by,bz) 2 ⇤ with bwi = gi(bai, ba�i) for all i 2 N .
(ii) For any bs 2 S , max

A2�

�P
i2N gi(bs,ai,a�i)

�
 max

(w,y,z)2⇤

�P
i2N wi(bs)

�
.

(iii) If N = 2, for any (bw, by,bz) 2 ⇤, there exists bA 2 � with bwi = gi(bai, ba�i) for both i 2 N .
(iv) If N = 2, then for any bs 2 S , max

A2�

�P
i2N gi(bs,ai,a�i)

�
= max

(w,y,z)2⇤

�P
i2N wi(bs)

�
.

As randomized strategies may involve the selection of statewise probability distributions over
waiting and o↵ering to exchange, pure strategies specify deterministic actions in each state and there-
fore have a more intuitive appeal to patients and physicians for clinical practice. Theorem 3 (i) derives
necessary and su�cient conditions for a strategy profile to be a pure equilibrium of game G. Theorem 3
(ii) draws on Theorem 2 (i) and Theorem 3 (i), and refines the set of solutions to the constraints (4a)-
(4j) to consider the issue of equilibrium selection within the class of pure equilibria. Then, Theorem 3
(iii) states that an optimal pure equilibrium with respect to a given criteria (which is linear in patients’
expected payo↵s) can be characterized as an optimal solution to this refinement. Lastly, Theorem 3
(iv) reveals the influence of patient autonomy on the payo↵s of a socially optimal equilibrium. It states
that in a socially optimal pure equilibrium, either an immediate exchange is optimal or at least one of
the patients benefits from delaying the exchange. In the remainder of the paper, we let ⇧ denote the
set of pure equilibria of game G, that is, ⇧ :=

�
A 2 �|ai(s) 2 {0, 1} for all s 2 S and i 2 N

 
. We

also let ⌥ :=
�
(w,y, z) 2 ⇤|yi+1 = yi for i 2 N�N

 
.

Theorem 3 : (i) A strategy profile A is a pure equilibrium of game G if and only if for all s 2 S

and i 2 N ,

ai(s) 2

8
>>>><

>>>>:

{1} if
Q

j2N�i
aj(s) = 1 and ui(s, 1) � Fi

�
s,gi(ai,a�i)

�

{0} if
Q

j2N�i
aj(s) = 1 and ui(s, 1) < Fi

�
s,gi(ai,a�i)

�

{0, 1} otherwise.

(5)

(ii) (bw, by,bz) 2 ⌥ if and only if there exists bA 2 ⇧ with bwi = gi(bai, ba�i) for all i 2 N .
(iii) Given ci(s) 2 R for all s 2 S and i 2 N :

max
A2⇧

0

@
X

s2S ,i2N
ci(s)gi(s,ai,a�i)

1

A = max
(w,y,z)2⌥

0

@
X

s2S ,i2N
ci(s)wi(s)

1

A .

(iv) Given bs 2 S , let A⇤ 2 arg max
A2⇧

⇥P
i2N gi(bs,ai,a�i)

⇤
. Then, either gi(bs,a⇤i ,a⇤�i) = ui(bs, 1) for all

i 2 N or max
i2N

⇥
gi(bs,a⇤i ,a⇤�i)� ui(bs, 1)

⇤
> 0.
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We can interpret (5) as follows. In a pure equilibrium of game G, for Patient i there are two
possible scenarios in each state s 2 S : If some of the other patients want to wait, then because the
decision of Patient i will not a↵ect the occurrence of the exchange, she is indi↵erent between waiting
and o↵ering to exchange. Otherwise, she o↵ers as well only if she benefits from the exchange.

4. Numerical Study

We illustrate our model using clinical data. As most of the social benefit is accrued by ex-
changes with three or fewer patients [38], we restrict our focus to two- and three-way exchanges.
For convenience and consistency on notation, we present results only from two-way exchanges and
describe results on three-way exchanges in the appendix. While maximizing the social objective, we
estimate the cost of restricting our attention to pure equilibria, rather than randomized equilibria.
After demonstrating that this cost appears to be negligible, we consider pure equilibria for the rest of
the experiments.

4.1 Data Sources and Parameter Estimation

In this section, we estimate the transition probabilities and post-transplant rewards based on
clinical data. There is a broad consensus among clinicians that glomerular filtration rate (GFR) is
the best measure of remaining pre-dialysis kidney functionality for ESRD patients. Although the
stages of ESRD are mainly based on measured or estimated GFR [28], it appears that no stochastic
model of pre-dialysis GFR progression has been described in the literature. We use GFR levels and
the patient’s dialysis status to represent her health. To build a Markovian progression of pre-dialysis
GFR levels, we use a data set from The Thomas E. Starzl Transplantation Institute at the University
of Pittsburgh Medical Center (UPMC), one of the largest transplantation centers nationwide. This set
provides detailed data on laboratory measurements for more than 60,000 ESRD patients, but due to
limited availability of data for some ethnicities, we focus our experiments to Caucasian and African-
American patients. We discretize the continuous range of GFR levels into 10 ranges, the boundaries
of which we present in Table 1.

Table 1: Boundaries of GFR ranges (in mL/min/1.73 m2) for numerical experiments.
GFR Range

Boundary 1 2 3 4 5 6 7 8 9 10

Lower Bound 60 50 40 30 25 22.5 20 17.5 15 0
Upper Bound 1 60 50 40 30 25 22.5 20 17.5 15

We assume that the patient gets on dialysis whenever her GFR falls below 15 mL/min/1.73
m2 [28] and that once the patient initiates dialysis she can not recover her renal functionality prior
to receiving a transplant [2]. We add the absorbing death state to the set of GFR ranges so that
⌦ = {1, 2, ..., 11} refers to the set of health states for each individual patient. Because the UPMC
data set has sparsely available GFR data, in an approach similar to Shechter [48], for each patient
we use a shape-preserving piecewise Hermitian cubic spline to interpolate her missing laboratory
measurements on a daily basis. We let Ns(s0) denote the number of patients whose GFR moves from
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range s 2 � into s0 2 � on any two successive days. Then, we define q(s0|s) to be the patient’s
probability of having a GFR in range s0 2 � on day h + 1 given she had a GFR in range s 2 � on day
h. Because the patient does not recover her renal functionality after dialysis, q(s0|S � 1) = 0 for all
s0 2 �\{S�1} and q(S�1|S�1) = 1. We calculate the probability of moving from a pre-dialysis GFR
range s 2 � into GFR range s0 2 � as q(s0|s) = Ns(s0)

�P
s02� Ns(s0)

��1. Note that the UPMC data
set does not have complete patient mortality information. Therefore, the probabilities {q(s0|s)}{s,s02�}

are conditional on the patient’s survival. We denote the patient’s death probability in GFR range
s 2 � by '(s). We use the U.S. Renal Data System (USRDS) [56] to estimate the patient’s death
probability on dialysis and GFR-based mortality rates from Go et al. [18] to estimate the patient’s
death probabilities in pre-dialysis stage (see Figure 2 for a summary of data sources and references).
Then, we define the probabilities governing daily transitions among a single patient’s health states as:

eP (s0|s) =

8
>>>>>><

>>>>>>:

'(s) for s 2 � and s0 = S,
⇥
1� '(s)

⇤
q(s0|s) for s 2 � and s0 2 �,

1 for s = s0 = S,

0 for s = S and s0 2 �.

G
FR 

D
eath

0

Dialysis

Dialysis to Death

USRDS (2009)

Dialysis  Death

G
FR 

D
ialysis

Irrecoverable Functionality

GFR  GFR

UPMC Data Set Go et al. (2004)

Figure 2: The data sources and ref-
erences used in estimating daily-based
health transition matrices

There are two types of rewards in our model: Immedi-
ate rewards, ui(s, 0), and expected post-transplant rewards,
ui(s, 1). Although these rewards are defined as a function
of the state of the game, because patients’ health statuses
are independent of each other, we define the rewards of the
game mainly in terms of patients’ individual health states.
We define r(s, 0) to be the immediate reward in days that
patient accrues if she waits in state s 2 ⌦, and r(s, 1) to
be the expected post-transplant reward in days when she
receives a transplant in state s 2 ⌦. Following recent lit-
erature in kidney transplantation [23, 62], to account for
the adverse side e↵ects of dialysis on the patient’s quality
of life we assume a quality-adjustment factor 0.8 for being
on dialysis; that is, a year spent on dialysis is assumed to be equivalent to 0.8 years of life with full
quality. Therefore, for the immediate rewards we define:

r(s, 0) =

8
>>><

>>>:

1 if s 2 {1, ..., S � 2},

0.8 if s = S � 1,

0 if s = S.

We use available post-transplant survival rates from Scientific Registry of Transplant Recip-
ients (SRTR) [50] to estimate expected post-transplant survivals. We develop a proportional haz-
ards model and use the associated risk adjustment coe�cients from SRTR to estimate the patient’s
quality-adjusted expected post-transplant rewards [49]. Due to limited availability of data, we assume
exponential growth in death rate to extrapolate the survival rates which are available only for short-
term. We set biweekly decision epochs and apply a 0.97 annual discount rate for each patient (daily
�0 ⇠= 0.999916 and biweekly � ⇠= 0.998829). Since our transition probability estimations are on daily
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basis and decisions are revisited every two weeks, we adjust the daily parameters to biweekly basis.
We denote the matrix that governs biweekly GFR transitions by P = eP14. We also define  t(s) as
the total expected discounted immediate reward in quality-adjusted life days that will be accrued in
the last 14� t days of the current stage, and recursively calculate it as:

 t(s) =

8
><

>:

r(s, 0) + �0
X

s02⌦

eP (s0|s) t+1(s0) for s 2 ⌦ and t = 0, ..., 13,

0 for s 2 ⌦ and t = 14.

After we discount the expected post-transplant rewards and specify the rewards by a subscript for
Patient i, we define the rewards of the game as follows:

ui(s, m) =

8
>>><

>>>:

 0
i (si) for s = (s1, ..., si, ..., sN ) 2 S and m = 0,

ri(si, 1) for s = (s1, ..., si, ..., sN ) 2 S \ D and m = 1,

0 for s = (s1, ..., si, ..., sN ) 2 D and m = 1.

For our experiments, we simulate 2500 two-way and 500 three-way exchange cases by using the average
frequency of patient-donor characteristics in living-donor kidney transplantations that are available
from SRTR for the years 1998-2007. We simulate the patients’ initial GFR ranges uniformly over �.

4.2 Welfare Loss Due to Patient Autonomy and Equilibrium Selection

We solve our MIP models to characterize socially optimal randomized and pure equilibria. For each
exchange case we solve the mathematical programs

max
(bw,by,bz)2⇤

 
X

i2N
wi(bs)

!
and max

(bw,by,bz)2⌥

 
X

i2N
wi(bs)

!

to estimate the cost of restricting our attention to pure strategies. By Theorems 2 and 3,

max
(bw,by,bz)2⇤

 
X

i2N
wi(bs)

!
� max

(bw,by,bz)2⌥

 
X

i2N
wi(bs)

!

quantifies the aforementioned cost exactly for two-way kidney exchanges. Our experiments reveal
that a socially optimal pure equilibrium is only negligibly worse than a socially optimal randomized
equilibrium. In all our instances, the socially optimal pure equilibrium was never more than 0.01%
worse than the socially optimal randomized equilibrium. Therefore, as randomized strategies are
clinically less desirable than pure strategies, we narrow our focus to pure equilibria and quantify the
welfare loss borne by patient autonomy. In the rest of this section, we consider a socially optimal
pure equilibrium A⇤ so that #i(bs) � gi(bs,a⇤i ,a⇤�i) denotes the welfare loss for Patient i 2 N , and
P

i2N
⇥
#i(bs) � gi(bs,a⇤i ,a⇤�i)

⇤
denotes the social welfare loss due to patient autonomy. Note that the

socially optimal policy may not be an equilibrium.
From Figure 3, social welfare loss does not decrease as the patients’ health statuses diverge,

which we interpret as follows: Because the central decision-maker acts solely for the society’s interest
and the death of one patient leaves the other untransplanted, as one of the patients gets sicker,
the central decision-maker becomes more likely to recommend exchange as an optimal decision. On
the other hand, when patients are autonomous, the healthier patient can force the sicker patient to
wait, although the sicker patient’s death would render the exchange infeasible. Also, the sicker patient

10
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Figure 3: Social welfare loss and patients’ individual welfare losses due to patient autonomy. The
number next to each data label indicates the loss in absolute terms (in quality-adjusted life weeks).

benefits from the central decision-maker’s decisions, and the impact of patient autonomy on her welfare
is more dramatic in absolute and relative terms.

As the society’s interest may conflict with patients’ self-interests, a socially optimal equilibrium
strategy may not be an optimal equilibrium strategy that a patient can play. Therefore, for each indi-
vidual patient we calculate the cost of playing the socially optimal equilibrium strategy rather than any
other equilibrium strategy. We let iA⇤ = (ia⇤i ,

i a⇤�i) denote a pure equilibrium that maximizes Patient
i’s total expected payo↵, i.e., iA⇤ 2 arg maxA2⇧ gi(bs,ai,a�i). Then, gi(bs,i a⇤i ,i a⇤�i)�gi(bs,a⇤i ,a⇤�i) pro-
vides an upper bound for Patient i’s cost of playing a socially optimal equilibrium strategy rather than
any other equilibrium strategy. For each Patient i 2 N , by Theorem 3 (iii), we calculate gi(bs,i a⇤i ,i a⇤�i)
by solving the mathematical program max(w,y,z)2⌥ wi(bs).

Table 2: Patients’ maximum welfare losses from following a socially optimal equilibrium. Relative
losses are in %, and absolute losses are in quality-adjusted life weeks.

Di↵erence in Patients’ GFR Ranges

Loss Patient 0 1 2 3 4 5 6 7 8 9

Relative
Healthier 0.76 1.20 1.49 2.11 2.40 3.00 3.54 3.61 3.78 3.82

Sicker 0.89 0.80 0.71 0.68 0.61 0.58 0.57 0.50 0.26 0.00

Absolute
Healthier 7.43 9.69 12.20 17.08 19.64 24.96 29.73 26.88 28.64 31.13

Sicker 7.43 6.57 5.75 5.28 6.04 4.15 3.41 2.67 1.26 0.00
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From Table 2, as patients’ health statuses diverge, a socially optimal equilibrium considers the
sicker patient’s interests more, that is, playing a socially optimal equilibrium strategy costs less to the
sicker patient. Irrespective of the di↵erence in patients’ GFR ranges, a socially optimal equilibrium
deviates more from the healthier patient’s individually optimal equilibrium than it does from the
sicker’s. In our experiments, the sicker patient under the socially optimal equilibrium is usually very
close to her individually optimal equilibrium. Specifically, in 72% of the cases, the sicker patient’s
individually optimal equilibrium is within 1% of the socially optimal equilibrium, and in 90% of the
cases her individually optimal equilibrium is within 3% of the socially optimal equilibrium.

4.3 Valuing Exchanges: An Example

In this section, we elucidate how the patients’ quality-adjusted life expectancies from our model
can be used to calibrate edge-weights in graphs used to form patient-donor pairs. We create an
example graph of patient-donor pairs for which maximizing the total number of transplants may imply
adverse welfare outcomes. In Figure 4, we have 4 patient-donor pairs with specified characteristics.

P2

D2 D3

D1 D4

P3

P1 P4

Age = 50

Age = 65

Age = 55

Age = 50

0 ABDR mismatch
non-0 ABDR, 2DR mismatch

Female, Age = 45, GFR = 60 Male, Age = 50, GFR = 50

Male,  Age = 70, GFR = 16 Female, Age = 65, GFR = 20

Figure 4: Patient-donor characteristics for the
matching example

For the set of patient-donor pairs in Figure 4, we
have two possible matching scenarios: In Scenario 1,
Patient 1 is matched to Donor 2, Patient 2 is matched
to Donor 1, Patient 3 is matched to Donor 4, and
Patient 4 is matched to Donor 3. In Scenario 2, Pa-
tient 2 is matched to Donor 3, Patient 3 is matched to
Donor 2, and Patients 1 and 4 remain untransplanted.
Although Scenario 1 maximizes the number of trans-
plants, when we compare the social outcomes under
such scenarios, we observe the following: In Scenario 1,
an immediate exchange yields 53.27 quality-adjusted
life years. When the patients behave autonomously in
each of the matchings, the socially optimal equilibria
yield 50.49 quality-adjusted life years. In Scenario 2,
an immediate exchange yields 52.76 quality-adjusted life years. Because Patients 1 and 4 are un-
transplanted, when Patients 2 and 3 behave autonomously, a socially optimal equilibria yield 54.27
quality-adjusted life years. Note that in this case, because we assume Patients 1 and 4 will never
receive a transplant, we calculate their remaining life expectancies by two separate Markov reward
chains. Thus, if the patients are autonomous and the edge weight of each possible matching is modeled
as the patients’ total life expectancies in a socially optimal equilibrium of the game played in that
particular matching, then Scenario 2 is optimal although it has fewer transplants than Scenario 1.
Note that in Scenario 2, the socially optimal equilibrium provides considerably higher social welfare
than that of immediate exchange. Intuitively, when patients behave autonomously, if they are at closer
stages of disease, because they conflict less, their matchings yield superior welfare outcomes compared
to matchings involving patients at di↵erent stages.
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5. Highlights

We model the patients’ transplant timing decisions in a cyclic PKE as a non-zero-sum stochas-
tic game and analyze the resulting equilibrium selection problem from a social point of view. Our
numerical experiments indicate that matching patients based on 0-1 preferences ignoring the timing
of the exchange under patient autonomy may result in socially suboptimal circumstances. We also
demonstrate that matching patients at similar stages of disease provides more preferable outcomes in
terms of the social welfare gained by matching patients based on their life expectancies and the social
welfare lost by patient autonomy.

Appendix A: Proofs of Statements

Throughout this appendix, under a strategy profile A, for s 2 S and J ✓ N , we let QJ (s,A) =
Q

j2J aj(s) so that QN (s,A) denotes the exchange occurrence probability in state s 2 S under
strategy profile A.
Proof of Theorem 1: (() Consider Patient j. Let a0j =

⇥
a0j(s)

⇤
s2S

denote a best response of
Patient j to the strategy-tuple a�j , implying gj(a0j ,a�j) � gj(aj ,a�j). By definition,

gj(s,a0j ,a�j) = a0j(s)QN�j (s,A)uj(s, 1) +
⇥
1� a0j(s)QN�j (s,A)

⇤
Fj
�
s,gj(a0j ,a�j)

�
for s 2 S .

As strategies a0j and a�j are fixed, this recursion defines a stationary, infinite-horizon Markov reward
chain. Now, under the strategy profile A, suppose (3) holds for all s 2 S and i 2 N , and we apply
value iteration to this recursion. Let gn

j (s,a0j ,a�j) denote the value associated with state s 2 S at
the nth iteration. More specifically, for n > 0:

gn
j (s,a0j ,a�j) = a0j(s)QN�j (s,A)uj(s, 1) +

⇥
1� a0j(s)QN�j (s,A)

⇤
Fj
�
s,gn�1

j (a0j ,a�j)
�

for s 2 S .

By induction on n � 0, we will show that gn
j (a0j ,a�j)  gj(aj ,a�j) for all n � 0. Let g0

j (a
0
j ,a�j) =

gj(aj ,a�j), and for some m � 0, suppose gm
j (a0j ,a�j)  gj(aj ,a�j), so that Fj

�
s,gm

j (a0j ,a�j)
�


Fj
�
s,gj(aj ,a�j)

�
for all s 2 S . Now, choose an arbitrary s 2 S and consider the following possible

cases for gm+1
j (s,a0j ,a�j):

1. If uj(s, 1)  Fj
�
s,gm

j (a0j ,a�j)
�
, then

gm+1
j (s,a0j ,a�j) = a0j(s)QN�j (s,A)uj(s, 1) +

⇥
1� a0j(s)QN�j (s,A)

⇤
Fj
�
s,gm

j (a0j ,a�j)
�

 Fj
�
s,gm

j (a0j ,a�j)
�
 Fj

�
s,gj(aj ,a�j)

�
 gj(s,aj ,a�j),

where the last inequality is implied by the assumption that (3) holds for A.

2. If uj(s, 1) > Fj
�
s,gm

j (a0j ,a�j)
�
, then

gm+1
j (s,a0j ,a�j) = a0j(s)QN�j (s,A)uj(s, 1) +

⇥
1� a0j(s)QN�j (s,A)

⇤
Fj
�
s,gm

j (a0j ,a�j)
�

 a0j(s)QN�j (s,A)uj(s, 1) +
⇥
1� a0j(s)QN�j (s,A)

⇤
Fj
�
s,gm

j (a0j ,a�j)
�

+ QN�j (s,A)
⇥
1� a0j(s)

⇤⇥
uj(s, 1)� Fj

�
s,gm

j (a0j ,a�j)
�⇤

(6a)

= QN�j (s,A)uj(s, 1) +
⇥
1�QN�j (s,A)

⇤
Fj
�
s,gm

j (a0j ,a�j)
�

 QN�j (s,A)uj(s, 1) +
⇥
1�QN�j (s,A)

⇤
Fj
�
s,gj(aj ,a�j)

�
 gj(s,aj ,a�j), (6b)

where (6a) is implied by the fact that QN�j (s,A), a0j(s) 2 [0, 1] and the inequality in (6b) follows
from the assumption that (3) holds for all s 2 S and i 2 N under A.
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Thus, gm+1
j (a0j ,a�j)  gj(aj ,a�j). Then, by the convergence of value iteration we obtain gj(a0j ,a�j) 

gj(aj ,a�j). Since we already have gj(a0j ,a�j) � gj(aj ,a�j), this implies gj(a0j ,a�j) = gj(aj ,a�j).
Therefore, aj is a best response of Patient j to the strategy-tuple a�j .
()) The proof is similar to that of ((), and omitted. 2

Proof of Lemma 1: (i) For Patient j, suppose gj(bs,aj ,a�j) > uj(bs, 1) for some bs 2 S . By (1),
gj(bs,aj ,a�j)  max

�
uj(bs, 1), Fj

�
bs,gj(aj ,a�j)

� 
. Then, since gj(bs,aj ,a�j) > uj(bs, 1), we must have

Fj
�
bs,gj(aj ,a�j)

�
> uj(bs, 1). Since A 2 �, by Theorem 1, (3) is satisfied for (s, i) = (bs, j). These

imply gj(bs,aj ,a�j) = Fj
�
bs,gj(aj ,a�j)

�
> uj(bs, 1). Therefore, by (1), we must have QN (bs,A) = 0.

(ii) First, we will show that for any s 2 S and i 2 N :

If ui(s, 1) > Fi
�
s,gi(ai,a�i)

�
and QN�i(s,A) > 0, then ai(s) = 1. (7)

Consider Patient j. For some bs 2 S with uj(bs, 1) > Fj
�
bs,gj(aj ,a�j)

�
and QN�j (s,A) > 0 suppose

that aj(bs) < 1. While Patients k 2 N�j maintain their strategies, i.e., a�j is fixed, suppose Patient
j follows strategy a0j =

⇥
a0j(s)

⇤
s2S

, where a0j(bs) = 1 and a0j(s) = aj(s) for s 2 S \ {bs}, so that the
payo↵s gj(a0j ,a�j) are defined as follows:

gj(s,a0j ,a�j) =

8
<

:
QN�j (s,A)uj(s, 1) +

⇥
1�QN�j (s,A)

⇤
Fj
�
s,gj(a0j ,a�j)

�
for s = bs,

QN (s,A)uj(s, 1) +
⇥
1�QN (s,A)

⇤
Fj
�
s,gj(a0j ,a�j)

�
for s 2 S \ {bs}.

As strategies a0j and a�j are fixed, this recursion defines a stationary, infinite-horizon Markov reward
chain. Suppose we apply value iteration to this recursion. Let gn

j (s,a0j ,a�j) denote the value associated
with state s 2 S at the nth iteration. That is, for n > 0:

gn
j (s,a0j ,a�j) =

8
<

:
QN�j (s,A)uj(s, 1) +

⇥
1�QN�j (s,A)

⇤
Fj
�
s,gn�1

j (a0j ,a�j)
�

for s = bs,

QN (s,A)uj(s, 1) +
⇥
1�QN (s,A)

⇤
Fj
�
s,gn�1

j (a0j ,a�j)
�

for s 2 S \ {bs}.

By induction on n � 0, we will show that the following hold for all n � 0.

gn
j (a0j ,a�j) � gj(aj ,a�j) and gn

j (bs,a0j ,a�j) > gj(bs,aj ,a�j). (8)

For some finite ✏ > 0, let g0
j (a

0
j ,a�j) = gj(aj ,a�j) + ✏ and suppose (8) holds for some n = m � 0, so

that Fj
�
s,gm

j (a0j ,a�j)
�
� Fj

�
s,gj(aj ,a�j)

�
for all s 2 S . By the definitions of the payo↵s gj(aj ,a�j)

and gm+1
j (a0j ,a�j), this yields gm+1

j (s,a0j ,a�j) � gj(s,aj ,a�j) for all s 2 S \ {bs}. Next, consider
gm+1
j (bs,a0j ,a�j).

gm+1
j (bs,a0j ,a�j) = QN�j (bs,A)uj(bs, 1) +

⇥
1�QN�j (bs,A)

⇤
Fj
�
bs,gm

j (a0j ,a�j)
�

� QN�j (bs,A)uj(bs, 1) +
⇥
1�QN�j (bs,A)

⇤
Fj
�
bs,gj(aj ,a�j)

�

= aj(bs)QN�j (bs,A)uj(bs, 1) +
⇥
1� aj(bs)

⇤
QN�j (bs,A)uj(bs, 1)

+
⇥
1�QN�j (bs,A)

⇤
Fj
�
bs,gj(aj ,a�j)

�
. (9)

Since uj(bs, 1) > Fj
�
bs,gj(aj ,a�j)

�
, aj(bs) < 1 and QN�j (bs,A) > 0, we have

⇥
1� aj(bs)

⇤
QN�j (bs,A)uj(bs, 1) >

⇥
1� aj(bs)

⇤
QN�j (bs,A)Fj

�
bs,gj(aj ,a�j)

�
.

By (9) this implies:

gm+1
j (bs,a0j ,a�j)

> aj(bs)QN�j (bs,A)uj(bs, 1) +
✓⇥

1� aj(bs)
⇤
QN�j (bs,A) +

⇥
1�QN�j (bs,A)

⇤◆
Fj
�
bs,gj(aj ,a�j)

�

= aj(bs)QN�j (bs,A)uj(bs, 1) +
⇥
1� aj(bs)QN�j (bs,A)

⇤
Fj
�
bs,gj(aj ,a�j)

�
= gj(bs,aj ,a�j).
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Thus, (8) holds for n = m + 1. Then, the convergence of value iteration implies gj(a0j ,a�j) �
gj(aj ,a�j) and gj(bs,a0j ,a�j) > gj(bs,aj ,a�j), which contradicts the assumption that A 2 �. There-
fore, aj(bs) = 1 and (7) holds for the pair (bs, j).

Next, for some bs 2 S , suppose QN (bs,A) 2 (0, 1) implying the existence of a Patient k, where
ak(bs) 2 (0, 1). Since QN (bs,A) > 0, by part (i), gk(bs,ak,a�k)  uk(bs, 1). Also, since QN�k(bs,A) > 0,
ak(bs) < 1 and (7) holds for any s 2 S and i 2 N , we also have gk(bs,ak,a�k) � uk(bs, 1). These yield
gk(bs,ak,a�k) = uk(bs, 1). Since QN (bs,A) > 0, by (1), this implies uk(bs, 1) = Fk

�
bs,gk(ak,a�k)

�
.

(iii) Let K =
�
s 2 S |QN (s,A) 2 {0, 1}

 
. Note that Ys(A) is nonempty for all s 2 S \ K .

Therefore, for s 2 S \K , let ⌘(s) = min
�
i|i 2 Ys(A)

 
. Now, consider the strategy profile A0 defined

by:

a0i(s) =

8
>>><

>>>:

ai(s) for s 2 K and i 2 N ,

1 for s 2 S \ K and i 6= ⌘(s),

QN (s,A) for s 2 S \ K and i = ⌘(s).

(10)

By the definition of K , (10) implies that QN (s,A) = QN (s,A0) for all s 2 S . Therefore, by (1),

gi(ai,a�i) = gi(a0i,a
0
�i) for all i 2 N , (11)

implying that

Fi
�
s,gi(ai,a�i)

�
= Fi

�
s,gi(a0i,a

0
�i)
�

for all s 2 S and i 2 N . (12)

Next, we will show that A0 2 �. By the definition of K , (10) implies that QN�i(s,A) = QN�i(s,A0)
for all s 2 K and i 2 N . Since A 2 �, by Theorem 1, (3) is satisfied for all s 2 K and i 2 N
under A. Therefore, by (11) and (12), (3) is satisfied for all s 2 K and i 2 N under A0. Now, for an
arbitrary s 2 S \ K and i 2 N , consider the following possible cases for ai(s).

1. If ai(s) 2 (0, 1), then by part (ii), (1) implies gi(s,ai,a�i) = ui(s, 1) = Fi
�
s,gi(ai,a�i)

�
. There-

fore, by (11) and (12), (3) is satisfied for pair (s, i) under A0.

2. If ai(s) = 1, then because a0i(s) = 1 and QN (s,A) = QN (s,A0), we have QN�i(s,A) =
QN�i(s,A0). Since A 2 �, by (11) and (12), this implies that (3) is satisfied for pair (s, i)
under A0.

Thus, (3) is satisfied for all s 2 S and i 2 N under A0. Therefore, by Theorem 1, A0 2 �. By the
definition of K and (10), it is easy to see that |Ys(A0)|  1 for all s 2 S . 2

Proof of Lemma 2: By (1) and the definition of Vi, the proof follows by induction on the iterates
of value iteration, and is omitted. 2

Proof of Theorem 2: (i) Given bA 2 �, let B` =
�
s 2 S |QN (s, bA) = `

 
for ` 2 {0, 1} and C =

S \(B0[B1). By the definition of C , Lemma 1 (ii) implies that for each s 2 C , 9 i 2 N with ui(s, 1) =
Fi
�
s,gi(bai, ba�i)

�
. Therefore, for s 2 C , let H (s) = min

�
i 2 N|ui(s, 1) = Fi

�
s,gi(bai, ba�i)

� 
. Now,

we will construct a solution (bw, by,bz) satisfying constraints (4a)-(4j).

• For ` 2 {0, 1}, s 2 S and i 2 N , let byi(s) = ` if s 2 B`.

• For s 2 C , let byi(s) = 0 if i = H (s), and byi(s) = 1 otherwise.

15
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• For s 2 S , let bz(s) = 0 if s 2 B0, and bz(s) = 1 otherwise.

• For i 2 N , let

bwi = gi(bai, ba�i). (13)

As an immediate consequence of assignment (13):

Fi
�
s,gi(bai, ba�i)

�
= Fi(s, bwi) for all s 2 S and i 2 N . (14)

By the construction of by and bz, constraints (4f)-(4i) are satisfied. Because bA 2 �, by Theorem
1, gi(s, bai, ba�i) � Fi

�
s,gi(bai, ba�i)

�
for all s 2 S and i 2 N . By (13) and (14), this implies that

constraints (4a) are satisfied. Since gi(bai, ba�i) � 0 for all i 2 N , (13) also imply that bwi � 0 for all
i 2 N . Therefore, constraints (4j) are satisfied. Next, we will show that (bw, by,bz) satisfy constraints
(4b)-(4e). Consider the following possible cases for an arbitrary s 2 S and i 2 N :

1. If s 2 B0, then since byj(s) = 0 for all j 2 N and bwi � 0, constraints (4c) and (4d) are satisfied.
Since bz(s) = 0 and gi(s, bai, ba�i)  Vi(s) by Lemma 2, constraint (4e) is satisfied by (13). Since
QN (s, bA) = 0, by (1), gi(s, bai, ba�i) = Fi

�
s,gi(bai, ba�i)

�
. Then, since byi(s) = 0, (13) and (14)

imply that constraint (4b) is satisfied.

2. If s 2 B1, then since QN (s, bA) = 1, by (1) gi(s, bai, ba�i) = ui(s, 1). Therefore, by (13), bwi(s) =
ui(s, 1). Then, since byi(s) = 1 and Fi

�
s,gi(bai, ba�i)

�
� 0, (14) implies that constraint (4b) is

satisfied. Because bz(s) = 1 and byj(s) = 1 for all j 2 N , constraints (4d) and (4e) are also
satisfied by bwi(s) = ui(s, 1). Finally, because byj(s) = 1 for all j 2 N , constraint (4c) is satisfied
by the nonnegativity of bwi(s).

3. If s 2 C , then since QN (s, bA) 2 (0, 1), by Lemma 1 (i), gi(s, bai, ba�i)  ui(s, 1). Therefore, by
(13), bwi(s)  ui(s, 1). By the definition of the value function Vi, Vi(s) � ui(s, 1). Therefore,
constraint (4e) is satisfied. Also, by the construction of by,

P
j2N byj(s) = N�1. Since bwi(s) � 0,

this implies that constraint (4d) is satisfied. Now, consider the two possible cases for i.

(a) If i 6= H (s), then because byi(s) = 1, bwi(s)  ui(s, 1) and Fi
�
s,gi(bai, ba�i)

�
� 0, (14) implies

that constraint (4b) is satisfied. By the construction of by, byj(s)� byi(s)  0 for all j 2 N�i.
Then, since bwi(s) � 0, constraint (4c) is satisfied.

(b) If i = H (s), then since ui(s, 1) = Fi
�
s,gi(bai, ba�i)

�
, by (1),

gi(s, bai, ba�i) = ui(s, 1) = Fi
�
s,gi(bai, ba�i)

�
. (15)

Since byi(s) = 0, by (13), (14) and (15), constraint (4b) is satisfied. Furthermore, because
byj(s) = 1 for j 2 N�i, by (13) and (15) constraint (4c) is satisfied.

Thus, (bw, by,bz) 2 ⇤.
(ii) The result immediately follows from part (i), and the proof is omitted.
(iii) For ` 2 {0, 1}, let W` =

�
s 2 S |by1(s) = by2(s) = `

 
and for i 2 N let Ri =

�
s 2 S |byi(s) =

0, by�i(s) = 1
 

and Zi =
�
s 2 Ri|u�i(s, 1) = F�i(s, bw�i)

 
. Note that constraints (4a) hold, but in

particular:

For any i 2 N : bw�i(s) � F�i(s, bw�i) for all s 2 Ri. (16a)

16
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Also by constraints (4e), (4f) and (4i) for any i 2 N , u�i(s, 1) � w�i(s) for all s 2 Ri. By (16a) and
the definition of Zi for i 2 N , this implies:

For any i 2 N : u�i(s, 1) > F�i(s, bw�i) for all s 2 Ri \ Zi. (16b)

Thus, by (16a) and (16b), for any i 2 N ,
✓
bw�i(s)� F�i(s, bw�i)

u�i(s, 1)� F�i(s, bw�i)

◆
2 [0, 1] for all s 2 Ri \ Zi. Now,

consider the strategy profile bA defined by:

bai(s) =

8
>>>><

>>>>:

0 for s 2 W0 [Zi,

1 for s 2 W1 [R�i,
bw�i(s)� F�i(s, bw�i)

u�i(s, 1)� F�i(s, bw�i)
for s 2 Ri \ Zi.

(17)

By (17), for the product ba1(s)ba2(s) we have:

ba1(s)ba2(s) =

8
>>>><

>>>>:

0 for s 2 W0 [Z1 [Z2,

1 for s 2 W1,
bw�i(s)� F�i(s, bw�i)

u�i(s, 1)� F�i(s, bw�i)
for s 2 Ri \ Zi, i 2 N .

(18)

Consider Patient 1. First, we will show that bw1 = g1(ba1, ba2). By (18), (1) defines the payo↵s g1(ba1, ba2)
as:

g1(s, ba1, ba2) =

8
>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>:

F1
�
s,g1(ba1, ba2)

�
for s 2 W0 [Z1 [Z2,

u1(s, 1) for s 2 W1,
✓
bw2(s)� F2(s, bw2)

u2(s, 1)� F2(s, bw2)

◆
u1(s, 1) +

✓
u2(s, 1)� bw2(s)

u2(s, 1)� F2(s, bw2)

◆
F1
�
s,g1(ba1, ba2)

�

for s 2 R1 \ Z1,✓
bw1(s)� F1(s, bw1)

u1(s, 1)� F1(s, bw1)

◆
u1(s, 1) +

✓
u1(s, 1)� bw1(s)

u1(s, 1)� F1(s, bw1)

◆
F1
�
s,g1(ba1, ba2)

�

for s 2 R2 \ Z2.

(19)

Because (bw, by,bz) 2 ⇤, by constraints (4a), (4b), (4e), (4f) and (4i), and the definition of Z2:

bw1(s) = F1(s, bw1) for all s 2 W0 [Z2. (20a)

By constraints (4a), (4d), (4e), (4f) and (4i):

bw1(s) = u1(s, 1) � F1(s, bw1) for all s 2 W1. (20b)

Also, by constraints (4a), (4b), (4c), (4e), (4f) and (4i):

bw1(s) = F1(s, bw1) = u1(s, 1) for all s 2 R1. (20c)

Note that as strategies ba1 and ba2 are fixed, recursion (19) defines a stationary, infinite-horizon Markov
reward chain. Suppose we apply value iteration to this recursion. Let gn

1 (s, ba1, ba2) denote the value

17
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associated with state s 2 S at the nth iteration. More explicitly, for n > 0:

gn
1 (s, ba1, ba2) =

8
>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>:

F1
�
s,gn�1

1 (ba1, ba2)
�

for s 2 W0 [Z1 [Z2,

u1(s, 1) for s 2 W1,
✓
bw2(s)� F2(s, bw2)

u2(s, 1)� F2(s, bw2)

◆
u1(s, 1) +

✓
u2(s, 1)� bw2(s)

u2(s, 1)� F2(s, bw2)

◆
F1
�
s,gn�1

1 (ba1, ba2)
�

for s 2 R1 \ Z1,
✓
bw1(s)� F1(s, bw1)

u1(s, 1)� F1(s, bw1)

◆
u1(s, 1) +

✓
u1(s, 1)� bw1(s)

u1(s, 1)� F1(s, bw1)

◆
F1
�
s,gn�1

1 (ba1, ba2)
�

for s 2 R2 \ Z2.

By induction on n � 0, we will show that gn
1 (ba1, ba2) = bw1 for all n � 0. Let g0

1(ba1, ba2) = bw1, and
for some m � 0, suppose gm

1 (ba1, ba2) = bw1. This implies F1
�
s,gm

1 (ba1, ba2)
�

= F1(s, bw1) for all s 2 S .
Next, choose an arbitrary s 2 S and consider the following possible cases for gm+1

1 (s, ba1, ba2).

1. If s 2 W0 [Z1 [Z2, then since Z1 ✓ R1 and F1
�
s,gm

1 (ba1, ba2)
�

= F1(s, bw1), by the definition of
gm+1
1 (s, ba1, ba2), (20a) and (20c) imply gm+1

1 (s, ba1, ba2) = bw1(s).

2. If s 2 W1, then by the definition of gm+1
1 (s, ba1, ba2), (20b) implies gm+1

1 (s, ba1, ba2) = bw1(s).

3. If s 2 R1 \ Z1, then

gm+1
1 (s, ba1, ba2) =

✓
bw2(s)� F2(s, bw2)

u2(s, 1)� F2(s, bw2)

◆
u1(s, 1) +

✓
u2(s, 1)� bw2(s)

u2(s, 1)� F2(s, bw2)

◆
F1
�
s,gm

1 (ba1, ba2)
�

=
✓
bw2(s)� F2(s, bw2)

u2(s, 1)� F2(s, bw2)

◆
u1(s, 1) +

✓
u2(s, 1)� bw2(s)

u2(s, 1)� F2(s, bw2)

◆
F1(s, bw1) = bw1(s), (21)

where the first equality in (21) is implied by F1
�
s,gm

1 (ba1, ba2)
�

= F1(s, bw1), and the second
equality follows from (20c).

4. If s 2 R2 \ Z2, then

gm+1
1 (s, ba1, ba2) =

✓
bw1(s)� F1(s, bw1)

u1(s, 1)� F1(s, bw1)

◆
u1(s, 1) +

✓
u1(s, 1)� bw1(s)

u1(s, 1)� F1(s, bw1)

◆
F1
�
s,gm

1 (ba1, ba2)
�

=
✓
bw1(s)� F1(s, bw1)

u1(s, 1)� F1(s, bw1)

◆
u1(s, 1) +

✓
u1(s, 1)� bw1(s)

u1(s, 1)� F1(s, bw1)

◆
F1(s, bw1) = bw1(s), (22)

where the first equality in (22) is implied by F1
�
s,gm

1 (ba1, ba2)
�

= F1(s, bw1).

Thus, gm+1
1 (ba1, ba2) = bw1. Then, the convergence of value iteration implies g1(ba1, ba2) = bw1. Next,

we will prove that bA 2 �. Since g1(ba1, ba2) = bw1 and F1
�
s,g1(ba1, ba2)

�
= F1(s, bw1) for s 2 S , by

Theorem 1, it is su�cient to show that the following holds for all s 2 S .

bw1(s) = max
�
ba2(s)u1(s, 1) +

⇥
1� ba2(s)

⇤
F1(s, bw1), F1(s, bw1)

 
. (23)

Choose an arbitrary s 2 S and consider the following possible cases for bw1(s):

1. If s 2 W0, then by (20a), bw1(s) = F1(s, bw1). Then, since ba2(s) = 0, (23) is satisfied.

2. If s 2 W1[R1, then by (20b) and (20c), bw1(s) = max
�
u1(s, 1), F1(s, bw1)

 
. Then, since ba2(s) = 1,

(23) holds.

18
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3. If s 2 Z2, then since u1(s, 1) = F1(s, bw1), (23) is satisfied.

4. If s 2 R2 \ Z2, then since ba2(s) =
✓
bw1(s)� F1(s, bw1)

u1(s, 1)� F1(s, bw1)

◆
by (17), we have:

bw1(s) =
✓
bw1(s)� F1(s, bw1)

u1(s, 1)� F1(s, bw1)

◆
u1(s, 1) +

✓
u1(s, 1)� bw1(s)

u1(s, 1)� F1(s, bw1)

◆
F1(s, bw1)

= ba2(s)u1(s, 1) +
⇥
1� ba2(s)

⇤
F1(s, bw1). (24)

Since s 2 R2 \ Z2, by (16b), u1(s, 1) > F1(s, bw1). By (24) and the fact that ba2(s) 2 [0, 1], this
implies that (23) holds.

(iv) The result immediately follows from parts (i) and (iii), and the proof is omitted. 2

Proof of Theorem 3: (i) (() By Theorem 1, it is su�cient to show that under the strategy profile
A recursion (3) is satisfied for all s 2 S and i 2 N . Consider Patient j. Since ai(s) 2 {0, 1} for all
s 2 S and i 2 N , by (1), the payo↵s gj(aj ,a�j) are defined as follows:

gj(s,aj ,a�j) =

8
<

:
uj(s, 1) if ak(s) = 1 for k 2 N ,

Fj
�
s,gj(aj ,a�j)

�
otherwise.

(25)

Note that by (5), when QN�j (s,A) = 1:

max
�
uj(s, 1), Fj

�
s,gj(aj ,a�j)

� 
=

8
<

:
uj(s, 1) if aj(s) = 1,

Fj
�
s,gj(aj ,a�j)

�
if aj(s) = 0.

(26)

By (25), for Patient j, (26) implies that (3) is satisfied for all s 2 S .
()) Consider Patient j. Since A 2 �, by Theorem 1, the payo↵s gj(aj ,a�j) satisfy the following
recursion:

gj(s,aj ,a�j) =

8
<

:
max

�
uj(s, 1), Fj

�
s,gj(aj ,a�j)

� 
if QN�j (s,A) = 1,

Fj
�
s,gj(aj ,a�j)

�
otherwise.

(27)

Now, choose an arbitrary s 2 S and for the two possible cases of QN�j (s,A), consider aj(s).

1. If QN�j (s,A) = 0, then by (1) and (27), we must have

Fj
�
s,gj(aj ,a�j)

�
=
⇥
1� aj(s)0

⇤
Fj
�
s,gj(aj ,a�j)

�
.

Therefore, either aj(s) = 0 or aj(s) = 1.

2. If QN�j (s,A) = 1, then by (1) and (27), we must have

max
�
uj(s, 1), Fj

�
s,gj(aj ,a�j)

� 
= aj(s)uj(s, 1) +

⇥
1� aj(s)

⇤
Fj
�
s,gj(aj ,a�j)

�
. (28)

Since aj(s) 2 {0, 1}, by (28), it must satisfy the following:

aj(s) =

8
<

:
1 if uj(s, 1) � Fj

�
s,gj(aj ,a�j)

�
,

0 otherwise.
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Thus, for Patient j, (5) is satisfied for all s 2 S .
(ii) (() Let bai = byi for all i 2 N . By Theorem 1, it is su�cient to show that recursion (3) is satisfied
for all s 2 S and i 2 N under the strategy profile bA. Consider Patient i. Since byj = byj+1 for
j 2 N�N , QN�i(s, bA) = bai(s)QN�i(s, bA) for all s 2 S so that the payo↵s gi(bai, ba�i) are defined as
follows:

gi(s, bai, ba�i) =

8
<

:
Fi
�
s,gi(bai, ba�i)

�
if QN�i(s, bA) = 0,

ui(s, 1) if QN�i(s, bA) = 1.
(29)

Since baj = byj for all j 2 N and byj = byj+1 for j 2 N�N , by constraints (4a) and (4b),

bwi(s) = Fi(s, bwi) if QN�i(s, bA) = 0; (30a)

and, by constraints (4a), (4d), (4e), (4f) and (4i):

bwi(s) = ui(s, 1) � Fi(s, bwi) if QN�i(s, bA) = 1. (30b)

By (29) - (30b), it is clear that gi(bai, ba�i) = bwi. Therefore, Fi
�
s,gi(bai, ba�i)

�
= Fi(s, bwi) for all s 2 S .

By (29) and (30b), for Patient i, this implies that (3) is satisfied for all s 2 S .
()) Given bA 2 ⇧, after setting bz(s) = byi(s) = QN (s, bA) and bwi = gi(bai, ba�i) for all i 2 N , similar to
the proof of (() it can be easily shown that (bw, by,bz) 2 ⌥.
(iii) The result immediately follows from part (ii), and the proof is omitted.
(iv) We will establish the result in three steps. Let ⇧bs =

�
A 2 ⇧|QN (bs,A) = 1

 
and for each patient

i 2 N , define di(s) = Fi(s,di) for s 2 S . First, we will show that

For any A 2 ⇧ : gi(ai,a�i) � di for all i 2 N . (31)

Given bA 2 ⇧, consider Patient j. By Theorem 1, for s 2 S :

gj(s, baj , ba�j) = max
⇢

QN�j (s, bA)uj(s, 1) +
⇥
1�QN�j (s, bA)

⇤
Fj
�
s,gj(baj , ba�j)

�
, Fj
�
s,gj(baj , ba�j)

��
.

As the strategy-tuple ba�j is fixed, this recursion defines a stationary, infinite-horizon Markov reward
chain. Now, suppose we apply value iteration to this recursion. Let gn

j (s, baj , ba�j) denote the value
associated with state s 2 S at the nth iteration. More explicitly, for s 2 S and n > 0:

gn
j (s,baj , ba�j) = max

⇢
QN�j (s, bA)uj(s, 1) +

⇥
1�QN�j (s, bA)

⇤
Fj
�
s,gn�1

j (baj , ba�j)
�
,

Fj
�
s,gn�1

j (baj , ba�j)
��

.

By induction on n � 0, we will show that gn
j (baj , ba�j) � dj for all n � 0. Let g0

j (baj , ba�j) = dj , and for
some m � 0, suppose gm

j (baj , ba�j) � dj , so that Fj
�
s,gm

j (baj , ba�j)
�
� Fj(s,dj) for all s 2 S . By the

definition of the payo↵s gm+1
j (baj , ba�j) and dj , we also have gm+1

j (s, baj , ba�j) � Fj
�
s,gm

j (baj , ba�j)
�

and
dj(s) = Fj(s,dj) for s 2 S . Therefore, gm+1

j (baj , ba�j) � dj , and by the convergence of value iteration
we obtain gj(baj , ba�j) � dj .

Secondly, we will show that if ui(bs, 1) � di(bs) for all i 2 N then ⇧bs 6= ;. Construct the strategy profile
bA as follows: For s 2 S and i 2 N , let bai(s) = 1 if s = bs, and bai(s) = 0 otherwise. By Theorem 1, it
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is su�cient to show that recursion (3) is satisfied for all s 2 S and i 2 N under bA. Consider Patient
j. By the construction of bA, (1) defines the payo↵s gj(baj , ba�j) as:

gj(s, baj , ba�j) =

8
<

:
uj(s, 1) if s = bs,

Fj
�
s,gj(baj , ba�j)

�
otherwise.

(32)

Let µ = uj(bs, 1)� dj(bs). First, we will show that

gj(s, baj , ba�j) 2
⇥
dj(s), dj(s) + µ

⇤
for all s 2 S . (33)

As bA is fixed, recursion (32) defines a stationary, infinite-horizon Markov reward chain. Now, suppose
we apply value iteration to recursion (32). Let gn

j (s, baj , ba�j) denote the value associated with state
s 2 S at the nth iteration. That is, for n > 0:

gn
j (s, baj , ba�j) =

8
<

:
uj(s, 1) if s = bs,

Fj
�
s,gn�1

j (baj , ba�j)
�

otherwise.

By induction on n � 0, we will show that the following holds for all n � 0.

gn
j (s, baj , ba�j) 2

⇥
dj(s), dj(s) + µ

⇤
for all s 2 S . (34)

Let g0
j (baj , ba�j) = dj . Since µ � 0, this implies that (34) holds for n = 0. Now, suppose (34) holds for

some n = m � 0. Now, for an arbitrary s 2 S consider gm+1
j (s, baj , ba�j)� dj(s).

1. If s 6= bs, then gm+1
j (s, baj , ba�j) � dj(s) = �j

P
s02S

P(s0|s)
⇥
gm
j (s0, baj , ba�j) � dj(s0)

⇤
. Since

P
s02S

P(s0|s) = 1, �j < 1 and µ � 0, by the induction hypothesis, this implies
⇥
gm+1
j (s, baj , ba�j)�

dj(s)
⇤
2
⇥
0, µ
⇤
.

2. If s = bs, then gm+1
j (s, baj , ba�j)� dj(s) = uj(s, 1)� dj(s) = µ � 0.

Thus, (34) holds for n = m+1. Then, by the convergence of value iteration, (33) holds. Next, we will
show that uj(bs, 1) � Fj

�
bs,gj(baj , ba�j)

�
.

uj(bs, 1)� Fj
�
bs,gj(baj , ba�j)

�
= uj(bs, 1)� Fj

�
bs,gj(baj , ba�j)

�
� dj(bs) + Fj(bs,dj)

= µ� �j

X

s02S

P(s0|bs)
⇥
gj(s0, baj , ba�j)� dj(s0)

⇤
� µ� �j

X

s02S

P(s0|bs)µ = (1� �j)µ � 0,

where the first inequality follows from the fact that gj(s0, baj , ba�j)  dj(s0)+µ for all s0 2 S
�
by (33)

�

and the second inequality is implied by the facts that �j < 1 and µ � 0.

Thus, uj(bs, 1) � Fj
�
bs,gj(baj , ba�j)

�
. Then, by (32), the payo↵s gj(baj , ba�j) can be restated as:

gj(s, baj , ba�j) =

8
<

:
max

�
uj(s, 1), Fj

�
s,gj(baj , ba�j)

� 
if s = bs,

Fj
�
s,gj(baj , ba�j)

�
otherwise.

By the construction of the strategy profile bA, for Patient j, this implies that recursion (3) is satisfied
for all s 2 S . Now, we will establish the main result. Consider the two possible cases for max

i2N

⇥
di(bs)�

ui(bs, 1)
⇤
.

1. If max
i2N

⇥
di(bs)� ui(bs, 1)

⇤
> 0, then by (31), max

i2N

⇥
gi(bs,a⇤i ,a⇤�i)� ui(bs, 1)

⇤
> 0.
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2. If max
i2N

⇥
di(bs) � ui(bs, 1)

⇤
 0, then since ⇧bs 6= ;,

P
i2N gi(bs,a⇤i ,a⇤�i) �

P
i2N ui(bs, 1). Now,

consider the following subcases:

(a) If
P

i2N gi(bs,a⇤i ,a⇤�i) >
P

i2N ui(bs, 1), then max
i2N

⇥
gi(bs,a⇤i ,a⇤�i)� ui(bs, 1)

⇤
> 0.

(b) If
P

i2N gi(bs,a⇤i ,a⇤�i) =
P

i2N ui(bs, 1), then either gi(bs,a⇤i ,a⇤�i) = ui(bs, 1) for all i 2 N or
gi(bs,a⇤i ,a⇤�i) 6= ui(bs, 1) for some i 2 N . Because

P
i2N gi(bs,a⇤i ,a⇤�i) =

P
i2N ui(bs, 1),

in the latter case there must exist some j 2 N with gj(bs,a⇤j ,a⇤�j) > uj(bs, 1) so that
max
i2N

⇥
gi(bs,a⇤i ,a⇤�i)� ui(bs, 1)

⇤
> 0.

2

Appendix B: Numerical Results on Three-Way Exchanges

In this appendix, we present numerical results on three-way exchanges that are similar in nature to
our study of two-way exchanges in Section 4. We aggregate the two-way GFR ranges 1, 2, 3 and 4
into a single range, and GFR ranges 5, 6 and 7 into another range, so that � = {1, 2, 3, 4} in our
experiments for three-way exchanges. We let bs = (bs1, bs2, bs3) refer to the initial state of the game, i.e.,

the state in which patients are matched. For each of the 500 cases we solve the mathematical pro-
grams max(bw,by,bz)2⇤

⇥P
i2N wi(bs)

⇤
and max(bw,by,bz)2⌥

⇥P
i2N wi(bs)

⇤
to estimate the cost of restricting

our attention to pure strategies, for which max(bw,by,bz)2⇤

⇥P
i2N wi(bs)

⇤
� max(bw,by,bz)2⌥

⇥P
i2N wi(bs)

⇤

provides an upper bound (by Theorems 2 and 3). Similar to the two-way case, our experiments show
that a socially optimal randomized equilibrium does not a provide a significant welfare over a socially
optimal pure equilibrium. In all our instances, the socially optimal pure equilibrium was never more
than 1.12% worse than the socially optimal randomized equilibrium. Therefore, we quantify the wel-
fare loss due to patient autonomy only for socially optimal pure equilibria. We define the maximum
di↵erence in patients’ GFR ranges in the initial state of the game

�
max(bs1, bs2, bs3) � min(bs1, bs2, bs3)

�

as a measure of conflict among patients’ self interests. Therefore, we present only the healthiest and
sickest patients where Patient i is sickest if bsi � bsj for both j 2 N�i, and healthiest if bsi  bsj for
both j 2 N�i. Note that these definitions of sickest or healthiest patients may not be unique. For
each case, we calculate the social welfare loss and the individual patients’ welfare losses due to patient
autonomy in absolute (in quality-adjusted life days) and relative terms as a function of the maximum
di↵erence in their GFR ranges. When there are multiple sickest and healthiest patients, we consider
the average welfare terms across such patients.

Table 3: Social welfare loss and patients’ individual welfare losses due to patient autonomy.
Relative Loss Absolute Loss

max(bs1, bs2, bs3)�min(bs1, bs2, bs3) 0 1 2 3 0 1 2 3

Healthiest Patient 0.76 0.29 0.13 -1.32 46 17 11 -65
Sickest Patient 0.76 0.84 1.32 7.60 46 52 65 366

Total 0.40 0.56 0.72 2.55 68 93 117 400

From Table 3, it easy to see that the pattern in welfare loss borne by patient autonomy in the di↵erence
of patients’ GFR ranges is similar to that in two-way kidney exchanges. As patients’ health statuses
diverge, the sickest patient loses more whereas the healthiest patient loses less, and eventually gains
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from patient autonomy. Notice that three-way exchanges incur less social welfare loss from patient
autonomy than two-way exchanges, which we interpret as follows: In three-way exchanges, the death
of any of the three patients renders an exchange infeasible. Therefore, the healthier patient(s) is (are)
less patient than in the case of two-way exchanges and force(s) less the other(s) to wait. By the same
reasoning, because the socially optimal policy is more eager to exchange, the welfare loss from not
exchanging the kidneys immediately due to patient autonomy is less than the loss depicted in Table
3 and the analogous loss incurred in two-way exchanges. Lastly, similar to two-way exchanges, we
also quantify the patients’ cost of playing a socially optimal equilibrium rather than their individually
optimal equilibria. In all our instances, under a socially optimal equilibrium none of the patients was
more than 1.15% worse relative to their individually optimal equilibria.
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