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Abstract

A diversion ratio, which measures the fraction of consumers that switch from one
product to an alternative after a price increase, is a central calculation of interest to
antitrust authorities for analyzing horizontal mergers. Two ways to measure diversion
are: the ratio of estimated cross-price to own-price demand derivatives, and second-
choice data. Policy-makers may be interested in either, depending on whether they are
concerned about the potential for small but widespread price increases, or product dis-
continuations. We estimate diversion in three applications – using observational price
variation and experimental second-choice data – to illustrate the trade-offs between
different empirical approaches. Using our estimates of diversion, we analyze potential
candidate products for divestiture in a hypothetical merger.
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1 Introduction

A diversion ratio, which measures the fraction of consumers that switch from one product to

an alternative after a price increase, is one of the best ways economists have for understanding

the nature of competition between sellers. Diversion ratios can be understood through the

lens of a Nash-in-prices equilibrium when sellers offer differentiated products. Two products

with a high degree of differentiation face lower diversion and softer price competition, whereas

two products with a high degree of similarity to competing goods face higher diversion and

potentially tougher price competition.

Not surprisingly, diversion ratios are a central calculation of interest to antitrust author-

ities for analyzing horizontal mergers. The current U.S. merger guidelines, released in 2010,

place greater weight on diversion ratios relative to concentration measures more commonly

used to understand competition in settings with homogeneous goods (e.g., the Herfindahl-

Hirschman Index (HHI)).1 In the context of merger reviews, antitrust authorities identify

the concept of ‘unilateral effects’ as being important for understanding the impact of a pro-

posed merger. Unilateral effects of a merger arise when competition between the products

of the merged firm is reduced because the merged firm internalizes substitution between its

jointly-owned products.2 This can lead to an increase in the price of the products of the

merged firm, potentially harming consumers. Diversion ratios are the key statistic of interest

for measuring unilateral effects. The current U.S. merger guidelines, released in 2010, note:

Diversion ratios between products sold by one merging firm and products sold

by the other merging firm can be very informative for assessing unilateral price

effects, with higher diversion ratios indicating a greater likelihood of such effects.

Thus, holding competitive responses fixed, antitrust agencies will be more concerned about

mergers that involve products with higher diversion ratios, because the scope for price in-

creases due to unilateral effects is thought to be greater.

Although the use of diversion ratios in antitrust policy is well understood theoretically, in

practice, one needs to estimate diversion ratios. The U.S. merger guidelines discuss diversion

ratios as being calculated from an estimated demand system, or observed from consumer

1Researchers have pointed out a number of concerns with using concentration measures or other functions
of market share to capture the strength of competition. One concern is that such measures require one
to define a market; another is that they do not capture the closeness of competition when products are
differentiated, as most products are thought to be.

2In contrast, the concept of harm via ‘coordinated effects’ arises if a proposed merger increases the
probability that firms in the industry will be able to successfully coordinate their behavior in an anti-
competitive way.
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survey data or in a firm’s course of business. A 2017 commentary on retail mergers released

by the UK Competition and Markets Authority (CMA) describes their use of diversion ratios

for screening and analyzing mergers, saying:

Diversion ratios can be calculated in a number of different ways, depending

on the information available in a particular case. In retail mergers, the CMA

has most often used the results of consumer surveys to calculate diversion ratios.

The diversion ratio attempts to capture what customers would do in response to

an increase in prices. However, it can be difficult to survey a sufficiently large

number of customers who would switch in response to a price rise to estimate a

robust diversion ratio. Therefore, the CMA asks customers what they would do

in response to the closure of a store (or stores).3

In this paper, we analyze different ways of estimating diversion ratios and characterize their

empirical properties.

The researcher or antitrust authority may prefer different measurements of diversion in

different settings. For example, if the antitrust authority is concerned with the potential

for small but widespread price increases, they may want to evaluate diversion by analyzing

estimated own- and cross-price derivatives at pre-merger prices. In contrast, if the antitrust

authority is concerned with the potential for product discontinuations, second-choice data

may be more informative. To clarify this point, we interpret a diversion ratio as a treatment

effect of an experiment in which the treatment is “not purchasing product j.” The treated

group consists of consumers who would have purchased j at pre-existing prices, but no longer

purchase j at a higher price. The diversion ratio measures the outcome of the treatment,

(i.e., the fraction of consumers who switch from j to a substitute product k).

When policy-makers are interested in measuring the effect of treating only those con-

sumers who substitute away from j after a very small price increase, they are implicitly

evaluating a marginal treatment effect (MTE) at pre-merger prices.4 A challenge of directly

implementing such an experiment is that treating a small number of the most price-sensitive

individuals may lack statistical power. An alternative is to treat all individuals who would

have purchased j at pre-existing prices, and thus estimate an average treatment effect (ATE).

This can be accomplished by surveying consumers about their second-choice products, or by

exogenously removing product j from the choice set. When the diversion ratio is constant,

3See Competition and Markets Authority (2017).
4As we discuss later, one can view treatment effects estimators for price increases of different sizes as

local average treatment effects (LATE).
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the ATE coincides with the evaluation of the MTE at pre-merger prices. However, we show

that constant diversion is a feature of only the linear demand model and a ‘plain vanilla’

logit model. Other commonly-used models of demand, such as random-coefficients logit or

log-linear models, do not feature constant diversion, and the ATE may diverge from the

MTE evaluated at pre-merger prices.

A related question for the antitrust authority is whether one can reliably estimate diver-

sion ratios using data from only the merging entities. To consider this question, it’s useful to

consider two concepts: an aggregate diversion ratio, which Katz and Shapiro (2003) define as

the “percentage of the total sales lost by a product when its price rises that are captured by

all of the other products in the candidate market,” and a diversion matrix, which we define

as a matrix whose off-diagonal elements report diversion between each pair of products that

could potentially be considered for inclusion in a market, and whose diagonal elements report

diversion to the outside good.5 Discrete-choice models of demand imply a “summing up”

constraint so that each row of the diversion matrix (i.e., aggregate diversion plus diversion

to the outside good) sums to one.

We consider the empirical properties of diversion ratios in three applications. In the first

two applications, we estimate discrete-choice models of demand.6 In the first application, we

use data on ready-to-eat (RTE) cereal from Nevo (2000) to explore the properties of three

different measures of diversion: a MTE evaluated at pre-merger prices, using a random-

coefficients logit demand model; an ATE, estimated by simulating a product removal in the

same random-coefficients model; and a ‘plain vanilla’ logit model, which assumes constant

diversion proportional to market shares. We show that on average, the ATE and MTE

measures differ by 7.6% for each product’s closest substitute, and by about 12.1% across all

substitutes. The ATE measure of diversion can both over- and understate the MTE measure.

In the second application, we repeat the exercise from the Nevo (2000) application using

automobile data from Berry, Levinsohn, and Pakes (1999). Compared to the RTE cereal

application, the MTE and ATE measures of diversion display more variation, with an average

(median) difference between the MTE and ATE for all products of 40.3% (22.5%), and an

average difference for each product’s closest substitute of 12.6%. In both applications, a ‘plain

vanilla’ logit model that assumes constant diversion substantially understates diversion to

5Thus, aggregate diversion represents the sum of the off-diagonal elements along each row of a diversion
matrix. When defining aggregate diversion, Katz and Shapiro (2003) also impose the condition that “The
aggregate diversion ratio must lie between zero and 100 percent.”

6Discrete-choice models of demand implicitly assume that aggregate diversion plus diversion to the outside
good sums to one.
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the best substitute, and overstates diversion to the outside good compared to both the ATE

and MTE measures.

In a third application, we construct an empirical estimator for the ATE measure of

the diversion ratio by exogenously removing products from a set of vending machines in

a large-scale experiment and tracking subsequent substitution patterns. The experimental

setting precludes us from estimating diversion that would be relevant to a small price change

because we are not able to exogenously change prices, but it does not require any parametric

restrictions or any restrictions on aggregate diversion. In order to control for unobserved

demand shocks, we select valid controls and impose a simple requirement that product

removals cannot increase total sales, nor decrease total sales by more than the sales of the

product removed.

Having matched to these control observations, we consider, in turn, two additional as-

sumptions about economic primitives and examine how they help to estimate experimental

measures of the diversion ratio. The first assumption is that diversion to any single product

is between 0 and 100 percent. We incorporate this assumption through a non-parametric

Bayesian shrinkage estimator. We find that this improves our estimates of diversion, although

our estimates are sensitive to the strength of the prior. Next, we impose the assumption that

aggregate diversion plus diversion to the outside good sums to one. Our Bayesian shrinkage

estimator incorporates this assumption by nesting the parametric structural estimates of

diversion and the (quasi)-experimental measures in a single framework. With the “summing

up” constraint, even a very weak prior yields precise estimates of diversion ratios.

Our results highlight two important points: (1) Observing data from all products within

the market, rather than only products involved in a merger, is important when estimating

diversion ratios; and (2) in discrete-choice demand systems, the “summing up” constraint

may play a more important role for identification than the parametric distribution of error

terms. Our applications also illustrate the fact that different measures of diversion may

be relevant and/or available to policy-makers in different settings. Several recent merger

cases have been concerned with the potential for small but widespread price increases, such

as in airline prices, and consumer goods and services.7 Other cases have centered around

the potential for product discontinuations, such as in hospital and airline networks, and in

several business-to-business markets.8

7Examples include the 2008 acquisition of Anheuser-Busch by InBev, and the American-US Air merger
in 2015 (Das 2017).

8Examples include the discontinuation of some data storage products in the 2016 Dell-EMC merger, and
route consolidation in the 2008 Delta-Northwest merger (Josephs 2018).
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Finally, our empirical exercise demonstrates how two different measures of diversion can

be obtained in practice (i.e., through demand estimation or exogenous product removals),

how different measures of diversion might vary, and how to design and conduct experiments

to measure diversion. Using the estimates of diversion from our second application, we

consider a hypothetical merger between Mars and Kellogg. We analyze diversion from key

products of each firm to the brands of the other firm. The exercise illustrates the ability of

diversion estimates to identify candidate products for divestiture requirements.

1.1 Related Literature

A second goal of the paper is to bring together two literatures – the applied theoretical

literature that motivates the use of diversion for understanding merger impacts, and an

applied econometric literature that articulates estimation challenges in settings for which

the treatment effect of a policy can vary across individuals and may be measured with error.

By exploring the assumptions required for a credible (quasi)-experimental method of

measuring diversion, we connect directly to the theoretical literature discussing the use and

measurement of the diversion ratio.9 Farrell and Shapiro (2010) suggest that firms themselves

may track diversion in their ‘normal course of business,’ or that diversion ratios may be

uncovered in Hart-Scott-Rodino filings. Hausman (2010) argues that the only acceptable

way to measure a diversion ratio is as the output from a structural demand system. Reynolds

and Walters (2008) examine the use of stated-preference consumer surveys in the UK for

measuring diversion. A different strand of the applied theoretical literature in IO focuses

on whether or not the diversion ratio is likely to be informative about the price effect of a

merger in the first place. We don’t take a stand on this question.10

In spirit, our approach is similar to Angrist, Graddy, and Imbens (2000), which shows how

a cost shock can identify a particular local average treatment effect (LATE) for the price

9The focus on measuring substitution away from product j (using second-choice data or stock-outs),
rather than on the direct effect of a proposed merger, is more in line with the public finance literature on
sufficient statistics (Chetty 2009).

10This literature goes back to at least Shapiro (1995) and Werden (1996), and is well summarized in
reviews by Farrell and Shapiro (2010) and Werden and Froeb (2006). A debate about the relationship
between measures of upward pricing pressure (UPP) and merger simulations has developed since the release
of the 2010 Horizontal Merger Guidelines including: Carlton (2010), Schmalensee (2009), Willig (2011), and
Hausman (2010). In related work, Jaffe and Weyl (2013) incorporate an estimated pass-through rate to map
anticipated opportunity cost effects of a merger into price effects. Miller, Remer, Ryan, and Sheu (2016) and
Cheung (2011) find that the price effects of a merger, and errors in predicting these effects, depend on the
nature of competition among non-merging firms, and whether prices are strategic substitutes or strategic
complements. Miller and Weinberg (2017) explores the possibility that the merger between Anheuser-Busch
Inbev and SABMiller facilitated tacit collusion through coordinated effects.
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elasticity in a single product setting. That approach does not extend to a differentiated

products setting because the requisite monotonicity condition may no longer be satisfied.

Our second empirical application illustrates a differentiated products setting in which the

average diversion ratio is identified from second-choice data alone, even though the separate

own- and cross-price elasticities may not be. This highlights the economic content of (even

partial) second-choice data, which have been found to be valuable in the structural literature

on demand estimation (Berry, Levinsohn, and Pakes 2004).11

The paper proceeds as follows. Section 2 describes the theoretical framework behind the

use of diversion ratios and discusses alternative ways to measure diversion using a treatment

effects framework. Our first two applications are provided in section 3, which estimates a

discrete-choice model of demand that implicitly assumes that aggregate diversion plus di-

version to the outside good sums to one in two different industries. Section 4 describes

our third application, which analyzes an experimental setting in the snack foods industry.

Section 5 develops two estimators for an ATE measure of diversion outside of the context

of discrete-choice demand models. In section 6, we present results from the third applica-

tion using different measures of diversion, discuss the role that aggregate diversion plays in

our estimates, and consider the impacts of divestiture under a hypothetical Mars-Kellogg’s

merger through the lens of our estimated diversion measures. Section 7 concludes.

2 Theoretical Framework

The rationale for focusing on diversion ratios to understand the potential impact of a merger

comes from an underlying supply-side model in which firms produce differentiated goods and

compete according to a Nash-in-prices equilibrium. Farrell and Shapiro (2010) present such

a model to motivate the key constructs of the 2010 U.S. merger guidelines, and we review

their results here.12

For simplicity, consider a single market composed of J single-product firms, where firm j

11There has been a recent debate on the use of experimental or quasi-experimental techniques vis-a-vis
structural methods within industrial organization (IO) broadly, and within merger evaluation specifically.
Angrist and Pischke (2010) complain about the general lack of experimental or quasi-experimental variation
in many IO papers, and advocate viewing a merger itself as the treatment effect of interest. Nevo and
Whinston (2010) respond by pointing out that, while retrospective merger analysis is valuable, the salient
policy question is generally one of prospective merger analysis, and that merely comparing proposed mergers
to similar previously consummated mergers is unlikely to be informative when both the proposal and approval
of mergers is endogenous. This relates to a much older debate going back to Leamer (1983), and discussed
more recently by Heckman (2010), Leamer (2010), Keane (2010), Sims (2010), Stock (2010), and Einav and
Levin (2010).

12We use slightly different notation to aid in our empirical applications later.
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sets the price of product j to maximize profits: πj = (pj − cj) · qj. When firms (j, k) merge,

firm j now considers the profits of firm k when setting her price. We can examine how this

affects the first order condition for pj holding all other prices p−j fixed:

arg max
pj

(pj − cj) · qj(pj, p−j) + (pk − ck) · qk(pj, p−j)

0 = qj + (pj − cj) ·
∂qj
∂pj

+ (pk − ck) ·
∂qk
∂pj

pj = −qj/
∂qj
∂pj

+ cj + (pk − ck) ·
∂qk
∂pj

/− ∂qj
∂pj︸ ︷︷ ︸

Djk

We can use the definition of the diversion ratio Djk(pj, p−j) = ∂qk
∂pj
/| ∂qj
∂pj
| to re-write firm j’s

best response in terms of its own-price elasticity εjj(pj, p−j):

pj(p−j) =
εjj

εjj + 1︸ ︷︷ ︸
Lerner Markup

cj · (1− ej)︸ ︷︷ ︸
efficiency

+ (pk − ck) ·Djk(pj, p−j)︸ ︷︷ ︸
opp cost


︸ ︷︷ ︸

UPP

(1)

Equation (1) shows how post-merger prices respond. The usual elasticity-based markup

is applied to marginal costs, with two additions from the merger. First, the merger may

create efficiencies ej that reduce costs, and second, the merger increases the opportunity

cost of selling j, as some consumers leaving good j are now recaptured by product k. This

opportunity cost has two inputs: the gross margin for product k, (pk− ck), and the diversion

ratio, Djk, which measures the fraction of consumers leaving j who switch to k as pj rises

(holding all other prices p−j fixed). The term in brackets is referred to as “Upward Pricing

Pressure,” or UPP. It is worth noting that equation (1) denotes only the best response for

pj(p−j), and is not an equilibrium price.

2.1 A Matrix of Diversion Ratios

We introduce a J×J matrix of diversion ratios where the (j, k)-th element is Djk(p). Rather

than report Djj = −1, we report Dj0 (the diversion to the outside good) along the diagonal.

D(p) =

D10 D12 D13

D21 D20 D23

D31 D32 D30


7



This matrix is useful to make three conceptual points: (a) if all products are substitutes

(rather than complements) and consumers make discrete choices, then each row of the matrix

must sum to one: D(p) × 1J = 1J; (b) the sum of the off-diagonal elements along a row j

is known as aggregate diversion for product j;13 (c) most parametric models of demand use

information from other rows j′ when estimating diversion in row j.

Consider a hypothetical example in which diversion among three vehicles (Honda Civic,

Toyota Prius, and Tesla) is given by a matrix of diversion ratios (where the diagonal elements

reflect diversion to the outside good).

from/to : Civic Prius Tesla

Civic : 50 40 10

Prius : 50 30 20

Tesla : 0 80 20

From a theoretical context, one can calculate Upward Pricing Pressure (UPP) from equa-

tion 1 for a Toyota-Honda merger using only the element of the diversion matrix that contains

the diversion ratio from Prius to Civic.14 For a partial merger simulation, as in Hausman,

Leonard, and Zona (1994), we calculate the effects of a merger on pj holding fixed p−j by

solving equation (1), and we require elements from the row j of the diversion matrix (the

elements of row j associated with the parties to the merger). In order to perform full merger

simulation as in Nevo (2001), for which we solve for the system of post-merger equilibrium

prices p, we require the entire matrix D(p) in order to calculate the competitive responses

for other products in the market.

From an empirical perspective, we may be able to improve our estimates of the element

Djk by using information from the rest of the row (Djk′), or information on the sum of

the elements of the row (
∑J

k=0,k 6=j Djk), even though, from a theoretical perspective, the

additional information may not be required.

2.2 Diversion as a Treatment Effect

Once we determine the elements or functions of the diversion matrix in which we are inter-

ested, we face the related task of choosing how to measure each of the relevant elements,

Djk(pj, p
0
−j). We consider a hypothetical experiment that raises the price of product j by

∆pj, so that pj = p0
j + ∆pj. We can interpret diversion as a Wald estimator of a treatment

13Katz and Shapiro (2003) show that aggregate diversion may be helpful for defining the relevant market.
14Jaffe and Weyl (2013) and Miller, Remer, Ryan, and Sheu (2016) provide details on how estimates of

UPP can be improved beyond equation 1 by incorporationg a pass-through matrix: dp
d c .
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effect with a binary treatment (i.e., not purchasing product j) and a binary outcome (i.e.,

purchasing product k or not). We denote this as:

Djk(pj, p
0
−j) =

∣∣∣∣∆qk∆qj

∣∣∣∣ =

∣∣∣∣qk(p0
j + ∆pj, p

0
−j)− qk(p0

j , p
0
−j)

qj(p0
j + ∆pj, p0

−j)− qj(p0
j , p

0
−j)

∣∣∣∣ =

∫ p0j+∆pj

p0j

∂qk(pj ,p
0
−j)

∂pj
dpj∫ p0j+∆pj

p0j

∂qj(pj ,p0−j)

∂pj
dpj

(2)

The treated group corresponds to individuals who would have purchased product j at price

p0
j but do not purchase j at price (p0

j + ∆pj). The lower an individual’s reservation price

for j, the more likely an individual is to receive the treatment. Thus, ∆pj functions as an

‘instrument’ because it monotonically increases the probability of treatment.

By focusing on the numerator in equation (2), we can re-write the diversion ratio using

the marginal treatment effects (MTE) framework of Heckman and Vytlacil (2005), in which

Djk(pj, p
0
−j) is a marginal treatment effect that depends on pj.

15

D̂LATE
jk (∆pj) =

1

∆qj

∫ p0j+∆pj

p0j

∂qk(pj, p
0
−j)

∂qj︸ ︷︷ ︸
≡Djk(pj ,p0−j)

∂qj(pj, p
0
−j)

∂pj
∂ pj (3)

D̂ATE
jk =

1

∆qj

∫ pj

p0j

Djk(pj, p
0
−j)

∂qj(pj, p
0
−j)

∂pj
∂ pj =

∣∣∣∣qk(pj, p0
−j)− qk(p0

j , p
0
−j)

qj(pj, p
0
−j)− qj(p0

j , p
0
−j)

∣∣∣∣ (4)

As we vary pj, we measure the weighted average of diversion ratios where the weights w(pj) =
1

∆qj

∂qj(pj ,p
0
−j)

∂pj
correspond to the lost sales of j at a particular pj as a fraction of all lost sales.

This directly corresponds to Heckman and Vytlacil (2005)’s expression for the local average

treatment effect (LATE); we average the diversion ratio over the set of consumers of product

j who are most price sensitive. The LATE estimator varies with the size of the price increase

because the set of treated individuals varies. Equation (3) confirms that the LATE estimate

concentrates more weight near p0 when demand is more elastic, or when demand becomes

increasingly inelastic for larger ∆pj. In equation (4) the average treatment effect (ATE) is

the expression for the LATE in which all individuals are treated. This corresponds to an

increase in pj all the way to the choke price pj. Evaluating Djk(p
0
j , p

0
−j) at pre-merger prices

is consistent with a MTE for which ∆pj is infinitesimally small.16 As we choose larger values

15The MTE is a non-parametric object that can be integrated over different weights to obtain all of the
familiar treatment effects estimators: treatment on the treated, average treatment effects, local average
treatment effects, average treatment on the control, etc.

16Antitrust authorities also sometimes focus on the notion of a ‘small but significant non-transitory increase
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for ∆pj our LATE estimate may differ from the MTE evaluated at Djk(p
0).

We can relate the divergence in the treatment effect measures of Djk to the underlying

economic primitives of demand. Consider what happens when we examine a “larger than

infinitesimal” increase in price ∆pj � 0. We derive an expression for the second-order

expansion of demand at (pj, p−j):

qk(pj + ∆pj, p−j) ≈ qk(pj, p−j) +
∂qk(pj, p−j)

∂pj
∆pj +

∂2qk(pj, p−j)

∂p2
j

(∆pj)
2 +O((∆pj)

3)

qk(pj + ∆pj, p−j)− qk(pj, p−j)
∆pj

≈ ∂qk(pj, p−j)

∂pj
+
∂2qk(pj, p−j)

∂p2
j

∆pj +O(∆pj)
2 (5)

This allows us to compute an expression for the difference between a LATE estimate D̂LATE
jk (∆pj)

and the MTE evaluated at Djk(p
0). We refer to this as the ‘bias’ of the LATE estimate.17

Bias(D̂LATE
jk ) ≈−

Djk
∂2qj
∂p2j

+ ∂2qk
∂p2j

∂qj
∂pj

+
∂2qj
∂p2j

∆pj
∆pj (6)

V ar(D̂LATE
jk ) ≈V ar

(
∆qk
|∆qj|

)
≈ 1

∆q2
j

(
D2
jkσ

2
∆qj

+ σ2
∆qk
− 2Djkρσ∆qjσ∆qk

)
(7)

The expression in equation (6) shows that the bias (i.e., the difference between the two

estimates of diversion) depends on two things: the magnitude of the price increase ∆pj, and

the curvature of demand (the terms
∂2qj
∂p2j

and ∂2qk
∂p2j

). This suggests that the bias is minimized

by considering small price changes. The disadvantage of a small price change ∆pj is that it

also implies that the size of the treated group ∆qj is small. This may increase the variance

with which we measure diversion, as shown in equation 7. This is the usual bias-variance

tradeoff: a small change in pj induces a small change in qj and reduces the bias, but increases

the variance; a larger ∆pj (and by construction ∆qj) may yield a less noisy LATE, but may

differ from the quantity of interest if the antitrust authority is concerned about the potential

for small price changes.18

in price (SSNIP).’ The practice of antitrust often employs an SSNIP test of 5-10%.
17It is convenient from an eonometric perspective to use the term ‘bias’ to denote this difference, even

though the object of interest from the policy-maker’s perspective may be the LATE or ATE rather than
the MTE. Policy-makers may indeed prefer to think of this as simply a difference between two alternative
estimates.

18Often, the policy question drives the choice of how to empirically measure diversion: is the antitrust
authority more concerned about widespread but small price changes, or the potential for product discontin-
uations? However, equations (6) and (7) illustrate another perspective on the choice of how to empirically
measure diversion. Specifically, the elasticity (and super-elasticity) of demand for j may be informative for
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Equation (6) also provides insight into the economic implications of assuming a constant

treatment effect (i.e., assuming that Djk(pj, p−j) = Djk). Constant diversion requires that

the bias calculation in equation (6) is equal to zero. Two functional forms for demand exhibit

constant diversion: linear demand, for which ∂2qk
∂p2j

= 0, ∀j, k; and the IIA logit model, for

which Djk = −∂2qk
∂p2j

/
∂2qj
∂p2j

. Implicitly when we assume that the diversion ratio does not vary

with price, we assume that the true demand system is well approximated by either a linear

demand curve or the IIA logit model. We derive these relationships, as well as expressions for

diversion under other demand models in Appendix A.1, and show that random-coefficients

logit demand, and constant elasticity demands (including log-linear demand) do not generally

exhibit constant diversion.

To summarize, we can expect a LATE or ATE measure of diversion to be similar to

the MTE evaluated at p0 when the bias in (6) is small. This happens when: (a) the

curvature of demand is low (∂
2qk
∂p2j
≈ 0), (b) the true diversion ratio is constant (or nearly

constant) so that Djk(pj, p−j) = Djk, or (c) demand for j is steepest near the market price∣∣∣∂qj(pj ,p−j)

∂pj

∣∣∣ � ∣∣∣∂qj(pj+∆pj ,p−j)

∂pj

∣∣∣.
To illustrate these concepts, figure 1 considers three hypothetical demand curves for

Toyota Prius. The first example illustrates diversion to three alternatives (Honda Civic,

Tesla, and an outside good) when demand for the Prius is linear. As price increases from

$25,000 to $50,000 (along the horizontal axis), diversion to the three alternatives is constant:

63% of potential Prius buyers switch to a Honda Civic, 12% to Tesla, and 25% to the outside

option. The histogram along the bottom axis shows the rate at which Prius buyers leave the

Prius, which is the rate at which consumers are ‘treated’ by a price increase. The second

example in figure 1 considers diversion for inelastic demand with constant elasticity (ε = −1).

The rate at which Prius buyers leave is now higher near the market price than at higher

prices, so the histogram along the horizontal axis assigns more weight near the market price.

Furthermore, the diversion pattern differs as we consider higher price points. There is more

substitution to the Honda Civic after a small price increase, and more substitution to the

Tesla after a large price increase. Using the histogram to weight diversion across the entire

price spectrum provides an ATE estimate of diversion that is 59% to the Honda Civic, 18% to

the Tesla, and 22% to the outside good. The third example in figure 1 replicates the second

example with an elasticity of ε = −4. This greater elasticity changes the relative weighting

across different hypothetical price increases, so that more consumers leave at smaller price

determining the empirical properties of the diversion measure. If the curvature of demand is steep, a small
price increase best avoids bias when measuring diversion at pre-merger prices. However, if sales are highly
variable, one may need to consider a larger price increase to reduce variance.
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changes. Although diversion to the three alternatives at any given price point is the same

as the case of inelastic demand, the ATE measure of diversion is now more heavily weighted

towards consumers that leave at small price changes (72% to Honda Civic, 10% to Tesla,

and 18% to the outside good).

2.3 Utilizing Second-Choice Data to Measure Diversion

Often researchers have access to second-choice data. For example, Berry, Levinsohn, and

Pakes (2004) observe not only market shares of cars, but also survey answers to the question:

“If you did not purchase this vehicle, which vehicle would you purchase?” Consumer surveys

provide a stated-preference method of recovering second-choice data. One may also construct

second-choice data through a revealed-preference mechanism by experimentally removing

product j from a consumer’s choice set for a period of time.19 One can view such an

exogenous product removal as being equivalent to an increase in price to the choke price pj,

where qj(pj, p−j) = 0. Thus, an exogenous product removal measures the ATE, treating all

of the pre-merger consumers of good j and minimizing the variance expression in (7).

Notice the relationship between the ATE measure of diversion D̂ATE
jk and second-choice

data, where A is the set of available products and A \ j denotes the set of available products

after the removal of product j:

D̂ATE
jk =

∣∣∣∣qk(pj, p0
−j)− qk(p0

j , p
0
−j)

qj(pj, p
0
−j)− qj(p0

j , p
0
−j)

∣∣∣∣ =
qk(p

0, A \ j)− qk(p0, A)

qj(p0, A)
. (8)

Under the ATE, all individuals in the population are treated. This has the effect of making

the choice of instrument ∆pj irrelevant to the measure of the treatment effect.

3 Applications using Nevo (2000) and Berry, Levinsohn, and Pakes (1999)

In our first two applications, we use the well-known examples from Nevo (2000) and Berry,

Levinsohn, and Pakes (1999). The data in Nevo (2000) are simulated fake data meant to

19Another way to recover second-choice data is to use observational data on consumer choice sets. However,
a problem with using observational choice-set variation is that the variation is typically non-random. If one
simply compares retail locations that stock product j to locations that do not stock product j, one might
expect the stocking decision to be correlated with demand for both j and other products. In previous
work, Conlon and Mortimer (2013a) establish conditions under which a temporary stock-out event provides
random variation in the choice set. The main intuition is that after one conditions on inventory and consumer
demand, the timing of a stock-out follows a known random distribution; paired with the assumption that
consumer arrival patterns do not respond to anticipated stock-out events, this provides (quasi)-random
choice-set variation.
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mimic the cereal industry from ??.20 These applications allows us to measure diversion in

two ways: first, as the ratio of the estimated derivatives of demand evaluated at pre-merger

prices (a MTE evaluated at p0), and second, as the response to a simulated removal of a

product (an ATE). The discrete-choice nature of the demand system imposes a ‘summing-up

constraint’ (i.e., that aggregate diversion plus diversion to the outside good sums to one).

The exercise is meant to demonstrate that the ATE and MTE measures of diversion may

not always coincide under commonly-used parametric forms of demand, and to allow us to

analyze characteristics of demand that may cause ATE and MTE measures to diverge.

3.1 Nevo (2000)

The data from Nevo (2000) cover sales of ready-to-eat (RTE) cereal in T = 94 markets

with J = 24 products per market.21 Nevo (2000) allows for a I = 20 point distribution

of heterogeneity for each market, product fixed effects dj, unobserved heterogeneity in the

form of a multivariate normally distributed νi with variance Σ, and observable demographic

heterogeneity in the form of Π interacted with a vector of demographics dit.

uijt = dj + xjt (β + Σ · νi + Π · dit)︸ ︷︷ ︸
βit

+∆ξjt + εijt

We estimate parameters following the MPEC approach of Dubé, Fox, and Su (2012).22 The

estimated coefficient on price is distributed as follows:23

βpriceit ∼ N
(
−62.73 + 588.21 · incomeit − 30.19 · income2

it + 11.06 · I[child]it, σ = 3.31
)
.

We denote a measure of diversion evaluated for an infinitesimally small price change as

a MTE. We refer to a ‘second choice’ estimate of diversion as an ATE. For comparison, we

also evaluate a Logit model, under which diversion is assumed to be constant. In Appendix

A.1 we derive these measures for commonly-used parametric forms. For the parametric forms

20These data are posted online by the author, and are not the actual data used in ??, which are proprietary.
21The data that Nevo (2000) is able to make available for replication exclude product and market names,

so we cannot reference specific product names or markets in our analysis.
22Technically we employ the continuously updating GMM estimator of Hansen, Heaton, and Yaron (1996)

and adapted to the BLP problem by Conlon (2016). For this dataset, CUE and 2-step GMM produce nearly
identical point estimates.

23One motivation for choosing this particular example is that it demonstrates a large degree of heterogene-
ity in willingness to pay. In Appendix A.2, we repeat this exercise with a restricted version of the demand
model at the original published estimates from Nevo (2000). The restriction imposed is that πinc2,price = 0.
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in Nevo (2000), the three treatment effects are defined as:

MTE =

∂sk
∂pj∣∣∣ ∂sj∂pj

∣∣∣ , ATE =
sk(A \ j)− sk(A)

|sj(A \ j)− sj(A)|
, Logit =

sk(A)

1− sj(A)

For each of the 94 markets and 24 products, we compute the best substitute for each

product-market pair, and calculate the diversion ratio to that product. In table 1, we

report these patterns. We find that for the MTE and ATE measures, we get roughly the

same amount of diversion on average to the best substitute (around 13-15%). As one might

expect, the plain Logit fails to capture the closeness of competition and instead finds 9−10%

diversion on average to the best substitute. We find that the ATE identifies the same best

substitute as the MTE around 90% of the time, while the Logit (which identifies the same

best substitute for all products) is only in agreement with the MTE 58% of the time. We

repeat the exercise and calculate diversion to the outside good in the second panel. We

find that the MTE has slightly more outside good diversion (35 − 37%) than the ATE

diversion measure (32− 34%), but far less than the Logit, which predicts that around 54%

of consumers switch to the outside good.

One can also compare the different measures of diversion. In table 2, we treat the MTE as

the baseline value and compare the difference in the calculated diversion (i.e., the difference

between log D̂ATE
jk − log D̂MTE

jk ).24 The first and third panels of table 2 report this calculation

for each product’s best substitute and the outside good, similar to table 1. The second panel

reports differences for all J substitutes for each product. The ATE measure of diversion

is on average 2 − 3% higher than the MTE measure of diversion for each product’s best

substitute. Across all substitute products, shown in the second panel, the ATE measure is

around 6 − 8% higher than the MTE measure. When compared to the outside good, the

ATE measure is around 8−9% lower than the MTE measure. We also report the mean and

median absolute deviation. This indicates that we are both over- and understating diversion

on a product-by-product basis, because these are larger in magnitude than the median and

mean deviations. As one might expect, the Logit model substantially understates (by 40%

or more) diversion to the best substitute, as well as diversion to other products (by 25% or

more), and overstates diversion to the outside good by about 39%.

24As in table 1, an observation is a product-market pair. Table 2 reports means and medians across these
J · T observations.
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3.2 Berry, Levinsohn, and Pakes (1999)

The data from Berry, Levinsohn, and Pakes (1999) cover sales of automobiles in the U.S. and

consist of T = 21 markets (each market is a year) with up to J = 150 products per market

and a total of 2,217 product-market pairs. The model allows for random tastes for: vehicle

size, miles-per-dollar, air conditioning, horsepower per unit of weight, and a constant. It also

allows for a coefficient on price that depends on income. The model includes simultaneous

estimation of both supply and demand.

Tables 3 and 4 repeat the exercises in tables 1 and 2. Relative to the market for RTE

cereal, the market for automobiles features much greater price variation, and potentially

an opportunity for greater variation between the MTE and ATE measures of diversion. In

table 3, we see that overall levels of diversion to the best substitute are lower for the auto

application (about 6% on average) than for the RTE cereal application (15% on average),

and diversion to the best substitute for the logit model is very low, at less than one percent

(compared to 10% on average for RTE cereal). Table 4 shows that the percentage difference

between the MTE and ATE measures of diversion are indeed much larger than those for

RTE cereal. For the best substitute, the absolute difference between the MTE and ATE

measures of diversion is 12.6% on average (with a median absolute difference of 11.5%),

whereas averaging over all inside products gives an absolute difference between the two

measures of 40.3% on average (with a median absolute difference of 22.5%). Diversion to

the outside good differs across the two measures by 25% on average. Diversion under the

logit model is wildly different from both the MTE and ATE measures; on average, it differs

by 240% for the best substitute and 177% across all products.

In a practical sense, the most important difference between the RTE cereal and auto-

mobile applications is likely the amount of price variation in the market. The fact that

the qualities, costs, and prices of autos vary so much more than qualities, costs, and prices

of breakfast cereals provides an opportunity to observe larger differences in the diversion

between marginal and inframarginal consumers of autos.

The ATE measure may either overstate or understate diversion to other products on

average compared to the MTE measure. If the marginal consumer tends to become more

(less) inelastic as the price increases, then the ATE will overstate (understate) substitution.25

25The elasticity of the marginal consumer will depend on the curvature of demand. For a plain vanilla
logit model, the logit error term implies that the elasticity of the marginal consumer increases with price.
However, this need not hold for other models of demand. For example, a random coefficient logit model has
an inflection point when market share exceeds 0.5. At the market level, sj < 0.5 for all j except for the
outside good. Empirically, the outside good share may be less than 0.5 in some markets, but greater than
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Reducing an estimator’s ability to accommodate heterogeneity in consumer preferences pro-

duces MTE and ATE measures that are closer together. We demonstrate this effect with

Monte Carlo simulations of commonly-used parametric demand models in Appendix A.3.

4 Empirical Application to Vending

In our third application, we estimate the ATE form of the diversion ratio using experimental

second-choice data. We run a field experiment with multiple treatment arms in which we ex-

ogenously remove a product from 66 vending machines located in office buildings in Chicago.

The product removals allow us to measure subsequent diversion to the remaining products

without any parametric restrictions on demand. We begin with a discussion of the snack

foods/vending industry, including potential antitrust issues in subsection 4.1. We discuss

our experimental design in subsection 4.2, and describe our experimentally generated data

in subsection 4.3.

4.1 Description of Data and Industry

Globally, the snack foods industry is a $300 billion market annually, composed of a number

of large, well-known firms and some of the most heavily-advertised global brands. Mars

Incorporated reported over $50 billion in revenue in 2010, and represents the third-largest

privately-held firm in the US. Other substantial players include Hershey, Nestle, Kraft, Kel-

logg, and the Frito-Lay division of PepsiCo. While the snack-food industry as a whole might

not appear highly concentrated, sales within product categories can be very concentrated.

For example, Frito-Lay comprises around 40% of all savory snack sales in the United States,

and reported over $13 billion in US revenues last year, but its sales outside the salty-snack

category are minimal, coming mostly through parent PepsiCo’s Quaker Oats brand and the

sales of Quaker Chewy Granola Bars.26 We report HHI’s at both the category level and for

all vending products in table 5 from the midwest region of the U.S. If the relevant market

is defined at the category level, all categories are considered highly concentrated, with HHIs

in the range of roughly 4500-6300. If the relevant market is defined as all products sold in a

0.5 in others. For any individual, the predicted share for any product j may exceed 0.5 if the draw from the
distribution on the random coefficient is sufficiently high. This detail of the random coefficient logit model

implies that one cannot necessarily sign the second derivative of demand, ∂2 qk
∂ p2j

, and thus cannot determine

theoretically whether the ATE will over- or understate diversion relative to the MTE.
26Most analysts believe Pepsi’s acquisition of Quaker Oats in 2001 was unrelated to its namesake business

but rather for Quaker Oats’ ownership of Gatorade, a close competitor in the soft drink business.
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snack-food vending machine, the HHI is below the critical threshold of 2500. Any evaluation

of a merger in this industry would hinge on the closeness of competition.

Over the last 25 years, the industry has been characterized by a large amount of merger

and acquisition activity, both on the level of individual brands and entire firms. For example,

the Famous Amos cookie brand was owned by at least seven firms between 1985 and 2001,

including the Keebler Cookie Company (acquired by Kellogg in 2001), and the Presidential

Baking Company (acquired by Keebler in 1998). Zoo Animal Crackers have a similarly com-

plicated history, having been owned by Austin Quality Foods before they too were acquired

by the Keebler Cookie Co. (which in turn was acquired by Kellogg).27

Our study measures diversion through the lens of a single medium-sized retail vending

operator in the Chicago metropolitan area, Mark Vend Company. Each of Mark Vend’s

machines internally records price and quantity information. The data track total vends and

revenues since the last service visit on an item-level basis, but do not include time-stamps

for each sale. Any given machine can carry roughly 35 products at one time, depending on

configuration.

We observe retail and wholesale prices for each product at each service visit during a

38-month panel that runs from January 2006 to February 2009. There is relatively little

price variation within a site, and almost no price variation within a category (e.g., chocolate

candy) at a site. This is helpful from an experimental design perspective, but can pose

a challenge to structural demand estimation. Very few “natural” stock-outs occur at our

set of machines.28 Most changes to the set of products available to consumers are a result

of product rotations, new product introductions, and product retirements. Over all sites

and months, we observe 185 unique products. Some products have very low levels of sales

and we consolidate them with similar products within a category produced by the same

manufacturer, until we are left with 73 ‘products’ that form the basis of the rest of our

exercise.29

27Snack foods have an important historic role in market definition. A landmark case was brought by
Tastykake in 1987 in an attempt to block the acquisition of Drake (the maker of Ring-Dings) by Ralston-
Purina’s Hostess brand (the maker of Twinkies). That case established the importance of geographically
significant markets, as Drake’s had only a 2% market share nationwide, but a much larger share in the
Northeast (including 50% of the New York market). Tastykake successfully argued that the relevant market
was single-serving snack cakes rather than a broad category of snack foods involving cookies and candy bars.
[Tasty Baking Co. v. Ralston Purina, Inc., 653 F. Supp. 1250 - Dist. Court, ED Pennsylvania 1987.]

28Mark Vend commits to a low level of stock-out events in its service contracts.
29For example, we combine Milky Way Midnight with Milky Way, Ruffles Original with Ruffles Sour Cream

& Cheddar, and various flavors of Pop-Tarts together.
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4.2 Experimental Design

We implemented four exogenous product removals with the help of Mark Vend Company.

These represent a subset of a larger group of eight exogenous product removals that we have

analyzed in two other projects, Conlon and Mortimer (2013b) and Conlon and Mortimer

(2017). Our experiment uses 66 snack machines located in professional office buildings and

serviced by Mark Vend. Most of the customers at these sites are employees of law firms

and insurance companies. Our goal in selecting the machines was to choose machines that

could be analyzed together, in order to be able to run each product removal over a shorter

period of time across more machines.30 These machines were also located on routes that

were staffed by experienced drivers, which maximized the chance that the product removal

would be successfully implemented. The 66 machines used for each treatment are distributed

across five of Mark Vend’s clients, which had between 3 and 21 machines each.31

For each treatment, we remove a product from all machines at a client site for a period

of 2.5 to 3 weeks. The four products that we remove are the two best-selling products from

either (a) confections seller Mars Incorporated (Snickers and Peanut M&Ms) or (b) cookie

seller Kellogg’s (Famous Amos Chocolate Chip Cookies and Zoo Animal Crackers). We refer

to exogenously-removed products as the focal products throughout our analysis.32 Whenever

a product was exogenously removed, poster-card announcements were placed at the front

of the empty product column.33 The dates of the interventions range from June 2007 to

September 2008, with all removals run during the months of May - October. We collected

data for all machines for just over three years, from January of 2006 until February of 2009.

Although data are recorded at the level of a service visit, it is more convenient to organize

30Many high-volume machines are located in public areas (e.g., museums or hospitals), and feature demand
patterns (and populations) that vary enormously from one day to the next, so we did not use machines of
this nature. In contrast, the work-force populations at our experimental sites have relatively stable demand
patterns.

31The largest client had two sets of floors serviced on different days, and we divided this client into two
sites. Generally, each site is spread across multiple floors in a single high-rise office building, with machines
located on each floor.

32Not reported here are two treatment arms removing best-selling products from Pepsi’s Frito Lay Division,
which we omit for space considerations, and because Pepsi’s products already dominate the salty snack
category (which makes merger analysis less relevant). We also ran two additional treatments in which we
removed two products at once; again we omit those for space considerations and because they don’t speak to
our diversion ratio example. These are analyzed in Conlon and Mortimer (2013b) and Conlon and Mortimer
(2017).

33The announcements read: This product is temporarily unavailable. We apologize for any inconvenience.
The purpose of the card was two-fold: first, we wanted to avoid dynamic effects on sales as much as possible,
and second, Mark Vend wanted to minimize the number of phone calls received in response to the stock-out
events.
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observations by week, because different visits occur on different days of the week.34 The cost

of implementing the experiment consisted primarily of drivers’ time.35

Our experiment differs somewhat from an ideal experiment. Ideally, we would be able

to randomize the choice set for each individual consumer. Technologically, of course, that is

difficult in both vending and traditional brick and mortar contexts.36 Additionally, because

we remove all of the products at an entire client site for a period of 2.5 to 3 weeks, we lack

a contemporaneous “same-side” group of untreated machines. We chose this design, rather

than randomly staggering the product removals, because we (and the participating clients)

were afraid consumers might travel from floor to floor searching for stocked-out products.

This design consideration prevents us from using contemporaneous control machines in the

same building, and makes it more difficult to capture weekly variation in sales due to unre-

lated factors, such as a client location hitting a busy period that temporarily induces long

work hours and higher vending sales. Conversely, the design has the benefit that we can

aggregate over all machines at a client site, and treat the entire site as if it were a single

machine. Despite the imperfections of field experiments in general, these are often the kinds

of tests run by firms in their regular course of business, and may most closely approximate

the type of experimental information that a firm may already have available at the time

when a proposed merger is initially screened.

4.3 Description of Experimental Data

We summarize the data generated by our product removals in table 6. Across our four

treatments and 66 machines, we observe between 161-223 treated machine-weeks. In the

34During each 2-3 week experimental period, most machines receive service visits about three times.
However, the length of service visits varies across machines, with some machines visited more frequently
than others. In order to define weekly observations, we assume that sales are distributed uniformly among
the business days in a service interval, and assign sales to weeks. We allow our definition of when weeks
start and end to depend on the client site and experiment, because different experimental treatments start
on different days of the week. At some site-experiment pairs, weeks run Tuesday to Monday, while others
run Thursday to Wednesday.

35Drivers had to spend extra time removing and reintroducing products to machines, and the driver
dispatcher had to spend time instructing the drivers, tracking the dates of each product removal, and
reviewing the data as they were collected. Drivers are generally paid a small commission on the sales on
their routes, so if sales levels fell dramatically as a result of the product removals, their commissions could be
affected. Tracking commissions and extra minutes on each route for each driver would have been prohibitively
expensive to do, and so drivers were provided with $25 gift cards for gasoline during each week in which
a product was removed on their route to compensate them for the extra time and the potential for lower
commissions.

36This leaves our design susceptible to contamination if for example, Kraft runs a large advertising cam-
paign for Planters Peanuts that corresponds to the timing of one of our product removals.
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untreated group, we observe 8,525 machine-weeks and more than 700,000 units sold. Each

treatment week exposes around 2,700-3,500 individuals to the product removal, of which

around 134-274 would have purchased the focal product in an average week. Each treatment

lasts 2.5-3 weeks, and between approximately 14,000-19,000 sales are recorded during the

treated periods. The treated group consists of the 400-1,200 individuals who would have

purchased the focal product had it been available for each treatment. This highlights one

of the main challenges of measuring diversion experimentally: for the purposes of measuring

the treatment effect, only individuals who would have purchased the focal product, had it

been available, are considered “treated,” yet we must expose many more individuals to the

product removal, knowing that many of them were not interested in the focal product in the

first place.

In general, we see that the overall sales per machine-week are higher during the treatment

period (between 83.3-89.4) than during the control period (82.2).37 This illustrates a second

challenge, which is that there is a large amount of variation in overall sales at the weekly

level, independent of our product removals. This weekly variation in overall sales is common

in many retail environments. We often observe week-over-week sales that vary by more than

20%. This can be seen in figure 2, which plots the overall sales of all machines from one of

the sites in our sample on a weekly basis. In our particular setting, many of the product

removals were implemented during the summer of 2007, which was a high point in demand

at several sites, most likely due to macroeconomic conditions.

We explore this relationship further in table 7, where we report average sales by week

during both the treatment and control periods for key substitutes. The third column reports

the quantile to which ‘sales during the mean treatment week’ correspond in the distribution

of control weeks. For example, during the Snickers removal, we recorded an average of

472.5 M&M Peanut sales per week. The average weekly sales of M&M Peanuts was 309.8

units during the control weeks and the treatment average was greater than recorded sales

of M&M Peanut during any of our control weeks (100th percentile). Likewise, the overall

average weekly sales (across all products) were 5,358 during the treated weeks, compared

to a control average of 4,892, which corresponds to the 74.4th percentile of the control

distribution for total sales.

37The per-week sales can be misleading because not all machines are measured in every week during the
treatment period. This is because the product removals have slightly different start dates at different client
site locations. This leads to a somewhat liberal definition of “treatment week” as only one or two machines
might be treated in the final week.
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5 A Nonparametric Estimator for Diversion

Our estimates of diversion face two major challenges: (1) the set of products may vary

for non-experimental reasons across machines and time; (2) demand is volatile both at the

product level, and at the aggregate level.

Using four simple assumptions motivated by economic theory, we develop an estimator for

the average treatment effect version of the diversion ratio which deals with these challenges.

The first two assumptions restrict the set of machine-weeks that can act as a control for a

particular machine-treated week as in a matching estimator. The second two assumptions

affect the way in which estimates of ∆̂qj, ∆̂qk are used to construct Djk and employ the

principle of Bayesian Shrinkage. All four assumptions are implications of the economic

restriction that consumers make discrete choices among substitutes.38 Using the following

four assumptions we demonstrate how we estimate Djk from our experimental data.

Assumption 1. Valid Controls For a machine-week observation to be included as a control

for qk,t it must: (a) have product k available; (b) be from the same vending machine; (c) not

be included in any of our treatments.

Assumption 2. Substitutes: Removing product j can never increase the overall level of

sales during a period, and cannot decrease sales by more than the sales of j.

Assumption 3. Unit Interval: Djk ∈ [0, 1].

Assumption 4. Unit Simplex: Djk ∈ [0, 1] and
∑
∀kDjk = 1.

5.1 Matching Assumptions

Consider an estimate of ∆̂qk, where W = 1 denotes the removal of product j:39

∆̂qk = E[qk|W = 1]− E[qk|W = 0]

38While we estimate the ATE version of Djk in our example, the procedure described in this section could
be used to estimate a LATE if the treatment were, for example, a 10% price increase instead of a product
removal.

39One advantage of using a product removal experiment is that E[qj |W = 1] = 0 by construction (con-
sumers cannot purchase products that are unavailable). This also helps rule out one set of potential defiers.
The second set of defiers, those that purchase k only when j is available are ruled out if (j, k) are substitutes
rather than complements.
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We adjust our calculation of the expectation to address the volatility of demand.40 To be

explicit, one can introduce a covariate ξ (demand shock):

E[qk|W = w] =

∫
qk(ξ, w)f(ξ|W = w)d ξ

The treated and control periods have different distributions of covariates (demand shocks)

because f(ξ|W = 1) 6= f(ξ|W = 0). The typical solution involves matching or balancing,

where one re-weights observations in the control period using measure g(·) so that f(ξ|W =

1) = g(ξ|W = 0) and then calculates the expectation Eg[qk|Z = 0] with respect to measure

g.41 For each treated week t, one can construct a set of matched control weeks within a

neighborhood S(ξt), where S(ξt) is the set of control weeks that correspond to treated week

t, and ξt is an unobserved demand shock. Having chosen S(ξt), the change in sales for the

chosen control weeks is given as:

∆qk,t(ξt) = qk,t(ξt)−
1

|#s ∈ S(ξt)|
∑

s∈S(ξt)

qk,s with ∆̂qk =
∑
t

∆qk,t(ξt) (9)

Our first two assumptions tell us how to choose S(ξt). Assumption 1 is straightforward:

it controls for unobserved machine-level heterogeneity by restricting potential controls to

different (untreated) weeks at the same machine. If ξt were observed, one could employ con-

ventional matching estimators (such as k-nearest neighbor or local-linear regression (Abadie

and Imbens 2006)). However, ξt is unobserved, so we rely on Assumption 2 (removing a

product cannot increase total sales, and cannot reduce sales by more than the sales of the

product removed) instead.

We implement Assumption 2 as follows. We let Qt denote the sales of all products during

the treated machine-week, and Qs denote the overall sales of a potential control machine-

week. Given a treated machine-week t, we look for the corresponding set of control periods

that satisfy Assumption 1 and further restrict them to satisfy Assumption 2:

{s : Qs −Qt ∈ [0, qjs]} (10)

The problem with a direct implementation of (10) is that periods with (unexpectedly) higher

sales of the focal product qjs are more likely to be included as a control, which would lead

40Recall, from table 7 that treated weeks represent the 74th percentile of the aggregate sales distribution.
41We omit the usual discussion of the conditional independence assumption because we have randomized

assignment of W .
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us to understate the diversion ratio. We propose a modification of (10) that is unbiased. We

replace qjs with q̂js = E[qjs|Qs,W = 0]. An easy way to obtain the expectation is to run

an OLS regression of qjs on Qs using data only from untreated machine-weeks that satisfy

Assumption 1:

St ≡ {s : Q0
s −Q1

t ∈ [0, b̂0 + b̂1Q
0
s]} (11)

Thus (11) defines the set of control periods St that correspond to treatment period t under

Assumptions 1 and 2.42 Plugging this into equation (9) gives estimates of ∆̂qk and ∆̂qj.
43

5.2 Bayesian Shrinkage Assumptions

Our Assumptions 3 and 4 place restrictions on how we calculate the diversion ratio given

our estimates of ∆̂qk and ∆̂qj. The idea is that there may be better estimates of Djk than

the simple ratio ∆̂qk
∆̂qj

. For example, we might find large but noisy estimates of diversion to a

substitute product based on only a few observations and a better estimate might adjust for

that uncertainty.44

We can see how these assumptions work by writing the diversion ratio as the probability

of a binomial with ∆qj trials and ∆qk successes:

∆qk|∆qj, Djk ∼ Bin(n = ∆qj, p = Djk) (12)

This is considered a nonparametric estimator as long as we estimate a separate binomial

probability Djk for each (j, k).

We implement Assumption 3 by placing a prior on Djk that restricts all of the mass to the

unit interval Djk|µjk,mjk ∼ Beta(µjk,mjk). Assumption 4 goes further and restricts the vec-

42The economic implication of Assumption 2 is that if all treatment and control weeks faced an identical
set of substitute products, the sum of the diversion ratios from j to all other products would lie between
zero and one (for each t):

∑
k 6=j Djk,t ∈ [0, 100%].

43There are stronger assumptions one could make in order to implement a more traditional matching or
balancing estimator in the spirit of Abadie and Imbens (2006). Suppose a third product k′ was similarly
affected by the demand shock x but we knew ex-ante that Djk′ = 0. If so, one could match on similar
sales levels of qk′ . For our vending example this might involve using sales at a nearby soft drink machine to
control for overall demand at the snack machine, or it using sales of chips to control for sales of candy bars.
We find that when all four assumptions are used, additional matching criteria have no appreciable effect on
our estimates.

44A baseball analogy is apt. If one hitter has 150 hits in 500 at bats and another has 2 hits in 5 at bats, one
would likely believe the hitter with the .300 average is a better batter, even though he has a lower batting
average. This is because there is a much greater chance that the second hitter was merely lucky.
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tor Dj· to the unit simplex, which we implement with the prior Dj· ∼ Dirichlet(µj0, µj1, . . . , µjK ,mjk).

This has the effect of using information about Djk to inform our estimates for Djk′ .

There are two ways to parametrize the Beta (and Dirichlet) distributions. In the tradi-

tional Beta(β1, β2) formulation β1 denotes the number of prior successes and β2 denotes the

number of prior failures (observed before any experimental observations). Under an alterna-

tive formulation, Beta(µ,m): µ = β1
β1+β2

denotes the prior mean and m denotes the number

of “pseduo-observations” m = β1 + β2. We work with the latter formulation for both the

Beta and Dirichlet distributions.45 This formula makes it easy to express the posterior mean

(under Assumption 3) as a shrinkage estimator that combines our prior information with

our experimental data:

D̂jk = λ · µjk + (1− λ)
∆qk
∆qj

, λ =
mjk

mjk + ∆qj
(13)

The weight put on our prior mean is denoted by λ, and directly depends on how many

“pseudo-observations” we observe from our prior before observing experimental outcomes.

One reason this estimator is referred to as a “shrinkage” estimator, is because as ∆qj be-

comes smaller (and our experimental outcomes are less informative), D̂jk shrinks towards µjk

(from either direction). Thus, when our product removals provide lots of information about

diversion from j to k we rely on the experimental outcomes, but when our experimental

variation is less informative, we rely more on our prior information.46 This has the desirable

property of taking extreme but imprecisely estimated parameters and pushing them towards

the prior mean.

Our remaining challenge is how to specify the prior (µjk,mjk). Ideally, the location of

the prior µ would be largely irrelevant while the prior strength m would be as small as

possible.47 An uniform or uninformative prior might be to let µjk = 1
K+1

where K is the

number of substitutes. An informative prior centered on the plain IIA logit estimates would

let µjk = sk
1−sj so that (prior) diversion is proportional to market shares.48

45The Dirichlet is a generalization of the Beta to the unit simplex. The mean parameters [µ0, µ1, . . . , µk]
form a unit simplex while m denotes the number of pseudo-observations.

46We cannot provide a similar closed-form characterization under Assumption 4. Though there is a
conjugacy relationship between the Dirichlet and the Multinomial, there is no conjugacy relationship between
the Dirichlet and the Binomial except under the special case where the same number of treated individuals
∆qj are observed for each substitute k. For additional discussion regarding prior distributions, please consult
Appendix A.4.

47Indeed, with all four assumptions this is true. We use only a small number of prior observations m < 4,
and the location of the prior is almost completely irrelevant.

48When µjk is chosen as a function of the same observed dataset (including from estimated demand
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We use the IIA logit prior not because it is the best estimate of the diversion ratio absent

experimental data, but rather because assuming diversion proportional to market share is

commonplace among practitioners in the absence of better data.49 An advantage of the

shrinkage estimator is that it allows us to nest the parametric estimate of diversion currently

used in practice and the experimental outcomes, depending on our choice of m. A smaller

m implies a weaker prior and more weight on the observed data.

6 Results

6.1 Estimates of Diversion

For each of our four product removals, we report our estimates of the diversion ratios in

tables 8 and 9. Along with the number of treated machine-weeks for each substitute, we

report the estimates of ∆̂qj, ∆̂qk from our matching estimator under Assumptions 1+2. The

next four columns report: the “naive” or “raw” diversion ratio ∆̂qj/∆̂qk, the beta-binomial

adjusted diversion ratio under Assumption 3 (with a weak m = K and strong m = 300

prior), and the “multinomial” version of the diversion ratio under Assumption 4 with the

m = 4.15 prior. When we incorporate a prior distribution, we center the mean at the IIA

logit estimates µjk = sk
1−sj .50 For each experimental treatment, we report the 12 products

with the highest ‘raw’ diversion ratio as well as the outside good.

For Twix, in the second row of table 8, ∆qk = 289.6 and ∆qj = −702.4 based on the 134

machine-weeks in which Twix was available. This implies a raw diversion ratio Djk = 41.2%.

In the same table, we observe substitution from Snickers to Non-Chocolate Nestle products

with only 3 machine-weeks in our sample.51 This leads to ∆qj = −10.5 and ∆qk = 9.4 for

parameters) this is a form of an Empirical Bayes estimator. The development of Empirical Bayes shrinkage
is attributed to Morris (1983) and has been widely used in applied microeconomics to shrink outliers from
a distribution of fixed effects in teacher value added (Chetty, Friedman, and Rockoff 2014) and (Kane and
Staiger 2008) or hospital quality (Chandra, Finkelstein, Sacarny, and Syverson 2013).

49If we had estimates from a random coefficients demand model, we could use those estimates of the
diversion ratio instead. In practice, we find that under Assumption 4 the choice of µjk becomes irrelevant.
We explore robustness to different priors (including uninformative priors) in Appendix A.4.

50For the Dirichlet we add an additional small (uniform) 1.1
K+1 term to the logit probabilities m = 3.05

in order to bound some of the very small prior probabilities (with negative diversion) away from zero.
Sampling from zero and near-zero probability events is challenging. This is not required for the Beta
distribution because Beta-Binomial conjugacy provides a closed form. Because the marketsize is unobserved,
we normalize µ0 = 0.25 for the outside good. Setting µ0 = 0.75 gives nearly identical results, but requires
adding more (uniform) pseudo-observations to bound the small probabilities away from zero. See Appendix
A.4 for more detail.

51Non-Chocolate Nestle products include Willy Wonka candies such as Tart-N-Tinys, Chewy Tart-N-Tinys,
Mix-ups, Mini Shockers, and Chewy Runts.
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an implied diversion ratio of Djk = 89.5%. These raw diversion numbers may lead one to

conclude that Non-Chocolate Nestle products are a closer substitute for Snickers than Twix.

However, we observe more than 70 times as much information about diversion to Twix as

we do to Non-Chocolate Nestle products. When we apply Assumption 3 with a weak prior

(m=64 pseudo-observations, one for each potential substitute), we shrink the estimates of the

Non-Chocolate Nestle products (89.5 → 12.4) much more than Twix (41.2 → 37.9). When

we increase the strength of the prior to m = 300 pseudo-observations, we observe even more

shrinkage towards the prior mean (89.5→ 3.1) and (41.2→ 29.5) respectively.

When we include Assumption 4, we utilize an extremely weak prior with m = 4.15

pseudo-observations, but we see substantial shrinkage in our estimates from the adding up

or simplex constraint
∑

kDjk = 1 and the constraint that Djk′ ≥ 0 for all k′. We no longer

balance large positive diversion to some substitutes with large negative diversion to other

substitutes, because negative diversion is ruled out ex-ante. This leads to smaller diversion

estimates for both Non-Chocolate Nestle (89.5 → 0.7) and Twix (41.2 → 15.9). Under

Assumption 4, Non-Chocolate Nestle is estimated to hardly be a substitute at all, while

Twix remains the second-best substitute behind M&M Peanut, which has a similar “raw”

diversion measure, but a larger treated group (∆qj = −954.3). Imposing the adding up

constraint of Assumption 4 also shrinks outside good diversion from 47.5→ 23.1.

We summarize the impact of each of our assumptions in sequence in table 10. To elimi-

nate some noise, we focus only on substitutes where |∆qj| > 50. For each treatment arm we

report the number of substitutes overall, the number with estimated diversion ratios within

certain ranges, and the overall diversion (including the outside good) for all substitutes with

positive estimated diversion ratios
∑

k:Djk>0Djk, and those with negative estimated diversion

ratios
∑

k:Djk<0Djk. Under just Assumption 1, we find nearly half of products exhibit nega-

tive diversion ratios. The sum of diversion ratios for products with positive diversion exceeds

300% while for products with negative diversion it exceeds 200%. Adding Assumption 2 (the

matching criteria) produces similar estimates. Aggregated diversion measures are still quite

large (-166% to +184%). By accounting for the fact that all four treatments produced overall

sales that were above average, this reduces the number of products with very large diver-

sion estimates (> 20%), but also increases the number of products with negative diversion.

Assumption 3 eliminates negative diversion estimates by requiring Djk ∈ [0, 1], and reduces

the number of products with extremely large diversion estimates by shrinking them towards

the prior (logit) mean. Still, because it doesn’t pool any information across substitutes Djk

and Djk′ the aggregate diversion estimates still exceed 150% (and 250% in three out of four
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product removals). Only after we include Assumption 4 do we obtain aggregate diversion

ratios < 100%.52 There are now very few products (no more than 3 per experiment) with

estimated diversion ratios > 10%.

In table 11, we report the posterior distribution of our preferred diversion estimates

under Assumption 4 and the very weak prior m = 4.15. We find that in most cases the

posterior distribution defines a relatively tight 95% credible or posterior interval, even when

we have relatively few experimentally-treated individuals. On one hand this indicates our

estimates are relatively precise and insensitive to the prior distribution.53 On the other

hand, it demonstrates the power of cross substitute restrictions in Assumption 4; even with

a diffuse prior and very little experimental data for some substitutes, requiring diversion to

sum to one is sufficient to pin down our estimates.

While Assumption 4 appears relatively innocuous (most researchers are likely willing to

assume a multinomial discrete-choice framework), one should be cautious precisely because

it is so powerful in pinning down the diversion ratio estimates. This suggests that the

important empirical decision is determining what the appropriate set of products K is, such

that
∑

k∈KDjk = 1. If, for example, one were interested in a merger in which product j

acquired both (k, k′) but (k, k′) were always rotated for one another and never available at

the same time, one might want to vary the set of products over which we sum Djk′ for each

alternative: Kk.54

One of the perceived benefits of using diversion ratios or UPP alone rather than full

merger simulation is that it requires data only from the merging parties, and not from firms

outside the merger.55 The power of Assumption 4 indicates that measuring diversion to all

substitute goods (rather than just k) can substantially improve our estimates of Djk.
56 This

suggests that although we need only (quasi)-experimental removals (or second-choice data)

for the focal products involved in the merger, we should attempt to measure diversion to all

available substitutes if possible.

52Table 10 does not report exactly 100% because we drop a small number of products with |∆qj | < 50
from the summary information in the table.

53We compare results with different priors under Assumption 4 in Appendix A.4.
54Conlon and Mortimer (2013a) show that assuming all products are always available introduces bias in

structural parametric estimates of demand.
55The 2010 Horizontal Merger Guidelines include the phrase: Diversion ratios between products sold by

merging firms and those sold by non-merging firms have at most secondary predictive value. We disagree
with this statement in terms of statistical properties, rather than economic theory.

56In broad strokes, this phenomenon is well understood by statisticians. This is related to Stein’s Paradox,
which shows that pooling information improves the parameter estimates for the mean of the multivariate
normal, or the broader class of James-Stein shrinkage estimators. See Efron and Morris (1975) and James
and Stein (1961).
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6.2 Merger Evaluation

An important remedy available to antitrust agencies is that mergers can be approved condi-

tional on the parties divesting a key product or set of products.57 One can measure whether

divesting a product during a merger reduces
∑

k∈Fk
Djk below a threshold. Combining equa-

tion (1) with assumptions on wholesale prices and marginal costs allows one to interpret

diversion ratios in terms of compensating marginal cost reductions. Our previous work Con-

lon and Mortimer (2017) indicates that p = 0.45 and c = 0.15 are reasonable values of price

and cost for confections products. This would imply that an antitrust authority would seek

a compensating marginal cost reduction of roughly twice the diversion ratio. For example,

if an antitrust authority expected cost savings from the merger to be 10%, it may request

divestitures so that overall diversion to the newly acquired brands was less than 5%.

Our product removals inform us directly about the top two products of Mars (Snickers

and Peanut M&Ms) and the top two products of Kellogg’s (Zoo Animal Crackers and Famous

Amos Chocolate Chip Cookies). This allows us to examine a potential merger between Mars

and Kellogg’s in both directions. We can measure diversion away from Mars products to

Kellogg’s brands, and from Kellogg’s products to Mars’ brands. Tables 12 and 13 analyze

diversion and the potential for divested products to restore effective competition. A merger

between these two firms is interesting from a policy perspective. Recall that table 5 provides

information on the degree of concentration within the three main product categories of the

vending industry (salty snacks, cookies, and confections). If one defines the relevant market

at the category level (i.e., confections), then a Mars-Kellogg’s merger has no impact on HHI.

However, if one defines the market to include all vending products, then a Mars-Kellogg’s

merger induces a 590 point increase in HHI from a base of 2401.

Table 12 analyzes a potential Mars-Kellogg’s merger from the perspective of the Mars

products. We report all three measures of diversion from each of the two flagship Mars

products to all of Kellogg’s brands. The ‘adding up’ constraint imposed by Assumption 4

substantially reduces overall diversion, with the estimate of total diversion from Snickers

to all Kellogg’s products decreasing from 42% to 8%. Analyzing diversion from Snickers

and Peanut M&Ms to Kellogg’s product line without Assumptions 3 or 4 indicates that

Rice Krispies Treats may be a potential divestiture target, with 27% and 10% diversion

respectively. Assumption 4 reduces these estimates to more reasonable levels (1.3% and 2.7%

57Two recent examples are the divestiture of gate slots at specific airports in the American/USAirways
merger, and divestiture of the entire U.S. Modelo business during the acquisition of its global activities by
Anheuser-Busch InBev.
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respectively). Products outside of the merging firms with high diversion are not reported

in table 12, but are listed in table 8. These include Nestle’s Butterfinger, Kraft’s Planters

Peanuts, and PepsiCo’s Rold Gold and Sun Chips snack brands.58 Recalling the estimates of

diversion from table 8, the most important substitutes for Peanut M&Ms are already owned

by Mars, as Snickers, Plain M&M’s, and Twix comprise diversion of roughly 30%.

Table 13 reports diversion from Kellogg’s top two products to Mars’ brands. Once again,

the ‘adding up’ constraint of Assumption 4 reduces overall diversion to Mars’ brands from

52% to 22% in the case of Zoo Animal Crackers, and corrects a negative estimate of overall

diversion in the case of Famous Amos cookies. Estimates of diversion without Assumption

4 identify Milky Way as having high diversion for both of Kellogg’s products (23% and 19%

diversion under no prior for Animal Crackers and Famous Amos, respectively); applying

Assumption 4 reduces these estimates to less than 2%. The degree of diversion from Zoo

Animal Crackers to Snickers, Plain and Peanut M&Ms, and Twix Caramel is considerable

even with Assumption 4 (a total of about 22%), so one might worry about the potential for

a price increase on Zoo Animal Crackers. Products outside of the merging firms that have

high diversion from Zoo Animal Crackers and Famous Amos cookies are similar to those for

Mars’ flagship products: PepsiCo’s Rold Gold pretzels (for Animal Crackers), and PepsiCo’s

Sun Chips and Kraft’s Planters peanuts (for Famous Amos).

7 Conclusion

The 2010 revision to the Horizontal Merger Guidelines de-emphasized market definition and

traditional concentration measures such as HHI in favor of a unilateral effects approach. The

key input to this approach is the diversion ratio, which measures how closely two products

substitute for one another.

We show that the diversion ratio can be interpreted as the treatment effect of an ex-

periment in which the price of one product is increased by some amount. An important

characteristic of many retail settings is that category-level sales can be more variable than

product-level market shares. In practice, this makes most field experiments that consider

small price changes under-powered. We also show that second-choice data arising from ran-

domized experiments, quasi-experiments (such as stockouts), or second-choice survey data,

can be used to estimate an average diversion ratio, where the average is taken over all pos-

sible prices from the pre-merger price to the choke price. We derive conditions based on

58The estimate of diversion that includes Assumption 4 predicts roughly 18% diversion from Snickers to
these four products.
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economic primitives such as the curvature of demand, whereby the average diversion ratio

from second-choice data (ATE) is a good approximation for the MTE.

We explore the empirical properties of diversion ratios in three applications. In the first

two, we estimate discrete-choice models of demand using data from Nevo (2000) and Berry,

Levinsohn, and Pakes (1999). In the third, we analyze a randomized field experiment, in

which we exogenously remove products from consumers’ choice sets and measure the ATE

directly.

We develop a simple method to recover the diversion ratio from data, which enables us

to combine both experimental and quasi-experimental measures with structural estimates as

prior information. A non-parametric Bayes shrinkage approach enables us to use prior infor-

mation (or potentially structural estimates) when experimental measures are not available,

or when they are imprecisely measured, and to rely on experimental measures when they are

readily available. This facilitates the combination of both first- and second-choice consumer

data. We show that these approaches are complements rather than substitutes, and we find

benefits from measuring diversion not only between products involved in a proposed merger,

but also from merging products to non-merging products.

Our hope is that this makes a well-developed set of quasi-experimental and treatment

effects tools available and better understood to both researchers in industrial organization

and antitrust practitioners. While the diversion ratio can be estimated in different ways,

researchers should think carefully about (1) which treatment effect their experiment (or

quasi-experiment) is actually identifying; and (2) what the identifying assumptions required

for estimating a diversion ratio implicitly assume about the structure of demand.
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(b) Inelastic CES Demand

(c) Elastic CES Demand

Figure 1: A Thought Experiment – Hypothetical Demand Curves for Toyota Prius
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Figure 2: Total Overall Sales and Sales of Snickers and M&M Peanuts by Week
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MTE ATE Logit
Best Substitute

Med(Djk) 13.26 13.54 9.05
Mean(Djk) 15.11 15.62 10.04
% Agree with MTE 100.00 89.98 58.38

Outside Good
Med(Dj0) 35.30 32.40 54.43
Mean(Dj0) 36.90 33.78 53.46

Table 1: Diversion to Best Substitute and Outside Good

Notes: Nevo (2000) fake data. An observation is a product-market pair. There are 94 markets and 24
products. The first panel reports diversion to each product-market pair’s best substitute. The second panel
reports diversion to the outside good.

med(y − x) mean(y − x) med(|y − x|) mean(|y − x|) std(|y − x|)
Best Substitutes

ATE 2.56 3.24 6.00 7.61 7.04
Logit -44.19 -42.88 44.92 47.77 28.63

All Products
ATE 5.78 8.30 8.29 12.13 12.02
Logit -35.90 -25.92 49.48 53.27 34.56

Outside Good
ATE -7.93 -8.89 7.94 9.08 6.77
Logit 39.22 39.20 39.22 40.60 22.05

Table 2: Relative % Difference in Diversion Measures: Comparison x = log( ̂DMTE(p0))

Notes: Nevo (2000) fake data. An observation is a product-market pair. There are 94 markets and 24
products. The first panel compares three alternative measures of diversion to the MTE measure for each
product-market pair’s best substitute. The second panel averages across all possible substitutes. The third
panel provides comparisons of the three measures of diversion to the MTE diversion to the outside good.
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MTE ATE Logit
Best Substitute

Med(Djk) 5.10 5.04 0.46
Mean(Djk) 6.07 6.25 0.53
% Agree with MTE 100.00 96.89 95.62

Outside Good
Med(Dj0) 17.05 13.02 89.26
Mean(Dj0) 17.04 13.44 89.36

Table 3: Diversion to Best Substitute and Outside Good

Notes: BLP (1999) model. An observation is a product-market pair. There are 21 markets (each market
is a year) and up to 150 products in each market, with a total of 2217 market-product pair observations.
The first panel reports diversion to each product-market pair’s best substitute. The second panel reports
diversion to the outside good.

med(y − x) mean(y − x) med(|y − x|) mean(|y − x|) std(|y − x|)
Best Substitutes

ATE -0.53 0.08 11.51 12.64 9.76
Logit -232.16 -239.75 232.16 239.75 40.58

All Products
ATE 9.79 26.52 22.54 40.34 47.85
Logit -183.79 -162.21 186.39 177.35 86.11

Outside Good
ATE -23.62 -24.25 23.67 24.99 13.40
Logit 165.42 186.43 165.42 186.43 72.86

Table 4: Relative % Difference in Diversion Measures: Comparison x = log( ̂DMTE(p0))

Notes: BLP (1999) model. An observation is a product-market pair. There are 21 markets (each market is
a year) and up to 150 products in each market, with a total of 2217 market-product pair observations. The
first panel compares three alternative measures of diversion to the MTE measure for each product-market
pair’s best substitute. The second panel averages across all possible substitutes. The third panel provides
comparisons of the three measures of diversion to the MTE diversion to the outside good.
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Manufacturer: Category:
Salty Snack Cookie Confection Total

PepsiCo 78.82 9.00 0.00 37.81
Mars 0.00 0.00 58.79 25.07
Hershey 0.00 0.00 30.40 12.96
Nestle 0.00 0.00 10.81 4.61
Kellogg’s 7.75 76.94 0.00 11.78
Nabisco 0.00 14.06 0.00 1.49
General Mills 5.29 0.00 0.00 2.47
Snyder’s 1.47 0.00 0.00 0.69
ConAgra 1.42 0.00 0.00 0.67
TGIFriday 5.25 0.00 0.00 2.46
Total 100.00 100.00 100.00 100.00
HHI 6332.02 6198.67 4497.54 2401.41

Table 5: Manufacturer Market Shares and HHI’s by Category and Total

Source: IRM Brandshare FY 2006 and Frito-Lay Direct Sales For
Vending Machines Data, Heartland Region, 50 best-selling products.
(http://www.vending.com/Vending Affiliates/Pepsico/Heartland Sales Data)

Period†
Control

Snickers Peanut
M&M

Amos
Famous

Crackers
Zoo Animal

# Machines 66 56 62 62 62
# Weeks 160 6 6 5 4
# Machine-Weeks 8,525 223 190 161 167
# Products 76 66 67 65 67
Total Sales 700,404.0 19,005.2 16,232.5 14,394.0 13,910.5
—Per Week 4,377.5 3,167.5 2,705.4 2,878.8 3,477.6
—Per Mach-Week 82.2 85.2 85.4 89.4 83.3
Total Focal Sales∗ 44,026.3 42,047.8 26,113.2 21,578.4
—Per Week 273.5 262.8 163.2 134
—Per Mach-Week 5.2 4.9 3.1 2.5

Table 6: Summary Statistics
† Numbers for Snickers removal. Summary statistics for other removals differ minimally

because of different definition of the starting day of the week.
∗ Focal sales during the control period. Focal sales during the treatment are close to zero.

Any deviation from zero occurs because of the apportionment of service visit level sales to
weekly sales.
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Manufacturer Product Control
Mean

Treatment
Mean

Treatment
Quantile

Snickers Removal
Mars M&M Peanut 309.8 472.5 100.0
Pepsi Rold Gold (Con) 158.9 331.9 91.2
Mars Twix Caramel 169.0 294.1 100.0
Pepsi Cheeto 248.6 260.7 61.6
Snyders Snyders (Con) 210.2 241.6 52.8
Kellogg Zoo Animal Cracker 183.1 233.7 96.8
Kraft Planters (Con) 161.1 218.8 96.0

Total 4892.1 5357.9 74.4
M&M Peanut Removal

Mars Snickers 300.9 411.8 99.2
Snyders Snyders (Con) 209.7 279.0 76.8
Pepsi Rold Gold (Con) 158.9 276.9 80.8
Pepsi Cheeto 248.6 251.0 47.2
Mars Twix Caramel 167.9 213.8 90.4
Kellogg Zoo Animal Cracker 182.6 198.0 65.6
Pepsi Baked Chips (Con) 169.4 194.7 68.0

Total 4886.1 5315.5 65.6
Zoo Animal Crackers Removal

Mars M&M Peanut 309.7 420.3 99.2
Mars Snickers 301.3 385.1 94.4
Pepsi Rold Gold (Con) 158.9 342.4 92.0
Snyders Snyders (Con) 210.3 263.0 67.2
Pepsi Cheeto 248.6 263.0 66.4
Mars Twix Caramel 169.1 235.0 99.2
Pepsi Baked Chips (Con) 169.6 219.7 89.6

Total 4892.2 5608.6 89.6
Chocolate Chip Famous Amos Removal

Mars M&M Peanut 309.7 319.5 46.4
Mars Snickers 301.2 316.6 52.0
Pepsi Rold Gold (Con) 158.9 285.3 80.0
Pepsi Cheeto 248.7 260.7 64.8
Snyders Snyders (Con) 210.1 236.4 52.8
Pepsi Sun Chip 150.2 225.5 100.0
Pepsi Ruffles (Con) 206.9 218.3 62.4

Total 4890.2 5262.4 64.0

Table 7: Quantile of Average Treatment Period Sales in the Empirical
Distribution of Control Period Sales.

Control Mean is the average number of sales of a given product (or all products) over
all control weeks. Treatment Mean is the average number of sales of a given product
(or all products) over all treatment weeks. A treatment week is any week in which
at least one machine was treated. For client sites that were not treated during these
weeks (because treatment occurs at slightly different dates at different sites), we use
the average weekly sales for the client site when it was under treatment (otherwise
we would be comparing treatment weeks with different number of treated machines
in them). Treatment Quantile indicates in which quantile of the distribution of
control-week sales the treatment mean places.
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Mfg Product Treated ∆qk ∆qj ∆qk/ Assn 3 Assn 3 Assn 4
Machine Subst Focal |∆qj | Diversion Diversion Diversion

Weeks Sales Sales Div (m = K) (m = 300) (m = 4.15)
Snickers Removal

Mars M&M Peanut 176 375.5 -954.3 39.4 37.0 30.8 18.4
Mars Twix Caramel 134 289.6 -702.4 41.2 37.9 29.5 15.9
Pepsi Rold Gold (Con) 174 161.4 -900.1 17.9 16.8 13.9 7.5
Nestle Butterfinger 61 72.9 -362.8 20.1 17.1 11.2 4.5
Mars M&M Milk Chocolate 97 71.8 -457.4 15.7 13.8 9.8 4.1
Kraft Planters (Con) 136 78.0 -759.9 10.3 9.6 7.8 3.8
Kellogg Zoo Animal Cracker 177 65.7 -970.2 6.8 6.5 5.7 2.9
Pepsi Sun Chip 159 45.3 -866.1 5.2 5.0 4.3 2.1
Hershey Choc Hershey (Con) 41 29.8 -179.6 16.6 12.2 6.3 2.0
Kellogg Rice Krispies Treats 17 17.7 -66.5 26.7 13.5 5.0 1.3
Misc Farleys (Con) 18 14.9 -114.2 13.0 8.3 3.7 1.0
Nestle Nonchoc Nestle (Con) 3 9.4 -10.5 89.5 12.4 3.1 0.7
Mars Choc Mars (Con) 11 6.4 -32.7 19.7 6.5 2.0 0.4
Hershey Payday 2 1.1 -9.8 10.9 1.4 0.4 0.1
Mars 3-Musketeers 2 0.0 0.0
Misc BroKan (Con) 3 0.0 0.0

Outside Good 180 460.9 -970.2 47.5 23.1
M&M Peanut Removal

Mars Snickers 218 296.6 -1239.3 23.9 22.9 19.9 16.5
Mars Twix Caramel 176 110.9 -1014.3 10.9 10.4 8.9 6.8
Mars M&M Milk Chocolate 99 73.5 -529.6 13.9 12.5 9.2 6.3
Nestle Raisinets 181 71.8 -1001.1 7.2 6.8 5.8 4.4
Kraft Planters (Con) 190 61.4 -1046.1 5.9 5.6 4.9 3.6
Hershey Twizzlers 62 33.0 -333.0 9.9 8.3 5.3 3.4
Kellogg Rice Krispies Treats 46 22.4 -220.2 10.2 7.9 4.4 2.5
Pepsi Frito 160 37.2 -902.4 4.1 4.0 3.5 2.4
Misc Hostess Pastry 11 12.5 -38.6 32.5 12.3 4.0 1.8
Kellogg Brown Sug Pop-Tarts 10 10.0 -43.5 22.9 9.2 2.9 1.4
Nestle Nonchoc Nestle (Con) 1 0.9 -4.6 19.5 1.3 0.3 0.2
Misc Cliff (Con) 1 0.4 -1.8 22.2 0.6 0.1 0.0

Outside Good 218 606.2 -1238.5 48.9 36.3

Table 8: Raw and Bayesian Diversion Ratios, Mars’ Products
Notes: Treated Machine Weeks shows the number of treated machine-weeks for which there was at least one
control machine-week. ∆qk Subst Sales shows the change in substitute product sales from the control to
the treatment period, while ∆qj Focal Sales shows the analogous change for focal product sales. ∆qj/|∆qj |
Diversion is the ratio of the change in substitute product sales to the absolute value of the change in
focal product sales. Beta-Binomial (Weak Prior) Diversion and Beta-Binomial (Strong Prior) Diversion are
diversion ratios calculated under Assumptions 1, 2 (Substitutes), and 3 (Unit Interval). The weak prior uses
the number of products in the choice set during the treatment period, which varies from 64 to 66, as the
number of pseudo-observations. The strong prior uses 300 pseudo-observations. Multinomial Diversion is
the diversion ratio calculated under Assumptions 1, 2 (Substitutes), and Assumption 4 (Unit Simplex).
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Mfg Product Treated ∆qk ∆qj ∆qk/ Assn 3 Assn 3 Assn 4
Machine Subst Focal |∆qj | Diversion Diversion Diversion

Weeks Sales Sales Div (m = K) (m = 300) (m = 4.15)
Zoo Animal Crackers Removal

Pepsi Rold Gold (Con) 132 114.4 -440.8 25.9 22.9 16.2 9.9
Mars Snickers 145 92.4 -483.6 19.1 17.3 13.0 7.6
Mars M&M Peanut 142 77.7 -469.4 16.6 15.0 11.4 6.5
Kellogg CC Famous Amos 144 66.2 -478.2 13.8 12.4 9.1 5.4
Pepsi Baked Chips (Con) 134 62.5 -447.6 14.0 12.5 9.1 5.3
Mars Twix Caramel 110 50.2 -339.0 14.8 12.7 8.7 4.6
Sherwood Ruger Wafer (Con) 119 48.2 -368.7 13.1 11.3 7.6 4.3
Hershey Choc Hershey (Con) 30 33.6 -132.6 25.3 17.1 7.9 3.8
Kellogg Rice Krispies Treats 13 23.5 -37.8 62.2 23.2 7.2 3.0
Kar’s Nuts Kar Sweet&Salty Mix 95 30.1 -334.5 9.0 7.7 5.3 2.7
Misc Popcorn (Con) 56 25.7 -226.9 11.3 8.9 5.1 2.6
Kraft Planters (Con) 114 28.1 -380.2 7.4 6.5 4.8 2.4
Mars M&M Milk Chocolate 73 22.7 -295.1 7.7 6.5 4.3 2.2
Kraft Oreo Thin Crisps 13 14.9 -37.8 39.4 14.7 4.5 1.8
Misc Hostess Pastry 11 14.7 -62.2 23.7 11.8 4.4 1.8
Misc Salty United (Con) 6 10.4 -18.9 55.1 12.6 3.4 1.3
Kraft Chse Nips Crisps 13 8.7 -37.8 23.1 8.6 2.6 1.1
Kar’s Nuts KarNuts (Con) 27 9.2 -85.5 10.8 6.3 2.6 1.0
Mars Milky Way 9 7.0 -30.8 22.6 7.5 2.2 0.9
Hershey Payday 2 0.4 -0.4 84.7 0.6 0.1

Outside Good 145 240.5 -482.9 49.8 22.0
Chocolate Chip Famous Amos Removal

Pepsi Sun Chip 139 143.6 -355.7 40.4 34.4 22.7 15.7
Kraft Planters (Con) 121 82.1 -332.6 24.7 20.9 13.7 8.8
Hershey Choc Hershey (Con) 38 48.6 -66.8 72.7 36.9 13.4 7.2
Pepsi Frito 119 49.9 -313.2 15.9 13.4 8.9 5.3
Misc Rasbry Knotts 133 46.6 -345.4 13.5 11.4 7.5 4.8
Pepsi Grandmas Choc Chip 95 40.0 -259.2 15.4 12.5 7.6 4.5
Pepsi Dorito Buffalo Ranch 72 38.1 -224.2 17.0 13.3 7.5 4.4
Pepsi Chs PB Frito Cracker 34 26.9 -83.6 32.1 18.2 7.1 3.7
Kellogg Choc Sandwich FA 57 28.0 -122.0 22.9 15.1 6.8 3.7
Pepsi Rold Gold (Con) 147 32.6 -392.2 8.3 7.4 5.5 3.2
Kraft Oreo Thin Crisps 29 20.7 -43.3 47.9 19.2 6.1 3.1
Mars Combos (Con) 98 23.6 -274.5 8.6 7.0 4.3 2.6
Nestle Butterfinger 55 15.9 -152.5 10.5 7.4 3.8 2.0
Mars Milky Way 26 13.9 -71.6 19.5 10.3 3.9 1.9
Hershey Twizzlers 40 13.2 -99.3 13.3 8.1 3.5 1.7
Misc Salty United (Con) 18 9.9 -28.7 34.6 10.7 3.1 1.5
Nestle Choc Nestle (Con) 1 0.8 -0.3 300.0 1.2 0.3
Hershey Payday 2 2.6 6.8 38.9
Kraft Fig Newton 2 -0.7 5.7 -12.5

Outside Good 156 192.9 -399.1 48.3 21.0

Table 9: Raw and Bayesian Diversion Ratios, Kellogg’s Products
Notes: Treated Machine Weeks shows the number of treated machine-weeks for which there was at least one
control machine-week. ∆qk Subst Sales shows the change in substitute product sales from the control to
the treatment period, while ∆qj Focal Sales shows the analogous change for focal product sales. ∆qj/|∆qj |
Diversion is the ratio of the change in substitute product sales to the absolute value of the change in
focal product sales. Beta-Binomial (Weak Prior) Diversion and Beta-Binomial (Strong Prior) Diversion are
diversion ratios calculated under Assumptions 1, 2 (Substitutes), and 3 (Unit Interval). The weak prior uses
the number of products in the choice set during the treatment period, which varies from 64 to 66, as the
number of pseudo-observations. The strong prior uses 300 pseudo-observations. Multinomial Diversion is
the diversion ratio calculated under Assumptions 1, 2 (Substitutes), and Assumption 4 (Unit Simplex).
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Total Assn 1 Assn 2 Assn 3 Assn 4
(m = K) (m = 4.15)

Snickers Removal
Products with Djk < 0 51 24 26 0 0
Products with 0 ≤ Djk ≤ 10 51 13 15 43 48
Products with 10 ≤ Djk ≤ 20 51 5 5 5 2
Products with Djk > 20 51 9 5 3 1
Sum of all positive Djks 51 402.84 301.95 265.41 98.72
Sum of all negative Djks 51 -238.90 -239.07 0.00 0.00

M&M Peanut Removal
Products with Djk < 0 52 20 30 0 0
Products with 0 ≤ Djk ≤ 10 52 22 17 48 50
Products with 10 ≤ Djk ≤ 20 52 6 3 2 1
Products with Djk > 20 52 4 2 2 1
Sum of all positive Djks 52 295.36 168.92 156.28 97.72
Sum of all negative Djks 52 -191.73 -157.31 0.00 0.00

Zoo Animal Crackers Removal
Products with Djk < 0 49 11 21 0 0
Products with 0 ≤ Djk ≤ 10 49 15 15 39 48
Products with 10 ≤ Djk ≤ 20 49 11 8 8 0
Products with Djk > 20 49 12 5 2 1
Sum of all positive Djks 49 644.90 331.96 265.31 92.78
Sum of all negative Djks 49 -394.12 -280.96 0.00 0.00

Chocolate Chip Famous Amos Removal
Products with Djk < 0 48 25 27 0 0
Products with 0 ≤ Djk ≤ 10 48 11 8 37 46
Products with 10 ≤ Djk ≤ 20 48 4 7 7 1
Products with Djk > 20 48 8 6 4 1
Sum of all positive Djks 48 417.51 384.60 288.99 95.44
Sum of all negative Djks 48 -444.17 -400.97 0.00 0.00

Table 10: Summary Statistics for Diversion Estimates across Products
Note: Table includes only products for which there were at least 50 sales of the focal product in control
weeks, on average.
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Manuf Product Mean 2.5th

Quantile
25th

Quantile
50th

Quantile
75th

Quantile
97.5th

Quantile
Snickers Removal

Mars M&M Peanut 18.40 16.79 17.83 18.39 18.95 20.02
Mars Twix Caramel 15.88 14.28 15.32 15.88 16.45 17.53
Pepsi Rold Gold (Con) 7.54 6.49 7.15 7.53 7.92 8.69
Nestle Butterfinger 4.45 3.53 4.10 4.43 4.78 5.48
Kellogg Rice Krispies Treats 1.30 0.78 1.09 1.28 1.49 1.95
Nestle Nonchoc Nestle (Con) 0.67 0.31 0.51 0.65 0.81 1.17
Mars Choc Mars (Con) 0.44 0.16 0.31 0.42 0.55 0.85

Outside Good 23.12 21.34 22.50 23.11 23.73 24.91
M&M Peanut Removal

Mars Snickers 16.47 14.83 15.89 16.46 17.04 18.15
Mars Twix Caramel 6.76 5.60 6.34 6.74 7.16 7.99
Mars M&M Milk Chocolate 6.26 4.96 5.78 6.25 6.73 7.68
Misc Hostess Pastry 1.85 1.00 1.49 1.80 2.17 2.95
Kellogg Brown Sug Pop-Tarts 1.41 0.69 1.10 1.37 1.68 2.39
Nestle Nonchoc Nestle (Con) 0.15 0.00 0.05 0.11 0.21 0.54
Misc Cliff (Con) 0.00 0.00 0.00 0.00 0.00 0.03

Outside Good 36.35 34.21 35.61 36.34 37.09 38.47
Zoo Animal Crackers Removal

Pepsi Rold Gold (Con) 9.89 8.24 9.30 9.88 10.46 11.66
Hershey Choc Hershey (Con) 3.81 2.66 3.35 3.77 4.22 5.17
Kellogg Rice Krispies Treats 2.99 1.93 2.56 2.95 3.36 4.28
Kraft Oreo Thin Crisps 1.85 1.04 1.51 1.81 2.14 2.88
Misc Hostess Pastry 1.80 1.02 1.47 1.76 2.08 2.79
Misc Salty United (Con) 1.25 0.61 0.97 1.21 1.49 2.12
Kraft Chse Nips Crisps 1.10 0.51 0.83 1.06 1.32 1.91

Outside Good 21.98 19.64 21.15 21.96 22.78 24.43
Chocolate Chip Famous Amos Removal

Pepsi Sun Chip 15.75 13.53 14.94 15.72 16.52 18.11
Kraft Planters (Con) 8.75 7.04 8.13 8.72 9.35 10.64
Hershey Choc Hershey (Con) 7.18 5.38 6.49 7.14 7.83 9.21
Pepsi Chs PB Frito Cracker 3.74 2.51 3.25 3.70 4.19 5.21
Kellogg Choc SandFamous Amos 3.69 2.47 3.21 3.65 4.12 5.15
Kraft Oreo Thin Crisps 3.05 1.90 2.59 3.01 3.47 4.47
Misc Salty United (Con) 1.47 0.70 1.13 1.42 1.75 2.49

Outside Good 20.95 18.43 20.05 20.94 21.83 23.57

Table 11: Posterior Distribution of Dirichlet αjk =
sj

1−sj ∗ 3.05 + 1
K+1
∗ 1.1, mjk = 4.15

Notes: The products included in this table are the 7 products with highest raw diversion ratio.
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Treated No Assn 3 Assn 4
Machine Prior Diversion Diversion
Weeks (m = K) (m = 4.15)
Snickers to Kellogg’s Products

Zoo Animal Cracker 177 6.77 6.53 2.92
(5.13; 8.09) (2.27; 3.65)

CC Famous Amos 180 4.61 4.46 1.99
(3.29; 5.79) (1.40; 2.69)

Choc Sandwich FA 69 8.39 7.31 1.98
(5.18; 9.77) (1.45; 2.59)

Rice Krispies Treats 17 26.68 14.18 1.31
(8.66; 20.66) (0.79; 1.96)

Cheez-It Original SS 150 0.26 0.35 0.10
(0.07; 0.82) (0.01; 0.27)

Pop-Tarts* 162 -4.28 0.10 0.00
(0.00; 0.38) (0.00; 0.02)

Total (to Kellogg’s) 42.44 32.93 8.30
(26.54; 40.04) (7.14; 9.56)

Outside Good 180 47.50 46.19 23.19
(43.17; 49.27) (21.39; 24.99)

Peanut M&M to Kellogg’s Products
Rice Krispies Treats 46 10.16 7.87 2.74

(5.12; 11.12) (1.73; 3.95)
CC Famous Amos 215 0.27 0.30 0.17

(0.10; 0.66) (0.04; 0.40)
Cheez-It Original SS 188 -4.81 0.09 0.00

(0.00; 0.31) (0.00; 0.03)
Zoo Animal Cracker 218 -2.62 0.10 0.00

(0.01; 0.32) (0.00; 0.04)
Pop-Tarts* 191 -1.80 0.07 0.00

(0.00; 0.27) (0.00; 0.03)
Choc Sandwich FA 70 -0.89 0.05 0.00

(0.00; 0.34) (0.00; 0.03)
Total (to Kellogg’s) 0.30 8.46 2.92

(5.71; 11.74) (1.89; 4.15)
Outside Good 218 48.95 47.85 37.62

(45.26; 50.33) (35.45; 39.82)
Table 12: Divestitures: Diversion from Mars to Kellogg’s products.

* Combines Strawberry, Cherry, and Brown Sugar flavors.
Notes: Number of observations for outside good reflects total treatment weeks.
95% credible intervals given in parentheses for binomial and multinomial diversions.
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Treated No Assn 3 Assn 4
Machine Prior Diversion Diversion
Weeks (m = K) (m = 4.15)

Zoo Animal Crackers to Mars’ Products
Snickers 145 19.11 17.28 7.59

(14.42; 20.48) (6.17; 9.14)
M&M Peanut 142 16.55 15.24 6.47

(12.23; 18.53) (5.12; 7.93)
Twix Caramel 110 14.80 12.90 4.58

(9.82; 16.58) (3.44; 5.87)
M&M Milk Chocolate 73 7.68 6.46 2.16

(4.30; 9.26) (1.38; 3.11)
Milky Way 9 22.62 7.81 0.86

(3.32; 14.51) (0.35; 1.61)
Combos (Con) 95 -8.79 0.07 0.00

(0.00; 0.52) (0.00; 0.03)
Non-chocolate candy* 114 -20.12 0.17 0.00

(0.00; 0.74) (0.00; 0.05)
Total (to Mars) 51.86 60.04 21.68

(52.26; 68.89) (19.30; 24.12)
Outside Good 145 49.81 46.99 22.02

(43.09; 51.01) (19.71; 24.42)
Chocolate Chip Famous Amos to Mars’ Products

Combos (Con) 98 8.58 7.23 2.61
(4.74; 10.22) (1.71; 3.71)

Milky Way 26 19.47 10.63 1.94
(5.92; 16.49) (1.07; 3.08)

Twix Caramel 121 -9.85 0.31 0.01
(0.01; 1.07) (0.00; 0.07)

Snickers 156 -14.62 0.43 0.01
(0.05; 1.20) (0.00; 0.09)

M&M Peanut 153 -16.26 0.45 0.01
(0.06; 1.26) (0.00; 0.09)

Non-chocolate candy* 124 -17.46 0.20 0.00
(0.00; 0.82) (0.00; 0.05)

M&M Milk Chocolate 89 -19.77 0.21 0.00
(0.00; 1.01) (0.00; 0.05)

3-Musketeers 82 -63.25 0.17 0.00
(0.00; 0.89) (0.00; 0.04)

Total (to Mars) -113.16 19.67 4.59
(14.07; 26.30) (3.28; 6.13)

Outside Good 156 48.33 45.26 20.97
(40.69; 49.80) (18.43; 23.61)

Table 13: Divestitures: Diversion from Kellogg’s to Mars’ products.

* Combines Skittles, Starburst and other non-chocolate Mars candies.
Notes: Number of observations for outside good reflects total treatment weeks.
95% credible intervals given in parentheses for binomial and multinomial diversions.
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A Appendix:

A.1 Diversion Under Parametric Demands

This section derives explicit formulas for the diversion ratio under common parametric forms
for demand, focusing on whether or not the diversion ratio implied by a particular paramet-
ric form of demand is constant with respect to the magnitude of the price increase. We show
that the IIA logit and linear demands model exhibit this property, while the log-linear and
mixed logit models do not necessarily exhibit this property. We go through several deriva-
tions below.

Linear Demand
The diversion ratio under linear demand has the property that it does not depend on the
magnitude of the price increase. We specify linear demand as:

Qk = αk +
∑
j

βkjpj.

where βkj is the increase or decrease in k’s quantity due to a one-unit increase in prouct j’s
price. This implies a diversion ratio corresponding to a change in price pj of ∆pj:

Djk =
∆Qk

∆Qj

=
βkj∆pj
βjj∆pj

=
βkj
βjj

(A.14)

Thus, for any change in pj from an infinitesimal price increase up to the choke price of j,
the diversion ratio Djk is constant. This also implies that under linear demand, diversion is
a global property. Any magnitude of price increase evaluated at any initial set of prices and
quantities will result in the same measure of diversion.

Log-Linear Demand
The log-linear demand model does not exhibit constant diversion with respect to the mag-
nitude of the price increase. The log-linear model is specified as:

ln(Qk) = αk +
∑
j

εkj ln(pj)

If we consider a small price increase ∆pj the diversion ratio becomes:

∆ log(Qk)

∆ log(Qj)
≈ ∆Qk

∆Qj︸ ︷︷ ︸
Djk

·Qj(p)

Qk(p)
=

εkj∆ log(pj)

εjj∆ log(pj)
=
εkj
εjj

Djk ≈
Qk(p)

Qj(p)
· εkj
εjj

(A.15)
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This holds for small changes in pj. However for larger changes in pj we can no longer use

the simplification that ∆ log(Qj) ≈ ∆Qj

Qj
. So for a large price increase (such as to the choke

price pj → ∞), log-linear demand can exhibit diversion that depends on the magnitude of
the price increase.

IIA Logit Demand
The plain logit model exhibits IIA and proportional substitution, which implies that the
diversion ratio does not depend on the magnitude of the price increase. We consider two price
increases: an infinitesimal one and an increase to the choke price pj → ∞. The derivation
of the diversion ratio Djk under an IIA logit demand model uses a utility specification and
choice probabilities given by well-known equations, where at denotes the set of products
available in market t:

uijt = xjtβ − αpjt︸ ︷︷ ︸
ṽjt

+εijt

Sjt =
exp[ṽjt]

1 +
∑

k∈at exp[ṽkt]
≡ Vjt
IV (at)

Under logit demand, an infinitesimal price change in pj exhibits identical diversion to setting
pj →∞ (the choke price). For an infinitesimally small price change,

D̂LATE
jk =

∂Sk

∂pj∣∣∣∂Sj

∂pj

∣∣∣ =
αSkSj

αSj(1− Sj)
=

Sk
(1− Sj)

For a price change to the choke price,

D̂ATE
jk =

eVk

1+
∑

l∈a\j e
Vl
− eVk

1+
∑

l′∈a e
V ′
l

eVj

1+
∑

l∈a e
Vl

=
Sk

(1− Sj)

In both cases, diversion is the ratio of the change in the marketshare of the substitute good
divided by the share of consumers no longer buying the focal good (under the initial set
of prices and product availability). It does not depend on any of the estimated parameters
(α, β). The bias expression for the diversion ratio is equal to zero under IIA logit demand

(i.e., Djk = −∂2qk
∂p2j

/
∂2qj
∂p2j

), shown here:
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∂2qj
∂p2

j

= α2(1− 2Sj)(Sj − S2
j )

∂2qk
∂p2

j

= −α2(1− 2Sj)SjSk

−
∂2qk
∂p2j

∂2qj
∂p2j

=
Sk

1− Sj
= Djk

Nested Logit Demand
Recall the estimating equation for the nested logit from Berry (1994):

ln sjt − ln s0t = xjtβ − αpjt + σ ln sj|g,t + εjt

The derivatives of marketshare with respect to price are given by:

∂sj
∂pj

= αsj

(
−1

1− σ
+

σ

1− σ
sj|g + sjt

)
∂sk
∂pj

=

{
αsj

(
σ

1−σsk|g + skt
)

for (j, k) in same nest

αsjsk otherwise

}
The interesting case is when both products are in the same nest. The diversion ratio is given
by:

D̂jk = −
∂sk
∂pj

∂sj
∂pj

= −
σ

1−σsk|g + sk
−1

1−σ + σ
1−σsj|g + sj

= −
σ

1−σsk|g + sk|gsg
−1

1−σ + σ
1−σsj|g + sj|gsg

= −
sk|g

(
σ

1−σ + sg
)

−1
1−σ + sj|g

(
σ

1−σ + sg
)

=
sk|g(

1

σ + (1− σ)sg

)
︸ ︷︷ ︸

=Z(σ,sg)

−sj|g

As σ → 1 everyone stays within the group and Djk =
sk|g

1−sj|g
.

As σ → 0 we collapse to the logit and Djk =
sk|g

1
sg
−sj|g

· sg
sg

= sk
1−sj .

For all other values, Djk =
sk|g

Z(σ,sg)−sj|g
where Z(σ, sg) ≥ 1.

Random Coefficients Logit Demand
Random Coefficients Logit demand relaxes the IIA property of the plain Logit model, which
can be undesirable empirically, but it also means that the diversion ratio varies with original
prices and quantities, as well as with the magnitude of the price increase. Intuitively, a small
price increase might induce diversion from the most price-sensitive consumers, while a larger
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price increase might see substitution from a larger set of consumers. If price sensitivity is
correlated with other tastes, then the diversion ratio could differ with the magnitude of the
price increase.

We can repeat the same exercise for the logit model with random coefficients, by dis-
cretizing a mixture density over i = 1, . . . , I representative consumers, with population
weight wi:

uijt =

Vijt︷ ︸︸ ︷
xjtβ − αpjt + ξjt︸ ︷︷ ︸

δjt

+µijt +εijt

Using the chain rule (for an arbitrary zjt) we can write:

∂Vijt
∂zjt

=
∂Vijt
∂δjt

· ∂δjt
∂zjt

+
∂Vijt
∂µijt

· ∂µijt
∂zjt

Absent taste heterogeneity for zjt we have that
∂µijt
∂zjt
≡ 0 and

∂Vijt
∂zjt

= 1 · ∂δjt
∂zjt

= βz. When

consumers have a common price parameter ∂Vik
∂pj

= α,

D̂LATE
jk =

∂Sk

∂pj∣∣∣∂Sj

∂pj

∣∣∣ =

∫
sijsik

∂Vik
∂pj∫

sij(1− sij)∂Vij∂pj

→
∫
sijsik∫

sij(1− sij)
(A.16)

D̂ATE
jk =

∫
eVik

1+
∑

l∈a\j e
Vil
− eVik

1+
∑

l′∈a e
Vil′∫

− eVij

1+
∑

l∈a e
Vil

=
1

sj

∫
sijsik

(1− sij)
(A.17)

Now, each individual exhibits constant diversion, but weights on individuals vary with p, so
that diversion is only constant if sij = sj. Otherwise observations with larger sij are given
more weight in the correlation of sijsik. The more correlated (sij, sik) are (and especially
as they are correlated with αi) the greater the discrepancy between marginal and average
diversion. We generate a single market with J products, and compute the J × J matrix of
diversion ratios two ways. The MTE method is by computing ∂qk

∂pj
/| ∂qj
∂pj
|.

For any model within the logit family, it should be clear that the ATE form of the
diversion ratio does not depend on the price “instrument” (A.17), as long as we drive the
purchase probability to zero. Second choice data don’t depend on whether price is increased
or quality (or some component thereof) is decreased. When the entire population (buyers of
j) is treated, the instrument that selects individuals into treatment does not matter.

Likewise, because the random coefficients model is a single index model, any zjt which
affects only the mean utility component δjt and not the unobserved heterogeneity µijt yields

the same marginal diversion D̂jk. This can be seen in (A.16) which does not depend on
∂Vijt/∂pjt. This has the advantage that the (marginal/infinitesimal) diversion ratio can be
identified in the random coefficients logit model even when a (common) price parameter
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α is not identified. The easiest choice of a non-price zjt is ξjt, the unobserved product
quality term. The role of βz is to determine how many individuals receive the treatment as
we vary the instrument, but this matters neither in the infinitesimal case, nor in the ATE
(second-choice) case.

It is important to note that for any two variables for which there is no preference hetero-
geneity, they yield the same infinitesimal diversion ratios under the logit family. Likewise any
two variables (irrespective of preference heterogeneity) yield the same ATE (second choice
diversion ratios). This is in contrast with the treatment effects literature, where different
instruments trace out different MTEs. Thus, the single index of the logit family places an
important restriction on the treatment effects (which may or may not be reasonable).

A.2 Alternative Specifications for Nevo (2000) Example

Here we repeat the same exercise as in section 3 from the text, but with different parameter
estimates. In the first case we use the original published estimates from Nevo (2000) where
βpriceit exhibited substantially less heterogeneity, while in the second we consider a restricted
MPEC estimator which imposes the demographic interaction between income2 and price
is equal to zero: πinc2,price = 0. We report those parameter estimates below as well as the
estimates in the text from Dubé, Fox, and Su (2012):

DFS (2012): βpriceit ∼ N(−62.73 + 588.21 · incomeit −30.19 · income2
it +11.06 · I[child]it, σ = 3.31)

Nevo(2000): βpriceit ∼ N(−32.43 + 16.60 · incomeit −0.66 · income2
it +11.63 · I[child]it, σ = 1.85)

Restricted: βpriceit ∼ N(−34.09 + 8.53 · incomeit +18.16 · I[child]it, σ = 1.04)

We report both cases in table 14. We observe substantially less heterogeneity in βpriceit and
we also observe that the MTE and ATE measures tend to be more similar to one another.

A.3 Discrepancy Between Average and Marginal Treatment Effects

We perform a Monte Carlo study to analyze the extent to which the average treatment
effect deviates from the marginal treatment effect under different demand specifications. We
generate data by simulating from a random coefficients logit model with a single random
coefficient on price. Our simulations follow the procedure in Armstrong (2016), Judd and
Skrainka (2011) and Conlon (2016), in which prices are endogenously determined via a
Bertrand-Nash game given the other utility parameters (rather than directly drawn from a
distribution).

We generate the data in the following manner: uit = β0 + xjβ1 − αipj + ξj + εij and
mcj = γ0 + γ1xj + γ2zj + ηj where xj, zj ∼ N(0, 1), with ξj = ρωj1 + (1 − ρ)ωj2 − 1 and
ηj = ρωj1 + (1 − ρ)ωj3 − 1 and (ω1, ω2, ω3) ∼i.i.d. U [0, 1]. Following Armstrong (2016) and
Conlon (2016), we use the values β = [−3, 6] and γ = [2, 1, 1] and ρ = 0.9. To mimic our
empirical example we let there be J = 30 products and assign each product at random to
one of 5 firms. We solve for prices according to a multi-product Bertrand-Nash equilibrium.
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med(y − x) mean(y − x) med(|y − x|) mean(|y − x|) std(|y − x|)
Nevo (2000) Estimates

Best Substitutes

ATE 1.39 2.45 2.51 4.16 5.00
Logit -31.83 -35.01 32.72 38.40 29.13

All Products

ATE 1.05 1.91 3.18 4.97 5.42
Logit -29.15 -29.09 33.98 40.05 31.60

Outside Good

ATE -2.90 -3.24 3.09 3.76 3.05
Logit 32.52 40.49 32.52 41.02 30.67

Restricted Estimates πinc2,price = 0

Best Substitutes

ATE 2.52 5.26 4.77 7.78 9.02
Logit -41.56 -40.50 43.23 47.47 29.60

All Products

ATE 2.02 3.11 7.34 11.12 11.39
Logit -33.48 -19.13 50.80 56.00 36.46

Outside Good

ATE -5.11 -6.45 5.14 6.70 5.73
Logit 30.46 35.38 30.56 37.05 27.04

Table 14: Alternative Specifications for Nevo (2000).

(1) (2) (3) (4) (5) (6) (7)
µ 0.1 0.1 1 1 2 3 3
σ 0.5 1 0.5 1 1 1 2
Outside Good Share 0.97 0.85 0.91 0.77 0.94 0.99 0.90
Avg Own Elasticity -5.37 -3.50 -4.64 -3.12 -3.70 -4.41 -1.93
‘Worst Case’ Avg ATE 7.14 14.18 9.29 12.38 10.80 9.08 15.01
‘Worst Case’ Avg MTE 5.62 10.50 7.58 10.01 8.67 7.04 12.01
Avg Max Discrepancy 1.51 3.68 1.72 2.37 2.13 2.04 3.00
Std. Max Discrepancy 0.36 1.18 0.50 0.66 0.60 0.59 1.32

Table 15: Simulation comparing ATE and MTE for Random Coefficients Logit
Notes: Results reported for 100 trials.
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α -1.000 -1.000 -1.000 -1.000 -4.000 -4.000 -4.000 -4.000
σx 0.500 1.000 2.000 3.000 0.500 1.000 2.000 3.000
s0 0.134 0.149 0.182 0.223 0.989 0.987 0.975 0.951

own elasticity -1.476 -1.459 -1.431 -1.399 -7.735 -7.718 -7.811 -7.895
Avg max Discrepancy 2.538 2.578 2.398 2.447 0.151 0.236 0.859 1.010
Std max Discrepancy 0.878 0.971 0.836 0.987 0.059 0.087 0.340 0.851

‘Worst Case’ Avg ATE 13.019 13.328 13.572 16.109 1.185 2.090 6.923 10.958
‘Worst Case’ Avg MTE 10.490 10.782 11.255 13.920 1.034 1.854 6.064 9.973

% deviation 26.241 25.913 23.570 19.643 15.557 13.608 15.475 12.682

Table 16: Monte Carlo Simulations

Notes: σp is set to 0.5 for all of these runs. Additional results are available that vary σp from 0 to 1. As α
increases, demand becomes more elastic. As σx increases, consumer tastes become more heterogeneous.

For each of our sets of trials, we let αi ∼ −lognormal(µ, σ) and we vary the values of
price heterogeneity in the population by changing (µ, σ). We simulate 100 trials from each
(µ, σ) pair. The first two rows of table 15 report the average outside good share and the
average own price elasticity for each simulated market as we vary µ from 0.1 to 3 and σ from
0.5 to 2. The next two rows report the ATE and MTE measures for the pair of products in
each trial with the largest discrepancy between the two measures. The last two rows report
the discrepancy between the two measures of diversion.

Although there are some simulations where the ATE < MTE, the vast majority of
simulations for the random coefficients model with a lognormally distributed price coeffi-
cient implies that using the stock-out based ATE overstates the MTE for the diversion
ratio by 1-3 points in the worst-case scenario (the maximum over the entire J × J matrix
of diversion ratios). The degree of overstatement appears to be decreasing in the lognor-
mal location parameter (as consumers become more price sensitive) and increasing in the
dispersion parameter (as consumers become more heterogeneous).

Table 16 reports detail from additional Monte Carlo simulations. When price elasticity is
high, the discrepancy between the two measures is small. Elastic demand drops off quickly,
implying that a small change in price has a similar effect as a product removal. This is most
easily seen by comparing the left panel of table 16 with the right panel. Heterogeneous tastes,
on the other hand, lead to larger discrepancies between the ATE and MTE measures. This
is most easily seen in table 16 by moving across the columns from left to right of each panel.
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A.4 Robustness to Alternative Priors Under Assumpton 4

Our formulation of Assumption 4 uses Dirichlet prior centered on the IIA logit diversion
estimates (proportional to marketshare).59 Because some potential substitutes see ∆qk ≤ 0
and may have priors sk near zero, we need to bound the prior probabilities away from
zero in order to avoid drawing from degenerate distributions. Therefore we add 1.1 pseudo
observations from a uniform prior 1

K+1
to each substitute. This gives a Dirichlet parameter

of αk = sk
1−sj + 1.1

K+1
. We then choose α0 so that outside good share µ0 = 0.25 for the

prior distribution. This results in m = 4.15 pseduo observations for our (very weak) prior
distribution.

For robustness we consider two other (weak) priors. For one, we keep everything else
the same but choose µ0 = 0.75. For the other we consider the “uninformative” or uniform
prior of αk = 1

K+1
with m = 1.1 pseudo observations. An additional approach is to choose

a prior distribution that more closely resembles a logit model. This approach is known as
the over-parametrized normal which is a common technique in the statistics literature and
is better behaved for rare events. See Gelman, Bois, and Jiang (1996) and Blei and Lafferty
(2007).60

Alternative Assumption. “Unit Simplex”: Djk ∈ [0, 1] and
∑
∀kDjk = 1

∆qk|∆qj, Djk ∼ Bin(n = ∆qj, p = Djk) and ηjk|µjk, σjk ∼ N(µjk, σjk), Djk =
exp[ηjk]∑
k′ exp[ηjk′ ]

For each of these specifications we report the maximum absolute deviations for the pos-
terior mean of the estimated diversion ratios L∞ = maxk |D̂jk − D̃jk| where the base D̃jk is
given by our Dirichlet prior centered on the (adjusted) IIA logit estimates αk = sk

1−sj + 1.1
K+1

with m = 4.15 pseudo-observations. The discrepancies between these priors are reported
in table 17. We obtain nearly identical results (differences less than 0.03 percentage points)
when compared to the Dirichlet with a uniform 1

K+1
prior and m = 1.1 pseudo-observations

and the multinomial logit transformed normal prior. There is a somewhat larger discrep-
ancy (differences less than 0.5 percentage points) when compared to a somewhat stronger
(m = 9.6) Dirichlet prior with a larger outside good share µ0 = 0.75, which we attribute to
the stronger prior rather than the share of the outside good.61

59One can transform the Dirichlet as follows: Dirichlet(α0, . . . , αK) has µk = αk

m and m =
∑K
k′=0 αk′ .

60We can interpret this as a multinomial logit model with product intercepts ηjk which are estimates with
some sampling error σjk. However, as σ increases, because the multinomial logit transformation is nonlinear
this tends towards µjk = 1

K+1 .
61We need a somewhat stronger prior to bound small probabilities away from zero when the outside good

share is larger.
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Experiment Dirichlet Dirichlet Normal-Logit
Prior Mean µj = sk

1−sj , (sj = 0.75) 1
K+1

1
K+1

Prior Strength m = 9.60 m = 1.1 σ2 = 100
Snickers 0.218 0.023 0.017
Zoo Animal Crackers 0.428 0.020 0.014
Chocolate Chip Famous Amos 0.537 0.033 0.028
M&M Peanut 0.216 0.014 0.025

Table 17: Maximum Absolute Deviation (percentage points) between Dirichlet
parametrized by (adjusted) IIA logit shares (αk = sk

1−sj + 1.1
K+1

, µ0 = 0.25,

m = 4.15) and alternatives.

A.5 Additional Results
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Mfg Product Treated Avg # ∆qk ∆qj ∆qk/ Treated Avg # ∆qk ∆qj ∆qk/
Machine Cntl Subst Focal |∆qj | Machine Cntl Subst Focal |∆qj |

Weeks Per Trt Sales Sales Div Weeks Per Trt Sales Sales Div
Nestle Nonchoc Nestle (Con) 6 80.3 14.1 -19.8 71.1 3 8.7 9.4 -10.5 89.5
Mars M&M Peanut 186 120.3 482.4 -915.9 52.7 176 10.0 375.5 -954.3 39.4
Mars Twix Caramel 143 120.3 339.6 -682.6 49.7 134 9.8 289.6 -702.4 41.2
Misc Farleys (Con) 22 40.9 41.0 -121.2 33.8 18 4.6 14.9 -114.2 13.0
Hershey Choc Hershey (Con) 51 51.9 62.1 -210.0 29.6 41 8.8 29.8 -179.6 16.6
Mars M&M Milk Chocolate 104 116.1 114.7 -454.6 25.2 97 10.6 71.8 -457.4 15.7
Pepsi Rold Gold (Con) 186 82.8 215.5 -874.6 24.6 174 7.6 161.4 -900.1 17.9
Nestle Butterfinger 63 95.5 78.8 -355.7 22.1 61 7.9 72.9 -362.8 20.1
Kraft Planters (Con) 143 94.8 154.8 -708.0 21.9 136 7.9 78.0 -759.9 10.3
Kellogg Rice Krispies Treats 20 93.8 15.9 -72.9 21.8 17 6.5 17.7 -66.5 26.7
Mars Choc Mars (Con) 12 67.5 5.2 -34.7 14.9 11 16.2 6.4 -32.7 19.7
Hershey Payday 2 84.0 1.4 -9.7 14.4 2 8.5 1.1 -9.8 10.9
Kellogg Zoo Animal Cracker 187 120.3 132.0 -923.6 14.3 177 9.5 65.7 -970.2 6.8
Kellogg Choc Sandwich FA 74 113.4 52.7 -369.9 14.2 69 10.0 33.9 -404.2 8.4
Hershey Sour Patch Kids 34 124.9 17.0 -134.3 12.6 33 12.7 10.8 -152.9 7.1
Kellogg Brown Sug Pop-Tarts 6 74.7 3.6 -30.4 11.8 6 8.2 2.3 -33.1 7.0
Pepsi Sun Chip 166 117.8 91.7 -814.5 11.3 159 9.1 45.3 -866.1 5.2
Sherwood Ruger Wafer (Con) 162 82.7 80.9 -734.5 11.0 151 7.6 24.5 -778.0 3.1
Nestle Choc Nestle (Con) 1 21.0 0.9 -9.3 9.2 0
Kar’s Nuts Kar Sweet&Salty Mix 113 116.6 50.1 -565.7 8.8 104 8.9 27.6 -597.1 4.6
Kellogg CC Famous Amos 190 119.0 81.8 -932.9 8.8 180 10.0 44.8 -971.8 4.6
Kraft Fig Newton 6 77.0 2.1 -29.6 7.2 6 5.8 0.6 -31.3 2.0
Nestle Raisinets 143 121.7 47.6 -678.8 7.0 133 10.0 11.6 -697.3 1.7
Pepsi FritoLay (Con) 113 94.9 32.7 -507.0 6.4 104 9.7 16.8 -515.7 3.3
Pepsi Baked Chips (Con) 176 113.5 49.5 -883.5 5.6 166 10.1 33.5 -911.7 3.7
Misc Farleys Mixed Fruit 137 93.3 34.9 -666.8 5.2 129 7.2 13.0 -686.5 1.9
Pepsi Dorito Buffalo Ranch 95 57.6 20.0 -494.0 4.0 87 5.2 -27.6 -503.1 -5.5
Mars Combos (Con) 132 78.2 27.5 -682.6 4.0 119 6.6 7.6 -663.6 1.2
Kellogg Cheez-It Original SS 159 119.6 25.3 -794.1 3.2 150 10.4 2.1 -819.9 0.3
Mars Starburst Original 31 108.5 4.2 -138.7 3.0 29 11.6 -1.7 -137.6 -1.2
Pepsi Cheeto 187 120.3 27.0 -918.7 2.9 177 10.0 -46.2 -957.4 -4.8
Mars Marathon Chewy Peanut 7 83.0 0.9 -42.0 2.1 6 6.5 -5.0 -50.4 -9.9
Misc BroKan (Con) 3 43.0 0.0 -0.2 1.5 3 42.0 0.0 0.0
Kraft Cherry Fruit Snacks 71 123.1 5.3 -398.1 1.3 68 9.3 -5.3 -419.3 -1.3
Misc Popcorn (Con) 77 113.9 1.5 -387.1 0.4 76 9.8 -19.8 -425.2 -4.6
Snyders Snyders (Con) 145 104.7 0.6 -630.6 0.1 137 9.2 -76.6 -668.6 -11.5
Misc Rasbry Knotts 147 109.4 -1.8 -736.1 -0.2 136 9.3 -4.5 -727.7 -0.6
Pepsi Ruffles (Con) 156 124.4 -2.9 -774.1 -0.4 148 10.4 -42.2 -794.9 -5.3
Kraft Lorna Doone 43 123.6 -0.8 -197.8 -0.4 41 11.3 -4.6 -202.3 -2.3
Misc Other Pastry (Con) 4 91.0 -0.1 -17.0 -0.5 3 8.7 -0.1 -12.8 -0.6
Pepsi Quaker Strwbry 44 78.2 -1.3 -186.6 -0.7 39 9.6 -7.3 -174.0 -4.2
Kellogg Strwbry Pop-Tarts 162 118.1 -6.0 -792.7 -0.8 154 9.9 -40.5 -819.4 -4.9
Gen Mills Nature Valley 49 107.0 -2.3 -214.8 -1.1 43 9.6 -42.4 -195.3 -21.7
Pepsi Chs PB Frito Cracker 48 95.0 -2.7 -220.5 -1.2 45 9.0 -6.4 -227.9 -2.8
Kraft Ritz Bits Chs Vend 74 127.4 -5.3 -404.9 -1.3 71 9.4 0.2 -424.0 0.0
Mars Nonchoc Mars (Con) 35 108.1 -2.1 -154.3 -1.3 31 13.1 1.0 -134.8 0.7
Kar’s Nuts KarNuts (Con) 40 99.3 -2.6 -183.8 -1.4 35 8.0 -27.7 -188.4 -14.7
Kraft Chse Nips Crisps 20 93.8 -1.1 -72.9 -1.5 17 6.5 -6.3 -66.5 -9.4
Pepsi Smartfood 67 125.5 -7.8 -365.3 -2.1 65 9.2 -25.0 -388.2 -6.4
Kellogg Cherry Pop-Tarts 28 87.9 -3.0 -125.4 -2.4 28 7.5 2.4 -155.4 1.6
Mars Milky Way 11 94.8 -1.4 -42.4 -3.3 9 4.6 -0.5 -37.9 -1.4
Pepsi Dorito Nacho 190 119.7 -37.2 -928.3 -4.0 180 10.0 -57.9 -969.1 -6.0
Misc Hostess Pastry 16 114.4 -3.2 -76.6 -4.1 15 15.9 -11.7 -78.7 -14.8
Pepsi Cheetos Flaming Hot 69 124.8 -15.4 -371.5 -4.1 66 9.1 -22.3 -372.9 -6.0
Pepsi Grandmas CC 119 114.6 -29.9 -589.7 -5.1 111 9.8 -36.3 -580.7 -6.3
Kraft Oreo Thin Crisps 23 94.0 -4.2 -75.3 -5.6 20 11.9 1.2 -66.5 1.7
Mars Skittles Original 132 122.9 -37.8 -650.9 -5.8 125 9.7 -49.0 -672.5 -7.3
Misc Cliff (Con) 4 32.0 -1.6 -22.9 -6.9 4 3.0 -1.6 -24.7 -6.6
Snyders Jays (Con) 161 98.0 -58.3 -775.8 -7.5 150 8.6 -87.8 -809.4 -10.8
Pepsi Frito 154 106.0 -69.5 -749.8 -9.3 144 9.4 -84.4 -798.1 -10.6
Gen Mills Oat n Honey Granola 37 118.2 -24.9 -204.4 -12.2 36 9.0 -29.7 -197.1 -15.1
Misc Salty Other (Con) 31 115.3 -18.8 -147.3 -12.8 30 12.5 -11.9 -163.8 -7.3
Pepsi Lays Potato Chips 155 64.9 -96.2 -713.7 -13.5 143 5.5 -112.5 -744.1 -15.1
Misc Salty United (Con) 11 76.5 -6.0 -30.1 -20.0 9 16.7 -9.6 -26.1 -36.8
Mars 3-Musketeers 3 52.0 -2.9 -8.3 -35.4 2 11.0 0.0 0.0
Hershey Twizzlers 55 53.9 -83.4 -216.4 -38.5 46 7.8 -75.6 -192.8 -39.2

Outside Good 190 120.5 -982.6 -929.3 -105.7 180 10.0 460.9 -970.2 47.5

Table 18: Simple Matching Estimator (with and without Assumption 2) (Snickers Removal)
Notes: Trt’d Mach-Weeks reports the number of treated machine-weeks for which there was at least one control machine-
week. Avg # Controls Per Trt is the average number of control machine-weeks per treatment machine-week over all treatment
machine-weeks. ∆qk shows the change in substitute product sales from the control to the treatment period.
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Manuf Product ∆
Focal
Sales

No
Prior

Beta-Bin
Diversion
m = J†

Beta-Bin
Diversion
m = 150

Beta-Bin
Diversion
m = 300

Beta-Bin
Diversion
m = 600

Snickers Removal
Nestle Nonchoc Nestle (Con) -10.5 89.5 12.4 5.9 3.1 1.6
Mars Twix Caramel -702.4 41.2 37.9 34.3 29.5 23.2
Mars M&M Peanut -954.3 39.4 37.0 34.5 30.8 25.5
Kellogg Rice Krispies Treats -66.5 26.7 13.5 8.4 5.0 2.9
Nestle Butterfinger -362.8 20.1 17.1 14.3 11.2 7.8
Mars Choc Mars (Con) -32.7 19.7 6.5 3.5 2.0 1.0
Pepsi Rold Gold (Con) -900.1 17.9 16.8 15.7 13.9 11.6
Hershey Choc Hershey (Con) -179.6 16.6 12.2 9.1 6.3 3.9

Zoo Animal Crackers Removal
Hershey Payday -0.4 84.7 0.6 0.3 0.1 0.1
Kellogg Rice Krispies Treats -37.8 62.2 23.2 12.7 7.2 3.9
Misc Salty United (Con) -18.9 55.1 12.6 6.3 3.4 1.8
Kraft Oreo Thin Crisps -37.8 39.4 14.7 8.0 4.5 2.4
Pepsi Rold Gold (Con) -440.8 25.9 22.9 19.8 16.2 12.1
Hershey Choc Hershey (Con) -132.6 25.3 17.1 12.0 7.9 4.7
Misc Hostess Pastry -62.2 23.7 11.8 7.2 4.4 2.5
Kraft Chse Nips Crisps -37.8 23.1 8.6 4.7 2.6 1.4

Chocolate Chip Famous Amos Removal
Nestle Choc Nestle (Con) -0.2 300.0 1.2 0.6 0.3 0.2
Hershey Choc Hershey (Con) -66.8 72.7 36.9 22.5 13.4 7.4
Kraft Oreo Thin Crisps -43.3 47.9 19.2 10.8 6.1 3.3
Pepsi Sun Chip -355.7 40.4 34.4 28.9 22.7 16.1
Hershey Payday 6.8 38.9
Misc Salty United (Con) -28.7 34.6 10.7 5.6 3.1 1.7
Pepsi Chs PB Frito Cracker -83.6 32.1 18.2 11.6 7.1 4.1
Kraft Planters (Con) -332.6 24.7 20.9 17.5 13.7 9.8

M&M Peanut Removal
Misc Hostess Pastry -38.6 32.5 12.3 6.9 4.0 2.3
Mars Snickers -1239.3 23.9 22.9 21.7 19.9 17.2
Kellogg Brown Sug Pop-Tarts -43.5 22.9 9.2 5.2 2.9 1.6
Misc Cliff (Con) -1.8 22.2 0.6 0.3 0.1 0.1
Nestle Nonchoc Nestle (Con) -4.6 19.5 1.3 0.6 0.3 0.2
Mars M&M Milk Chocolate -529.6 13.9 12.5 11.0 9.2 7.0
Mars Twix Caramel -1014.3 10.9 10.4 9.8 8.9 7.6
Kellogg Rice Krispies Treats -220.2 10.2 7.9 6.1 4.4 2.9

Table 19: Sensitivity of Beta-Binomial Diversion to Number of Pseudo Observations
† Number of pseudo observations is the number of products in the choice set during treatment period - 66, 64,

65, and 65, respectively.
∆ Focal Sales shows the change in focal product sales from the control to the treatment period. No Prior is
the raw diversion calculated as the ratio of the change in substitute product sales to the absolute value of
the change in focal product sales.
Beta-Bin Diversion is the diversion ratio calculated under Assumptions 1,2, and 3 (Unit Interval), using
different number of pseudo-observations.
The products included in this table are the 8 products with highest raw diversion ratio.
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A.6 Stan Code for MCMC Estimator

This is code for the R library stan (Team 2015) which recovers the MCMC estimator of the
diversion ratio under assumptions (1)-(4).

% Main Specification: Dirichlet Prior

data {

int<lower=1> J; // number of products, including outside good

int<lower=1> N[J]; // number of trials

int<lower=0> y[J]; // number of successes for each product j

vector[J] priors; // mean of the distribution of alpha

}

parameters {

simplex[J] theta;

}

model {

theta ~ dirichlet(priors);

for (j in 1:J) {

y[j] ~ binomial(N[j], theta[j]);

}

}

% Alternative Specification: Multinomial Logit/Normal

data {

int J; // number of products, including outside good

int N[J]; // number of trials

int y[J]; // number of successes for each product j

real mu_prior[J]; // mean of the distribution of alpha

real sigma_prior[J]; // standard deviation of the distribution of alpha

}

parameters {

row_vector[J] alpha; // probability of success = exp(alpha[j])/(sum(exp(alpha[j])))

}

transformed parameters {

row_vector[J] theta;

for (j in 1:J)

theta[j] <- exp(alpha[j])/(sum(exp(alpha))); // don’t normalize the outside good

}

model {

for (j in 1:J)

alpha[j] ~ normal(mu_prior[j], sigma_prior[j]);

for (j in 1:J) {

y[j] ~ binomial(N[j], theta[j]);

}

}
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