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Abstract

We provide predictions for DSGE models with incomplete information that are

robust across information structures. Our approach maps an incomplete-information
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vides conditions that ensure the wedges are rationalizable by some information struc-

ture. Using our approach, we quantify the potential importance of information as a

source of business cycle fluctuations in an otherwise frictionless model. Our approach

uncovers a central role for firm-specific demand shocks in supporting aggregate confi-

dence fluctuations. Only if firms face unobserved local demand shocks can confidence

fluctuations account for a significant portion of the US business cycle.
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1 Introduction

What are the sources of aggregate fluctuations? One common view is that business cycles

are caused by shocks to the confidence of consumers and firms. The literature on business

cycles has formalized this view in several ways, including modeling confidence fluctuations as

a consequence of incomplete information (e.g., Lorenzoni, 2009; Angeletos and La’O, 2013;

Benhabib, Wang and Wen, 2015). Yet, relatively few of these information-based models have

been investigated quantitatively. At least in part, this is because the private information

structures governing people’s beliefs are hard to observe in the data or—as argued by Sims

(2003) and Woodford (2003)—may have no observable counterpart.

In this paper, we quantify the potential importance of confidence-driven business cy-

cles using a novel approach that bypasses the challenge of postulating ad-hoc information

structures. The approach takes the economic environment (technology, preferences, market

structure) as given, but does not require a complete specification of the information structure

that governs people’s beliefs. Instead, we provide an “information-robust” characterization

of all equilibria that are possible within a given economic environment.

Methodological contribution We develop our methodology for a canonical class of mod-

els with dispersed or incomplete information, without any restriction on the set of signals

governing people’s beliefs regarding their own idiosyncratic shocks, the aggregate state of

the economy, what other agents believe, and so on. Notably, our general framework encom-

passes virtually all linear rational expectations DSGE models explored in the literature. We

show how to map these models into a “primal” economy, in which all agents have full in-

formation and where deviations from full information are summarized by exogenous wedges

in agents’ equilibrium expectations. We then develop necessary and sufficient conditions for

the existence of an information structure that is consistent with the expectation errors cap-

tured by these wedges. Subject to these conditions, the primal economy is isomorphic to the

incomplete-information economy.

Exploiting this equivalence, we derive a complete characterization of all information equi-

libria within a given economic environment. Specifically, our characterization allows the

researcher to specify a (possibly empty) minimal information set reflecting their prior of

what constitutes a lower bound on agents’ information. Our main theorem then states that

an equilibrium of the primal economy corresponds to an equilibrium of the information econ-

omy if and only if the expectation errors captured by the exogenous wedges are orthogonal

to the corresponding agent’s actions and each element of that agent’s minimal information

set. In our applications, we show how to use this characterization to draw concrete economic
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conclusions about equilibrium in the incomplete information model, without ever completely

specifying the information available to agents.

Applied contribution To demonstrate the usefulness of our approach, we use it to ask:

Under what conditions can changes in confidence generate sizable fluctuations in aggregate

economic activity? As an illustration, we first examine this question in the context of a simple

price-setting model similar to the one in Woodford (2003). The model describes the problem

of price-setting firms who face exogenous aggregate demand and downward-sloping individual

demand functions. Applied to this model, our methodology can be used to analytically bound

the variances of endogenous variables, to sign cross-covariances among them, and to limit

their autocorrelations. Among our results, we find that any information structure that allows

firms to contemporaneously observe their own sales implies that aggregate inflation must be

procyclical. Moreover, if either idiosyncratic or aggregate demand is observed (or constant),

then aggregate output does not fluctuate.

After demonstrating our approach in this simple context, we then use it to explore the

potential for confidence-driven business cycles quantitatively. Our quantitative model is a

flexible price business cycle model without capital, in which households and firms live on

informationally disparate “islands.” The inclusion of households introduces the potential

for additional aggregate demand channels that act through incomplete information. Like

the price-setting example, firms on each island experience fluctuations in local demand. In

addition, we allow for exogenous fluctuations in aggregate productivity, as well as temporary

and persistent changes in firm-level productivity.

Whether the model generates aggregate fluctuations beyond those induced by aggregate

productivity shocks depends on its ability to generate expectation errors that are correlated

in the cross-section. There are two potential sources of such correlation. First, agents can be

jointly optimistic or pessimistic regarding the aggregate state of productivity, as in Lorenzoni

(2009) or Angeletos and La’O (2010). Second, agents can be jointly optimistic or pessimistic

about their own idiosyncratic conditions, as in Angeletos and La’O (2013) or Benhabib,

Wang and Wen (2015), possibly accentuated by strategic uncertainty. Both channels are

disciplined by the properties of the fundamental shocks to productivity and demand. Our

approach allows us to provide a general characterization of these restrictions that does not

hinge on specific structural assumptions about people’s information.

For reference, we first establish a novel theoretical benchmark for the case in which the

stochastic process governing idiosyncratic shocks is unrestricted by data. For this case, we

show that confidence-driven fluctuations can in principle generate any autocovarince struc-
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ture for output and inflation, bypassing all cross-equation restrictions that obtain under full

information, provided that agents do not perfectly observe demand for their local goods when

making production choices. This result extends findings of Angeletos and La’O (2013) and

Benhabib, Wang and Wen (2015) that correlated information shocks can generate arbitrary

macroeconomic volatility if idiosyncratic shocks are sufficiently volatile.

In light of this benchmark, we next ask: How much expectations-driven volatility can

one generate for a realistic calibration of idiosyncratic shocks? We explore this question by

calibrating the processes for idiosyncratic productivity and demand using existing micro-data

estimates (Foster, Haltiwanger and Syverson, 2008). We then compute global upper bounds

on confidence-induced output fluctuations, their persistence, and the contemporaneous cor-

relation with inflation.

For an empirically plausible calibration, we find that the volatility-frontier for confidence-

induced output fluctuations is hump-shaped in aggregate persistence and is decreasing in

the contemporaneous correlation with inflation. For an aggregate persistence and inflation-

cyclicality consistent with U.S. data, the maximal one-step-ahead volatility of confidence-

induced fluctuations in output is 0.011 (approximately 90 percent of its empirical coun-

terpart). We demonstrate that the ability to generate sizable macro-volatility through

confidence-fluctuations hinges critically on the volatility of micro-shocks to firm demand.

By contrast, micro-shocks to productivity play a somewhat dispensable role for generating

aggregate volatility.

Why does idiosyncratic product demand play such an important role in supporting ag-

gregate fluctuations? The answer has two key components. First, informed by the empirical

evidence of Foster, Haltiwanger and Syverson (2008), firm-specific demand fluctuations in

our calibration are large, in particular relative to idiosyncratic productivity.1 Idiosyncratic

demand realizations therefore drive large fluctuations in payoffs about which firms or house-

hold can potentially be mistaken. Second, our baseline specification of minimal information

allows both households and firms to see their island’s own productivity. This still allows

agents to be uncertain with respect to productivity components (temporary vs. persistent

and idiosyncratic vs. aggregate), but it rules out expectation errors regarding firms’ own

contemporaneous productivity.

We contrast this “homogenous information” baseline with a specification in which house-

holds and firms do not share information. In this case, household uncertainty about local

productivity can drive somewhat larger fluctuations. Still, the fluctuations that can be sup-

1See Loecker (2011); Demidova, Kee and Krishna (2012); Roberts et al. (2017); Foster, Haltiwanger and
Syverson (2016) for further evidence that demand shocks are much larger than productivity shocks.
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ported by uncertainty about productivity in this case are not nearly as large as those that can

be generated by uncertainty regarding local demand. Across the cases we investigate, local

demand uncertainty remains the most important prerequisite for large information-driven

fluctuations.

Finally, we explore the degree to which confidence-driven fluctuations are consistent with

U.S. business cycle data. To this end, we estimate a prototype wedge-economy similar to the

one in Chari, Kehoe and McGrattan (2007), which captures the auto-covariance structure

of the U.S. business cycle by construction. We then use our theoretical results to parti-

tion the estimated wedges into an informational component, which can be microfounded

through incomplete information, and a non-informational residual. We find that, in princi-

ple, confidence-fluctuations can account for a large portion of the U.S. business cycle that

remains unexplained after conditioning on productivity shocks.

Again, a prerequisite for such confidence-fluctuations to be sizable is that firms do not

know their idiosyncratic product demands while making their production plans: If local

demand is perfectly observed, at most 3 percent of observed output fluctuations can be

accounted for by any type of confidence (regardless of what else firms observe). By contrast,

if local demand is not observed but aggregate productivity is, up to 51 percent of output

fluctuations can be explained by correlated confidence regarding local conditions, leading

us to conclude that local demand shocks are crucial for the model to support aggregate

sentiment fluctuations.

Related literature The methodology developed in this paper is related to Bergemann and

Morris (2013, 2016) and Bergemann, Heumann and Morris (2014). These papers demonstrate

the equivalence between Bayes equilibria in games with incomplete information and Bayes

correlated equilibria. The approach developed in this paper is similar in that it also demon-

strates the equivalence between a class of incomplete-information models with another class

of full-information models. Our approach is significantly more general, however, because it

is not limited to static game environments, but also applies to dynamic market economies,

which is crucial for the application to business cycles. Closely related to our application to

dynamic macroeconomic models, Passadore and Xandri (2020) develop robust predictions in

dynamic policy games with an application to sovereign debt.

On the applied side, our analysis relates to a recent literature on confidence-driven busi-

ness cycles. While the literature is mostly theoretical, there are now a few studies with a

quantitative focus. In particular, Huo and Takayama (2015) quantify a version of Angele-

tos and La’O (2013), and Blanchard, L’Huillier and Lorenzoni (2013) estimate a version
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of Lorenzoni (2009).2 Our approach is distinguished by our general formulation of incom-

plete information that does not require an ex-ante stand on which agents are affected by

information-frictions, how information is shared in the cross-section of agents, or any other

parametric properties of the information structure.

The objective of this paper is also closely related to Angeletos, Collard and Dellas (2018).

Departing from the assumption of rational expectations, those authors develop a tractable

framework in which agents’ expectations regarding the beliefs of other agents are subject

to reduced-form “confidence shocks”. They show that confidence shocks can account for a

significant portion of the U.S. business cycle, but abstract from the question whether those

shocks can by microfounded by some information structure. Our approach is complimentary

in that we characterize the restrictions on confidence-driven fluctuations imposed by rational

expectations.

Our approach is also useful for reducing the computational burden of solving (and estimat-

ing) business cycle models with incomplete information. While the incomplete-information

version of our economy is hard to solve, the corresponding primal economy permits a simple

aggregate representation, in which aggregate wedges capture the average deviations from

incomplete-information in the cross-section of agents. Conditional on these wedges, which

are constrained by the restrictions characterized in our theorem, the primal economy can

be solved using standard tools developed for full-information models. In this ability to re-

duce the computational burden of solving (and estimating) incomplete information models,

our paper also relates to Rondina and Walker (2021), Acharya (2013), Huo and Takayama

(2018), Acharya, Benhabib and Huo (2021), and Adams (2019), who use frequency-domain

techniques to obtain analytical solutions in certain models, and Nimark (2009) who explores

the asymptotic accuracy of a finite-state approximation approach to a class of dispersed

information models.

Layout The rest of the paper is organized as follows. Section 2 develops our information-

robust characterization approach and applies it to the simple price-setting model. Section 3

sets up the quantitative model. Sections 4 derives information-robust predictions for the

quantitative model. Section 5 contains the application to U.S. business cycles. Section 6

concludes.

2See also Melosi (2014, 2017) for an estimation of a variant of Woodford (2003), Maćkowiak and Wiederholt
(2015) for plausible calibration of a particular DSGE model with rational inattention, and Ilut and Saijo
(2021) for a quantitative DSGE model with time-varying ambiguity aversion. In these works, information
frictions alter the propagation of fundamental shocks (productivity, monetary), but there are no confidence-
driven fluctuations.
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2 Information-Robust Characterization

We present our main result in the context of a general linear rational expectations model with

incomplete information. The framework encompasses virtually all linearized DSGE models

used in the literature as well as the class of coordination games studied by Morris and Shin

(2002) and others. After stating our main characterization theorem, we demonstrate its

application in a simple model of price setting. In the subsequent sections, we apply our

methodology to a quantitative business cycle model, and use it to explore the potential

importance of confidence-driven business cycles in the United States.

2.1 Main Theorem

Framework Consider a linear economy characterized by a system of expectational dif-

ference equations, in which date-t expectations are formed conditional on a collection of

information sets {Iji,t}. Here, j ∈ {0, 1, . . . , J} indexes a collection of ex-ante heterogeneous

information classes that may differ arbitrarily. Within each class j, there is a continuum

of ex-ante symmetric information sets, indexed by i ∈ [0, 1], which may only differ in their

ex-post realization of shocks.3 We normalize j = 0 to refer to the full information set, I∗t ,

which is defined by the history of all variables that are realized at date t.4

Let gi,t ≡ [∆gi,t; g
a
t ], where ∆gi,t denotes a n∆g × 1 vector of purely atomistic endogenous

variables that satisfy the adding-up constraint
∫ 1

0
∆gi,t di = 0, and gat denotes a nga × 1

vector of endogenous aggregate variables (which may but are not limited to include the

“mean component” of {∆gi,t}).
We suppose that gi,t satisfies the following system of expectational difference equations:

0 =
J∑
j=0

E

{[
Aj

1 Aj
2

] [ gi,t+1

fi,t+1

]
+
[
Bj

1 Bj
2

] [ gi,t

fi,t

] ∣∣∣∣∣ Iji,t
}
, (1)

for all i ∈ [0, 1] and t = 0, 1, . . . . Here, fi,t ≡ [∆fi,t; f
a
t ] is an exogenous column vector of

stochastic variables. In analogy to the endogenous vector gi,t, we partition the exogenous

vector into an atomistic component, ∆fi,t, and an aggregate component, fat , where the atom-

3Here, ex ante symmetry across i means that the unconditional distribution over Iji,t is identical across
all i. While differences in the ex-post realization of signals can also be captured by introducing additional
information classes, using i to reflect these differences helps streamlining notation in models where (some)
agents are ex-ante identical.

4Notice that which variables are realized at date t is definitional and, thus, something the modeler must
specify. For instance, I∗t could contain future innovations if they are realized at date t as in the news
literature.
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istic component satisfies the adding up constraint
∫ 1

0
∆fi,t di = 0. We assume that fi,t follows

a stationary Gaussian process and is ex-ante symmetric across i.5

Throughout, we maintain the assumption of rational expectations, so that conditional on

an information set, all expectations are formed using Bayes law. An equilibrium is defined

as a joint process for all the endogenous variables, {∆gi,t}i∈[0,1] ∪ gat , that solves (1) given

processes for the exogenous fundamentals Ft ≡ {∆fi,t}i∈[0,1] ∪ fat and for information It ≡
{Iji,t}i,j∈[0,1]×{1,2,...,J}. We use E(F , I) to denote the set of stationary equilibria satisfying (1).

We note that nothing stated here requires equilibrium to be unique or even to exist.

Primal representation Our main result constitutes an isomorphism between the equilib-

ria of the model (1) and the equilibria of a related full-information economy, which we call

the “primal” representation of the model. The primal representation of model (1) is given

by

0 =

(
J∑
j=0

[
Aj

1 Aj
2

])[ Etgi,t+1

Etfi,t+1

]
+

(
J∑
j=0

[
Bj

1 Bj
2

])[ gi,t

fi,t

]
+

J∑
j=1

τ ji,t, (2)

where Et[·] ≡ E[·|I∗t ] denotes the full-information expectation operator. Compared to (1),

model (2) replaces all expectation operators E[·|Iji,t] with Et[·]+τ ji,t, where {τ ji,t} represent the

expectation errors implicit in agents’ equilibrium expectations relative to full information.

Notice that our notation already reflects the normalization that j = 0 corresponds to full

information by setting τ 0
i,t = 0.

The key conceptional difference between the primal economy and the original one is that

in the primal economy we treat agents’ expectation errors as exogenous “wedges”, whereas

in the original economy they derive endogenously from agents’ information sets. In analog

to the original economy, we use Eprimal(F , T ) to denote the set of stationary equilibria of

the primal economy with fundamentals F and expectation wedges Tt ≡ {τ ji,t}i,j∈[0,1]×{1,2,...,J}.

Solving models of the form in (2) is straightforward, and the literature offers myriad strategies

for obtaining Eprimal(F , T ).

Characterization theorem We now state our main theorem, which provides necessary

and sufficient conditions on the expectation wedges in the primal representation such that

they can be supported as expectation errors in an equilibrium of the original incomplete

information economy.

5These assumptions can be relaxed. First, in many cases, fi,t can be detrended along with an appropriate
transformation of (1). Second, while we assume fi,t to be Gaussian, the assumption is not needed when one
is only interested in characterizing the auto-covariance structure of gi,t. Third, symmetry across i is w.l.o.g.,
as one can stack an arbitrary number of shocks into fi,t.
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To do so, we impose the following structure on information in the original economy.

Assumption 1 (Information bounds). Θj
i,t ⊆ I

j
i,t ⊆ I∗t .

Assumption 1 defines a lower and an upper bound on information. The upper bound,

I∗t , simply states that agents cannot learn more than what is potentially knowable under

full information. The lower bound, Θj
i,t, must be specified by the modeler. It constitutes

the primary input parameter to our methodology, allowing researchers to explore how their

priors regarding agents’ information restricts equilibrium outcomes.

Assumption 2 (Recursiveness). Ii,t−1 ⊆ Ii,t.

Assumption 2 imposes the usual rationality requirement that all agents perfectly recall

past information. While perfect recall is standard, we note that our methodology easily

extends to the case where agents may forget past information.6

To state the theorem, define

µji,t ≡ Et[Aj
1gi,t+1 + Aj

2fi,t+1 + Bj
1gi,t + Bj

2fi,t] + τ ji,t,

which for each (i, j, t) represents the expectation implicit in τ ji,t. The following theorem states

the implementation result.

Theorem 1. Fix stationary F , T and E ∈ Eprimal(F , T ). Then there exists an informa-

tion structure I satisfying Assumptions 1 and 2 that implements E as equilibrium in the

incomplete-information economy (i.e., E ∈ E(F , I)) if and only (i) E[τ ji,t] = 0 and (ii)

E[τ ji,tθ] = 0 for all θ ∈ {µji,t−s,Θ
j
i,t−s}s≥0 (3)

hold for i, j, and t.

The theorem gives two conditions that are jointly necessary and sufficient for T to be im-

plemented by some information structure. Condition (i) is simply a rationality requirement

that an agent’s beliefs cannot be perpetually biased. Condition (ii) is an orthogonality re-

quirement between the expectation wedges and µji,t and Θj
i,t. The necessity of this restriction

is the familiar result that expectation errors must be orthogonal to all available informa-

tion, including an agent’s belief µji,t itself (at the very least “one knows what one knows”).

The novel part of our result is the sufficiency of this condition. For any E ∈ Eprimal(F , T )

with E[Tt] = 0, we can always construct an information structure that implements E as an

incomplete-information equilibrium as long as it satisfies (3).

6Specifically, in this case, we obtain a version of our theorem, in which condition (3) is imposed only for
s = 0.
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Sketch of proof Here we illustrate the proof in a simple case. The general proof is given

in Appendix A. Suppose equilibrium in the original economy is defined by a single condition,

yt = E[at|It], (4)

where E[at] = 0, and let Θt = ∅. Equilibrium in the primal economy is then defined by

yt = at + τt. (5)

Let (yt, at, τt) be a stationary Gaussian process satisfying (5). Theorem 1 states that there

exists an It that supports yt as an equilibrium in the original economy if and only if (i)

E[τt] = 0 and (ii) E[τtyt−s] = 0 for all s ≥ 0. The necessity of conditions (i) and (ii) is

immediate, because optimal inference requires that expectation errors are unpredictable.

To see why the conditions are also sufficient, first note that by construction (yt, at, τt) is

an equilibrium in the primal economy. For (yt, at, τt) to also solve (4), it hence suffices to

construct an I such that E[at|It] = at + τt = yt. To do so, suppose that It = {ωt−s}s≥0

where ωt = at + τt. That is, each period, the agent receives a new signal ωt that has the

same joint distribution over (ωt, at) as the equilibrium “belief” yt that we wish to implement.

Projecting at onto yt ≡ {yt−s}s≥0, we have

E[at|It] = Cov(at, y
t)[Var(yt)]−1yt. (6)

Notice that

Cov(yt, y
t) =

[
1 0 0 · · ·

]
Var(yt). (7)

Further notice that (5) in combination with condition (ii) gives Cov(at, y
t) = Cov(yt−τt, yt) =

Cov(yt, y
t). We can thus use (7) to substitute out Cov(at, y

t) in (6) to get

E[at|It] =
[
1 0 0 · · ·

]
Var(yt)[Var(yt)]−1yt = yt.

We conclude that as long as conditions (i) and (ii) hold, there exists an information structure

that implements τt and hence yt. Intuitively, observing the equilibrium expectation yt is a

sufficient statistic for forming E[at|It], giving us a simple means of implementing τt.

2.2 Illustration: Application to Price-Setting Model

As an example of how our approach works in practice, we present a simple price setting model

and show how to derive analytical restrictions on equilibrium outcomes. The model focuses on
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the log-linearly approximated pricing decision of a monopolistically competitive firm, while

taking aggregate demand as an exogenous process in the spirit of Woodford (2003).

Setup Firms in the model set their prices according to

pi,t = E[pt + ξyt + νzi,t|Ii,t], (8)

where pt ≡
∫ 1

0
pi,t di is the aggregate price index, yt is aggregate output, zi,t is an idiosyncratic

demand shock, and ξ ∈ (0, 1) and ν ∈ [0, 1] are the elasticities of the target price in yt and

zi,t. Each firm i, faces standard CES demand,

yi,t = −η(pi,t − pt) + yt + ηzi,t, (9)

with η > 1. Finally, aggregate output and prices are related via the constant-velocity equation

qt = yt + pt, (10)

with qt denoting the exogenous supply of money. We assume that {zi,t} and qt follow inde-

pendent stationary Gaussian processes, and
∫ 1

0
zi,t di = 0.

Primal representation Because only (8) contains an expectation, it is the only equation

with a non-trivial expectation wedge in the primal representation of the economy. The primal

representation of the economy is therefore given by

pi,t = pt + ξyt + νzi,t + τi,t (11)

along with equations (9) and (10).

Given a process {τi,t}, the equilibrium of the primal economy is straightforward to find.

Defining τt ≡
∫ 1

0
τi,t di, aggregates in the economy are given by

pt = qt + ξ−1τt, yt = −ξ−1τt. (12)

Similarly, we can solve for the idiosyncratic dynamics of ∆pi,t ≡ pi,t− pt and ∆yi,t ≡ yi,t− yt
to arrive at

∆pi,t = νzi,t + ∆τi,t, ∆yi,t = η(1− ν)zi,t − η∆τit. (13)

Notice that the equilibrium in the primal representation provides a separation of dynamics

at the aggregate and idiosyncratic levels. A similar separation is always possible with appro-
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priate definitions, and turns about to be convenient for deriving restriction on equilibrium

outcomes.

Predictions Applying our theorem amounts to placing covariance restrictions on the out-

comes captured by (12)–(13). For the purpose of this illustration, we focus on the case where

firms observe their own sales; i.e., yi,t ∈ Θi,t, ruling out any information structures where

yi,t /∈ Ii,t. While this may not be entirely realistic, it provides for an instructive example

to demonstrate how our methodology can be applied in practice. We note that under these

assumptions, it is equivalent to assume that firms set prices or quantities (as we later assume

in our quantitative exercises.)

Observe that in the notation of our general framework, µi,t = pi,t. Theorem 1 hence

requires τi,t to be orthogonal to yi,t−s and pi,t−s for all s ≥ 0. Imposing these restrictions,

we arrive at two key implementability conditions relating the dynamics of aggregate and

idiosyncratic variables:

Cov[τt, pt−s] = −Cov[∆τi,t,∆pi,t−s] (14)

Cov[τt, yt−s] = −Cov[∆τi,t,∆yi,t−s] (15)

for all s ≥ 0. Manipulating these conditions allows us to derive a series of results.

Proposition 1. The unconditional variance of output is bounded by the volatility of qt ac-

cording to √
Var[yt] ≤

(1− ν)η

(1− ν)η + ν

√
Var[qt].

Proof. Using (13) to substitute out ∆pi,t−s and ∆yi,t−s in (14) and (15), and combining

conditions to eliminate Cov[∆τi,t, zi,t−s], we have

νCov[τt, yt−s]− η(1− ν)Cov[τt, pt−s] = ηCov[∆τi,t,∆τi,t−s]. (16)

Evaluating at s = 0 and using (12) to substitute out τt and pt,

(ν + η(1− ν)) Var[yt]− η(1− ν)Cov[yt, qt] = −ηξ−1Var[∆τi,t]. (17)

Noting that Var[∆τi,t] ≥ 0 and, by the Cauchy-Schwartz inequality, Cov[yt, qt] ≤
√

Var[yt] ·√
Var[qt], completes the proof.

The proposition expresses a bound on the volatility of aggregate output relative to the

volatility of nominal demand. The bound is especially stark in the simple model, necessitating
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an exogenous aggregate shock to generate any expectation-driven fluctuations in aggregate

output. As we explore in our more general quantitative setting, this conclusion is an artifact of

two simplifying assumptions: (i) the assumption that firms observe their own sales, yi,t ∈ Θi,t,

which precludes firms from having uncertainty about their demand, and (ii) the absence of

other firm-specific shocks affecting input prices or technology. Once we relax either of these

assumptions, it will be possible to generate expectation-driven fluctuations in the absence

of aggregate shocks. Before further exploring this possibility, we first demonstrate how one

can use our methodology to establish related bounds on the co-movement between output,

inflation and money growth.

Proposition 2. Inflation πt ≡ pt − pt−1 and money growth dqt = qt − qt−1 must be weakly

procyclical. Specifically, the correlation with output is bounded below as follows:

ν
√

Var[yt] ≤ (1− ν)η · Corr[yt, πt]

1− Corr[yt, yt−1]

√
Var[πt]

and √
Var[yt] ≤

(1− ν)η

(1− ν)η + ν
· Corr[yt, dqt]

1− Corr[yt, yt−1]

√
Var[dqt].

Proof. As both bounds are derived following completely analogous steps, we only show the

proof for inflation. Evaluating (16) for s = 0 and s = 1, using (12) to substitute for τt, and

differencing the resulting conditions, we have

νCov[yt, dyt]− η(1− ν)Cov[yt, π] = −ηξ−1Cov[∆τi,t, d∆τi,t].

Noting that Cov[∆τi,t, d∆τi,t] = (1− Corr[∆τi,t,∆τi,t−1]) ·Var[∆τi,t] ≥ 0 completes the proof.

The proposition establishes that, when uncertainty originates exclusively from demand

shocks, expectations-driven fluctuations must exhibit exactly the same cyclical properties as

demand shocks themselves. Again, the restriction is especially stark given the assumptions

of our simple model, and the restriction that inflation and money growth must be procyclical

is relaxed once we allow for other sources of uncertainty.

We conclude our illustration by exploring two refinements of Θi,t.

Proposition 3. Suppose {zi,t, yi,t} ∈ Θi,t. Then aggregate output is constant.

Proof. Using (9) to substitute out ∆yi,t in (15), and combining with (14) to eliminate ∆pi,t,

we obtain

Cov[τt, yt−s + ηpt−s] = −ηCov[∆τi,t, zi,t−s]. (18)
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From
∫
zi,t di = 0, it follows that Cov[∆τi,t, zi,t−s] = Cov[τi,t, zi,t−s]. Applying Theorem 1, it

then must hold that Cov[∆τi,t, zi,t−s] = 0. Evaluating (18) at s = 0 and s = 1, using (12) to

substitute for τt, and differencing the resulting conditions, we therefore obtain

√
Var[yt] = −η Corr[yt, πt]

1− Corr[yt, yt−1]

√
Var[πt].

The result then follows, because Corr[yt, πt] ≥ 0 by Proposition 2.

The proposition complements the finding in Proposition 1 that expectation-driven fluctu-

ations can only be caused by uncertainty about aggregate demand. Proposition (3) further

demonstrates that even though uncertainty about zi,t cannot support any systematic ag-

gregate fluctuations (when yi,t ∈ Θi,t), it is nevertheless necessary for supporting aggregate

fluctuations caused by uncertainty about qt. This is intuitive because, without uncertainty

about zi,t, firms can simply invert their idiosyncratic demand to back out the aggregate state

of the economy, resolving any uncertainty about qt.

Finally, we highlight a natural bound on the autocorrelation of endogenous fluctuations

when information is revealed with some lag.

Proposition 4. Suppose that {yt−h, πt−h} ∈ Θi,t. Then Cov[yt, yt−s] = Cov[yt, πt−s] =

Cov[yt, qt−s] = 0 for all s ≥ h̄.

Proof. The result follows immediately from Theorem 1, after using (12) to substitute for

τt = −ξyt.

The proposition establishes that if the aggregate state is revealed at some lag h̄, then

this limits the autocorrelation of any expectation-driven fluctuations within an horizon of h̄

periods. The result echos a similar, but more special, result in Acharya, Benhabib and Huo

(2021), which bounds the persistence of a specific type of sentiment shocks. Proposition 4,

by contrast, reveals that the lagged revelation of aggregate information always eliminates

subsequent autocovariances, regardless of other details of the information structure.

3 Quantitative Application

3.1 Setup

We now turn to our quantitative application. The model is a “RBC economy without capital”,

augmented with imperfect information. Households and firms are located on a continuum

of islands, indexed by i ∈ [0, 1]. On each island, a representative household interacts with
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a representative firm in a local labor market. Firms use the labor provided by households

to produce differentiated intermediate goods, which are aggregated by a competitive final

goods sector located on the mainland. There are no subperiods; all markets at date t operate

simultaneously.

Households Preferences on island i are given by

E

{
∞∑
τ=0

βτU(Ci,t+τ , Ni,t+τ ) | Ii,t

}
,

where β ∈ (0, 1) is the discount factor, Ni,t is hours worked, Ci,t is final good consumption,

and Ihi,t denotes the information available to the household on island i at time t. The utility

flow U is given by

U(C,N) = logC − 1

1 + ζ
N1+ζ ,

where ζ ≥ 0 is the inverse of the Frisch elasticity of labor supply. The household’s budget

constraint is

PtCi,t +QtBi,t ≤ Wi,tNi,t +Bi,t−1 +Di,t,

where Pt is the price of the final good, Qt is the nominal price of a riskless one-period bond,

Bi,t are local bond holdings, Wi,t are local wage rates, and Di,t are profits of the local firm.7

Bonds are in zero net supply, so market clearing requires
∫ 1

0
Bi,t di = 0. No other financial

assets can be traded across islands, which implies that households are exposed to idiosyncratic

income risk.

Intermediate-goods producers Each good i is produced by a monopolistically compet-

itive firm with access to a linear production technology,

Yi,t = Ai,tNi,t. (19)

Firms choose Ni,t to maximize expected profits, E[Pi,tYi,t−Wi,tNi,t| Ifi,t], subject to an inverse

demand curve specified below. Here Ifi,t denotes the date-t information available to the

firm on island i, which may differ from households’ information. The wage rate Wi,t is

determined competitively.8 The productivity Ai,t consists of an aggregate and an island-

7Following Maćkowiak and Wiederholt (2015), we assume that bond positions adjust to clear the budget
constraint independently of the information available to households.

8Formally, firm i is representative of a continuum of firms, j ∈ [0, 1], competing in the local labor market.
Each of these firms produces a separate variety (i, j) that is aggregated to Yi,t using the technology Yi,t =
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specific component,

logAi,t = logAt + ∆ai,t,

where the aggregate component follows a random walk process

logAt = logAt−1 + εt.

The innovation εt is i.i.d. across time with zero mean and constant variance. The island-

specific component ∆ai,t follows a time-invariant, stationary random process that is i.i.d. across

islands and is normalized so that
∫ 1

0
∆ai,t di = 0.

Final-good sector A competitive final-goods sector aggregates intermediate input goods

i ∈ [0, 1], using the technology

Yt =

(∫ 1

0

Zi,tY
η−1
η

i,t di

) η
η−1

,

where η > 1 is the elasticity of substitution among input varieties, Yi,t denotes the input

of intermediate good i at time t, and Zi,t is an island-specific demand shifter following a

time-invariant, stationary process that is i.i.d. across islands and satisfies
∫ 1

0
log(Zi,t) di = 0.

Profit maximization yields the inverse input demands, given by

Pi,t =

(
Yi,t
Yt

)−1/η

Zi,tPt, (20)

where the aggregate price index Pt is defined by

Pt =

(∫ 1

0

Zη
i,tP

1−η
i,t di

) 1
1−η

.

Monetary policy We close the model by specifying a simple interest rate rule, pinning

down the equilibrium rate of inflation, πt ≡ log(Pt/Pt−1). Specifically, we assume that the

central bank sets nominal bond prices such that

it = φπt, (21)

(
∫ 1

0
Y

1−1/η
ij,t dj)η/(η−1) where η matches the elasticity of substitution across “island-varieties” specified in the

final good technology below. Clearly, the setting collapses to the one in the main text where Yi,t is produced
by a representative firm i that is competitive in the local labor market and faces isoelastic demand from the
final good sector with elasticity −η.
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where φ > 1 and it = − log(Qt).
9

Information structure Our methodology allows us to explore how a few abstract as-

sumptions regarding {Iji,t}i,j∈[0,1]×{f,h} restrict equilibrium behavior, without the need to fully

specify a parametric information structure. As a baseline, we consider the case where firms

and households share the same information within islands (Ii,t ≡ Ifi,t = Ihi,t), and where the

joint information set Ii,t is bounded below by

Θsym
i,t = {Ai,t, Ci,t, Ni,t, Yi,t,Wi,t, I∗t−h̄} ∪Θsym

i,t−1. (22)

Under this baseline, households and firms observe local output (and hence productivities) in

addition to the local consumption, employment and wages. Moreover, all agents eventually

learn the truth at some horizon h̄ ≥ 0.10 The assumption of finite revelation is not required

by our theorem, but is useful in our application because it ensures that observing a history

of growth rates of a variable is equivalent to observing its level.

As an alternative to this baseline, we also explore the case in which firms and households

have access to different information. In our most general (i.e., least restrictive) specification,

information is bounded below by

Θh
i,t = {Ci,t, Ni,t,Wi,t, I∗t−h̄} ∪Θh

i,t−1 (23)

Θf
i,t = {Ai,t, Ni,t, Yi,t,Wi,t, I∗t−h̄} ∪Θf

i,t−1. (24)

Because different agents classes on a single island have different information under this spec-

ification, we refer to this case as one of “heterogenous information.”

Throughout, we assume that the full information set contains any variables dated t or

earlier. Hence, we rule out “news”, because future innovations to At, {∆ai,t} and {Zi,t} are

not part of I∗t .

9The rule also contains a constant intercept ensuring consistency with the natural rate at the zero-inflation
steady state. The term is omitted since it drops out after we log-linearize the model below.

10Here we specify Θsym
i,t recursively to emphasize that households have access to past information but

note that doing so is redundant given Assumption 2. Similarly, because µi,t (in the notation of the general
framework) is a monotone transformation of Ci,t and Ni,t and (together with Yi,t) can be used to infer Ai,t
and Wi,t, one could w.l.o.g. omit {Ci,t, Ni,t, Ai,t,Wi,t} from Θsym

i,t . The smallest set Θi,t yielding identical
equilibrium restrictions as Θsym

i,t is therefore Θi,t = {Yi,t, I∗t−h̄}.
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3.2 Equilibrium Conditions

We work with a log-linear approximation to the model around the balanced growth path

of the economy with no heterogeneity and full information. Lower-case letters denote log-

deviations of a variable from this path, in which yi,t = at for all i and πt = 0.

The households’ Euler equation is given by

ci,t = E[ci,t+1 − φπt + πt+1 | Ihi,t]. (25)

Combining firms’ demand for labor with households’ supply, local labor market clearing

requires

yi,t = ξ
(
yi,t − ci,t + E[pi,t|Ifi,t]− E[pt|Ihi,t]

)
+ ai,t, (26)

where ξ ≡ 1/(ζ + 1). The linearized price index pt is given by pt =
∫ 1

0
pi,t di. The linearized

demand relation and budget constraint take the form

pi,t = η−1(yt − yi,t) + zi,t + pt (27)

and

βbi,t = bi,t−1 + yi,t − ci,t + pi,t − pt, (28)

where bi,t ≡ Bi,t/(PtCi,t) is in levels rather than logs because Bi,t can take negative values.

Given a process for fundamentals and information {ai,t, zi,t, Ifi,t, Ihi,t}, an equilibrium of the

model is a set of processes {ci,t, yi,t, bi,t, pi,t} and {yt, πt} that are consistent with (25)–(28),

with Bayesian updating, and with market clearing for goods,

yt =

∫ 1

0

yi,t di =

∫ 1

0

ci,t di. (29)

(As usual, market clearing for bonds is implied by (28) and (29).)

Comment on prices, information, and market clearing In many general equilibrium

models with incomplete information it is relatively simple for agents to infer the value of the

economy’s aggregate fundamentals from observing aggregate prices. As argued by Lorenzoni

(2009), this is largely an artifact of the simplicity of models, whereas, in practice, the ability

of agents to learn about the economy’s fundamentals is likely impaired by a large number of

shocks, model misspecification, and the possible presence of structural breaks. To capture

these effects within simple models like ours, the literature has therefore utilized various ways
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of introducing noise into price systems.11

In keeping with the literature, we do not include the real return on assets, rt ≡ it−Et[πt+1],

or its constituents it, pt and Et[pt+1], in the lower bound on households’ information {Ihi,t}.
However, we note that by imposing market clearing on the aggregate goods market, we

implicitly require that households observe some noisy version of rt such that the average

expected real interest Ēt[rt] increases with rt. Using our methodology, there is no need to

explicitly specify the signals through which households make inference about rt. Instead,

requiring market clearing in the primal representation of the economy yields by construction

a “market clearing expectation” Ēt[rt] that adapts to clear the goods market in all states of

the world.12

To see this, consider the simplified case where aggregate demand is given by ct = −E[rt|It]
and aggregate supply, yt, follows an exogenous random process. In this case, market clearing

(ct = yt) requires

E[rt|It] = −yt, (30)

which in conjunction with It pins down rt. In the primal representation, E[rt|It] = rt + τt,

and market clearing requires

rt + τt = −yt. (31)

The key difference between (30) and (31) is that the expectation error, τt, is a primitive of

the primal economy. Because τt is exogenous in the primal economy, the solution rt = −yt−τt
always imposes that the implied E[rt|It] responds one-for-one to a decline in yt, inducing

precisely the sensitivity of households’ expectations to economic conditions that is necessary

for rt to clear the goods market. Hence, by imposing market clearing in the primal economy,

we implicitly require that agents have enough information about rt to ensure that E[rt|It]
responds as needed to clear markets, even though we never specify the underlying signals

parametrically.

11Common approaches include the addition of noise traders (e.g., Grossman and Stiglitz, 1980; Hellwig,
1980), the decentralization of markets (e.g., Lorenzoni, 2009; Angeletos and La’O, 2013), and the use of
rational inattention that introduces noise directly into information sets (e.g., Maćkowiak and Wiederholt,
2015; Vives and Yang, 2017).

12All other markets clear as usual, without the need for any information beyond the lower bounds given
by (23)–(24): Labor markets clear through {Wi,t}, which is observed by firms and households within each
island; the market for input goods clears through {Pi,t}, which is observed by the final goods sector; and
the market for bonds clears automatically whenever the final good market clears and households satisfy their
budget constraint.
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3.3 Primal Representation

There are two equilibrium conditions with non-trivial expectation operators. Replacing equa-

tions (25) and (26) with their primal analog, we arrive at13

ci,t = Et[
(
ci,t+1 − τ ci,t+1

)
− φπt + πt+1] + τ ci,t (32)

yi,t = ξ(yi,t − ci,t + pi,t − pt + τ p,fi,t − τ
p,h
i,t ) + ai,t. (33)

Here, τ ci,t and τ p,hi,t have the interpretation of households’ prediction errors, relative to full

information, regarding their consumption target and the aggregate price index. On the firms’

side, τ p,fi,t has the interpretation of firms’ prediction error regarding their inverse product

demand, pi,t. Note that all wedges are defined relative to the full-information targets that

obtain taking as given the behavior of the rest of the economy (given expectation errors made

by other households and firms).

One unique feature of our environment is that we allow for non-stationarity in aggre-

gate productivity, whereas most of the incomplete-information literature requires stationary

fundamentals. Stationarizing the representation in (32)–(33) is straightforward, but invok-

ing Theorem 1 requires us to find a stationary representation of {µji,t,Θ
j
i,t}i,j∈[0,1]×{f,h} that

contains the same information as the minimal information set in the original representa-

tion. A convenient way to do this is to assume that all past information is revealed at a

finite horizon h̄ ≥ 0 as in (22). In this case, we can replace any non-stationary sequences

in {µji,t,Θ
j
i,t}i,j∈[0,1]×{f,h} by their first-differences, which in combination with I∗

t−h̄, contain

the same information as the corresponding sequences in levels. The following assumption

formalizes this requirement.

Assumption 3 (Finite revelation). For each (i, j) ∈ [0, 1] × {f, h}, there exists a sta-

tionary information process Sji,t such that {µji,t−s,Θ
j
i,t−s}s≥0 is informationally equivalent to

{Sji,t−s}h̄−1
s=0 ∪ I∗t−h for some h̄ ≥ 0.

Applying Theorem 1 then yields the following result.

Proposition 5. Fix stationary processes for

Ft ≡ {∆ai,t, zi,t}i∈[0,1] ∪ {dat}

Tt ≡ {τ ci,t, τ
p,h
i,t , τ

p,f
i,t }i∈[0,1],

13Here τ ci,t is specified after rewriting (25) in its non-recursive form. With this normalization, τ ci,t defines
the gap relative to the optimal level of consumption that household i would choose if it had full information
at t and all future dates.
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and, using d(·) to denote the first difference of a variable, fix

Et ≡ {dci,t, dyi,t, dbi,t, dpi,t}i∈[0,1] ∪ {dyt, πt} ∈ E(F , T ).

Then there exists an information structure I satisfying Assumptions 1–3 that implements E
as equilibrium in the incomplete-information economy if and only if (i) (τ ci,t, τ

p,h
i,t , τ

p,f
i,t ) follows

a MA(h) process of order h < h̄, (ii) E[(τ ci,t, τ
p,h
i,t , τ

p,f
i,t )] = 0, and (iii)

E[τ ci,tθ] = E[τ p,hi,t θ] = 0 for all θ ∈ {Shi,t−s}h̄−1
s=0 , and

E[τ p,fi,t θ] = 0 for all θ ∈ {Sfi,t−s}h̄−1
s=0

hold for all i and t.

Proposition 5 is an immediate corollary to Theorem 1. Here, the restriction to finite

MA processes arises because I∗
t−h̄ ∈ Θj

i,t under Assumption 3: Because all innovations to

(τ c
i,t−h̄, τ

p,h

i,t−h̄, τ
p,f

i,t−h̄) are part of I∗
t−h̄, the orthogonality requirement of Theorem 1 implies that

(τ ci,t, τ
p,h
i,t , τ

p,f
i,t ) has a finite MA representation of order h̄ − 1. In Sections 4 and 5, we use

Proposition 5 to analyze the feasible dynamics of rational expectation errors in a calibrated

version of our model.

3.4 Aggregation and Equilibrium in the Primal Economy

Before exploring how Proposition 5 restricts the equilibrium dynamics in this economy, we

conclude this section with an explicit characterization of equilibrium in the aggregate primal

economy. Unlike the solution to the incomplete-information economy, which requires keeping

track of the cross-sectional distribution of beliefs, the primal economy permits a simple

aggregate representation of equilibrium.

Let τ ct =
∫ 1

0
τ ci,t di, τ p,ht =

∫ 1

0
τ p,hi,t di and τ p,ft =

∫ 1

0
τ p,fi,t di denote the “macro” wedges.

Integrating over (32) and (33), we have

ŷt = Et[ŷt+1 − τ ct+1 − φπt + πt+1] + τ ct (34)

ŷt = ξ (τ p,ft − τ
p,h
t ) (35)

where ŷt ≡ yt − at is the level of output relative to its (full-information) potential.

Equations (34) and (35) define the aggregate dynamics in the primal economy. Common

prediction errors in the Euler equation, captured by τ ct , show up as an Euler equation wedge.

Similarly, common prediction errors regarding each islands’ terms-of-trade, pi,t − pt, are
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captured by τ pt ≡ τ p,ft − τ
p,h
t , which corresponds to the labor wedge in our economy that is

composed of a household and a firm component. The aggregate “wedges” τ ct and τ pt are the

sole drivers of the output gap and inflation. If all agents had full information (τ ct = τ pt = 0),

the aggregate economy would be in its first-best equilibrium in which output reaches its

potential in every period (yt = at) and inflation is always zero.

In general, a solution for endogenous variables as a function of the joint process τt ≡
(τ ct , τ

p
t )′ can be obtained using standard numerical tools. In our case, a closed-form solution

is also available. Substituting for ŷt in (34), πt is characterized by the prediction formula

πt = φ−1Et[ξdτ pt+1 − dτ ct+1 + πt+1]. (36)

Following Hansen and Sargent (1980, 1981), we obtain an explicit solution for inflation, stated

in the following.

Lemma 1. Let τt = A(L)ut, where A(L) is a square-summable lag polynomial in non-negative

powers of L and the innovations ut are orthogonal white noise. Then there exists a unique

stationary equilibrium process for (ŷt, πt), given by

ŷt =
[
0 ξ

]
A(L)ut (37)

and

πt =
[
−1 ξ

] (1− L)A(L)− (1− φ−1)A(φ−1)

φL− 1
ut. (38)

4 Inference About the Aggregate Economy

In this section, we explore how the theoretical restrictions of Proposition 5 translate into

restrictions on the behavior of the aggregate economy. In a first step, Section 4.1 maps the

restrictions stated in Proposition 5 into restrictions on the dynamics of the “macro” wedges

determining the behavior of the aggregate economy. Sections 4.2 and 4.3 then use these

restrictions on the macro wedges to characterize feasible volatility and co-movement patterns

of output and inflation under varying assumptions on information and fundamentals.

4.1 Feasible Dynamics of Aggregate Wedges

We begin by mapping the orthogonality restrictions in Proposition 5 into restrictions on

the macro wedges τ ct and τ pt . To streamline the exposition, we only detail the derivation
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for the baseline case Θsym
i,t depicted in (22), in which firms and households have symmetric

information.

To begin, observe that for Θsym
i,t , {µi,t−s,Θsym

i,t−s}s≥0 satisfies Assumption 3 with

Si,t = {dci,t, dyi,t, dai,t}.

Here we have used that (i) ni,t and wi,t are linear combinations of (ci,t, yi,t, ai,t) and are

therefore informationally redundant; and (ii) that for any finite horizon h̄, observing the

sequence of differences {Si,t−s}h̄−1
s=0 in addition to I∗

t−h̄ contains the same information as the

corresponding sequence of levels.

To proceed, define τi,t ≡ (τ ci,t, τ
p,h
i,t , τ

p,h
i,t )′ and let ∆τi,t ≡ τi,t − τt denote the idiosyncratic

portion of the expectation wedges. Similarly, let (∆ci,t,∆yi,t) denote the idiosyncratic de-

viations from aggregate output. By construction the “Delta”-component of any variable is

orthogonal to any aggregate variable. Hence, for any two variables xi,t and yi,t, we have

Cov[xi,t, yi,t] = Cov[xt, yt] + Cov[∆xi,t,∆yi,t]. The orthogonality requirement between τi,t

and Si,t can then be written as:

Cov[τt, (dyt−s, dyt−s, εt−s)] =

− Cov[∆τi,t, (∆dci,t−s,∆dyi,t−s,∆dai,t−s)] for all s ≥ 0. (39)

Condition (39) requires that any aggregate co-movement on the left-hand side is exactly

offset by corresponding “Delta” co-movements on the right-hand side. It is the analogue to

conditions (14) and (15) in the simple price-setting application.

The main complication compared to the price-setting application is that the endogenous

“Delta”-variables on the right hand side, ∆dci,t and ∆dyi,t, can no longer be expressed

as static functions of ∆τi,t and fundamentals. Instead, ∆dci,t and ∆dyi,t are themselves a

solution to a system of expectational difference equations. Specifically, subtracting yt from

both sides of (32) and (33), we obtain

∆ci,t = Et[∆ci,t+1 −∆τ ci,t+1] + ∆τ ci,t (40)

∆yi,t = ξ(∆yi,t −∆ci,t + ∆pi,t + ∆τ pi,t) + ∆ai,t (41)

for ∆τ pi,t = ∆τ p,fi,t −∆τ p,hi,t . Together with (27) and (28), conditions (40) and (41) define a (ficti-

tious) small open economy, which can be solved independently from the economy’s aggregates.

While the endogenous nature of ∆dci,t and ∆dyi,t impedes further analytical progress that

parallels Propositions 1–4, condition (39) similarly entails restrictions on aggregate volatility
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and the (auto-)covariance structure of the economy, which can be characterized numerically.

For our numerical analysis below, we exploit that for any (zero mean) MA(h̄) process

for the idiosyncratic and aggregate components of τi,t, condition (39) is both necessary and

sufficient for the implementation of these wedges by some information structure. The set

of feasible aggregate fluctuations is thus characterized by the set of aggregate processes

{τ ct , τ
p
t } for which (39) can be satisfied with some processes for the idiosyncratic components

{∆τ ci,t,∆τ
p
i,t}. In general, one can obtain this characterization by numerically solving for the

map from wedges to covariances, which entails finding equilibrium in the “Delta”-economy.

In our case, we are able to simplify the search by solving the “Delta-economy” in closed

form, which allows for a more efficient numerical implementation (see the derivation following

Lemma 2 in the Online Appendix for details.)

4.2 Unrestricted Micro-Shock Benchmark

Before proceeding to our quantitative results, we provide a theoretical benchmark for the

case where we treat the idiosyncratic fundamentals, ∆fi,t = (∆ai,t, zi,t), as unrestricted.

Previous literature has shown that if idiosyncratic fundamentals are sufficiently volatile, then

confusion about these shocks can be used to support aggregate fluctuations in ŷt, even if there

are no aggregate shocks to fundamentals. This is because expectation errors regarding local

shocks can be correlated across islands even though the underlying fundamentals are purely

idiosyncratic (e.g., Angeletos and La’O, 2013; Benhabib, Wang and Wen, 2015).

In the spirit of this literature, the following benchmark uses our methodology to charac-

terize what dynamics are possible if we place no restrictions on ∆fi,t. By construction, the

chosen process for ∆fi,t has no direct impact on the aggregate economy. Its only role is to

provide a source of uncertainty, which can be used to support aggregate fluctuations when

information is incomplete.

Proposition 6. Fix a (zero mean) MA(h̄) process τ for (τ ct , τ
p
t ) and set Θsym

i,t as in (22).

Then for any aggregate productivity process, a, there exist idiosyncratic processes ∆τ and

∆f , such that τ can be implemented in the incomplete information economy.

Proposition 6 provides a striking benchmark: Absent micro-data that disciplines ∆fi,t,

correlated optimism and pessimism (across islands), can be used to generate any joint process

in (ŷt, πt). Going beyond the results in Angeletos and La’O (2013) and Benhabib, Wang and

Wen (2015) on volatility, the benchmark shows that “sentiment” fluctuations can implement

arbitrary processes for τt and, by implication, arbitrary autocorrelation structures among the

aggregate variables, potentially bypassing all cross-equation restrictions that emerge under
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full information.14 Intuitively, expectation errors can plausibly be correlated, both because

information can be correlated between households and firms and because expectation errors

by households generally affect both their consumption and labor supply.

4.3 Quantitative Results

In light of the “everything goes” result in Proposition 6, a natural question to ask is: what

are the restrictions on aggregate dynamics once we fix ∆fi,t at an empirically plausible

calibration? We explore this question numerically, calibrating ∆fi,t to existing micro-data.

Parametrization We interpret one period as a quarter, and set the discount factor β to

0.99. The inverse Frisch elasticity ζ is set to 0.5, the elasticity of substitution between input

varieties η is set to 7.5, and the elasticity of the interest rate φ is set to 1.5. These values are

within the range typically used by the literature.

Next, we set the incomplete information horizon to h̄− 1 = 14 quarters. While we do not

have strong priors regarding h̄, our choice is consistent with the horizon at which Coibion

and Gorodnichenko (2015) find a significant response in professional forecasters’ expectation

errors to various fundamental and nonfundamental shocks. Below, we explore the sensitivity

of our results to h̄, and show that once the horizon h̄ − 1 exceeds six periods, it has little

impact on results.

It remains to choose processes for the island-specific productivities and demand. We sepa-

rate local productivities into a persistent component, xi,t, and a purely transient component,

ωi,t,

∆ai,t = xi,t + ωi,t,

where ωi,t is i.i.d. with zero mean and variance σ2
ω. The separation ensures that agents can be

potentially confused about the precise state of ∆ai,t, even if there are no aggregate productiv-

ity shocks. The persistent components {xi,t} as well as the local demand shocks {zi,t} follow

independent AR(1) processes with auto-correlations (ρx, ρz) and one-step-ahead variances

(σ2
x, σ

2
z). The variance and persistence parameters are set based on Foster, Haltiwanger and

Syverson (2008), who use plants’ price data to disentangle demand from physical productiv-

ity shocks at the plant-level. Specifically, we set ρx = ρz = 0.976, σx = 0.0552, σω = 0.0478,

and σz = 0.2504, which imply within-product dispersions and quarterly autocorrelations of

14In three related contributions, Huo and Takayama (2015), Angeletos, Collard and Dellas (2018) and Ilut
and Saijo (2021) all provide examples of how learning may introduce non-zero correlation in wedges. However,
in contrast to the result in Proposition 6, these comovement patterns are restricted by the specifics of the
information-structures considered in these papers, translating into non-trivial cross-equation restrictions.
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zi,t and ∆ai,t that match the corresponding statistics in Foster, Haltiwanger and Syverson

(2008).15

It is worth noting that, in line with popular views, the data of Foster, Haltiwanger and

Syverson (2008) imply that demand shocks are much larger than productivity shocks (see

also Loecker 2011; Demidova, Kee and Krishna 2012; Roberts et al. 2017; Foster, Haltiwanger

and Syverson 2016 for similar results). Intuitively, this is consistent with the idea that

fluctuations in demand reflect both demand and supply shocks upstream in the production

chain, which amplifies demand uncertainty relative to the uncertainty about within-firm

technology. We explore the robustness of our results with respect to the scale of idiosyncratic

shocks, considering a variety of calibrations in the exercises that follow.

Volatility frontier (definition) We compute the maximal output volatility—as a function

of its persistence and the cyclicality of inflation—that our model can generate in the absence

of aggregate shocks to fundamentals (Var[εt] = 0).

Formally, define σŷ(τ) ≡
√

Var[ŷt|I∗t−1] as the one-step-ahead volatility of output induced

by τ . Similarly, define ρŷ(τ) ≡ Corr[ŷt, ŷt−1] as the first-order autocorrelation of ŷt, and define

γŷπ(τ) ≡ Corr[ŷt, πt] as the contemporaneous correlation with inflation. We use Lemma 2 to

numerically trace out the volatility frontier for output as a function of its autocorrelation ρŷ

and its contemporaneous correlation with inflation γŷπ:

σmax
ŷ (ρ̄ŷ, γ̄ŷπ) ≡max

τ,∆τ
{σŷ(τ)}

subject to

ρŷ(τ) = ρ̄ŷ

γŷπ(τ) = γ̄ŷπ

and the implementability condition (39). Here τ and ∆τ are independent (zero-mean) MA(h̄)

processes.16 The process for the idiosyncratic fundamentals ∆f = (∆a, z) is given by our

calibration.

Baseline case Figure 1 presents the volatility frontier for the baseline where firms and

households have symmetric information within islands and Θsym
i,t is given by (22). Here σmax

ŷ

15The underlying calibration targets are .976 and .943 for the quarterly persistence rates of zi,t and ∆ai,t,
respectively, and 1.16 and .26 for the (unconditional) within-product dispersions.

16W.l.o.g., we restrict τ to load on at most three innovations. Similarly, we restrict ∆τ to load on at most
three innovations in addition to the fundamental shocks that drive ∆f .
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Figure 1: Feasibility frontier. The graph shows the maximal output volatility (denominated in percentage
deviations from the balanced growth path) that can be generated by incomplete information as a function of
aggregate persistence ρŷ and the contemporaneous correlation with inflation γŷπ.

is denominated in percentage deviations from the balanced growth path. The most striking

feature is the discrepancy at γŷπ = 0. When inflation is procyclical (γŷπ > 0), incomplete

information can explain an output volatility up to 1.76 percent. Evaluating σmax
ŷ at values

consistent with U.S. data, γŷπ = 0.3 and ρŷ = 0.9, the maximal volatility amounts to 1.1

percent, which is about 9/10 of the corresponding volatility in the United States.17 By contrast,

when inflation is countercyclical (γŷπ < 0), the maximal volatility is increased by about one

order of magnitude.

The reason for the discrepancy is a fundamental difference in the channels through which

the model generates procyclical and countercyclical inflation dynamics. As suggested by

Proposition 2 (see Appendix B.3 for a variant of the proposition applying to the quantitative

model), countercyclical inflation dynamics are intrinsically tied to expectation errors regard-

ing local demand, which can be quite large for the calibrated process for zi,t. By contrast,

procyclical inflation dynamics (typically) require some nominal misconception18, which is

disciplined by the volatility of aggregate prices.

17The comparison is based on the estimation presented in Section 5 and detailed in Appendix C.
18Perceived fluctuations in local demand cannot induce procyclical inflation dynamics because of consump-

tion smoothing. Under standard preferences, consumption (typically) goes up by less than output in response
to a temporary increase in local demand. (This is true as long as zi,t is not too persistent; in our calibration
it holds for ρz ≤ .997.) The Taylor principle (φ > 1) then implies that expansions caused by correlated errors
regarding {zi,t} must be accompanied by a drop in inflation so that consumption and output are equilibrated
through the expected decline in the real interest rate.
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Figure 2: Feasibility frontier for alternate specifications of the micro-shocks {∆ai,t, zi,t} and for alternate
information-bounds {Θi,t}. The graphs show the maximal output volatility σmax

ŷ (denominated in percentage
deviations from the balanced growth path) that can be generated by incomplete information for the case where
ρŷ = .9 and γŷπ = .3. The “×”-marks indicate the case where both the micro-shocks and Θi,t are fixed at
their baseline values shown in Figure 1.

Micro shocks and macro volatility How do changes in the specification of {∆ai,t} and

{zi,t} affect the volatility frontier σmax
ŷ ? To explore the link from micro-shocks to macro-

volatility, we conduct comparative statics exercises in σx, σω, σz, ρx and ρz. Here we focus

on the case where the macro-correlations γŷπ and ρŷ are respectively fixed at 0.3 and 0.9,

consistent with U.S. data. In Appendix D, we extend the analysis to the case where inflation

is countercyclical, finding qualitatively similar results to the ones below.

The results are presented in Figure 2. The blue dots in Panels 1–5 correspond to the

case where households have symmetric information as assumed above. For comparison, the

baseline calibration, for which σmax
ŷ ≈ 1.1 percent, is indicated by the “×”-marks in the
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figure.

The sensitivity is strongest in σz and ρz, indicating that correlated expectation errors

about the demand shocks {zi,t} are of critical importance for supporting fluctuations in

aggregate confidence. In particular, a reduction in σz from its baseline value of 0.2504 to

0.01, reduces σmax
ŷ by a factor of three to 0.37 percent; an increase in σz to 1.00, increases

σmax
ŷ to 3.39 percent. Those comparative statics reflect the naturally increasing shape of

σmax
ŷ in any fundamental volatility. Intuitively, the more volatile zi,t (and ai,t), the larger the

potential for agents to make expectation errors, which is a direct consequence of the law of

total variance (Var[E{zi,t|Ii,t}] ≤ Var[zi,t]). In the extreme case where σz → 0, rationality

requires that E[zi,t|Ii,t] = 0 for all t, even if Ii,t contains no information about zi,t.

Similarly to σz, variations in the persistence of zi,t also have a significant impact on

σmax
ŷ : a reduction of ρz from its baseline value of 0.976 to 0.5, reduces σmax

ŷ to 0.35 percent.

An increase in the persistence of zi,t to 0.99, increases σmax
ŷ to 3.18. The role of ρz for

supporting expectation errors is two-fold. First, Var[zi,t] is increasing in ρz, again increasing

the potential for expectation errors. Second, persistence in zi,t (or in ∆ai,t), enables optimism

and pessimism regarding the wealth of the local household, independently from the direct

effects on contemporaneous labor supply and demand. As fluctuations in perceived wealth

translate into fluctuations in desired consumption, they can be used to induce pro-cyclical

inflation dynamics as in Lorenzoni (2009), which is instrumental for generating the targeted

cyclicality of inflation (γŷπ = 0.3).19

By contrast, variations in the parameters of {ai,t} result in only moderate variations in

σmax
ŷ . In particular, reducing σx or σω to 0.01, implies only marginally smaller values of σmax

ŷ ,

suggesting that the idiosyncratic productivity shocks {∆ai,t} play a somewhat dispensable

role in our calibration. This reflects two factors. First, given our calibration, productivity is

less volatile than demand, implying that there is less scope for productivity-related confusion

in the first place. Second, because ai,t ∈ Θi,t, firms and households always know their current

productivity, limiting productivity-related confusion to uncertainty about the composition of

∆ai,t, whose relevance in turn is determined by the persistence of xi,t.

No demand uncertainty So far, we have not taken a stand whether or not agents know

the inverse demand for the local good, pi,t. As an alternative, we now consider the case where

pi,t is perfectly observed, so that there is no uncertainty about the revenues associated with

19In order to generate pro-cyclical inflation dynamics through optimism and pessimism about zi,t, the
information structure must mute the direct substitution effect on labor demand. This can be achieved, for
instance, by making agents (sufficiently) informed about pi,t (coupled with some nominal misconception as
in Lucas (1972, 1973), so that pi,t does not fully reveal zi,t), which is a sufficient statistic about E[zi,t|Ii,t]
for determining labor demand.
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a particular choice of production. Formally, information is now bounded by

Θi,t = {pi,t−s}s≥0 ∪Θsym
i,t

with Θsym
i,t given by (22). Because τ p,fi,t measures firms’ expectation error regarding pi,t, an

immediate consequence of including pi,t in Θf
i,t is that τ p,fi,t = 0 for all i and t, so that

fluctuations in aggregate output can only be driven by the households’ component of the labor

wedge. Intuitively, firms only need to know their marginal costs, wi,t − ai,t, and their local

demand, pi,t, to behave as if they have full information (see also Hellwig and Venkateswaran,

2014).

For the baseline parametrization of {∆ai,t, zi,t}, shutting down τ p,ft reduces σmax
ŷ to 0.41,

suggesting that uncertainty about demand is key to generating sizable aggregate fluctuations.

Moreover, compared to the case where Θsym
i,t is given by (22), the sensitivity of σmax

ŷ in the

parameters of {zi,t} is reduced, whereas the sensitivity in the parameters of {ai,t} is heightened

(illustrated by the gray squares in Figure 2). This is because when pi,t is known, agents can

back out the state of zi,t + pt − η−1yt from (20), reducing the scope to generate waves of

optimism and pessimism via zi,t and, by implication, increasing the model’s reliance on ∆ai,t

for supporting aggregate fluctuations in confidence.20

Heterogeneous information We next relax the assumption that households and firms

share the same information set, setting Θh
i,t and Θf

i,t as in (23) and (24). The resulting

volatility frontier is depicted by the red lines in Figure 2. For the baseline calibration, this

increases σmax
ŷ to 4.49 percent. This reflects the additional flexibility in Ifi,t and Ihi,t, due to

households not being required to perfectly know the local firm’s productivity (i.e., ai,t, yi,t /∈
Θh
i,t) and firms not being required to perfectly know households’ consumption (ci,t /∈ Θf

i,t).

Specifically, this enables waves of optimism and pessimism among households about income-

fluctuations caused by ∆ai,t and zi,t, translating to aggregate demand fluctuations—even

if ∆ai,t and zi,t are observed by firms. The stark increase in σmax
ŷ suggests that the usual

assumption of symmetric information may in fact be quite restrictive.

Finally, we explore a variant of the heterogeneous information setting where firms face no

demand uncertainty (Θf
i,t includes {pi,t−s}s≥0 in addition to (24)). The results are depicted

by the blue lines in Figure 2). Compared to the symmetric-information case without demand

uncertainty, σmax
ŷ is slightly increased to 0.49. However, the difference between symmetric

20The sensitivity in zi,t is not reduced to zero for two reasons. First, zi,t serves as noise about the aggregate
state. Second, despite there being no uncertainty about current pi,t, expectation errors about zi,t continue
to translate into optimism and pessimism about future prices whenever ρz 6= 0, which affects local wealth
and households’ consumption choice.
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and heterogeneous information is now much less pronounced, suggesting that imposing infor-

mational symmetry is somewhat less restrictive when firms know their demand while making

their production choices.

Effects of incomplete-information horizon As a final comparative static, we evaluate

the sensitivity of σmax
ŷ in the incomplete information horizon h̄. Because the autocorrelation

of any MA(h̄ − 1 ≤ 4) process is bounded above by less than the targeted autocorrelation

(ρŷ = 0.9), we have σmax
ŷ = 0 for all h̄− 1 ≤ 4. Conditional on h̄− 1 ≥ 5, the impact of h̄ is

moderate, especially for the cases without demand uncertainty. For the baseline symmetric

information case, the impact is somewhat more pronounced, reducing σmax
ŷ to 0.76 when h̄−1

is reduced to 10 quarters.

5 Application to U.S. Business Cycles

We now explore the degree to which U.S. business cycle data is consistent with a theory

of incomplete information. To this end, we first estimate an unrestricted wedge process

τ̂t ≡ (τ̂ ct , τ̂
p
t ) that in the tradition of Chari, Kehoe and McGrattan (2007) best describes

the data. We then partition τ̂t into an informational component τ info
t (restricted by our

theoretical characterization) and an unrestricted residual component τ resid
t , and maximize the

contribution of the informational component τ info
t under varying assumptions on {∆ai,t, zi,t}

and {Θi,t}.

5.1 Methodology

Here we briefly describe the initial estimation step and then formalize our approach to par-

titioning the estimated wedge process into an informational and residual component. A de-

tailed description of the initial estimation can be found in Online Appendix C. Throughout

the model is calibrated as in Section 4.3.

5.1.1 Summary of estimation step

We use the generalized method of moments (GMM) to estimate the process τ̂t that best

matches the auto-covariance structure of quarterly U.S. data on real per-capita output, in-

flation, nominal interest rates, and per-capita hours, targeting all auto-covariances between

zero and 8 quarters. All moments are computed at business cycle frequencies, applying an

high-pass filter with a cutoff of 32 quarters to the model and the data. We model τ̂ as
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Table 1: Summary of estimated U.S. wedges

Contemporaneous correlation

Standard

deviation

First-order

autocorr.

with τ̂ ct with τ̂pt with ε̂t

τ̂ ct 0.051 0.91 1.00 · ·
τ̂pt 0.044 0.91 0.99 1.00 ·
ε̂t 0.010 – -0.27 -0.27 1.00

MA(14) processes, which loads on two intrinsic innovations, denoted by ût, in addition to

the productivity shock ε̂t.

Despite targeting more data series than there are shocks, the estimated process τ̂t fits the

data quite well: the model replicates the U.S. auto-covariance structure within the confidence

bands of the data (see Figure 4 in the appendix). The productivity shock ε̂t explains about

36 percent of the filtered variance in ŷt and about 11 percent to the filtered variance of yt.
21

The remaining fluctuations are explained by intrinsic innovations in the estimated wedges τ̂ ct

and τ̂ pt .

Table 1 summarizes key moments of the estimated wedges (τ̂ ct , τ̂
p
t ) and the estimated

productivity shock ε̂t. Most noticeable is the strong positive correlation between the Euler

wedge and the labor wedge (Corr[τ̂ ct , τ̂
p
t ] = 0.99) and both wedges’ negative correlation with

productivity growth (Corr[τ̂t, ε̂t] = −0.27). The high correlation of τ̂p and τ̂t may be somewhat

surprising in light of previous results in the wedge accounting literature. We note this finding

is not a consequence of abstracting from capital per se, but rather the fact that we measure

the Euler wedge directly from data on it and πt, whereas the business cycle literature typically

infers real interest rates indirectly by using the time series of investment to infer the marginal

product of capital through the lens of a model.22 Using our approach, the real rate fed into

the Euler equation moves very little, reflecting the low volatility of both inflation and the

nominal rate. Accordingly, to match both empirical consumption and inflation dynamics,

the model requires the Euler and labor wedge to be highly correlated. (For intuition, notice

that Lemma 1 implies that, as Var[πt]→ 0, the two wedges are perfectly correlated.)

21The contribution of at to ŷt exceeds the one to yt, due to a negative correlation between at and ŷt,
reflecting a slow adjustment in response to productivity shocks.

22Our wedges also differ from those measured in standard RBC models due to our imposition of Ct = Yt.
Because consumption is highly correlated with output, this difference is minor. Abstracting from differences
in measurement, the wedges implied by our model are identical to those implied by standard RBC mod-
els. Specifically, given households’ preferences and data for {Ct, rt}, the Euler wedge is trivially identical.
Moreover, with preferences unchanged, any difference in the labor wedge must be due to a change in firms’
marginal product of labor. However, under Cobb Douglas production, the marginal product of labor in a
model with capital share (1− α) is just αYt/Nt, which is proportional to our labor wedge Yt/Nt.
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5.1.2 Partitioning of the estimated wedges

We partition the estimated wedge process τ̂t into an informational component τ info
t and a

residual component τ resid
t ,

τ̂t = τ info
t + τ resid

t . (42)

In parallel to τ̂t, we model both components as statistically independent MA(14) processes,

τ info
t = Φinfo

ε (L)εinfo
t + Φinfo

u (L)uinfo
t

τ resid
t = Φresid

ε (L)εresid
t + Φresid

u (L)uresid
t ,

where Φinfo
ε , Φinfo

u , Φresid
ε and Φresid

u are square-summable lag polynomials in non-negative

powers of L. The innovations, εinfo
t , εresid

t , uinfo
t and uresid

t , are mutually orthogonal white

noise. In particular, εinfo
t and εresid

t are innovations to aggregate productivity, satisfying

ε̂t = εinfo
t + εresid

t , (43)

with standard deviations σinfo
ε and σresid

ε . The corresponding lag-polynomial Φinfo
ε captures

how incomplete information regarding at influences the propagation of productivity shocks.23

The innovations uinfo
t and uresid

t , each two-dimensional, are intrinsic shocks to τ info
t and τ resid

t .

Accordingly, the lag-polynomial Φinfo
u defines intrinsic fluctuations in τ info

t , driven by expec-

tation errors, whereas Φresid
u defines intrinsic fluctuations in the residual wedges τ resid

t .

The defining difference between τ info
t and τ resid

t is that we impose the conditions of The-

orem 1 on τ info
t , whereas τ resid

t remains unrestricted. We gauge the potential role of in-

complete information for explaining the U.S. business cycle by maximizing the contribu-

tion of expectation errors uinfo
t to the filtered variance of ŷt. Let ŷtfp

t ≡ E[ŷt|(εinfo
t−s, ε

resid
t−s )s≥0],

ŷinfo
t ≡ E[ŷt|(uinfo

t−s)s≥0], and ŷresid
t ≡ E[ŷt|(uresid

t−s )s≥0] denote the projection of the output gap on

aggregate productivity, expectation errors, and residual shocks, respectively. Independence

of the innovations implies Var[ŷt] = Var[ŷtfp
t ] + Var[ŷinfo

t ] + Var[ŷresid
t ]. Then the maximal

contribution of uinfo
t is given by:

max
τ info,τ resid,σinfo

ε ,σresid
ε

{
Var[ŷinfo

t ]/Var[ŷt]
}

(44)

23Conversely, Φresid
ε captures the effects of other potential frictions in propagating productivity shocks.

Splitting aggregate productivity into two independent innovations ensures that the volatility generated by
incomplete information is independent of the residual wedges τ resid

t . If we instead let τ info
t and τ resid

t load
jointly on the combined productivity shock εt, we find that one can increase the variance contribution of uinfo

t

almost arbitrarily through incomplete information regarding at and its propagation through τ resid
t . Below

we also consider the case where agents perfectly observe aggregate productivity, in which case both settings
give identical results.
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Figure 3: Maximal contribution to U.S. business cycle volatility. The graph shows the maximal variance
contribution of uinfo

t to the portion of the U.S. output gap not driven by productivity, Var[ŷt|{at−s}s≥0],
computed at business cycle frequencies. The lines correspond to different assumptions on the lower bound
of information {Θi,t}. The variation on the principal axis considers alternative values for (σx, σω, σz), which
are scaled by up to ±1 order of magnitude relative to the baseline calibration (scale = 1).

subject to two constraints. First, there must exist a (zero-mean) MA(h̄) process for {∆τi,t} so

that the informational component τ info
t is implementable as characterized in Theorem 1. Sec-

ond, we require that the auto-covariance structure for (ŷt, πt, εt) induced by (τ info
t , τ resid

t , εinfo
t , εresid

t )

is identical to the one induced by (τ̂t, ε̂t). Thus, our partitioned wedges are constrained to

produce output, productivity and inflation dynamics that jointly match those of the United

States.

Observe that Var[ŷtfp
t ] and Var[ŷt] are fully pinned down by the estimated wedge process

τ̂t. Hence, instead of maximizing the contribution of uinfo
t to Var[ŷt], we can equivalently

maximize the contribution of uinfo
t to the portion of ŷt that is not driven by the productivity

shock, Var[ŷt|{at−s}s≥0] = Var[ŷt]− Var[ŷtfp
t ].

5.2 Results

The results are presented in Figure 3. To assess which conditions are necessary for incomplete

information to generate sizable aggregate fluctuations, we consider five specifications for the

lower bounds {Θi,t}, represented by the five lines in the graph. Along the principal axis, we

also consider variations in the parametrization of the micro-shocks {∆ai,t, zi,t}, scaling their
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standard deviations, (σx, σω, σz), by up to ±1 order of magnitude relative to the baseline

calibration.24 With the exception of the symmetric information benchmark, all specifications

allow households and firms to have access to potentially heterogeneous information.

5.2.1 Benchmarks

As benchmark, we first consider the symmetric information case where Θsym
i,t is set as in (22)

and the heterogenous information case where Θh
i,t and Θf

i,t are set as in (23) and (24). In both

cases, few restrictions are imposed on information beyond rational expectations. Perhaps

not surprisingly in light of our theoretical benchmark in Proposition 6, confidence shocks can

fully account for all U.S. business cycle fluctuations unexplained by the productivity shock

(Var[ŷinfo
t ]/Var[ŷt|{at−s}s≥0] ≈ 1), provided that (σx, σω, σz) are at least as volatile as in our

baseline calibration (scale ≥ 1).25 For the asymmetric information case (red line), the result

is also robust to a downward-scaling of the micro-shocks by up to a factor of three. For

the symmetric information case (blue dotted line), a reduction in the micro-volatilities by a

factor of two (three), reduces the maximal contribution to 90 percent (67 percent).

5.2.2 Sentiments versus noisy learning about aggregate shocks

The benchmarks show that, in combination with productivity shocks, rational fluctuations

in confidence have the potential to fully account for the U.S. business cycle. We now take a

closer look at which type of confidence fluctuations are necessary to achieve this. Specifically,

we differentiate between two types of confidence: (i) correlated confidence about idiosyncratic

business conditions (aka “sentiment shocks”), and (ii) correlated confidence about aggregate

productivity as in Angeletos and La’O (2010) or about future average productivity as in

Lorenzoni (2009).

First, consider the case of sentiment shocks. We isolate their potential contribution by

imposing perfect knowledge about the history of aggregate productivity by setting Θf
i,t and

Θh
i,t as in (23) and (24), augmented by {at−s}s≥0, eliminating any scope for TFP-driven

fluctuations in confidence. Comparing the resulting contribution (dashed green line) with

the benchmark reveals that for small scales of the micro shocks, confidence about aggregate

productivity is indeed key for explaining the data. On the other hand, when there is sufficient

idiosyncratic volatility (scale ≥ 3), sentiment shocks alone can do as well as the benchmark.

24The scaling is applied to all three micro-shocks proportionately to their respective baseline values; i.e.,
the scaled standard deviations are given by (σx, σω, σz)× scale.

25Note that this also implies a perfect account of all inflation-dynamics that are unexplained by the pro-
ductivity shock, since the partitioning of the wedges is constrained to implement the empirical covariance
structure for (ŷt, πt, εt).
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For the baseline calibration (scale = 1), sentiment shocks can account for 57 percent of

non-productivity fluctuations in U.S. output.

Next, consider the case without sentiment shocks. To eliminate them, we set Θf
i,t and

Θh
i,t as in (23) and (24), augmented by {xi,t−s, zi,t−s}s≥0. Here we do not include the iid-

productivities, ωi,t, in Θf
i,t or Θh

i,t as this would allow firms to fully back out at from observing

ai,t. However, because ωi,t is serially uncorrelated and firms know ai,t, expectation errors

about ωi,t have no direct effect on their actions, so that all fluctuations in confidence indeed

reflect imperfect information about the aggregate productivity state. The quantitative results

are shown by the gray squared lines in Figure 3. Under the baseline calibration of the micro-

shocks (scale = 1)26, TFP-driven fluctuations in confidence can explain at most 3.4 percent

of the empirical output volatility, indicating that sentiment-driven fluctuations in confidence

are indispensable for explaining the U.S. business cycle with information frictions. This is

because aggregate productivity shocks have only a limited importance by themselves, which

in turn limits the potential for optimism regarding them to drive the business cycle.27

Interestingly, however, the two cases without sentiment- and productivity-driven confi-

dence add up to less than the benchmark, indicating a complementarity between sentiments

and confidence about aggregate productivity. Such complementarity may arise, because

confidence-fluctuations of one type may serve as noise in endogenous signals regarding the

other type of fundamental shock.28 Confidence about aggregate productivity shocks may

therefore induce additional confidence about local conditions, and visa versa.

5.2.3 No demand uncertainty

The final specification explores the case where firms know their demand when making their

production choices, where Θf
i,t as in (24) is augmented by {pi,t−s}s≥0 (solid blue line). In

this case, the maximal contribution to the empirical business cycle volatility amounts to 4.1

percent, which is almost as low as when fully shutting down all sentiment-fluctuations. The

result reinforces our earlier finding that demand uncertainties are key for generating sizable

sentiment-fluctuations and, more generally, sizable confidence-fluctuations of any kind.

26Here we re-calibrate the local productivity shocks to attribute all productivity dispersion to ωi,t. This

ensures that the inclusion of xi,t in Θf
i,t and Θh

i,t does not mechanically reduce the idiosyncratic noise that
prevents firms from learning at from observing ai,t − xi,t = at + ωi,t.

27See Angeletos, Collard and Dellas (2020) for independent evidence that productivity shocks play a small
role in the business cycle. Indeed, Cochrane (1994) argues that all directly-measurable aggregate shocks play
a small role in driving business cycle fluctuations.

28See also Chahrour and Gaballo (2020).
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Table 2: Implied variance contribution to U.S. output

Contribution to

Var[yt|{at−s}s≥0] Var[yt] Var[ŷt]

Heterogeneous info benchmark 1.00 0.89 0.64

Symmetric info benchmark 0.99 0.89 0.63

No TFP-driven confidence 0.57 0.51 0.36

No sentiment-driven confidence 0.03 0.03 0.02

No demand uncertainty 0.04 0.03 0.02

Notes.—The table shows the share of output that can be accounted by the intrinsic shocks to the infor-
mational component of the estimated wedges, uinfo

t . The contribution of the productivity shock to Var[yt]
and Var[ŷt] is 11 and 36 percent, respectively. All variance contributions are computed at business cycle
frequencies for the baseline calibration of {∆ai,t} and {zi,t} (i.e., scale = 1 in Figure 3).

5.2.4 Implied variance contribution to U.S. output

The results in Figure 3 show the business-cycle contributions to output volatility that is

unexplained by productivity, Var[ỹt|{at−s}s≥0] (equivalently Var[yt|{at−s}s≥0]). Table 2 com-

putes the implied contribution to the overall volatility in yt and ŷt. The discrepancy between

the three columns reflects the contribution of the productivity shock to yt and ỹt. Looking at

the contribution to yt, sentiment-driven fluctuations in confidence can account for 51 percent

of the empirical volatility. Importantly, however, for a theory of incomplete information to

generate significant fluctuations in confidence, firms must face some uncertainty about their

idiosyncratic product demands. If this is not the case, then confidence fluctuations can at

most explain 3 percent of the empirical volatility in yt.

6 Taking Stock

We have developed a method to quantify the potential of DSGE models with imperfect

information without taking a fully structural stand on the private information of agents.

Along the way, we established a conditional equivalence, which holds under the conditions

of Theorem 1, between models with dispersed information and a prototype wedge-economy

similar to the one in Chari, Kehoe and McGrattan (2007). The informational foundation

for these wedges is distinguished from existing theories in its ability to generate arbitrary

correlation patterns between these wedges (Proposition 6). Correlated wedges, in turn, are

critical for the empirical viability of confidence fluctuations because the data imply a strong

correlation between the aggregate labor wedge and the Euler wedge.

Expectations are a natural candidate for generating the observed correlation, both because
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information can be correlated between households and firms and because expectation errors

by households generally affect both their consumption and labor supply. Our results indicate,

however, that two features are crucial to achieve a quantitively important role for such

a foundation: (i) micro-shocks must be sufficiently volatile and (ii) idiosyncratic demand

must be uncertain at the time of production choices. Regarding (i), our analysis suggests

that observed micro-level volatility is indeed large enough to support substantial aggregate

volatility. Regarding (ii), the presence of idiosyncratic demand uncertainties has long been

acknowledged in business practices (Fisher et al., 1994) and in operations research (Fisher

and Raman, 1996; Mula et al., 2006). Yet, given the pivotal role that these uncertainties

may play in supporting aggregate fluctuations, our results suggest to us that further research

is warranted regarding the degree to which firms misperceive their own demand shocks when

making input choices.
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A Proof of Main Theorem

Consider any expectation wedge τ ji,t ∈ Tt from the primal economy and the corresponding

lower bound Θj
i,t on Iji,t in the incomplete information economy. Define the expectation

“targets”

aji,t ≡ Aj
1gi,t+1 + Aj

2fi,t+1 + Bj
1gi,t + Bj

2fi,t,

as pinned down by the equilibrium E ∈ Eprimal(F , T ) of the primal economy.

We want to show that conditions (i) and (ii) are jointly necessary and sufficient for the

construction of some Iji,t ⊇ S
j
i,t ≡ {µ

j
i,t−s,Θ

j
i,t−s}s≥0 such that

E[aji,t|I
j
i,t] = E[aji,t|I∗t ] + τ ji,t. (45)

When this is true, any solution to (2) is trivially also a solution to (1).

To conserve notation, we suppress (i, j) subscripts going forward.

Necessity Necessity is immediate, since optimal inference requires that expectation errors

are orthogonal to variables in the information set and are unpredictable. To see this, rearrange

(45) to get

τt = E[at|It]− E[at|I∗t ]. (46)

Computing the unconditional expectation over (46) yields E[τt] = 0. Similarly, postmultiply-

ing (46) by µt and θt ∈ Θt gives

E[τtµt] = E[atµt|It]− E[atµt|I∗t ]

E[τtθt] = E[atθt|It]− E[atθt|I∗t ]

as θt ⊆ It ⊆ I∗t . Again taking the unconditional expectation over the right-hand sides, we

have E[τtµt] = E[τtθt] = 0 for all θt ∈ Θt.

Sufficiency We demonstrate sufficiency by construction. Let ât ≡ E[at|I∗t ] and consider

the information set It = St ∪ {st−τ}τ≥0, where st ≡ ât + τt = µt is a signal that replicates

the correlation structure of the expectation we wish to implement. Notice that It inherits

recursiveness from St, ensuring consistency with Assumption 2.

From the law of iterated expectations, we have E[at|st] = E[ât|st] as st ⊆ I∗t . Projecting
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ât onto st we obtain

E[at|st] = Cov[ât, st]Var[st]
−1st

= Cov[st − τt, st]Var[st]
−1st

= Var[st]Var[st]
−1st

= st, (47)

where the second line follows from the definition of st and the third line follows from condition

(ii) of the Theorem and the fact that st = µt ∈ St. Noting that by construction no other

θt ∈ St can improve the forecast about at,
29 we obtain

E[at|st] = E[at|It] = E[at|I∗t ] + τt.

As the argument above applies to any τ ji,t ∈ T , we have constructed exactly the informa-

tion sets needed to satisfy (45) for all (i, j, t).

29To see this, note that the forecast error conditional on st is necessarily uncorrelated with any other
θt ∈ St: Cov[at − E{at|st}, θt] = Cov[at − st, θt] = Cov[at − ât − τt, θ] = Cov[−τt, θt] = 0. Here the first
equality follows from (47); the second one follows per the definition of τt; the third one follows, because
at − ât defines the forecast error under full information I∗t , so that any θt ∈ St ⊂ I∗t must be orthogonal to
it; and the last equality follows from the conditions of the theorem.
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B Online Appendix: Additional Proofs and Results

B.1 Proof of Lemma 1

The characterization for ŷt is immediate. To solve for πt, let πt = π(L)ut, define

Ã(L)ut ≡
[
−1 ξ

]
A(L)ut = ξτxt − τ ct ,

and substitute in (36) to obtain

π(L)ut = φ−1
[
(L−1 − 1)Ã(L) + L−1π(L)

]
+
ut

where [·]+ sends negative powers of L to zero. Applying the z-transform, we obtain the

following functional equation

(z−1 − φ)π(z) = (1− z−1)Ã(z) + z−1Ã0 + z−1π0. (48)

Stationarity requires π to be analytic on the unit disk (Whiteman, 1983). Evaluating (48)

at z = φ−1 ∈ (−1, 1), therefore, pins down

π0 = (1− φ−1)Ã(φ−1)− Ã0,

so that

π(z) =
(1− z)Ã(z)− (1− φ−1)Ã(φ−1)

φz − 1
.

B.2 Proof of Proposition 6

To begin, combine Proposition 5 with equation (39) to obtain the following lemma.

Lemma 2. Fix a (zero mean) MA(h̄) process τ for (τ ct , τ
p
t ) and set Θsym

i,t as in (22). Then

there exists an information structure consistent with Assumptions 1–3 that implements τ in

the incomplete-information economy, if and only if there exists a (zero mean) MA(h̄) process

∆τ such that

Γs(τ, ε) = −Λs(∆τ,∆f) for all s ≥ 0, (49)

where

Γs(τ, ε) ≡ Cov[τt, (dyt−s, dyt−s, εt−s)]

Λs(∆τ,∆f) ≡ Cov[∆τi,t, (∆dci,t−s,∆dyi,t−s,∆dai,t−s)].
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Equipped with Lemma 2, our proof proceeds in two steps. First, we derive the mappings

(τ, ε) 7→ Γs and (∆τ,∆f) 7→ Λs in closed form. Second, with this explicit characterization

at hand, we complete the proof by constructing processes for ∆τ and ∆f that for any given

(τ, ε) satisfy the conditions of Lemma 2.

Characterization of Γs The mapping Γs is immediate from (37),

Γs(τ, ε) = ξCov[τt, dτ
x
t−s]× [1, 1, 0] + Cov[τt, εt−s]× [1, 1, 1]. (50)

Characterization of Λs We now solve the “Delta-economy” for the endogenous law of

motions for ∆dci,t and ∆dyi,t. The equilibrium of the Delta-economy is defined by (27), (28),

(40), (41), which can be written as follows:

∆pi,t = −η−1∆yi,t + zi,t

βbi,t = bi,t−1 + ∆yi,t −∆ci,t + ∆pi,t

∆ci,t = Et[∆ci,t+1 −∆τ ci,t+1] + ∆τ ci,t

∆yi,t = ξ(∆yi,t −∆ci,t + ∆pi,t + ∆τ pi,t) + ∆ai,t

The system can be written more compactly as

Et[d∆yi,t+1] = δEt[ξ−1d∆ai,t+1 + dzi,t+1 + d∆dτ pi,t+1 − d∆τ ci,t+1] (51)

βbi,t = bi,t−1 + ξ−1(∆yi,t −∆ai,t)−∆τ pi,t (52)

where δ ≡ (η−1 + ξ−1 − 1)−1, and consumption is determined by

∆ci,t = −δ−1∆yi,t + zi,t + ∆τ pi,t + ξ−1∆ai,t. (53)

Fix some process (∆τ ci,t,∆τ
p
i,t,∆ai,t, zi,t)

′ = B(L)υi,t, where B(L) is a square-summable

matrix-polynomial in non-negative powers of the lag operator L and the vector υi,t are white

noise shocks. Conjecture

∆yi,t = ξ(β − 1)bi,t−1 + Φ(L)υi,t. (54)

Substituting (54) in (52), it must be that

Φ(L)υi,t = ξβdbi,t + ξ∆τxi,t + ∆ai,t. (55)
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Using (54) to eliminate ∆dyi,t+1 in (51), we have

(β − 1)ξdbi,t +
[
(L−1 − 1)Φ(L)

]
+
υi,t =

[
−δ δ δξ−1 δ

] [
(L−1 − 1)B(L)

]
+
υi,t (56)

where [·]+ sends the negative powers of L to zero. Further using (56) to eliminate dbi,t in

(55) and applying the z-transform, we obtain the following functional equation

(1− β−1z)Φ(z) =[
−δ δ δξ−1 δ

]
[(1− z)B(z)−B0] + Φ0 + (1− β−1)

[
0 ξ 1 0

]
B(z)z. (57)

Evaluating (57) at z = β ∈ (−1, 1), pins down Φ0 and Φ(z), from which we obtain the

following equilibrium process for d∆yi,t ≡ dy(L)υi,t and d∆ci,t ≡ dc(L)υi,t:

dy(z) =
[
−δ δ δξ−1 δ

]
(1− z)B(z) +

[
δ ξ − δ 1− δξ−1 −δ

]
(1− β)B(β) (58)

and

dci,t =
[
1 0 0 0

]
(1− z)B(z) +

[
−1 1− δ−1ξ ξ−1 − δ−1 1

]
(1− β)B(β). (59)

Collecting equations, we obtain

Λs(∆τ, f) = Cov

∆τi,t,

 1 0 0 0

−δ δ δξ−1 δ

0 0 1 0

 (1− L)B(L)υi,t−s



+ Cov

∆τi,t,

−1 1− δ−1ξ ξ−1 − δ−1 1

δ ξ − δ 1− δξ−1 −δ
0 0 0 0

 (1− β)B(β)υi,t−s

 (60)

for

∆τi,t =

[
1 0 0 0

0 1 0 0

]
B(L)υi,t.

Construction of process ∆τ and ∆f that implement (τ, ε) We complete the proof by

construction. In particular, we provide an algorithm that for arbitrary {Γs}h̄s=0 constructs

processes ∆τ and ∆f that satisfy (49).
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To begin, substitute (60) to (49), post-multiply both sides by

M ≡

1 1 0

0 δ−1 0

0 −ξ−1 1

 ,
and apply the z-transform, to obtain the equivalent functional equation

Γ̃(z) =

[
1 0 0 0

0 1 0 0

]
[
B(z)(1− z−1)B(z−1)′

]
+

1 0 0 0

0 1 0 1

0 0 1 0


′

+

+ B(z)(1− β)B(β)′

−1 1− δ−1ξ ξ−1 − δ−1 1

0 0 0 0

0 0 0 0


′ (61)

where Γ̃(z) ≡ Z{−ΓsM}s≥0 is the (one-sided) z-transform of {−ΓsM}, and whereB parametrizes

the joint process (∆τi,t,∆fi,t) as in the characterization of Γ above. In particular, let

B(L) =

Bτ (L)

Ba(L)

Bz(L)


where Bτ (z) is a lag-polynomial of size 2 × n, Ba(z) and Bz(z) are each lag-polynomials of

size 1× n, and n is an arbitrary number of innovations. Then (61) can be further rewritten

as

Γ̃1(z) + Ω(z) =
{

(1− z−1)Bτ (z)Bτ (z
−1)′
}

+
+ Ψ(z) +Bτ (z)Bτ (β)′Λ (62)

and

Γ̃2(z) =
{

(1− z−1)Bτ (z)Ba(z
−1)′
}

+
, (63)

where Γ̃1 and Γ̃2 correspond to the first two and third column of Γ̃, respectively, and where

Ψ(z) ≡
{
Bτ (z)

[
(1− β)Bz(β)′ (1− z−1)Bz(z

−1)′
]}

+

and

Ω(z) ≡ −(1− β)(ξ−1 − δ−1)
[
Bτ (z)Ba(β)′ 0

]
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and

Λ ≡

[
−(1− β) 0

(1− β)(1− δ−1ξ) 0

]
.

Fix N ≤ h̄ as the largest non-zero power of z in Γ̃. Consider the following parametric

structure for Bτ , Ba, and Bz:Bτ (z)

Ba(z)

Bz(z)

 =

λτ (z) I

λa(z) (1− z)−1λa,0

0 λz,0 + λz,1z


with

λτ (z) =
[
λτ,1 + ρz · · · λτ,N + ρNzN

]
and

λa(z) =
[
(1− z)−1λa,1 · · · (1− z)−1λa,N

]
,

and where {λa,j, λz,j} are of size 1 × 2 and {λτ,j} are of size 2 × 2. Observe that Bτ is at

most of order h̄ in line with the requirements of Lemma 2.

Condition (63) then simplifies to

Γ̃2(z) = λτ (z)λ′a + λ′a,0.

So for any λτ , it suffices to set

λa,s = ρ−sΓ̃′2,s ∀s ≥ 1, and

λa,0 = Γ̃′2,0 −
N∑
j=1

λ′τ,jλa,j

in order to satisfy orthogonality with respect to ai,t.

Regarding condition (62), we have that

Π(z) ≡ Γ̃1(z) + Ω(z)− Λ− I =
{

(1− z−1)ττ (z)ττ (z
−1)′
}

+
+ Ψ0 + λτ (z)λτ (β)′Λ

where

Ω(z) = −Γ̃2(z)
[
(ξ−1 − δ−1) 0

]
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and

Ψ0 ≡ Ψ(z) =
[
(1− β)

(
λ′z,0 + βλ′z,1

)
λ′z,0

]
.

Notice that (i) the left-hand side, Π(z), is exogenously determined by the aggregate economy

that we are trying to implement, and (ii) we have Ψ0 as a degree of freedom to induce an

arbitrary unconditional covariance on the right-hand side. Writing out the right-hand side

in the time-domain, we have

Π0 = Ψ0 − ρλ′τ,1 +
ρ2

1− ρ2
+

N∑
j=1

λτ,jλ
′
τ,j(I + Λ) +

N∑
j=1

ρjβjλτ,jΛ (64)

Πs = ρsλ′τ,s(I + Λ)− ρs+1λ′τ,s+1 + ρ2sβsΛ. (65)

Initialized at λN+1 = 0, (65) can be solved recursively backwards for a sequence {λτ,s} that

ensures orthogonality with respect to (ci,t−s, yi,t−s)s≥1. Finally, orthogonality with respect to

(ci,t, yi,t) is achieved by setting Ψ0 to satisfy (64), completing the proof.

B.3 Cyclicality of Inflation in the Quantitative Model

Here we prove a variant of Proposition 2 in the context of our quantitative model, showing

that if firms know the location of their demand curve (i.e., Θf
i,t contains both pi,t and yi,t),

then inflation must be procyclical for any expectation-driven business cycles. This holds

regardless of whether firms are price or quantity setters.30

The result is derived for the more general case where households and firms do not neces-

sarily share the same information. The case of symmetric information follows as corollary.

Proposition 7. Suppose {Wi,t−s}s≥0 ⊆ Θh
i,t and {Yi,t−s, Pi,t−s,Wi,t−s}s≥0 ⊆ Θf

i,t. Then infla-

tion must be weakly procyclical. Specifically, the correlation with the output gap is bounded

below as follows: √
Var[ŷt] ≤ ξ

Corr[ŷt, πt]

1− Corr[ŷt, ŷt−1]

√
Var[πt].

Proof. The proof proceeds in analog to the one of Proposition 2. Substituting for wi,t using

the household’s labor supply and taking first differences, orthogonality of the household

wedge with respect to dwi,t requires

Cov[τ p,hi,t , ζdni,t + dci,t + πt + dτhi,t] = Cov[τ p,hi,t , πt + dτhi,t] = 0, (66)

30Absent nominal rigidity, and given that both pi,t and yi,t are in firms’ information sets, there is no
difference between price and quantity setting.
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where the first equality exploits that by Theorem 1 τ p,hi,t ⊥ µhi,t−s and thus τ p,hi,t ⊥ (ni,t−s, ci,t−s)

for all s ≥ 0.

Similarly, substituting for wi,t using the firm’s labor demand and taking first differences,

orthogonality of the firm wedge with respect to dwi,t requires

Cov[τ p,fi,t , dai,t + dpi,t + dτ p,fi,t ] = Cov[τ p,hi,t , dτ
p,f
i,t ] = 0. (67)

Here the first equality follows as τ p,fi,t ⊥ µfi,t−0 implies τ p,fi,t ⊥ ni,t−0 for all s ≥ 0 and, hence,

τ p,fi,t ⊥ (dyi,t − dni,t + dpi,t) under the conditions of the proposition.

Subtracting (66) from (67), we have

Cov[τ pi,t, dτ
p
i,t − πt] = 0

or

(1− Corr[ŷt, ŷt−1]) ξ−1Var[ŷt]− Cov[ŷt, πt] = −
(
1− Corr[∆τ pi,t,∆τ

p
i,t−1]

)
Var[∆τ pi,t] ≤ 0,

which implies the bound given in the statement of the proposition.

C Online Appendix: Estimation of Unrestricted Wedge

Process

Here we describe the methodology for estimating the unrestricted wedges τ̂t used in Section 5.

C.1 Description of Methodology

We model the unrestricted wedges as a MA(14) process, which loads on two intrinsic inno-

vations, represented by the 2× 1 vector ut, in addition to the productivity shock εt,

τt = Φε(L)εt + Φu(L)ut,

where Φε(L) and Φu(L) are square-summable lag polynomials in non-negative powers of L,

and εt and ut are orthogonal white noise. W.l.o.g., we normalize Var[ut] = I2, leaving us to

estimate γma ≡ (Φε,Φu, σε). For this purpose, we use the generalized method of moments

(GMM) to minimize the distance between the model’s covariance structure and U.S. data on
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real per-capita output, inflation, nominal interest rates, and per-capita hours.31 Let

Ω̃T = vech{Var[(q̃data
t , . . . , q̃data

t−k )]},

denote the empirical auto-covariance matrix of frequency-filtered quarterly US data for q ≡
(yt, πt, it, nt). We target auto-covariances between zero and k = 8 quarters. For the filtering,

we use the Baxter and King (1999) approximate high-pass filter with a truncation horizon of

32 quarters, which we denote by q̃t ≡ BK 32(qt).
32

To conserve on the 91 parameters that characterize γma, we make two observations, doc-

umented in Figure 4 below. First, Ω̃T is well-described by a VAR(1) process for τt. Second, a

MA(14) truncation of the VAR(1) process that best replicates Ω̃T is almost indistinguishable

(in terms of second moments) from the VAR(1) process itself. Accordingly, we construct γma

by first estimating τt as a VAR(1) that is driven by ut and εt, and then constructing γ̂ma as

the MA(14) truncation of the estimated process.33

Let γar denote the 10 parameters characterizing the VAR(1) and σε. Then the estimator

is given by

γ̂ar = argmin
γar

(Ω̃T − Ω̃(γar))
′W−1(Ω̃T − Ω̃(γar)), (68)

where Ω̃(γar) is the model analogue to Ω̃T and W is a diagonal matrix with the bootstrapped

variances of Ω̃T along the main diagonal. To avoid the issues detailed in Gorodnichenko and

Ng (2010), our model analogue Ω̃(γar) is computed after applying the same filtering procedure

to the model that we have applied to the data.

A final challenge for estimating the model is that filtering the model can be computa-

tional expensive. We address this issue by proving the following equivalence results (see

Appendix C.3 for proof).

Lemma 3. Estimator (68) is equivalent to

γ̂ar = argmin
γar

(ΩT − Ω(γar))
′W̃−1(ΩT − Ω(γar)), (69)

where Ω ≡ vech{Var[(dst, . . . , dst−K)]} and W̃ ≡ (Ξ′W−1Ξ)
−1

for K = k + 2τ̄ . The trans-

31Data range from 1960Q1 to 2012Q4. Real output is given by nominal output divided by the GDP
deflator. Inflation is defined as the log-difference in the GDP deflator. Interest rates are given by the Federal
Funds Effective rate. Hours are given by hours worked in the non-farm sector. Variables are put in per-capita
terms using the non-institutional population over age 16.

32The Baxter and King (1999) filter requires specification of a lag-length τ̄ for the approximation. We set
τ̄ to their recommended value of 12.

33Our estimator penalizes excessively persistent dynamics beyond the usual business cycle horizon by
imposing a numerical penalty on impulse responses beyond 32 quarters.
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Figure 4: Business cycle comovements in the data and predicted by the estimated model. Note.—All
covariances are multiplied by 100 to improve readability. Dashed black lines show the empirical covariance
structure Ω̃T together with 90 percent confidence intervals depicted by the shaded areas. Solid blue lines
show the corresponding model moments for the VAR(1) case, Ω̃(γ̂ar). Red dots show the model moments for
the truncated MA(14) case, Ω̃(γ̂ma). Each row i and column j in the table shows the covariances between q̃it
and q̃jt−k with lags k ∈ {0, 1, . . . , 8} depicted on the x-axis.

formation matrix Ξ is defined in (74).

The lemma establishes an exact equivalence (as opposed to an asymptotic equivalence)

between the original GMM estimator (68) and an alternative estimator where the unfiltered

model is estimated (in first differences) on unfiltered data and the filtering is achieved by

replacing W with W̃ . Using (69) in place of (68), estimation becomes straightforward as the

mapping from γar to Ω(γar) is available in closed form.

C.2 Fit

Figure 4 compares the predicted model moments with the targeted data moments. The

dashed black lines show the empirical covariance structure Ω̃T along with 90-percent con-
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fidence intervals (depicted by the shaded areas). The solid blue and red lines show the

corresponding moments for the estimated model for the VAR(1) and MA(14) truncation of

the wedges, respectively. Each row i and column j in the table of plots shows the covariances

between q̃it and q̃jt−k with lags k ∈ {0, 1, . . . , 8} depicted on the horizontal axis. Despite the

parametric restriction on τt and at and the fact that we have less shocks than data series, the

unrestricted-wedge model does a very good job at capturing the auto-covariance structure

of the four time series. In addition, there is no notable difference between the VAR(1) and

MA(14) truncation of τt.

C.3 Proof of Lemma 3

Let

J =
(

Ω̃T − Ω̃(γ)
)′
W−1

(
Ω̃T − Ω̃(γ)

)
(70)

denote the penalty function in terms of BK-filtered moments, where the filter is applied

to both the data and the model. In this appendix, we demonstrate how the penalty

can be expressed in terms of the variance over unfiltered first-differenced moments, Ω ≡
vech

{
Var

(
dqtt−K

)}
, where d is the first-difference operator, and K ≡ k+2τ̄ with τ̄ denoting

the approximation horizon of the BK-filter.34 Specifically, for any positive-semidefinite W

we show that J in (70) is equivalent to

J = (ΩT − Ω(γ))′ W̃−1 (ΩT − Ω(γ)) , (71)

with W̃ ≡ (Ξ′W−1Ξ)
−1

replacing W (a closed-form expression for Ξ is given below).

The Baxter and King (1999) filtered version of st takes the form

q̃t =
τ̄∑

j=−τ̄

ajqt−j

where q̃t is stationary by construction. For the high-pass filter used in this paper, the weights

{aj} are given by

aj = ãj −
1

2τ̄ + 1

τ̄∑
j=−τ̄

ãj

34The first-difference filter is applied to the unfiltered variables to ensure stationarity for variables that
have a unit root. Our transformation includes an adjustment term that corrects for the fact that the filtered
moments in Ω̃ are about levels rather than first-differences.
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with

ã0 = 1− ω̄/π, α̃j 6=0 = − sin(jω̄)/(jπ), ω̄ = 2π/32.

To construct the filter-matrix Ξ, rewrite q̃t in terms of growth rates to get

q̃t =
τ̄∑

j=−τ̄

∞∑
l=0

ajdqt−j−l.

Noting that
∑τ̄

j=−τ̄ aj = 0, we can simplify to get

q̃t = Bdqt+τ̄t−τ̄−j

where

B = [b−τ̄ , . . . , bτ̄ ]⊗ In, (72)

n = 4 is the number of variables in q̃t, and bs =
∑s

j=−τ̄ αj.

Letting Lj define the backshift matrix

Lj =
[
0n(2τ̄+1),nj, In(2τ̄+1), 0n(2τ̄+1),n(k−j)

]
, (73)

we then have that

Σ̃j ≡ Cov(q̃, q̃t−j) = BL0ΣKL′jB
′,

or, equivalently,

vec(Σ̃j) = (BLj ⊗BL0) vec(ΣK).

To complete the construction of Ξ, define selector-matrices P0 and P1 such that

vech(Σ̃k) = P0


vec(Σ̃0)

...

vec(Σ̃k)


and

vec(ΣK) = P1vech(ΣK).

Stacking up vec(Σ̃j), we then get

Ω̃ = ΞΩ
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where

Ξ = P0


BL0 ⊗BL0

...

BLk ⊗BL0

P1 (74)

with B and Lj as in (72) and (73). Substitution in (70) yields (71).

D Online Appendix: Comparative Statics With Coun-

tercyclical Inflation

In analogue to Figure 2, we explore comparative statics with respect to the parametrization

of the micro-shocks, but for the case where inflation is countercyclical with γŷπ = −.3. The

results, shown in Figure 5, display the same qualitative pattern as for the procyclical case

explored in the main text. While the maximal volatility is higher, we again see a clear positive

relationship between σmax
ŷ and the volatilities of the micro shocks. As before, the impact of

idiosyncratic demands shocks is most relevant, paralleling their key role in the procyclical

case.

Here we do not include the cases without demand uncertainty (pi,t ∈ Θf
i,t), because in line

with our discussion in the main text, in these cases inflation is necessarily procyclical (see

Appendix B.3 for a formal proof). Intuitively, this reflects again the discrepancy in propa-

gation underlying the pro- and countercyclical inflation cases: While procyclical inflation is

tied to nominal misperception and expectation errors about aggregate prices, countercylical

inflation is tied to expectation errors regarding local demand, and thus is impossible to im-

plement when pi,t is observed by firms. (See also the explanations given in the context of

Figure 1.)
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Figure 5: Analogue to Figure 2 with countercyclical inflation. The graphs show the maximal output
volatility σmax

ŷ (denominated in percentage deviations from the balanced growth path) that can be generated
by incomplete information for the case where ρŷ = .9 and γŷπ = −.3.
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