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Abstract

We consider nonparametric identification and estimation of pricing kernels, or equivalently of

marginal utility functions up to scale, in consumption based asset pricing Euler equations. Ours

is the first paper to prove nonparametric identification of Euler equations under low level condi-

tions (without imposing functional restrictions or just assuming completeness). We also propose

a novel nonparametric estimator based on our identification analysis, which combines standard

kernel estimation with the computation of a matrix eigenvector problem. Our estimator avoids

the ill-posed inverse issues associated with nonparametric instrumental variables estimators. We

derive limiting distributions for our estimator and for relevant associated functionals. A Monte

Carlo shows a satisfactory finite sample performance for our estimators.
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1 Introduction

The optimal intertemporal decision rule of an economic agent can often be characterized by first-

order condition Euler equations. These equations are fundamental objects that appear in numerous

branches of economics, in particular in the literatures on consumption, on savings and asset pricing,

on labor supply, and on investment. Many empirical studies of dynamic optimization behaviors rely

on the estimation of Euler equations. One of the original motivations of the generalized method

of moments (GMM) estimator proposed by Hansen and Singleton (1982) was estimation of rational

expectations based Euler equations associated with consumption based asset pricing models. In this

paper we study the nonparametric identification and estimation of such Euler equations.

To fix ideas, consider a familiar consumption based asset pricing Euler equation (e.g. Cochrane

(2001))

bE[g(Ct+1, Vt+1)Rt+1 | Ct, Vt] = g(Ct, Vt), almost surely (a.s.) (1)

where b is the subjective discount factor, Ct is consumption at time t, Vt is a vector of other economic

variables such as durables or lagged consumption (for habits) that might affect utility, Rt is the gross

return of an asset, and g is the time homogeneous marginal utility function of consumption.1 Equation

(1) is the first order condition that equates in real terms the marginal cost of an extra unit of the

asset, purchased today, to the expected marginal benefit of the extra payoff received tomorrow.2

Our work is the first to establish nonparametric point identification of the marginal utility function

g, and by implication of the pricing kernel function M (see below), under low level assumptions. We

also provide a novel nonparametric estimator based on this identification analysis, which combines

standard kernel estimation with the computation of a matrix eigenvector problem. Our estimator

overcomes the ill-posed inverse problem that affects existing nonparametric instrumental variables

based estimators.

We take the primitives of the Euler equation to be the marginal utility function g, defined up to

an arbitrary sign and scale normalization, and the discount factor b. The (nonparametric) identified

set for the Euler equation is defined to be the set of all (g, b) ∈ Θ ≡ G×(0, 1), for a suitable parameter

space G, that satisfy equation (1), given the true joint distribution of the data (see Tamer (2010) for
a review of set identification definitions). A model is defined to be globally point identified if the

identified set only consists of one element.

In this paper we first show that the Euler equation is partially identified, with a finite identified

1This model assumes time separability, however, the separability is conditional, in that it depends on Vt as well as

Ct. So our model permits current utility to depend on many lags of consumption to accommodate habits or durables

(e.g. see Campbell and Cochrane (1999)).
2For a formal derivation of this Euler equation, with internal or external habits, see the Appendix.
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set for the discount factor, and an identified set for marginal utilities that is the union of finite

dimensional spaces. This implies that the discount factor is also locally identified (in the sense of

Fisher (1966), Rothenberg (1971) and Sargan (1983)), meaning that b is nonparametrically identified

within a parameter space that equals a neighborhood of the true value. We then show that if the

class of utility functions is restricted to be monotone, which is a natural economic restriction, then

the Euler equation model is, nonparametrically, globally point identified.

Having established identification, we next propose a novel nonparametric kernel estimator for

the marginal utility function and discount factor based on our identification arguments. We provide

asymptotic distribution theory for the discount factor, the marginal utility function, and for semi-

parametric functionals of the marginal utility function such as the Average Relative Risk Aversion

(ARRA) parameter defined below.

In the empirical asset pricing literature, the Euler equation (1) is traditionally written as

E [Mt+1Rt+1 | Ct, Vt] ≡ E

[
b
g(Ct+1, Vt+1)

g(Ct, Vt)
Rt+1 | Ct, Vt

]
= 1,

where Mt+1 = bg(Ct+1, Vt+1)/g(Ct, Vt) is the time t+ 1 pricing kernel or Stochastic Discount Factor

(SDF). Then, the pricing equation for asset R can be cast in the form of excess returns

E [Mt+1 (Rt+1 −R0t+1) | Ct, Vt] ≡ E

[
b
g(Ct+1, Vt+1)

g(Ct, Vt)
(Rt+1 −R0t+1) | Ct, Vt

]
= 0, (2)

whereR0t denotes the return from the risk-free asset. Equation (2) is a conditional moment restriction

that forms the basis of moments based estimation. In a parametric model, g (and hence Mt) is

assumed known up to finite-dimensional parameters; prominent examples include Hall (1978), Hansen

and Singleton (1982), Dunn and Singleton (1986), and Campbell and Cochrane (1999), among many

others. Euler equations have also been specified semiparametrically, e.g., Chen and Ludvigson (2009)

and Chen, Chernozhukov, Lee and Newey (2014).

Nonparametric estimators of equation (2) and similar models (taking the form of nonparametric

instrumental variables models) have been proposed, by, e.g., Gallant and Tauchen (1989), Chapman

(1997), Newey and Powell (2003), Ai and Chen (2003) and Darolles, Fan, Florens, and Renault (2011).

However, in these applications identification is assumed rather than proved, by way of high level

completeness assumptions. These models have the structure of Fredholm equations of the first kind

(also called Type I equations). Solving these types of equations involves ill-posed inverse problems

that can be severe, and as a result, fully nonparametric estimators of Mt+1 = M(Ct+1, Vt+1, Ct, Vt)

based on (2) can have very slow convergence rates and possibly unstable inference.

In contrast, we start by writing the pricing kernel problem in the form of equation (1) instead of
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equation (2), thereby estimating g instead ofM .3 The advantage is that equation (1) takes the form of

a Fredholm linear equation of the second kind (or Type II equation). As a result, unlike equation (2),

the solution of equation (1) has a well-posed generalized inverse, leading to much better asymptotic

properties for inference. In particular, in solving equation (1), a candidate discount factor b and

associated marginal utility function g is characterized as an eigenvalue-eigenfunction pair of a certain

conditional mean operator. Under the mild assumption that this operator is compact, a classical

result (see e.g. Kress (1999)) ensures that the number of eigenvalues is countable. The behavioral

restriction that b < 1 reduces this set to a finite number, leading to our finite set identification result

and hence to local identification for the discount factor. To obtain global point identification of

b and g, we impose the additional behavioral restriction that utility is increasing in consumption,

which implies that the function g is positive. Applying an infinite-dimensional extension of the

Perron-Frobenius theorem (see Krĕın and Rutman (1950)) yields uniqueness of a positive eigenvalue-

eigenfunction pair, which then provides nonparametric point identification.

Following this identification argument, we propose a new nonparametric estimator for the mar-

ginal utility function g and discount factor b. The estimator is based on standard kernel estimation of

a sample analogue of (1), which with finite data replaces the problem of solving for an eigenfunction

with the simpler problem of solving for a standard finite-dimensional matrix eigenvector. No nu-

merical integration or optimization is required, making the estimator straightforward to implement

(and numerically practical to bootstrap). We establish our estimator’s limiting distribution under

standard conditions, which are simpler than those associated with estimators that solve Type-I ill-

posed inverse problems, such as nonparametric instrumental variables. Our expansions show that, in

contrast to nonparametric problems leading to Type-I equations, nonparametric inference on g in our

Type-II equation is to a large extent mathematically equivalent to inference on a standard conditional

mean function, and in particular has comparable rates of convergence to ordinary nonparametric re-

gression. Although our assumptions are standard, both our identification and asymptotic theory

entail machinery that is novel in the econometrics literature, applying an infinite-dimensional ex-

tension of Perron-Frobenius theory to a type II Fredholm equation (see the next section for details

comparing our results to the literature).

In addition to the pricing kernel Mt+1, another functional of the marginal utility function g that

is of interest to estimate is the Arrow-Pratt coeffi cient of Relative Risk Aversion, and its average

value, RRA and ARRA, given respectively by

RRA(c, v) =
−c∂g(c, v)/∂c

g(c, v)
and ARRA = E [RRA(Ct, Vt)] .

3This simplification does not come for free. It requires that the pricing kernel model be derived from an Euler

equation model of the form given by equation (2).
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We establish asymptotic normality of a nonparametric estimator of the ARRA. Given our estimates

of g(c, v), we also provide tests of whether g is independent of v, thereby testing whether lagged

consumption (or any other potential covariates v such as durables consumption) affects the pricing

kernel. These tests are based on semiparametric functionals of g, which are asymptotically normal

under the same type of regularity conditions we use to establish asymptotics for the ARRA.

The asymptotic theory we present in this paper is based on weakly dependent stationary household-

level consumption and asset data. Therefore our existing results would not be suitable to analyze ag-

gregated consumption data that appear to be non-stationary (particularly non-recurrent time series).

Otherwise, our estimates allow applied researchers to engage in a nonparametric consumption-based

asset pricing theory. For example, Abbott and Gallipoli (2018) illustrate the applicability of our

methods by using them to estimate nonparametrically human wealth and permanent income with

PSID data.

The rest of the paper is organized as follows. After a literature review in Section 2, we provide

suffi cient conditions for partial identification and point identification in Section 3. We propose

our kernel-type estimator in Section 4, and we investigate its asymptotic properties in Section 5. In

Section 6 we describe how our asymptotic theory applies to functionals of g, and give some examples.

We report the results of a Monte Carlo experiment in Section 7. Section 8 concludes. An Appendix

contains the derivation of the Euler equation and the mathematical proofs of the main results.

2 Literature Review

Forerunners of our research are papers by Gallant and Tauchen (1989) and Chapman (1997), who use

sieve methods to nonparametrically estimate marginal utilities and the pricing kernel, respectively,

using the moment restriction (2) (i.e. using a Type I Fredholm equation). These papers did not in-

vestigate identification, nor impose the positivity of marginal utilities, and the asymptotic properties

of their nonparametric estimators were not established.

Nonparametric instrumental variables is a leading example of estimation based on a Type I Fred-

holm equation, yielding associated ill-posed inverse problems on estimation. Newey and Powell (2003)

note that assuming statistical completeness (a high level assumption) is essentially the same as just

assuming identification of this type of model. Other related examples of nonparametric and semi-

parametric ill-posed inverse estimation problems include Carrasco and Florens (2000), Ai and Chen

(2003), Hall and Horowitz (2005), Chen and Pouzo (2009), Chen and Reiss (2010), Darolles, Fan,

Florens and Renault (2011) and, more recently, Cai, Ren and Sun (2015). A particularly relevant

example is Chen and Ludvigson (2009), who studied identification and estimation of a semiparamet-

ric specification of the Type-I equation (2). Their model assumes g has the semiparametric form
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g(Ct, Vt) = Cη
t h (Vt) , where η is a constant that determines risk aversion and h is an unknown func-

tion of current and lagged values of Ct/Ct−1 representing habits. Virtually all parametric estimators

of the asset pricing model, going back to Hansen and Singleton (1982) and including Dunn and Sin-

gleton (1986), and Campbell and Cochrane (1999), use the form of equation (2) rather than equation

(1).

Many parametric rational expectations models that focus on utility or production rather than

asset pricing do estimation in the form of equation (1). Early examples include Hall (1978) and

Mankiw (1982) (though see Lewbel (1987) for a critique). This earlier work does not appear to

recognize the theoretical integral equation advantages of casting the model in the form of equation

(1). Anatolyev (1999) recognizes that this form is a Type II Fredholm equation and provides a

numerical method for estimating Euler equations that makes use of this structure, but he does

not consider identification or inference. We believe our paper is (or at least earlier versions of our

paper were) the first to make explicit use of this Type II Fredholm structure for identification and

inference. An and Hu (2012) exploit the nature of a type II Fredholm equation to identify and

estimate a measurement error model rather than an Euler equation model, but they cite our working

paper as prior knowledge.

Our proof of global identification makes use of extensions of the classical Perron-Frobenius theo-

rem that positive matrices have a unique positive eigenvalue which corresponds to a unique positive

eigenvector. In particular, we apply a theorem of Krĕın and Rutman (1950), which extends Perron-

Frobenius to compact operators in Banach spaces. See, e.g., Schaefer (1974) and Abramovich and

Aliprantis (2002) for a comprehensive presentation of this theory.

Some versions of Perron-Frobenius have been applied before in Euler equation and other similar

models. Hansen and Scheinkman (2009, 2012, 2013) used Perron-Frobenius theory for a different

problem of identification than ours in a continuous-time setting, using Markov theory. In our no-

tation, they give conditions for identification of the positive eigenfunction and eigenvalue of the

operator φ → E[Mt+1φ(Ct+1, Vt+1) | Ct, Vt], assuming that the SDF Mt+1 is known. In contrast, we

show that Mt+1 itself is identified, by obtaining identification of b and g. Christensen (2015, 2017)

applies Krĕın-Rutman theory to a discrete-time version of Hansen and Scheinkman (2009), and Ross

(2015) applies the classical finite-dimensional Perron-Frobenius theorem to identify the pricing kernel

and the natural probability distribution from state prices.

Regarding identification, perhaps the closest work to ours is Chen, Chernozhukov, Lee and Newey

(2014). Although their paper mainly concerns local nonparametric identification, in their Euler

equation application they consider a semiparametric rather than a nonparametric model like ours.

Specifically, their model is the same functional form as Chen and Ludvigson (2009) described above,

but allowing for a more general conditioning set. They cite working paper versions of our paper as
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prior knowledge. They first use completeness conditions to identify the parametric RRA and then

use Perron-Frobenius to identify the role of habits. In contrast, we do not require a constant RRA

or require completeness conditions for identification. Thus, the setting and identification approaches

of this paper and those of Chen et al. (2014) are quite different.

An alternative to our kernel based estimation would be the use of sieves. Although we focus on

kernel estimates, our asymptotic theory is developed in a way that can be easily adapted to other

nonparametric estimation methods, including sieves (e.g. splines) and local polynomial methods.

Nonparametric sieve estimation of eigenvalue-eigenvector problems for self-adjoint operators is ex-

tensively discussed in Chen, Hansen and Sheinkman (2000, 2009), Darolles, Florens and Gouriéroux

(2004) and Carrasco, Florens and Renault (2007), among others.4 However, their results cannot

be applied to our model, since in our case the associated operator is not self-adjoint. Christensen

(2017) proposes a nonparametric sieve estimator for the discrete-time Markov setting of Hansen and

Scheinkman (2009), establishing asymptotic normality of the eigenvalue estimate and smooth func-

tionals of it. See also Gobet, Hoffmann and Reiss (2004) for sieve estimation of eigenelements in

diffusion models. As noted earlier, sieve estimation has more directly been applied to nonparametric

and semiparametric versions of equation (2) going back to Gallant and Tauchen (1989). In com-

parison, our kernel based estimator has several advantages as summarized in the previous section,

mainly attributable to our method of exploiting the well-posedness of equation (1). In particular,

with our methods we obtain novel asymptotic distribution theory for functionals of the nonparamet-

ric utility, such as the ARRA functional. This asymptotic theory is of independent interest and has

wide applicability in other situations where type-II equations arise.

3 Identification

Since our goal is the study of Euler equations, we shall take as primitives the pair (g, b) ∈ Θ ≡
G × (0, 1), where G denotes the parameter space of marginal utility functions, which satisfies some
conditions below. From equation (1) it is clear that, for a given b, the Euler equation cannot

distinguish between g and h if there exists some constant k0 ∈ R such that g = k0h a.s., so a scale

and a sign normalization must be made. For the moment we shall assume there is just one asset, and

we denote its rate of return by Rt. We later discuss how information from multiple assets can be

used to aid identification. As seen in the previous section, for each period t, Ct is consumption and

Vt is (possibly a vector of) other economic variable(s).

4Section 2.5 in Carrasco et al. (2007) discusses generic methods for estimation of the singular values and associated

eigenfunctions. This problem is different from estimating the principal eigenvalue and eigenfunction of a non-selfadjoint

operator, but our kernel estimation strategy follows closely their logic.
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Definition. Let S, S ′ ⊆ R` denote the supports of (Ct, Vt) and (Ct+1, Vt+1) respectively. Let µ

be a probability measure, with support Sµ ⊆ S ∩ S ′, and let L2 denote the Hilbert space L2(Sµ, µ) of

(equivalence classes of) square µ-integrable functions equipped with the inner product 〈g, f〉 =
∫
gfdµ

and the corresponding norm ‖g‖2 = 〈g, g〉 (we drop the domain of integration for simplicity of
exposition).

LetM⊆ L2 be a linear subspace, and define the linear operator A : (M, ‖·‖)→ (M, ‖·‖) by

Ag(c, v) = E[g(Ct+1, Vt+1)Rt+1 | Ct = c, Vt = v]. (3)

We assume that Ag is well-defined and Ag ∈M for g ∈M. Examples of µ andM are given below.

With our notation, (1) can be written in a compact form as bAg = g. The parameter space for g, G,
will be a subset ofM incorporating normalization restrictions. Marginal utilities may not have finite

moments around zero (where they may diverge). To overcome this problem, by suitable redefinition

of g we can rewrite equation (1) in the form

bE[C ′g(C ′, V ′) (C/C ′)R′ | C, V ] = Cg(C, V ). (4)

This reparameterizes the problem in terms of Cg(C, V ), which under natural economic assumptions is

bounded; see Lucas (1978). This identity also gives an alternative way to estimate the marginal utility

function and other objects of interest, which we shall discuss further below. More generally, we could

apply parametrizations with powers of consumption if necessary (i.e. with (C ′)δ g(C ′, V ′) (C/C ′)δ

and Cδg(C, V ) in the left and right hand side of (4), respectively). The parameter δ is chosen by

the researcher (i.e. it is not estimated). Allowing for δ > 1 is useful to accommodate CRRA utilities

with risk aversion larger than one.

We introduce the assumption of correct specification and a formal definition of identification.

Assumption S. There exists (g, b) ∈ Θ ≡ G × (0, 1), g 6= 0, satisfying equation (1).

Definition 1. Given the joint distribution of (Rt+1, Ct+1, Vt+1, Ct, Vt), the Euler equation is non-

parametrically identified if there is a unique (g, b) ∈ Θ that satisfies equation (1). When the solution

is unique we denote it by θ0 ≡ (g0, b0).

Definition 2. Given the joint distribution of (Rt+1, Ct+1, Vt+1, Ct, Vt), the identified set, denoted

by Θ0, consists of elements in Θ where each (g, b) ∈ Θ0 satisfies equation (1) with g 6= 0. The sets

B0 = {b ∈ (0, 1) : there is g ∈ G such that (g, b) ∈ Θ0} and G0 = {g ∈ G : there is b ∈ (0, 1) such

that (g, b) ∈ Θ0} are, respectively, the identified sets for b and g.

Therefore, the Euler equation is point identified if Θ0 is a singleton. To provide some insights on

our identification and estimation strategies we consider first the case where A in (3) has a finite-

dimensional range. In this case, we can write
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Ag (·) =

I∑
i=1

Li(g)φi(·), (5)

for a set of functions {φi} that span the range of A, R(A) = {f ∈M : ∃g ∈M, Ag = f}, and linear
operators Li(g), i = 1, . . . , I. This situation arises, for example, when the support S is discrete and

finite. Under (5), any potential solution of (1) has to have necessarily the form g (·) =
∑I

i=1 βiφi(·)
for a vector β = (β1, . . . , βI) satisfying the Euler equation

I∑
i=1

I∑
j=1

Li(φj)βjφi(c, v) = b−1

I∑
i=1

βiφi(c, v).

In turn, this is the case for the solution, provided it exists, of

I∑
j=1

βjLi(φj) = b−1βi 1 ≤ i ≤ I.

Therefore, β, i.e. g, and b−1 are identified as any eigenelement of the I × I matrix (Li(φj))i,j, with

b ∈ (0, 1). In general, we may have more than one such eigenelement, i.e., we may have partial

identification. In any case, the number of eigenvectors β and eigenvalues is bounded by I, so we have

a finite identified set.

As we shall show, the previous arguments extend to the general infinite-dimensional case replacing

the finite-dimensionality of R(A) by the compactness of A. A linear operator A is compact if it

transforms bounded sets into relatively compact sets (relatively compact sets inM are those whose

closure its compact). The compactness assumption is standard in the literature and is useful for both

identification and for obtaining asymptotics of continuous functionals of g. Note, however, that if

there are overlapping elements in (Ct+1, Vt+1) and (Ct, Vt) compactness rules out the caseM = L2;

see Carrasco, Florens and Renault (2007, Example 2.5, p. 22). We could deal with the lack of

compactness of A on the whole L2 by conditioning on (i.e. fixing) the overlapping components, as

is common in the literature (see e.g. Blundell, Chen and Kristensen (2007, p. 1629)). From the

identification point of view there is little loss of generality by following this “conditioning”approach,

however, for deriving asymptotics compactness is convenient, as it guarantees that inference will be

based on well-posed generalized inverses (see the discussion at the end of this section).

Assumption C. A : (M, ‖·‖)→ (M, ‖·‖) is a compact operator .

Let G ⊆ {g ∈M : ‖g‖ = 1, g(c0, v0) > 0, (c0, v0) ∈ S} be the parameter space for g.

Theorem 1. Suppose that Assumptions S and C hold. Then, B0 is a finite set and G0 is a finite

union of finite-dimensional subspaces intersected with G.
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Theorem 1 shows that without further assumptions the Euler equation is partially identified, with

b identified up to a finite set corresponding to eigenvalues larger than one, and g is identified up to

a corresponding set of eigenfunctions. The discount factor b is also locally identified, meaning that

for any b ∈ B0 there is an open neighborhood of b that does not contain any other element in B0.

Essentially, compactness of A ensures that B0 is at most countable, and the economic restriction

that discount factors lie in (0, 1) ensures that B0 is finite.

The identified set without additional economic restrictions can be further reduced if there are

multiple assets. If there are J assets, then there are J Euler equations. Applying Theorem 1

to each asset, gives an identified set for each, and the true (g, b) must lie in the intersection of

these identified sets. One might further shrink the identified set by imposing the restriction that

bg(Ct+1, Vt+1)Rt+1 − g(Ct, Vt) is uncorrelated with all variables in the information set at time t, not

just measurable functions of (Ct, Vt).

Assumptions S and C do not suffi ce for point identification in general. We consider now a

shape restriction on marginal utilities, which is a common behavioral assumption that is satisfied for

common parametric specifications of utility. Specifically, we impose the assumption that marginal

utilities are positive. Let

P ≡ {g ∈M : g ≥ 0 µ− a.s.} (6)

denote the subset of nonnegative functions inM, and let P+ ≡ {g ∈ M : g > 0 µ−a.s.} denote the
subset of strictly positive functions, which is assumed to be non-empty. The assumption is then:

Assumption I. Ag ∈ P+ when g ∈ P and g 6= 0.

Assumption I is a mild condition that extends the classical assumption of a positive matrix in the

Perron-Frobenius theorem to an infinite-dimensional setting, see Abramovich and Aliprantis (2002,

Chapter 9) and Schaefer (1974). With our shape and normalization restrictions the parameter space

is G ⊆ {g ∈ P : ‖g‖ = 1}. Note that Assumption S and I imply that g > 0 µ − a.s. for all g ∈ G0

because g = bAg > 0.

Theorem 2. Let Assumptions S, C and I hold. Then, (g, b) ∈ G × (0, 1) is point identified.

Identification can be established under weaker conditions than those of Theorem 2, however, we

do not pursue these conditions here because the stronger conditions of Theorem 2 will facilitate our

later asymptotic inference results (see earlier working paper versions of our paper for these weaker

conditions). Our proof of Theorem 2 also shows that b = 1/ρ (A) , where ρ (A) is the spectral radius

of A (see the Appendix for a definition of the spectral radius of a linear bounded operator). A key

suffi cient condition for identification of g is that A is irreducible; see Abramovich and Aliprantis

(2002, Chapter 9) for a definition of irreducibility in a general setting.

10



We could consider other suffi cient conditions that replace conditions on A by conditions on a

power of A, i.e. we could require that Assumptions C and I hold for An, for some n ≥ 1). It is

hard to interpret these conditions, however, in a possibly non-Markovian environment, so we do not

pursue them here. It is also likely that the Euler Equation is overidentified under the conditions

of Theorem 2, since as noted earlier we could exploit additional information coming from multiple

assets, or from uncorrelatedness with other data in the information set at time t.

For illustration, we consider the following examples of µ andM, which lead to simple conditions

for identification by Theorem 2. Assume for simplicity that Vt+1 and Vt are empty, and denote by

f(c′, c), f ′(c′) and f(c) the joint and marginal densities of (Ct+1, Ct), respectively. Assume µ has

Lebesgue density fµ on a common support Sµ = S = S ′ (e.g. Sµ = [0,∞)). Then, takingM equals

to L2, the operator equation bAg = g can be written as

b

∫
k(c′, c)g(c′)fµ(c′)dc′ = g(c),

where k(c′, c) = r(c′, c)f(c′, c)/[fµ(c′)f(c)] and r(c′, c) = E [Rt+1|Ct+1 = c′, Ct = c] a.s. Then, it is

well known that Assumption C holds if∫ ∫
k2(c′, c)fµ(c′)fµ(c)dc′dc <∞,

see Example 2.3 in Carrasco, Florens and Renault (2007, p. 5659); while Assumption I holds if

k(c′, c) > 0 µ × µ a.s. A viable data-driven choice of fµ is the pooled density fµ = 0.5f + 0.5f ′,

provided it satisfies the squared integrability condition above. Note that these assumptions do not

require consumption to be stationary (i.e. f 6= f ′ is allowed), but they impose restrictions on the set

of allowable µ′s and their supports (e.g., Sµ = S = S ′ = [0,∞)) so g can be embedded in a common

space (as the correct specification of the Euler equation implies).

We close our study of identification with a discussion on the degree of ill-posedness of our non-

parametric problem. Assumption S implies that the operator L = bA−I is not one-to-one, as Lg = 0

and g 6= 0. Therefore, solving the Euler equation (1) is an ill-posed problem (see e.g. Carrasco, Flo-

rens and Renault (2007, Section 7)). However, unlike in ill-posed Type-I equations, the ill-posedness

in our Type-II equation is moderate, with stable solutions. Formally, the operator L, although not

invertible, has a continuous (i.e. bounded) Moore-Penrose pseudoinverse, which is denoted by L†;

(see Engl, Hanke and Neubauer (1996, p. 33)). To see this, note that the compactness of A and

the Second Riesz Theorem, see e.g. Theorem 3.2 in Kress (1999, p. 29), imply that the range of L,

R(L) = {f ∈ L2 : ∃s ∈ L2, Ls = f}, is closed. This in turn implies that L† is a continuous operator
by Proposition 2.4 in Engl et al. (1996). It is in this precise sense that our problem leads to well-

posed rather than ill-posed generalized inverses. This property of our nonparametric problem, which

results from considering Type-II equations rather than Type-I equations, has important implications

11



for inference. For example, in the next sections we obtain rates of convergence for estimation of g

that are the same as those of ordinary nonparametric regression.

4 Estimation from Individual level-data

Our estimation strategy follows the identification strategy described above. For estimation we

assume that we have a sample of household-level data {(Rti+1, Cti+1,i, Vti+1,i, Cti,i, Vti,i)}ni=1 for n

households, with possibly overlapping time periods t1 ≤ t2 ≤ · · · ≤ tn. To simplify notation

denote Wi = (R′i, C
′
i, V

′
i , Ci, Vi) ≡ (Rti+1, Cti+1,i, Vti+1,i, Cti,i, Vti,i) , where Vi = (V1i, . . . , V`1i) and

V ′i = (V ′1i, . . . , V
′
`1i

) with ` = `1 + 1. We assume that the data {Wi}ni=1 are drawn from a common

distribution with underlying parameter θ0 ≡ (g0, b0) ∈ Θ. We allow the observations to be depen-

dent across households possibly reflecting common features in their investment opportunities, but

this dependence should be weak enough to permit laws of large numbers and central limit theorems

to apply. To be concrete we suppose that there is an ordering of the households such that the series

can be considered stationary and mixing, although this ordering need not be known by the econo-

metrician. This type of assumption has been made in finance to the cross section of stock returns.

See, e.g., Connor and Korajczyk (1993). We shall henceforth assume that Assumptions S, C and I

hold, so that θ0 is point-identified. Particularly, we consider g0 ∈ G ⊆ {g ∈ P : ‖g‖ = 1}.
We assume that the vector Wi is continuously distributed (the discrete case is simpler). As in

the example above, we denote the Lebesgue density of (Ci, Vi) by f and that of (C ′i, V
′
i ) by f

′. We

consider the setting described in the identification section where µ is a probability measure with

Lebesgue density fµ and support Sµ ⊆ S ∩ S ′. Henceforth, g and b denote generic elements in G and
(0, 1), respectively.

Define the Nadaraya-Watson (NW) kernel estimator of the operator A at g as follows,

Âg (c, v) =
1

n

n∑
i=1

g′iR
′
iφi(c, v),

where, for i = 1, . . . , n, g′i ≡ g (C ′i, V
′
i ) , φi(c, v) = Khi (c, v) /f̂ (c, v) , while for v = (v1, . . . , v`1),

f̂ (c, v) =
1

n

n∑
i=1

Khi (c, v) ,

and

Khi (c, v) = h−` K

(
c− Ci
h

) `1∏
j=1

K

(
vj − Vji

h

)
.

Here, K is a univariate kernel function and h ≡ hn is a possibly stochastic bandwidth. Note that

contrary to A, the operator Â has a finite-dimensional closed range (that is spanned by the functions

12



φi(c, v), i = 1, . . . , n). Therefore, similar to our discussion of identification in Section 3, the number of

eigenvalues and eigenfunctions of Â is finite and bounded by n, and they can be computed by solving

a linear system. Indeed, any eigenfunction ĝ(c, v) of Â necessarily has the form n−1
∑n

i=1 β̂iφi(c, v),

for some coeffi cients β̂i, i = 1, . . . , n, satisfying for its corresponding eigenvalue λ̂ the equation

1

n2

n∑
i=1

n∑
j=1

β̂jφj(C
′
i, V

′
i )R

′
iφi(c, v) = λ̂

1

n

n∑
i=1

β̂iφi(c, v).

A solution to this eigenvalue problem exists if, for all i = 1, . . . , n,

1

n

n∑
j=1

β̂jφj(C
′
i, V

′
i )R

′
i = λ̂β̂i,

which in matrix notation can be simply written as

Ânβ̂ = λ̂β̂,

where Ân is an n× n matrix with ij-th element aij = φj(C
′
i, V

′
i )R

′
i/n, and β̂ = (β̂1, . . . , β̂n)ᵀ (hence-

forth, vᵀ denotes the transpose of v). Thus, let λ̂ denote the largest eigenvalue in modulus of Ân and

β̂ = (β̂1, . . . , β̂n)ᵀ its corresponding eigenvector. Our estimators for b0 and g0 are, respectively,

b̂ = 1/λ̂ and ĝ (c, v) = n−1

n∑
i=1

β̂iφi(c, v). (7)

Marginal utilities are identified up to scale and we consider the normalization ‖ĝ‖ = 1, which is

implemented by setting β̂
ᵀ
Ω̂β̂ = 1, where Ω̂ is the n× n matrix with entries

ωij =
1

n2

∫
φi(c, v)φj(c, v)fµ(c, v)dcdv.

As a practical recommendation, we could also normalize ĝ (Ci, Vi) to have unit standard deviation.

Also, we impose the sign normalization 〈ĝ, 1〉 > 0. The estimator (ĝ, b̂) can be easily obtained with any

statistical package that computes eigenvalues and eigenvectors of matrices. There are also effi cient

algorithms for the computation of the so-called Perron-Frobenius root λ̂, see e.g. Chanchana (2007).

Notice that under very mild conditions the matrix Ân itself satisfies the classic conditions of the

Perron-Frobenius theorem, which guarantees that b̂ = ρ−1(Ân) and β̂ is the only eigenvector of Ân
with positive entries. That is, in this case we also have identification in finite samples. For example,

for strictly positive kernels and strictly positive gross returns, Ân has strictly positive entries, which

then implies a positive estimator ĝ (c, v) > 0 and a positive discount factor b̂ with probability one

for a fixed n ≥ 1. For higher-order kernels we can take the positive part of the estimator as usual,

and apply Perron-Frobenius for a suffi ciently large n.
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The easiest way to consider simultaneously different assets in our estimation strategy is to obtain

individual estimates of the marginal utility for each asset by the method above and then combine the

resulting estimators to reduce the variance; see e.g. Chen, Jacho-Chavez and Linton (2016). Next

section addresses this point.

4.1 Estimation with multiple assets

Suppose that we have J assets, and let b̂j denote our estimator for the discount factor based on asset

j-th, j = 1, ..., J. We aim to find weights w∗b = (w∗1,b, ..., w
∗
J,b)

ᵀ satisfying

w∗b = arg min
wj,b

Avar

(
J∑
j=1

wj,bb̂j

)
such that

J∑
j=1

wj,b = 1,

where Avar denotes the asymptotic variance. By our asymptotic results below, the J × 1 vector b̂(J)

with components b̂j, j = 1, ..., J, has an asymptotic variance proportional to

ΣJ ≡ lim
n→∞

var

(
1√
n

n∑
i=1

siεi

)
<∞, (8)

where si is a fixed function defined in the next section and the J × 1 vector εi,J has the j − th

component εi,j = g0 (C ′i, V
′
i )R

′
i,j − b−1

0 g0 (Ci, Vi) for the j− th asset R′i,j. Thus, in vector notation the
problem above is equivalent to

w∗b = arg min
wb

wᵀbΣJwb such that w
ᵀ
b1 = 1,

where wb = (w1,b, ..., wJ,b)
ᵀ and 1 is a J × 1 vector of ones. By Luenberger (1997, Theorem 2, p. 65)

the solution to this optimization problem is

w∗b =
ΣJ1

1ᵀΣJ1
.

Given data, we suggest to estimate the optimal weights w∗b by the sample analogue

ŵ∗b =
Σ̂J1

1ᵀΣ̂J1
,

where Σ̂J is any consistent long run variance estimator of ΣJ . Then, form the estimator

b̂ = (ŵ∗b )
ᵀ b̂(J).

A similar approach can be used for functionals of the marginal utility. We will discuss below that

under suitable conditions estimation of the weights w∗b will not have an impact on the asymptotic
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first order behavior of b̂, and thus its asymptotic distribution will follow from the results obtained in

the next section.

Similar asymptotic results to those develop above can be used to test for overidentifying restric-

tions. Take for simplicity the case J = 2, and assume our conditions for identification hold. We can

then test the restriction b1 = b2 (where bj is the discount factor corresponding to asset R′i,j under

misspecification), as a test of the linearity constraints wᵀb(2) = 0, for w = (1,−1). The relevant

asymptotic theory to carry out this test is the same as for (ŵ∗b )
ᵀ b̂(J) (and somewhat simpler, since

weights are not estimated).

An alternative approach that combines moments rather than estimators is as follows. Let Ân,j
denote the n × n matrix with ik-th element aik = φk(C

′
i, V

′
i )R

′
i,j/n from the previous section, with

j = 1, ..., J indexing the asset. Stack all matrices (Ân,j − λIn) for j = 1, ..., J, in a large (n× J)× n
matrix Bn,λ. A GMM type estimator can be constructed as the minimizer

min
β,λ

(1⊗ β)ᵀBᵀ
n,λŴBᵀ

n,λ(1⊗ β), (9)

subject to a normalization constraint, where ⊗ denotes Kronecker product and Ŵ denotes a (n ×
J) × (n × J) positive definite matrix of GMM weights. Our estimator for one asset corresponds

to J = 1 and Ŵ = In (just identified case). If (1 ⊗ β) above is replaced by an (unconstrained)

generic (n × J) × 1 vector then the problem again boils down to our setting with one asset, which

is amenable to our asymptotic theory. The general constrained case in (9), however, requires high

dimensional numerical optimization. Providing asymptotic theory for this high-dimensional GMM

setting is beyond the scope of this paper and is left for future research. For moderate and large

sample sizes n, our approach combining estimators offers a feasible compromise between effi ciency

and computational simplicity.

5 Asymptotic Theory

In this section we provide conditions for the consistency and limiting distribution theory of our

estimators as defined in the previous section. We give high-level conditions that allow for general

estimators of A, and provide in the Appendix low-level conditions for our leading kernel-type esti-

mator under weakly dependent β-mixing strictly stationary sequences. For a generic subset G ofM
define the restricted operator norm

||A||G := sup
g∈G⊂M:‖g‖≤1

||Ag||.

Denote by G0 the eigenspace associated to b−1
0 and A.
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Assumption E:

1. The estimator ĝ satisfies ‖ĝ‖ = 1 and 〈ĝ, 1〉 > 0.

2. ||Â− A||G0 →p 0.

Condition E.1 is just a convenient normalization for our setting. Assumption E.2 is a mild con-

sistency condition. Note that by our identification results G0 consists of the linear span of g0. More

generally, under Assumption C, G0 is finite dimensional, which makes E.2 easy to check; see the Ap-

pendix for primitive conditions for kernel estimators. Our next result shows the strong L2-consistency

of our estimators.

Theorem 3. Let Assumptions S, C, I and E hold. Then, b̂→p b0 and ‖ĝ − g0‖ →p 0.

We remark that Theorem 3 also holds in the partially identified case where Assumption I is dropped

and the L2-distance between ĝ and g0 is replaced by the gaps between the eigenspaces of Â and A

associated to the eigenvalues b̂−1 = ρ(Â) and b−1
0 = ρ(A), respectively; see Osborn (1975).

To obtain asymptotic distribution theory for our estimators, we impose the following additional

assumptions and notation. Let A∗ denote the adjoint operator of A, that is, the linear compact

operator such that 〈Ag1, g2〉 = 〈g1, A
∗g2〉 for all g1, g2 ∈ M. Note that b−1

0 is also an eigenvalue for

A∗; eigenvalues of A∗ are complex conjugates of those of A. Similarly as we did for g0, it can be

shown that under our assumptions there exists a unique (up to scale) strictly positive eigenfunction

of A∗ associated to b−1
0 (see Theorem 7.C in Zeidler (1986, vol. 1, p. 290)).

Definition 3. Let s be the unique strictly positive eigenfunction of A∗ with eigenvalue b−1
0 and

satisfying the normalization 〈g0, s〉 = 1.

The function s plays an important role in the asymptotics for b̂ and ĝ, as does the error term

εi = g0 (C ′i, V
′
i )R

′
i − b−1

0 g0 (Ci, Vi) , i = 1, . . . , n. (10)

Henceforth, to simplify notation, define ϕi = ϕ (Ci, Vi) for any ϕ ∈ L2. For asymptotic normality

of our estimators we require the following standard assumption. Primitive conditions for our kernel

estimator are provided in the Appendix.

Assumption N.

1. ||Â− A||G = oP (n−1/4) and P (ĝ ∈ G)→ 1 as n→∞.

2.
√
n
〈(
Â− A

)
g0, s

〉
= 1√

n

∑n
i=1 siεi + oP (1).
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3. Furthermore,
1√
n

n∑
i=1

siεi
d→ N (0,Σs) ,

where Σs ≡ limn→∞ var
(

1√
n

∑n
i=1 siεi

)
<∞.

Theorem 4. Let Assumptions S, C, I, E and N hold. Then, as n→∞,

√
n
(
b̂− b0

)
d→ N

(
0, b4

0Σs

)
.

The proof of Theorem 4 can be found in the Appendix. We can estimate the asymptotic variance

of b̂ by standard long run variance estimators based on {ŝiε̂i}ni=1, see e.g. Newey and West (1987),

where ε̂i = ĝ (C ′i, V
′
i )R

′
i− b̂−1ĝ (Ci, Vi) , and ŝ is computed as our estimator ĝ, with the normalization

〈ĝ, ŝ〉n = 1. An alternative to plug-in asymptotic methods is to use block bootstrap, see e.g. Radulovíc

(1996).

For the estimator based on J assets proposed in Section 4.1, note that

√
n
(

(ŵ∗b )
ᵀ b̂(J) − b0

)
= (ŵ∗b )

ᵀ√n
(
b̂(J) − b01

)
+
√
n (ŵ∗b − w∗b )

ᵀ b01.

Since the second term is exactly zero, by construction of the weights, we expect, by consistency of

the long run variance estimator and the proof of Theorem 4 above,

√
n
(

(ŵ∗b )
ᵀ b̂(J) − b0

)
=
√
n
(

(w∗b )
ᵀ b̂(J) − b0

)
+ oP (1)

d→ N
(
0, b4

0 (w∗b )
ᵀ ΣJw

∗
b

)
,

where ΣJ is defined in (8).

Our next result establishes an asymptotic expansion for ĝ − g0. This expansion can be used to

obtain rates for ĝ − g0 and to establish asymptotic normality of (semiparametric) functionals of

ĝ. Define the process ∆n (c, v) ≡ n−1
∑n

i=1 εiφi(c, v), where recall that φi(c, v) = Khi (c, v) /f̂ (c, v) .

Note that a standard result in kernel estimation is that for all (c, v) in the interior of S, under suitable

conditions, √
nh`n∆n(c, v)

d→ N (0,Σ∆ (c, v)) ,

with Σ∆ (c, v) = f−1(c, v)σ2 (c, v)κ2, κ2 =
∫
K2(u)du and σ2 (c, v) = E [ε2

i |Ci = c, Vi = v].

Recall L† denotes the Moore-Penrose pseudoinverse of L = b0A− I, which under our conditions
is linear and continuous (cf. Section 3.1).
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Theorem 5. Let Assumptions S, C, I, E and N hold. Then, we have

(ĝ − g0) (c, v) = b0L
†∆n(c, v) +Rn(c, v),

where as n→∞, ‖Rn‖ = oP (n−ρ/2) for any 0 < ρ < 1.

This result implies that the rates of convergence of ĝ − g0 in L2 are the same as those of the NW

kernel estimator of E [εi|Ci = c, Vi = v]. We could use the expansion of Theorem 5 to test parametric

hypotheses about g, i.e., H0 : g0(c, v) = gη0(c, v), against nonparametric alternatives, where the

function gη0(c, v) is known up to a finite-dimensional unknown parameter η0 (e.g. power utility). A

test can be based on the discrepancy

Dn =
∥∥∥√nh`nL̂ (ĝ − g̃)

∥∥∥2

,

where L̂ = b̂Â − I and g̃ = gη̂(c, v) is a parametric fit, with η̂ denoting a consistent estimator

for η0 under the null (e.g. a GMM estimator). Noting that L̂ĝ = 0, Dn further simplifies to

Dn = ||
√
nh`nL̂g̃||2. Similar test statistics have been suggested by Härdle and Mammen (1993) in a

different context. More generally, we could test nonparametric hypotheses such as the significance of

certain variables, for example H0 : g0(c, v) = g0(c, v′) for all v, v′, against nonparametric alternatives.

The same Dn can be used, where now g̃ denotes a restricted estimator of g0 under the null (e.g.

our marginal utility estimator depending only on c). In each case, the expansion in Theorem 5 is

instrumental in analyzing the asymptotic limiting distribution of Dn, which can be readily obtained

combining Theorem 5 here with the results of Härdle and Mammen (1993).

6 Summary Measures

We now consider some summary measures of the model, specifically, functionals of ĝ. These are ei-

ther behavioral parameters of interest such as the average value of relative risk aversion (ARRA), or

parameters having values that are relevant for testing. We first apply the results of the previous sec-

tion to establish asymptotic normality of the estimated ARRA. We then list some other functionals

of interest that can, in the same way, be shown to be asymptotically normal.

Define the ARRA functional by

γ (g) ≡ E

[
−C∂g(C, V )/∂c

g(C, V )

]
. (11)

The natural estimator of γ (g0) is the sample analog based on our estimator ĝ, i.e.

γn (ĝ) =
1

n

n∑
i=1

−Ci∂ĝ(Ci, Vi)/∂c

ĝ(Ci, Vi)
.
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Under the assumptions for Theorem 6 below, ĝ is differentiable and bounded away from zero with

probability tending to one, so γn (ĝ) is well-defined for large n. Define the class of functions

D =

{
(c, v)→ −c∂ log(g(c, v))

∂c
: g ∈ G

}
, (12)

and the functions

d(c, v) ≡ ∂ (c× f(c, v))

∂c

1

f(c, v)
and χ(c, v) ≡ d(c, v)

g0(c, v)
. (13)

Also, we need to introduce some notation to be used in the asymptotic normality of γn (ĝ) . Assuming

χ ∈ L2, define

χs = χ− 〈g0, χ〉 〈g0, s〉−1 s. (14)

The function χs has a geometrical interpretation as the value of χ projected parallel to s on a

subspace of functions orthogonal to g0. Let L∗ denote the adjoint operator of L, and let χ∗s denote

the minimum norm solution of χs = L∗r in r, i.e. χ∗s = arg min{‖r‖ : χs = L∗r}, which is well defined
because χs ∈ N⊥(L) = R(L∗); see Luenberger (1997, Theorem 3, p. 157) for the latter equality.

Here N⊥(L) denotes the orthogonal complement of the null space of L, see Luenberger (1997, p. 52)

for a definition.

We also introduce a class of smooth function Cη(T ) for a generic closed and convex set T . For any

vector a of ` integers define the differential operator ∂ax ≡ ∂|a|1/∂xa11 . . . ∂xa`` , where |a|1 ≡
∑`

i=1 ai.

For any smooth function h : T ⊂ R` → R and some η > 0, let η be the largest integer smaller or

equal than η, and

‖h‖∞,η ≡ max
|a|1≤η

sup
x∈T
|∂axh(x)|+ max

|a|1=η
sup
x 6=x′

|∂axh(x)− ∂axh(x′)|
|x− x′|η−η

.

Further, let CηM(T ) be the set of all continuous functions h : T ⊂ R` → R with ‖h‖∞,η ≤ M (for an

integer η, the η-th derivative is assumed to be continuous). Since the constant M is irrelevant for

our results, we drop the dependence on M and denote Cη(T ).

The ARRA estimator behaves asymptotically as a sample average, with an influence function

given by

ξi = (ζ i − E [ζ i])− b0χ
∗
s(Ci, Vi)εi, (15)

where ζ i = −Ci (∂g0(Ci, Vi)/∂c) /g0(Ci, Vi). The second term in ξi accounts for the estimation effect

due to estimating g0.

Assumption CE.
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1. The class D defined in (12) is P -Donsker5.

2. The measure µ is the probability measure of (C, V ) with a support S that can be written as S =

[lc, uc] × SV , for some lc, uc with lc < uc. Furthermore, limc→lc cf(c, v) = 0 = limc→uc cf(c, v)

for all v ∈ SV and P (min{g0, ĝ} > ε)→ 1 for some ε > 0.

3. The function d in (13) satisfies d ∈ L2, {ξi} in (15) satisfies

1√
n

n∑
i=1

ξi
d→ N (0,Ξ) ,

where Ξ ≡ limn→∞ var
(

1√
n

∑n
i=1 ξi

)
<∞ and χ∗s ∈ Cr(S).

Assumption CE.1 is standard in the semiparametric literature, see, e.g. Chen, Linton and Van

Keilegom (2003). Assumption CE.2 is similar to other assumptions required in estimation of average

derivatives, see Powell, Stock and Stoker (1989). This assumption guarantees that γn (ĝ) is well

defined. Assumption CE.3 implies that the asymptotic variance of γn (ĝ) is finite.

Theorem 6. Let Assumptions S, C, I, E, N and CE hold. Then,

√
n (γn (ĝ)− γ (g0))

d→ N (0,Ξ) ,

where ξi is defined in (15).

Estimating the asymptotic variance of γn (ĝ) by plug-in methods would be possible but compli-

cated. An alternative is to use the block bootstrap, which can be justified along the lines of Radulovíc

(1996) and Chen, Linton and Van Keilegom (2003).

Now consider some other functionals of interest. The asymptotic normality of each can be estab-

lished using the same methods as Theorem 6. As with γn (ĝ), we can use the bootstrap to estimate

their limiting distributions. For the remainder of this section we drop the i subscript for clarity.

Closely related to the ARRA are local averages defined by

ρ (q, j) = E

[
−Ct+1∂g0(Ct+1, Ct)/∂Ct+1

g0(Ct+1, Ct)
|Ct+1 ∈ Qq, Ct ∈ Sj

]
, (16)

5Let Pn be the empirical measure with respect to P . Using a standard empirical process notation, define Gn =√
n (Pn − P ). Then D is P -Donsker if Gn converges weakly to G in the space of uniformly bounded functions on D,

l∞ (D), where G is a mean-zero Gaussian process with uniformly continuous sample paths, see Doukhan, Massart and
Rio (1995) for further details.
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where Qq denotes the interval between the q − 1 and q quartile of Ct+1, and Sj denotes the interval

between the j − 1 and j quartile of Ct for q, j = 1, 2, 3, 4. We refer to each of these local averages of

the RRA between different quartiles as a QRRA (quartile relative risk aversion).

We can use our results to construct tests of heterogeneity in risk aversion measures as follows. The

sample analogs of the QRRA parameters ρ (q, j) can be shown to be asymptotically normal under

the same conditions above used for the ARRA. That is, with the simplified notation ρ (q) ≡ ρ (q, q)

for the parameter and ρn (q) ≡ ρn (q, q) for the plug-in estimator, it can be shown

√
n (ρn (q)− ρ (q))

d→ N
(
0, σ2(q)

)
,

for a suitable asymptotic variance σ2(q), q = 1, 2, 3 and 4. Moreover, by definition,
√
n (ρn (q)− ρ (q))

and
√
n (ρn (j)− ρ (j)) are asymptotically independent for q 6= j. This suggests a simple strategy for

testing heterogeneity in risk aversion by means of simple pairwise t-tests for the hypotheses, for q 6= j,

H0qj : ρ (q) = ρ (j) vs H1qj : ρ (q) 6= ρ (j) .

The t-statistics are constructed as

tqj =

√
n (ρn (q)− ρn (j))√
σ2
n(q) + σ2

n(j)
,

for suitable consistent estimates σ2
n(q) of the asymptotic variances σ2(q), for q = 1, 2, 3 and 4. We

then reject H0qj when tqj is large in absolute value, using that tqj converges to a standard normal

under H0qj.

We also construct some tests for the absence of habits, i.e.

∂g0(Ct+1, Ct)

∂Ct
= 0.

Our tests are based on the functional

δ (g) = E

[
∂g(Ct+1, Ct)

∂Ct
τ(Ct+1, Ct)

]
,

for various positive functions τ(·). When there is no habit effect δ (g0) = 0 for any choice of τ . As

with γ (g0), for each choice of function τ we estimate δ (g0) by plugging in ĝ for g0 and replacing the

expectation with a sample average. The asymptotic normality of this estimator and its bootstrap

approximation is then used for inference, analogous to our analysis of γ (g0).

7 Monte Carlo Experiment

In this section we illustrate the finite-sample performance of our estimator described in the previous

sections based on a CRRA utility function so that g0 (c, v) = c−η0 , where η0 in this case equals the
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ARRA. The model is then given by the Euler equation

b0E
[
C
−η0
t+1 Rt+1|Ct

]
= C

−η0
t .

We set b0 = 0.95 and η0 = 0.5. We draw a random sample of (Ct, Ct+1) from the distribution

(logCt, logCt+1) ∼ N

(
0,

(
0.25 0.1

0.1 0.25

))
,

and construct Rt+1 = b−1
0 (1 + εt) (Ct+1/Ct)

η0 , where εt is distributed uniformly on [−0.5, 0.5] and

drawn independently of (Ct, Ct+1). This design was chosen to generate data that satisfies the Euler

equation model, has realistic parameter values and consumption distribution, and avoids the ap-

proximation and other numerical errors that would result from solving each individual’s dynamic

optimization problem numerically.

To save space we only report simulation results for two experiments, each with sample sizes

n = 500 and n = 2000. We employ the Efron’s nonparametric bootstrap for inference. The number

of bootstrap replications used in each simulation is 200, and we repeat each simulation 1000 times.

We compute our proposed nonparametric estimators and compare them to the method of moments

estimator defined using the correctly specified CRRA utility function with a constant and Ct as

instruments. So while our estimator attempts to recover the constant b0 and the entire function g0,

this alternative just estimates the two constants b0 and η0, using two moments of the data. In our

tables estimates from this correctly specified parametric functional form are labeled CRRA.

We consider two nonparametric estimators. The first one, which we label NP − 1, correctly

conditions on just Ct (since our choice of g0 (c, v) does not depend on v), and so only entails estimation

of a one-dimensional marginal utility function. The second nonparametric estimator, denotedNP−2,

uses both Ct and Vt as conditioning variables, where Vt = Ct−1 is in this case an irrelevant habit

variable. We simulate Ct−1 by drawing from a N (1, 1) distribution that is independent of (Ct, Ct+1).

We compute our estimates using the procedure described in Section 4 that incorporates the

transformation suggested in equation (4). While not necessary in theory, we find that estimates of g0

fit better in the tails using this transformation than not, though the differences in overall integrated

mean square errors and other measures of fit are small. In order to apply the transformation, note

that equation (4) can be re-written as

bE[g∗(Ct+1, Vt+1)R∗t+1 | Ct, Vt] = g∗(Ct, Vt),

where g∗(Ct+1, Vt+1) ≡ Ct+1g(Ct+1, Vt+1), g∗(Ct, Vt) ≡ Ctg (Ct, Vt) and R∗t+1 ≡ (Ct/Ct+1)Rt+1. With

these definitions the procedure remains as described in Section 4 after redefining the return variable,

from Rt+1 to R∗t+1. The procedure then yields an estimate of g
∗, from which the marginal utility
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function g is then recovered using the relation g (c, v) = g∗(c, v)/c. Throughout we set the bandwidth

to be 1.06σn−1/3.5, where σ is the sample standard deviation of Ct. This is essentially Silverman’s

rule applied to the rate n−1/3.5. All of our estimators for g0 are normalized to have a unit standard

deviation.

For each finite-dimensional parameter and summary measure we consider, we report the mean,

standard deviation, 2.5th percentile, 97.5th percentile, 95% coverage probability based on normal

distribution, their bootstrap counterparts and the root mean square error.6 Table 1 reports estimates

of the discount factor from our three estimators, CRRA, NP − 1, and NP − 2. Table 2 reports

estimates of the ARRA, which for the CRRA model is just the estimated constant η0, while for

the nonparametric estimators the ARRA is γ (g0) defined by equation (11). Table 1 shows that all

of the estimators succeed in estimating the discount factor b very accurately. This is in contrast

to many macro models, which often calibrate the discount factor due to the diffi culty in estimating

it accurately. Table 2 shows somewhat more diffi culty in estimating the ARRA, but the relative

accuracy of our nonparametric estimates to the parametric alternative is similar. In both tables the

root mean squared errors of our nonparametric estimates are seen to shrink with sample size and

increase with dimensionality at rates that are generally consistent with asymptotic theory.

Figures 1 and 2 show plots of the one-dimensional nonparametric (i.e., NP−1) estimated marginal

utility function g0 as a function of Ct. Figure 1 is n = 500 while Figure 2 is n = 2000. For each

figure, the solid line denotes the mean, the dotted line denotes the 95% confidence interval, and the

dashed line is the true. One can see from these figures that NP − 1 quite accurately tracks the true

function. The precision of these fits can also be summarized by their integrated mean square error

(weighted with respect to the true density), which is 0.0014 for n = 500 and 0.0005 for n = 2000.

Not surprisingly, estimates of the two-dimensional NP − 2 are noisier, since by design the second

conditioning variable Vt is irrelevant. The results for NP − 2 can be summarized by their implied

quartile averages QRRA. Table 3 reports estimates of each QRRA, ρ (q, j) for all quartiles q and

j having |q − j| ≤ 1.7 Table 3 shows that estimates of QRRA have generally about an order of

magnitude larger root mean squared error than ARRA, which is not surprising since each ρ (q, j) is

obtained by averaging over 1/16 as much data (one quartile of current consumption and one quartile

of lagged consumption observations) as ARRA.

One unexpected finding is that estimates of ρ (q, j) display substantially larger biases and root

mean squared errors for larger values of q and j than for smaller values, suggesting that our NP − 2

6The normal coverage probability is constructed ex-post using the true (simulated) standard deviation.
7We only report pairs of quartiles q and s where |q − s| ≤ 1, because a value that violates this inequality, like

ρ (4, 1), corresponds to individuals whose consumption jumps from the fourth to the first quartile, and in real data

the number of such individuals who make this jump would be too small to reliably estimate their QRRA.
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estimates of the marginal utility function tend to be less accurate at higher consumption levels. This

can also be seen for NP−1 in Figure 1, where the standard error bands widen at higher consumption

levels.

In Table 4 we report estimates of δ (g0) that can be used to test for the presence of habits in

g0. In our experiments estimates of δ (g0) do not differ significantly from zero as expected, since our

specification of g0 does not have any habit effect. Generally, all of our parameter estimates and test

statistics appear to have distributions across simulations that are reasonably well approximated by

the bootstrap, e.g., biases are relatively small, bootstrap standard errors are generally close to the

standard deviations across simulations, and bootstrap confidence intervals are generally close to the

true. Both coverage probabilities based on the normal approximation and the bootstrap generally

are relatively close to the nominal.
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b0 Bias Std Lpc Upc Cov B-Std B-Lpc B-Upc B-Cov Rmse

n = 500 CRRA 0.000 0.012 0.926 0.975 0.946 0.012 0.926 0.974 0.940 0.012

NP − 1 0.006 0.027 0.917 0.971 0.984 0.018 0.915 0.980 0.929 0.028

NP − 2 0.009 0.041 0.808 0.983 0.963 0.031 0.895 1.012 0.932 0.042

n = 2000 CRRA 0.000 0.006 0.938 0.961 0.960 0.006 0.938 0.962 0.950 0.006

NP − 1 0.004 0.020 0.936 0.960 0.992 0.009 0.932 0.965 0.924 0.020

NP − 2 0.005 0.028 0.862 0.965 0.974 0.021 0.922 0.994 0.946 0.028
Table 1: Summary statistics of Monte Carlo estimates of the discount factor b0. The true is

b0 = 0.95. CRRA, NP − 1 and NP − 2 refer respectively to the parametric, one-dimensional

nonparametric, and two-dimensional nonparametric estimators.

ARRA Bias Std Lpc Upc Cov B-Std B-Lpc B-Upc B-Cov Rmse

n = 500 CRRA 0.000 0.046 0.420 0.590 0.956 0.046 0.411 0.592 0.944 0.046

NP − 1 -0.058 0.107 0.431 0.714 0.961 0.101 0.359 0.751 0.906 0.122

NP − 2 -0.096 0.194 0.277 0.888 0.952 0.194 0.209 0.986 0.930 0.217

n = 2000 CRRA 0.001 0.023 0.456 0.545 0.950 0.023 0.454 0.544 0.952 0.023

NP − 1 -0.032 0.077 0.470 0.610 0.988 0.052 0.430 0.628 0.914 0.083

NP − 2 -0.067 0.092 0.412 0.716 0.934 0.109 0.355 0.782 0.906 0.114
Table 2: Summary statistics of Monte Carlo estimates of the ARRA, which is η0 for the parametric

and γ (g0) for the nonparametric estimators. The true is ARRA = 0.5. CRRA, NP − 1 and

NP − 2 refer respectively to the parametric, one-dimensional nonparametric, and two-dimensional

nonparametric estimators.
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QRRA Bias Std Lpc Upc Cov B-Std B-Lpc B-Upc B-Cov Rmse

n = 500 ρ (1, 1) -0.158 0.205 0.273 1.068 0.910 0.242 0.115 1.068 0.878 0.259

ρ (1, 2) -0.068 0.366 -0.049 1.167 0.969 0.358 -0.137 1.287 0.969 0.372

ρ (2, 1) -0.149 0.222 0.242 1.060 0.932 0.246 0.145 1.118 0.904 0.267

ρ (2, 2) -0.055 0.327 0.000 1.151 0.961 0.355 -0.137 1.274 0.965 0.331

ρ (2, 3) -0.010 0.450 -0.240 1.187 0.973 0.480 -0.433 1.477 0.973 0.450

ρ (3, 2) -0.053 0.326 -0.014 1.081 0.969 0.351 -0.121 1.275 0.966 0.330

ρ (3, 3) 0.009 0.457 -0.279 1.180 0.972 0.460 -0.408 1.428 0.966 0.457

ρ (3, 4) -0.102 0.785 -0.850 1.972 0.963 0.933 -1.320 2.452 0.972 0.792

ρ (4, 3) -0.029 0.400 -0.137 1.181 0.969 0.470 -0.345 1.515 0.978 0.401

ρ (4, 4) -0.281 0.980 -0.957 2.378 0.954 1.079 -1.486 2.876 0.955 1.019

n = 2000 ρ (1, 1) -0.104 0.179 0.350 0.825 0.978 0.158 0.280 0.889 0.888 0.206

ρ (1, 2) -0.023 0.272 0.125 0.903 0.984 0.249 0.048 1.027 0.954 0.273

ρ (2, 1) -0.087 0.146 0.330 0.859 0.938 0.171 0.245 0.910 0.912 0.170

ρ (2, 2) -0.018 0.214 0.151 0.882 0.964 0.251 0.031 1.030 0.968 0.214

ρ (2, 3) -0.007 0.319 0.004 1.019 0.988 0.314 -0.104 1.133 0.956 0.319

ρ (3, 2) -0.009 0.274 0.078 0.871 0.980 0.254 0.024 1.013 0.954 0.274

ρ (3, 3) -0.016 0.376 0.095 0.956 0.986 0.310 -0.067 1.153 0.962 0.377

ρ (3, 4) -0.078 0.388 -0.136 1.322 0.952 0.573 -0.583 1.722 0.970 0.396

ρ (4, 3) -0.002 0.385 0.129 0.913 0.980 0.302 -0.054 1.123 0.964 0.385

ρ (4, 4) -0.244 0.476 0.053 1.641 0.940 0.624 -0.571 1.948 0.958 0.535
Table 3: Summary statistics of Monte Carlo estimates of QRRA, which is ρ (q, j) from NP − 2.

The true is ρ (q, j) = 0.5 for all q and j.
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τ (Ct+1, Ct) Bias Std Lpc Upc Cov B-Std B-Lpc B-Upc B-Cov Rmse

n = 500 Ct+1 -0.002 0.111 -0.111 0.132 0.975 0.118 -0.255 0.200 0.975 0.111

Ct -0.006 0.097 -0.128 0.125 0.975 0.118 -0.245 0.209 0.980 0.097

C2
t+1 -0.010 0.289 -0.249 0.252 0.977 0.262 -0.567 0.438 0.965 0.290

C2
t -0.030 0.237 -0.331 0.270 0.967 0.269 -0.531 0.502 0.977 0.238

Ct+1Ct -0.015 0.229 -0.209 0.190 0.972 0.220 -0.463 0.370 0.973 0.230

n = 2000 Ct+1 -0.005 0.078 -0.070 0.072 0.978 0.077 -0.154 0.131 0.978 0.079

Ct -0.009 0.080 -0.084 0.072 0.982 0.077 -0.154 0.132 0.978 0.081

C2
t+1 -0.013 0.229 -0.176 0.149 0.986 0.188 -0.374 0.319 0.968 0.229

C2
t -0.036 0.244 -0.270 0.150 0.986 0.195 -0.382 0.344 0.966 0.247

Ct+1Ct -0.016 0.222 -0.146 0.107 0.984 0.160 -0.313 0.268 0.970 0.223
Table 4: Summary statistics of Monte Carlo estimates of δ (g0), used to test for the presence of

habit effects. The true value of each δ (g0) is zero. The τ (Ct+1, Ct) column lists the functions that

are used to define δ (g0).
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Figure 1: Estimates of the marginal utility function g0 using simulated data with n = 500. Est, CI,

and True represent respectively the one-dimensional nonparametric estimator, its 95% confidence

interval, and the true.

Figure 2: Estimates of the marginal utility function g0 using simulated data with n = 2000. Est, CI,

and True represent respectively the one-dimensional nonparametric estimator, its 95% confidence

interval, and the true.
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8 Conclusions

We investigate nonparametric identification and estimation of marginal utilities and discount fac-

tors in consumption-based asset pricing Euler equations. The main features of our nonparametric

identification results are: (i) the decomposition of the pricing kernel into its marginal utility and

discount factor components, cast in the form equation (1), and (ii) the use of shape restrictions

(positive marginal utilities). Together, these allow us to establish nonparametric global point iden-

tification of the model. Based on our identification arguments, we propose a new nonparametric

estimator for marginal utilities and the discount factor that combines standard kernel estimation

with the computation of a (finite-dimensional) matrix eigenvalue-eigenvector problem. No numerical

integration or optimization is involved. The estimator is based on a sample analogue of (1) and is

easy to implement, since no numerical searches are required. We establish a useful expansion for

the marginal utility (suitably normalized), and limiting distribution theory for the discount factor

and associated functionals of the marginal utility like the average level of relative risk aversion. Due

to the well-posedness of equation (1), our estimator converges at comparable rates to ordinary non-

parametric regression and does not suffer from issues associated with nonparametric instrumental

variables estimation.

In the older version of our paper, we apply our nonparametric methods to household-level CEX

data and find evidence against the common assumption of constant relative risk aversion across

consumers. Our estimates are fairly insensitive to the choice of asset used (risk-free vs risky), which

supports our nonparametric model. We find empirical evidence for the presence of habits, and

evidence that risk aversion varies across current and lagged consumption levels in ways that are

not fully captured by standard parametric or even semiparametric specifications of habits in asset

pricing models. However, there are two caveats that underlie our findings. One is we used common

asset returns with repeated cross-section of household consumptions since we do not have data on

household-level assets. Our existing theory requires suitable variation in the returns and extending it

to clustering data is beyond the scope of this paper. Another concern with the dataset we used is the

presence of measurement error in consumption, see e.g. Alan, Attanasio and Browning (2009) and

references therein. Escanciano (2018) has recently shown that the identification and estimation of

the discount factor in this paper is robust to the presence of measurement error under rather general

conditions. Measures of risk aversion, however, are more sensitive to measurement error and may

require different estimation strategies to achieve robustness. These strategies are well beyond the

scope of this paper and will be investigated in future research.
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9 Appendix

9.1 Euler Equation Derivation

To encompass a large class of existing Euler equation and asset pricing models, consider utility

functions that in addition to ordinary consumption, may include both durables and habit effects.

Let U be a time homogeneous period utility function, b is the one period subjective discount factor,

Ct is expenditures on consumption, Dt is a stock of durables, and Zt is a vector of other variables

that affect utility and are known at time t. Let Vt denote the vector of all variables other than Ct
that affect utility in time t. In particular, Vt contains Zt, Vt contains Dt if durables matter, and Vt
contains lagged consumption Ct−1, Ct−2 and so on if habits matter.

The consumer’s time separable utility function is

max
{Ct,Dt}∞t=1

E

[ ∞∑
t=0

btU(Ct, Vt)

]
.

The consumer saves by owning durables and by owning quantities of risky assets Ajt, j = 1, . . . , J .

Letting Ct be the numeraire, let Pt be the price of durables Dt at time t and let Rjt be the gross

return in time period t of owning one unit of asset j in period t − 1. Assume the depreciation rate

of durables is δ. Then without frictions the consumer’s budget constraint can be written as, for each

period t,

Ct + (Dt − δDt−1)Pt +
J∑
j=1

Ajt ≤
J∑
j=1

Ajt−1Rjt

We may interpret this model either as a representative consumer model, or a model of individual

agents which may vary by their initial endowments of durables and assets and by {Zt}∞t=0. The

Lagrangean is

E

[
T∑
t=0

btU(Ct, Vt)−
(
Ct + (Dt − δDt−1)Pt +

J∑
j=1

(Ajt − Ajt−1Rjt)

)
λt

]
(17)

with Lagrange multipliers {λt}∞t=0.

Consider the roles of durables and habits. For durables, define

gd(Ct, Vt) =
∂U(Ct, Vt)

∂Dt

which will be nonzero only if Vt contains Dt. For habits, we must handle the possibility of both

internal or external habits. Habits are defined to be internal (or internalized) if the consumer

considers both the direct effects of current consumption on future utility through habit as well as

through the budget constraint. In the above notation, habits are internal if the consumer takes into
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account the fact that, due to habits, changing Ct will directly change Vt+1, Vt+2 etc. Otherwise, if

the consumer ignores this effect when maximizing, then habits called external.

If habits are external or if there are no habit effects at all, then define the marginal utility function

g by

g(Ct, Vt) =
∂U(Ct, Vt)

∂Ct
If habits exist and are internal then define the function g̃ by

g̃(It) =

L∑
`=0

b`E

[
∂U(Ct+`, Vt+`)

∂Ct
| It
]
.

where L is such that Vt contains Ct−1, Ct−2, . . . , Ct−L, and It is all information known or determined

by the consumer at time t (including Ct and Vt). For external habits, we can write g̃(It) = g(Ct, Vt),

while for internal habits define

g(Ct, Vt) = E [g̃(It) | Ct, Vt] .

With this notation, regardless of whether habits are internal or external, we may write the first order

conditions associated with the Lagrangean (17) as

λt = btg̃(It)

λt = E [λt+1Rjt+1 | It] j = 1, . . . , J

λtPt = btgd(Ct, Vt)− δE [λt+1Pt+1 | It]

Using the consumption equation λt = btg̃(It) to remove the Lagrangeans in the assets and durables

first order conditions gives

btg̃(It) = E
[
bt+1g̃(It+1)Rjt+1 | It

]
j = 1, . . . , J

btg̃(It)Pt = btgd(Ct, Vt)− δE
[
bt+1g̃(It+1)Pt+1 | It

]
.

Taking the conditional expectation of the asset equations, conditioning on Ct, Vt, yields the Euler

equations for asset j

g(Ct, Vt) = bE [g(Ct+1, Vt+1)Rjt+1 | Ct, Vt] j = 1, . . . , J, (18)

for all t. Therefore, given the pair (U, b) of utility function and discounting factor the optimal decision

satisfies the Euler equations for all asset j.

9.2 Results on kernel estimators

9.2.1 Assumptions

This section collects some results on kernel estimates, providing primitive assumptions for the general

conditions of the main text. Let Yi ∈ RdY denote the elements of (C ′i, V
′
i ) that do not overlap with
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(Ci, Vi), let Xi ∈ RdX denote the overlapping elements of (C ′i, V
′
i ) and (Ci, Vi) and let Zi ∈ RdZ

denote the elements of (Ci, Vi) that do not overlap with (C ′i, V
′
i ). Denote ξi = (Yi, Xi, Zi), for i ∈ Z.

Define the class of functions

F = {ξi → g(C ′i, V
′
i )R

′
i : g ∈ G}.

To measure the complexity of the class F , or any other class, we can employ covering or bracketing
numbers. Given two functions l, u, a bracket [l, u] is the set of functions f ∈ F such that l ≤ f ≤ u.

An ε-bracket with respect to ‖·‖ is a bracket [l, u] with ‖l − u‖ ≤ ε, ‖l‖ < ∞ and ‖u‖ < ∞ (note

that u and l not need to be in F). The covering number with bracketing N[·](ε,F , ‖·‖) is the minimal
number of ε-brackets with respect to ‖·‖ needed to cover F . Let N(ε,G, ‖·‖) be the covering number
with respect to ‖·‖, i.e. the minimal number of ε-balls with respect to ‖·‖ needed to cover G. An
envelope for G is a function G, such that G(c, v) ≥ supg∈G |g(c, v)| for all (c, v).

Denote by K(r) the class of bounded functions k (t) : R → R such that for some r ≥ 2:∫
ulk (u) du = δl0 for l = 0, . . . , r − 1, where δll′ denotes Kronecker’s delta, and

∫
|urk (u)| du < ∞.

Furthermore, for some Λ1 < ∞ and L < ∞, either k(u) = 0 for |u| > L and k is Lipschitz with

constant Λ1 or k is differentiable |∂k(t)/∂t| ≤ Λ1 and for some v > 1, |∂k(t)/∂t| ≤ Λ1 |t|−v for |t| > L.

These assumptions are extensively discussed in Hansen (2008).

The following regularity conditions are needed for the subsequent asymptotic analysis. Let F ts ≡
F ts(ξi) denote the σ-algebra generated by {ξj, j = s, . . . , t}, s ≤ t, s, t ∈ Z. Define the β-mixing
coeffi cients as (see, e.g., Doukhan (1994))

βt = sup
m∈Z

sup
A∈F∞t+m

E
∣∣P (A|Fm−∞)− P (A)

∣∣ .
Assumption A0:

1. {ξi}i∈Z is a strictly stationary and absolutely regular (β-mixing), with mixing coeffi cients of
order O(t−b), for some b such that b > δ/(δ− 2), where 2 < δ <∞, and δ is as in A1.1 below.

Assumption A1:

1. For each ε > 0, logN[·](ε,F , ‖·‖) ≤ Cε−v for some v < 2 − 2δ/b(δ − 1). The class G is such
that g0 ∈ G and has an envelope G such that sup(c,v)∈Sµ E[|G(C ′i, V

′
i )R

′
i|
δ |Ci = c, Vi = v] < C

for some δ > 2. Moreover,

lim
δ→0

sup
|(c1,v1)−(c2,v2)|<δ

sup
g∈G
‖E[g(C ′, V ′)R′|C = c1, V = v1]− E[g(C ′, V ′)R′|C = c2, V = v2]‖ = 0.

2. The density function f (·) is bounded away from zero on Sµ and is continuous on S.
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3. The kernel satisfies K ∈ K(2).

4. As n → ∞, the possibly stochastic bandwidth h ≡ hn satisfies P (ln ≤ hn ≤ un) → 1 for

deterministic sequences of positive numbers ln and un such that: un ↓ 0 and l`nn→∞.

Examples of classes F satisfying A1.1 abound in the literature; see van der Vaart and Wellner (1996).
The remaining conditions in Assumption A1 are self-explanatory. For A1.3 we could also use kernels

with unbounded support that satisfy some smoothness and integrability conditions. Finally, note

that A1.4 allows for data-driven bandwidth choices, which are common in applied work.

For asymptotic normality of our estimators we require the following assumption.

Assumption A2.

1. The density function f satisfies f ∈ Cr(Sµ), where r as in A2.4 below.

2. Ag ∈ Cr(Sµ) for all g ∈ G.

3. The function s given in Definition 3 above satisfies s ∈ Cr(Sµ).

4. The kernel satisfies K ∈ K(r), for r ≥ 2.

5. For ln and un defined in A1.5, it also holds that l2`n n→∞ and nu2r
n → 0 as n→∞.

9.2.2 Some generic results

We denote by ψ ≡ (ϕ, c, v) a generic element of the set Ψ ≡ F × Sµ. Let f (c, v) denote the density

of (Ci, Vi) evaluated at (c, v). Define the regression function m(ψ) ≡ E[ϕ(C ′i, V
′
i )R

′
i|Ci = c, Vi = v],

which does not depend on i. Then, an estimator for m(ψ) is given by

m̂h(ψ) =
1

nh`f̂ (c, v)

n∑
i=1

ϕ (C ′i, V
′
i )R

′
iK

(
c− Ci
h

) `1∏
j=1

K

(
vj − Vji

h

)
≡ T̂h(ψ)

f̂ (c, v)
.

Henceforth, we abstract from measurability issues that may arise (see van der Vaart and Wellner

(1996) for ways to deal with lack of measurability). The following lemma is used in subsequent

results.

Lemma B1. Suppose that Assumptions A0-A1 hold. Then,

sup
ln≤h≤un

sup
ψ∈Ψ
|m̂h(ψ)−m(ψ)| = oP (1) . (19)
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If, in addition, A2 holds, then

sup
ln≤h≤un

sup
ψ∈Ψ
|m̂h(ψ)−m(ψ)| = OP

(√
1

nl`n
+ urn

)
. (20)

Proof. By the Triangle inequality

|m̂h(ψ)−m(ψ)|

≤
∣∣∣∣∣m̂h(ψ)− E[T̂h(ψ)]

E[f̂ (c, v)]

∣∣∣∣∣+

∣∣∣∣∣ E[T̂h(ψ)]

E[f̂ (c, v)]
−m(ψ)

∣∣∣∣∣
≤ 1∣∣∣f̂ (c, v)

∣∣∣
∣∣∣T̂h(ψ)− E[T̂h(ψ)]

∣∣∣+

∣∣∣E[T̂h(ψ)]
∣∣∣∣∣∣f̂ (c, v)E[f̂ (c, v)]

∣∣∣
∣∣∣f̂ (c, v)− E[f̂ (c, v)]

∣∣∣
+

1∣∣∣E[f̂ (c, v)]
∣∣∣
∣∣∣E[T̂h(ψ)]− T (ψ)

∣∣∣+
|T (ψ)|∣∣∣E[f̂ (c, v)]f (c, v)

∣∣∣
∣∣∣E[f̂ (c, v)]− f (c, v)

∣∣∣ ,
where T (ψ) ≡ m(ψ)f (c, v). We obtain uniform rates for T̂h(ψ) − E[T̂h(ψ)]; the rates for f̂ (c, v) −
E[f̂ (c, v)] follow analogously and are simpler to obtain.

Define the class of functions

K0 :=

{
(Ci, Vi)→ K

(
c− Ci
h

) `1∏
j=1

K

(
vj − Vji

h

)
: (c, v) ∈ Sµ, h ∈ (0, 1]

}
.

By the proof of Lemma B.3 in Escanciano, Jacho-Chávez and Lewbel (2014) K0 is a VC class and

hence N[·](ε,K0, ‖·‖2) ≤ Cε−αK for some αK ≥ 1. On the other hand, Lemma A.1 of the same

reference yields

logN[·](ε,F·K0, ‖·‖2) ≤ logN[·](Cε,F , ‖·‖2) + logN[·](Cε,K0, ‖·‖2).

By Assumption A1.1 this is bounded by Cε−v.

Theorem 3 and (2.15) in Doukhan, Massart and Rio (1995) applied to the class F·K0 then imply

sup
ln≤h≤un

sup
ψ∈Ψ

∣∣∣T̂h(ψ)− E
[
T̂h(ψ)

]∣∣∣ = OP

(√
1

nl`n

)
,

provided ‖f‖2
2,β ≤ h` for all f ∈ F·K0, where for any function f ,

‖f‖2
2,β =

∫ 1

0

β−1(u)Q2
f (u)du,
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and where β−1 is the inverse cadlag of the decreasing function u → βbuc (buc being the integer
part of u, and βt being the mixing coeffi cient) and Qf is the inverse cadlag of the tail function

u→ P (|f | > u) (see Doukhan, Massart and Rio (1995)). Note that by Assumption A1 and Pollard

(1984, p. 36)

P (|f | > z) ≤ E[|f |2]

z2

≤ Ch`

z2
.

Hence,

‖f‖2
2,β ≤

∫ 1

0

β−1(u)
Ch`

u
du ≤ Ch`

∫ 1

0

ub−1du =
Ch`

b
,

where the latter inequality follows from Assumption A0.

On the other hand, Lemma 2 in Einmahl and Mason (2005) and the uniform equicontinuity of

Assumption A1.1 yield

sup
ln≤h≤un

sup
ψ∈Ψ

∣∣∣E [T̂h(ψ)
]
− T (ψ)

∣∣∣ = o (1) ,

and likewise for the density bias term. This together with the above expansion for m̂h−m completes

the proof of (19).

To obtain rates for the bias terms we need the smoothness conditions of Assumption A2. A

standard Taylor expansion argument, the higher-order property of the kernel and the Lipschitz

property of the r − th derivative imply that

sup
ln≤h≤un

sup
ψ∈Ψ

∣∣∣E [T̂h(ψ)
]
− T (ψ)

∣∣∣ = O (urn) ,

and similarly for the density bias term. The proof is completed by standard arguments using the

boundedness away from zero of f (c, v) over the domain Sµ. �

Lemma B2. Suppose that Assumptions A0-A1 hold. Then, as n→∞,∥∥∥Â− A∥∥∥
F

= sup
g∈F⊂M:‖g‖≤1

∥∥∥Âg − Ag∥∥∥ = oP (1) .

If, in addition, A2 holds, then

sup
ln≤h≤un

∥∥∥Â− A∥∥∥
F

= OP

(√
1

nl`n
+ urn

)
.

Proof. The result follows directly from Lemma B1. �

We introduce a useful class of functions:
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Definition 4. Let L2(r) be the class of functions ϕ ∈ L2 such that Σϕ ≡
∑∞

j=−∞E
[
ϕiεiϕi−jεi−j

]
<

∞ and ϕ is r−times continuously differentiable.

Lemma B3. Suppose that Assumptions A0, A1 and A2 hold. Then, for any ϕ ∈ L2(r), it holds

that
√
n
〈(
Â− A

)
g0, ϕ

〉
=

1√
n

n∑
i=1

ϕiεi + oP (1),

and then

√
n
〈(
Â− A

)
g0, ϕ

〉
d→ N (0,Σϕ) .

Proof. Define

T̂ g0 (c, v) =
1

n

n∑
i=1

g′0iR
′
iKhi (c, v) ,

with g′0i ≡ g0 (C ′i, V
′
i ) and note that Âg0 (c, v) = T̂ g0 (c, v) /f̂ (c, v). Using standard arguments, we

write (
Â− A

)
g0 (c, v) = an (c, v) + rn(c, v),

where

an (c, v) = f−1 (c, v)
(
T̂ g0 (c, v)− Tg0 (c, v)− Ag0 (c, v)

(
f̂ (c, v)− f (c, v)

))
,

T g0 (c, v) ≡ f (c, v)Ag0 (c, v) , T̂ g0 (c, v) ≡ f̂ (c, v) Âg0 (c, v) and

rn(c, v) ≡ − f̂ (c, v)− f (c, v)

f̂ (c, v)
an(c, v).

Lemma B1 and our conditions on the bandwidth imply ‖rn‖ = oP (n−1/2). It then follows that〈(
Â− A

)
g0, ϕ

〉
has the following expansion∫

ϕ(c, v)[T̂ g0(c, v)− Tg0(c, v)]dcdv (21)

−
∫
ϕ(c, v)Ag0 (c, v) [f̂(c, v)− f(c, v)]dcdv (22)

+ oP (n−1/2).

We now look at terms (21)-(22). Firstly, it follows from standard arguments and A2.5 that the

difference between Tg0(c, v) and E[T̂ g0(c, v)] is OP (urn) = oP (n−1/2) by the condition nu2r
n → 0.
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Hence,∫
ϕ(c, v)[T̂ g0(c, v)− Tg0(c, v)]dcdv =

∫
ϕ(c, v)[T̂ g0(c, v)− E(T̂ g0(c, v))]dcdv + oP (n−1/2)

=
1

n

n∑
i=1

g′0iR
′
i

∫
ϕ(c, v)Khi (c, v) dcdv −

∫
ϕ(c, v)E(g′0R

′
iKhi (c, v))dcdv + oP (n−1/2),

=
1

n

n∑
i=1

ϕ(Ci, Vi)g
′
0iR
′
i − E[ϕ (Ci, Vi)Ag0 (Ci, Vi)] + oP (n−1/2),

where the last equality follows from the standard change of variables argument and our Assumption

A2. Likewise, the term (22) becomes n−1/2
∑n

i=1 ϕ(Ci, Vi)Ag0 (Ci, Vi) − E[ϕ (Ci, Vi)Ag0 (Ci, Vi)] +

oP (n−1/2). In conclusion, we have

√
n
〈(
Â− A

)
g0, ϕ

〉
=

1√
n

n∑
i=1

ϕ(Ci, Vi)εi + oP (1).

Then, the result follows from a standard central limit theorem for β-mixing sequences. �

For a generic function r ∈ L2, define

rs = r − 〈g0, r〉 〈g0, s〉−1 s.

Also for r ∈ N⊥(L) = R(L∗) denote by r∗ the unique minimum norm solution of r = L∗r∗. Note

that for r ∈ R(L∗), r∗s does not depend on the solution r
∗ considered of r = L∗r∗ (whether or not is

minimum norm). This follows because under our conditions N (L∗) is the linear span generated by

s.

Lemma B4. Let Assumptions S, C, I, E, N and A0-A2 hold. If ϕ ∈ N⊥(L), so ϕ = L∗ϕ∗ for some

ϕ∗, and if ϕ∗s ∈ L2(r), then

√
n 〈ĝ − g0, ϕ〉

d→ N
(
0, b2

0Σϕ∗s

)
.

Proof. Note that by (25) below and the adjoint property

√
n 〈ĝ − g0, ϕ〉 =

√
n 〈ĝ − g0, L

∗ϕ∗〉

=
√
n 〈L(ĝ − g0), ϕ∗〉

= −
√
n
(
b̂− b0

)
b−1

0 〈g0, ϕ
∗〉 − b0

√
n
〈

(Â− A)g0, ϕ
∗
〉

+ oP (1).

Then, by the proof of Theorem 4, this can be further simplified to

b0

√
n
〈(
Â− A

)
g0, s 〈g0, ϕ

∗〉 − ϕ∗
〉

= −b0

√
n
〈(
Â− A

)
g0, ϕ

∗
s

〉
+ oP (1).

Then, the result follows from the last display and Lemma B3. �
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9.3 Main Proofs

The spectral radius ρ (A) of a linear continuous operator A on a Banach space X is defined as

supλ∈σ(A) |λ|, where σ (A) ⊂ C denotes the spectrum of A. Any compact operator A has a discrete

spectrum, so that σ (A) is simply the set of eigenvalues of A. For more definitions and further details

see Kress (1999, Chapter 3.2). The operator B is called positive if Bg ∈ P when g ∈ P.

Proof of Theorem 1. By Assumption C the set of countable eigenvalues of A has zero as a limit

point, and thus, the set of eigenvalues λ with λ−1 ∈ (0, 1) is a finite set. By Theorem 3.1 in Kress

(1999) for each such eigenvalue there is a finite-dimensional eigenvector space. �

Proof of Theorem 2. Let A∗ denote the adjoint of A, which is also compact and positive by

well known results in functional analysis. Assumption S implies that ρ(A) > 0. Also notice that

the eigenvalues of A∗ are complex conjugates of those of A (in particular, ρ(A) = ρ(A∗)). Then, by

the Krĕın-Rutman’s theorem (see Theorem 7.C in Zeidler (1986, vol. 1, p. 290)) there is exactly

one solution to bAg = g with g > 0 and ‖g‖ = 1 and a solution to bA∗s = s with s > 0. Note

〈g, s〉 = b 〈Ag, s〉 = b 〈g, A∗s〉 = bρ(A) 〈g, s〉. Hence, since g and s are strictly positive, 〈g, s〉 6= 0,

and then b = ρ−1(A). �

Proof of Theorem 3. By Theorems 1 and 2 in Osborn (1975), there is a constant M such that∣∣∣̂b−1 − b−1
0

∣∣∣ ≤M ||Â− A||G0 (23)

and

‖ĝ − g̃‖ ≤M ||Â− A||G0 , (24)

where g̃ = 〈ĝ, g0〉 g0 is the projection of ĝ on g0. Thus, by 0 < b0, b̂ < 1, a.s,∣∣∣̂b− b0

∣∣∣ ≤M
∣∣∣̂b× b0

∣∣∣ ||Â− A||G0
≤M ||Â− A||G0 ,

and by Assumption E.2 |̂b− b0| = oP (1).

To conclude that ‖ĝ − g0‖ = oP (1) we need to show that ‖g̃ − g0‖ = oP (1). First, we show that

〈ĝ, g0〉 is non-negative for suffi ciently large n. To see this, note

〈ĝ, 1〉 = 〈g̃, 1〉+ oP (1)

= 〈ĝ, g0〉 〈g0, 1〉+ oP (1)

≥ 0,
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so 〈ĝ, g0〉 ≥ 0 for large enough n.

Next,

1 = ‖ĝ‖ (by normalization)

= ‖g̃‖+ oP (1) (by ‖ĝ − g̃‖ ≤M ||Â− A||G0)

= |〈ĝ, g0〉|+ oP (1), (by definition of g̃)

which then implies ‖g̃ − g0‖ = |〈ĝ, g0〉 − 1| = oP (1). Hence, by the triangle inequality, ‖ĝ − g0‖ =

oP (1). �

Proof of Theorem 4. By definition

b̂Âĝ − b0Ag0 = ĝ − g0.

Write the left hand side of the last display as(
b̂− b0

)
Aĝ + b0

(
Â− A

)
g0 + b0A(ĝ − g0) + R̂,

where R̂ =
(
b̂− b0

)(
Â− A0

)
ĝ+ b0

(
Â− A

)
(ĝ− g0). Then, after noticing that (by definition of s),

〈b0A(ĝ − g0), s〉 = 〈ĝ − g0, s〉 ,

we obtain (
b̂− b0

)
b−1

0 〈ĝ, s〉+ b0

〈(
Â− A

)
g0, s

〉
+
〈
R̂, s

〉
= 0.

By the proof of Theorem 3, it is straightforward to show that, for a C > 0,∥∥∥R̂∥∥∥ ≤ C
{
||Â− A||2G0 + ||Â− A||G−{g0} ‖ĝ − g0‖

}
and

‖ĝ − g0‖ ≤ ‖ĝ − g̃‖+ ‖g̃ − g0‖

≤M ||Â− A||G0 + |‖g̃‖ − 1| (by 〈ĝ, g0〉 ≥ 0)

≤ 2M ||Â− A||G0 , (by |‖g̃‖ − 1| ≤ ‖g̃ − ĝ‖ )

which implies by Assumption N.1 ∥∥∥R̂∥∥∥ = oP (n−1/2).

Then, Cauchy-Schwarz inequality yields∣∣∣〈R̂, s〉∣∣∣ ≤ ∥∥∥R̂∥∥∥ ‖s‖
= oP (n−1/2).
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Then, by continuity of the inner product, 〈ĝ, s〉 →p 〈g0, s〉 ≡ 1, and by Slutzky Theorem

√
n
(
b̂− b0

)
= −
√
nb2

0

〈(
Â− A

)
g0, s

〉
+ oP (1).

Hence, the result follows from Assumptions N.2 and N3. �

Proof of Theorem 5. Define the operators L = b0A− I, and its estimator L̂ = b̂Â− I. Then, by
definition

0 = L̂ĝ − Lg0

= L(ĝ − g0) + (L̂− L)g0 + (L̂− L)(ĝ − g0). (25)

First, from previous results it is straightforward to show as in Theorem 4∥∥∥(L̂− L)(ĝ − g0)
∥∥∥ = oP (n−1/2)

and ∥∥∥(L̂− L)g0 − b0(Â− A)g0

∥∥∥ = OP

(
n−1/2

)
.

Hence, in L2,

L(ĝ − g0) = −b0(Â− A)g0 +Rn,

where Rn satisfies the conditions of the Theorem. �

Proof of Theorem 6. Set ζ̂(Ci, Vi) = −Ci∂ĝ(Ci, Vi)/∂c/ĝ(Ci, Vi), which estimates consistently

ζ(Ci, Vi) = −Ci (∂g0(Ci, Vi)/∂c) /g0(Ci, Vi). Then, using standard empirical processes notation, write

√
n (γn (ĝ)− γ (g0)) =

√
n
(
Pnζ̂ − P ζ̂

)
+
√
n
(
P ζ̂ − Pζ

)
.

By the P -Donsker property of D, P (ĝ ∈ G)→ 1 and the consistency of ĝ,

√
n
(
Pnζ̂ − P ζ̂

)
=
√
n (Pnζ − Pζ) + oP (1).

Since ĝ − g0 is bounded with probability tending to one, we can apply integration by parts and use

Assumption CE to write

√
n
(
P ζ̂ − Pζ

)
=
√
n 〈log(ĝ)− log(g0), d〉+ oP (1)

=
√
n 〈ĝ − g0, χ〉+ oP (1),

where the last equality follows from the Mean Value Theorem and the lower bounds on g and ĝ.

Note that χ ∈ N⊥(L), since 〈g0, χ〉 = E[d(C, V )] = 0. Then, by Lemma B4

√
n
(
P ζ̂ − Pζ

)
=
−b0√
n

n∑
i=1

χ∗s(Ci, Vi)εi + oP (1),
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and therefore

√
n (γn (ĝ)− γ (g0)) =

1√
n

n∑
i=1

(ζ(Ci, Vi)− Pζ)− b0χ
∗
s(Ci, Vi)εi + oP (1).

The result then follows from Assumption CE.3. �
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