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Abstract

Over the last 15 years, kidney exchange has become a mainstream paradigm to increase

transplants. However, compatible pairs do not participate, and the full benefits from exchange

can be realized only if they do. We propose incentivizing compatible pairs to participate

in exchange by insuring their patients against future renal failure via increased priority in

the deceased-donor queue. Efficiency and equity analyses of this scheme are conducted and

compared with that of kidney exchange in a new dynamic continuum model. We calibrate the

model with US data and quantify substantial gains from adopting incentivized exchange in

efficiency and access equity.
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sonmezt@bc.edu
‡Boston College, Department of Economics and Distinguished Research Fellow at Koç University; unver@bc.edu
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1 Introduction

While transplantation is the best remedy for end-stage renal disease, a severe shortage of trans-

plant kidneys persists worldwide. Kidneys for transplantation can be harvested from deceased or

living donors. As of February 2018, more than 280,000 kidney transplants from deceased donors

and more than 145,000 from living donors have been performed in the US. The number of willing

living donors has been considerably higher than the number of living-donor transplants performed,

but intended gifts of a large fraction of potential donors have not materialized due to biological

incompatibilities. More than thirty percent of potential living donors are blood-type incompatible,

and about five percent are tissue-type incompatible, with their intended recipients. Blood type

O patients are especially disadvantaged by these biological barriers because they are blood-type

compatible with type O donors only. In contrast, blood type A patients are blood-type compatible

with donors of types A and O, blood type B patients are blood-type compatible with donors of

types B and O, and blood type AB patients are blood-type compatible with donors of all blood

types.1 The resulting disadvantage to type O patients is mitigated in deceased-donor transplants

by a policy that reserves type O kidneys for type O patients, but a similar policy is not possible for

living-donor transplants since a living-donor kidney is intended as a gift for a loved one.

Kidney exchange emerged as a transplantation modality over the last 15 years to lessen the

prohibitive effects of biological barriers on living-donor transplantation. In its most basic form, a

kidney exchange is a swap of donors between two patients who are each incompatible with their own

donor but compatible with the other patient’s donor. Both donors’ intended gifts are materialized

through the exchange, providing each patient with a transplant. However, type O patients are

again less likely to benefit from this transplantation modality. Consider a type O patient unable

to receive a transplant from his blood-type incompatible type A donor. The pair can potentially

swap donors with a type A patient who has a type O donor; but being blood-type compatible,

these pairs are rare, only arriving when they are tissue-type incompatible. Hence, a large number

of “underdemanded” type O patients with type A donors compete for a relatively scarce population

of “overdemanded” type A patients with type O donors.2 Ironically, these pairs with highly sought-

after type O donors become available for exchange only because of a tissue-type incompatibility. A

biological barrier to transplantation results in an increase in the number of living-donor transplants

by facilitating a welfare-increasing utilization of living donors.

Of course the competition for an exchange would not be so unfavorable for type O patients with

blood-type incompatible donors if all pairs participated in kidney exchange rather than only incom-

patible pairs. Indeed, when a clearinghouse for organized kidney exchange was initially proposed,

market designers advocated a mechanism where all pairs would participate in exchange, whether

they are compatible or not (Roth, Sönmez, and Ünver, 2004). However, since patients with compat-

1For the US, 45.6 percent of the population is blood type O, 37.8 percent of the population is blood type A, 12.6
percent of the population is blood type B, and 4 percent of the population is blood type AB.

2Based on 2012-2014 data from the three largest kidney-exchange clearinghouses in the US, the percentage of
pairs with type O patients was in the range 58.4–60.7 percent and the percentage of pairs with type O donors was
in the range 30.8–33 percent (Agarwal et al., 2017).
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ible donors are in no need of an exchange for a transplant, the practice of kidney exchange evolved

mostly without them. Despite the resulting suboptimal utilization of living donors, no kidney ex-

change system currently offers any incentives for compatible pairs to participate in exchange. This

gap is the motivation of our paper. Our main contribution is the introduction and analysis of an

incentive scheme that encourages compatible pairs to participate in kidney exchange. The incentive

we propose is in the form of priority in the deceased-donor queue in the event the patient needs a

repeat transplant, thus serving as an insurance against a future kidney failure.3 While our proposed

incentive scheme can be offered to all compatible pairs, we analyze a version where the target group

is the set of “overdemanded” pairs. These are compatible pairs where the blood types of the donor

and the patient differ when either the donor is of type O or the patient is of type AB. For these

pairs, the donor has a more highly sought-after blood type than the patient, and their participation

in exchange directly results in an additional transplant to the patient of an “underdemanded” pair.

Potential welfare gains of our incentive scheme are considerable. Using data from the US, our

numerical analysis in Section 5 suggests that the marginal contribution of incentivized exchange

to the number of living-donor transplants can even exceed that of kidney exchange itself: In the

absence of kidney exchange, 44.17 percent of patients with living donors fail to receive a transplant

from their donors. With kidney exchange, the percentage of unutilized living donors reduces to 33.69

percent. Assuming that half of the target group participate in incentivized exchange, the percentage

of unutilized living donors further reduces to 24.01 percent. In the limit, when all compatible pairs

of the target group participate, the percentage of unutilized living donors reduces to 14.33 percent.

While the primary role of incentivized exchange is to increase the number of living-donor trans-

plants, it also improves equity in access both for living-donor transplants and deceased-donor trans-

plants. Equity in access is one of the main objectives of the Organ Procurement and Transplantation

Network (OPTN), the body which oversees the allocation of transplant organs in the US.4 In the

November 2016 OPTN report on equity in access, patient blood type was identified as one of the

three main contributors to inequity in deceased-donor transplantation.5 Based on this report (and

consistent with our numerical analysis in Section 5), patients of blood types O and B are disadvan-

taged in the US compared to patients of blood types A and AB. Incentivized exchange improves

3A living donor already receives priority in the deceased-donor queue in the event of a kidney failure.
4Effective March 16, 2000, the US Department of Health and Human Services (HHS) implemented a

Final Rule establishing a regulatory framework for the structure and operations of the OPTN. The pri-
mary goal of the OPTN is “to increase and ensure the effectiveness, efficiency, and equity of organ shar-
ing in the national system of organ allocation,” and “to increase the supply of donated organs available
for transplantation” (Duda, 2005). Initially, the Final Rule only regulated allocation of deceased-donor or-
gans. Since June 2006, its scope has been extended to include living-donor organs: “Under 42 CFR
121.4(a)(6), the Secretary directs the OPTN to develop policies regarding living organ donors and living or-
gan donor recipients, including policies for the equitable allocation of living-donor organs, in accordance with
section 121.8 of the final rule.” (See https://www.federalregister.gov/documents/2006/06/16/E6-9401/

response-to-solicitation-on-organ-procurement-and-transplantation-network-optn-living-donor).
5The other two are donor service area and patient PRA, which indicates the likelihood of tissue-type incompat-

ibility for a patient. The primary way to reduce inequity to high PRA patients is increasing the pool size. Hence,
incentivized exchange can be expected to contribute to this objective as well. Moreover, incentivizing all compatible
pairs rather than only overdemanded-type pairs can have a more pronounced benefit for high PRA patients. The
report is available at https://optn.transplant.hrsa.gov/media/2159/equity_in_access_report_201705.pdf.
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equity in access for living-donor transplantation, mainly by increasing transplants to type O patients

through donor exchanges with incentivized pairs. This in turn also improves equity in access for

deceased-donor transplantation, since type O patients who benefit from incentivized exchange no

longer compete for deceased-donor transplants. Blood types O and B are more heavily represented

among minority groups, and hence any disadvantage to patients of these blood types also correlates

with an inequity of access across different ethnic backgrounds. As such, incentivized exchange also

reduces disparities across racial and ethnic groups. To our knowledge, our proposed policy is the

first to enhance both the efficiency and equity of the system.6

To analyze the efficiency and equity implications of incentivized exchange, we introduce a new

and analytically tractable dynamic large-market model of kidney transplantation.7 Unlike former

models that focus on a single organ-allocation technology, our model can be used to analyze the

impact of various technologies and policies that are often used together and that interact with each

other. Through our model, we analytically show that, while all primary technologies increase overall

access to kidney transplants, living-donor transplantation and kidney exchange also reduce equity

in access. In contrast, not only is the overall access to transplants increased under incentivized

exchange, equity in access is also improved.

1.1 Literature Review

Kidney exchange was originally proposed by Rapaport (1986) and later formulated and analyzed

as a market-design problem by Roth, Sönmez, and Ünver (2004, 2005b, 2007). The idea of including

compatible pairs in kidney exchange was initially evaluated by Ross and Woodle (2000) and further

explored by Roth, Sönmez, and Ünver (2004, 2005a), Sönmez and Ünver (2014), and Nicolò and

Rodŕıguez-Álvarez (2017) in market-design settings. Although this idea was immediately dismissed

by Ross and Woodle (2000) on ethical grounds, it has been receiving wider acceptance in recent

years (see, for example, Veatch, 2006, Kranenburg et al., 2006, Gentry et al., 2007, Ratner et al.,

2010, Steinberg, 2011, and Ferrari et al., 2017). The proof of concept involving exchanges with

compatible pairs is documented in Ratner et al. (2010). That study also reports the results of

a survey conducted among compatible patient-donor pairs. The pairs’ attitudes toward exchange

were largely positive, especially if the patient benefitted from the exchange in some form. From a

medical ethics perspective, Veatch (2006) and Steinberg (2011) also advocated for incentives. The

6ABO-i deceased-donor allocation policy treats different blood types the same way. Therefore, it can be viewed
as a procedurally or ex-ante egalitarian policy. However, because of the interaction of the deceased-donor queue
with the other transplantation technologies and because the donor to patient ratio for different blood types are not
the same in practice, the waiting times can vary a lot across different blood types. Therefore, this policy results in
waiting times that are not equal. Our proposal reduces the difference between the longest and shortest waiting times
for different blood type deceased-donor queues in comparison to the regular exchange (see Table 3). Therefore, the
incentivized exchange may be better than the regular exchange for a social planner who exhibits ex-post inequality
aversion. See Grant et al. (2012) for a study of an ex-post egalitarian social welfare function.

7While traditional matching models mostly focus on static, discrete settings, the use of large-market and con-
tinuum models has become increasingly common over the last decade, especially in the context of market-design
applications. These models include Kojima and Pathak (2009), Che and Kojima (2010), Lee (2017), Azevedo and
Budish (2012), Azevedo and Leshno (2016), Kojima, Pathak, and Roth (2013), Liu and Pycia (2013), and Ashlagi
and Roth (2014). See also Ünver (2010), Baccara, Lee, and Yariv (2016), Anderson et al. (2017), and Akbarpour,
Li, and Oveis-Gharan (2017) for dynamic matching models.
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literature also explored providing incentives through exchanging the donor of a compatible pair with

a younger or genetically closer donor (see Roth, Sönmez, and Ünver, 2004, Ferrari et al., 2017, and

Nicolò and Rodŕıguez-Álvarez, 2017). Such schemes not only can incentivize a limited number of

compatible pairs, they can also deter participation due to uncertain and prolonged waiting times.

Our proposal is the first one we are aware of that can globally and ex ante provide incentives to

compatible pairs using tools that are already acceptable within the transplantation community.8

2 A Dynamic Model of Kidney Transplantation

Consider patients who need a kidney transplant, where each patient has a blood type X ∈ {O, A,

B, AB}. Let πX > 0 be the inflow rate of new type X patients; that is πXdt is the measure of type

X patients who enter in a small time interval dt. Suppose that the expected lifetime while living

with kidney disease is distributed with a continuous and strictly increasing distribution function

F (·) on the interval [0, T ]. Then the measure of blood type X patients who are alive after t years

is given by πX [1 − F (t)]. In the steady state of this model, when a transplantation option is not

present, the total mass of type X patients is
∫ T
0
πX [1− F (t)]dt.

2.1 Biological Barriers to Kidney Transplantation

The best remedy for kidney failure is transplantation. There are two potential biological bar-

riers for kidney transplantation. A patient must be both blood-type compatible and tissue-type

compatible with a potential donor to be able to receive his kidney. Type O donors are blood-type

compatible with patients of all four blood-types, type A donors are blood-type compatible with

patients of blood types A and AB, type B donors are blood-type compatible with patients of blood

types B and AB, and type AB donors are blood-type compatible with patients of only blood type

AB. Hence, other things being equal, type O patients are at a disadvantage in finding a blood-type

compatible kidney donor. We denote blood-type compatibility through a “donation” relation . over

blood types, such that X . Y means that type X donors are blood-type compatible with type Y

patients.

The second potential biological barrier for kidney transplantation is a tissue-type incompati-

bility. Transplantation is not possible if the patient has preformed antibodies against the donor

DNA. To simplify the exposition in the main text, we assume that the probability of tissue-type

incompatibility is uniform at θ between a donor and a random patient where 0 < θ < 1.9 Hence, a

patient can receive a kidney transplant from a blood-type compatible donor with probability (1−θ).
For an average patient, θ ≈ 0.05 according to latest data from the OPTN.10

8Indeed, after the initial draft of our paper became available, Veale et al. (2017) reported three uses of a variant
of our intertemporal insurance scheme, leading to 25 transplants through chain exchanges. This scheme is utilized
as follows: The old living donor of a younger patient, who likely will need a kidney transplant in the future, initiates
a chain of exchanges in the present by donating to an incompatible pair. In return, the patient receives priority for
a kidney at the end of a similar future chain when his kidney fails. The donor has a short donation window due to
her old age, and the insurance scheme helps other pairs to receive transplants through chain exchanges in present,
in addition to insuring the potential patient originally paired with the donor.

9We relax this assumption in Appendix D, allowing a non-uniform probability of tissue-type incompatibility
between a donor and patients of different types. This appendix also provides micro foundations for our results.

10This is according to the average calculated panel reactive antibody (CPRA) data of kidney deceased-donor queue
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2.2 Deceased-Donor Transplantation

The most common source of transplant kidneys in the US (and in much of the western world)

is deceased donors. The United Network for Organ Sharing (UNOS) is the federal contractor in

charge of allocating deceased-donor organs in the US, and it uses a point system for kidneys. Since

deceased-donor organs perish within a very short period, they are allocated as soon as they are

harvested. Two important features of the UNOS deceased-donor kidney allocation system are that

the waiting time in the queue is the most significant part of the point system and kidneys are

reserved for patients with the same blood type, with the exception of blood-type A kidneys that

can also be allocated to blood-type AB patients.

In the medical literature, reserving blood-type X organs to blood-type X patients is referred to as

ABO-identical (ABO-i) allocation policy. Since blood type AB is relatively rare, ABO-i policy is

a good approximation for the allocation of deceased-donor kidneys in the US. And given the strong

influence of waiting time in the deceased-donor queue, we will assume that deceased-donor kidneys

are allocated with first-in-first-out (FIFO) matching technology.

Let δX be the inflow rate of type X deceased-donor kidneys. There is a shortage of deceased-

donor kidneys in practice, so we assume that δX < πX for each blood type X. When a transplanted

kidney eventually fails, the recipient reenters the deceased-donor queue as if he were a new patient.

We assume that repeat patients’ survival function is the same as the new entrants’. Let φd be the

fraction of the steady-state flow of previous recipients who reenter the deceased-donor queue due

to a failure of the transplant. Then φdδX is the steady-state flow of type X repeat patients.

At any time the longest-waiting cohort of type X patients receive the incoming type X deceased-

donor kidneys. Let this cohort have arrived td,decX years before the current time. Assuming deceased-

donor kidneys are the only source of transplants, at steady state we have

[πX + φdδX ][1− F (td,decX )] = δX .

Hence, the time spent on the type X queue at steady state, or equivalently the transplant waiting

time for type X patients, can be found as

td,decX = F−1
(

1− δX
πX + φdδX

)
.

2.3 Living-Donor Transplantation

Living-donor transplantation is the second major source of transplant kidneys. In 2017, 29

percent of kidney transplants in the US were from living donors. Let λX fraction of blood-type X

patients have a living donor who immediately becomes available for donation once the patient needs

a transplant. Patients with no living donors are referred to as unpaired patients. In Section 2.2,

we assume that the inflow of patients is higher than the inflow of deceased-donor kidneys for each

blood type. In the rest of the paper, we strengthen this assumption and assume that the inflow

of unpaired patients is higher than the inflow of deceased-donor kidneys for each blood type. This

registrations from the OPTN. CPRA measures the percentage of the US population against which the patient would
have tissue-type incompatibility, retrieved from http://optn.transplant.hrsa.gov on 04/05/2018.
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assumption easily holds in the US and elsewhere. We assume that each patient has at most one

living donor, who is of blood type X with probability pX > 0, and also assume that blood types

of the patient and his donor are uncorrelated. Then a blood type X patient with a living donor is

(both blood-type and tissue-type) compatible with his donor with probability plX , where

plO = (1− θ)pO, plA = (1− θ)(pO + pA),

plB = (1− θ)(pO + pB), and plAB = (1− θ)(pO + pA + pB + pAB) = (1− θ).

We assume that a patient with a compatible living donor receives the kidney as soon as he needs a

transplant without ever entering the deceased-donor queue. Then the flow of blood-type X patients

who receive a living-donor transplant from their donors is

lX = plXλXπX .

Although they last longer than deceased-donor transplants, living-donor transplants can also fail.

Let φl ≤ φd be the steady-state fraction of living-donor transplant recipients who reenter the

deceased-donor queue due to failure of their transplant. We assume that reentrants no longer have

a donor upon reentry.

For each blood type X, the availability of living-donor transplantation decreases the flow of new

patients to the deceased-donor queue by lX , but a fraction of that figure, φllX , reenter due to failure

of living-donor transplants. Therefore, the net steady-state flow of patients entering or reentering

the blood-type X deceased-donor queue is given as

πl,dec
X = πX + φdδX + φllX − lX = πX + φdδX − (1− φl)plXλXπX .

Observe that, for each blood type X, the availability of living-donor transplantation reduces the

steady-state flow of patients entering the deceased-donor queue by (1 − φl)plXλXπX . Hence, the

availability of living-donor transplantation uniformly benefits all patient groups. However, when

the fraction of patients with living donors is the same for all blood types, the benefit is largest for

type AB and smallest for type O patients. Furthermore, since pA > pB, the benefit is larger for

type A patients than for type B patients.

At any time the longest-waiting cohort of type X patients without compatible donors receive

the incoming type X deceased-donor kidneys. Let this cohort have arrived tl,decX years before the

current time. At steady state, we have πl,dec
X [1 − F (tl,decX )] = δX , and therefore the time spent on

the type X deceased-donor queue by the receiving cohort can be found as

tl,decX = F−1

(
1− δX

πl,dec
X

)
= F−1

(
1− δX

πX + φdδX − (1− φl)plXλXπX

)
< td,decX .

3 Kidney Exchange

While the availability of living donation benefits all patient groups, not all willing living donors

are able to donate due to an incompatibility with their intended recipients. Despite this difficulty,

an increasing number of patients with incompatible living donors are receiving kidney transplants

through an exchange of donors with other incompatible patient-donor pairs.

Formally, a two-way kidney exchange matches two “mutually compatible” patient-donor pairs:
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the patient of the first pair is compatible with the donor of the second pair, and the patient of the

second pair is compatible with the donor of the first pair. Through an exchange of donors, both

patients receive a kidney transplant. While patients with compatible donors can also participate

in such exchanges, their participation so far has been very limited since they can directly receive

a transplant from their own donors. Hence, in this section we will restrict our attention to kidney

exchanges between incompatible pairs.

We consider a kidney-exchange program that operates in parallel with the deceased-donor queue.

A patient with a compatible donor immediately receives a transplant from his donor without entering

either the deceased-donor queue or the kidney-exchange pool. A patient with an incompatible donor,

on the other hand, joins both the deceased-donor queue and the kidney-exchange pool. The patient

accepts the first available kidney through these two programs.

We refer to a pair with a blood-type X patient and a blood-type Y donor as a type X-Y pair.

In real-life applications, there are far fewer type A-O pairs in kidney-exchange pools than their

reciprocal type, O-A pairs. The reason is that pairs of the former type are blood-type compatible,

so they only join the pool when they are tissue-type incompatible. This is a relatively rare event

with θ ≈ 0.05. Pairs of the latter type, on the other hand, are blood-type incompatible, and they

always join the pool. This motivates:

Assumption 1 For any two distinct blood types X, Y with X . Y, θpXλY πY ≤ pY λXπX .

That is, the inflow of type X-Y pairs (who always join the pool) is at least as much as the inflow of

type Y-X pairs (who only join the pool when they are tissue-type incompatible). Since θ is small,

this assumption easily holds in practical applications.11

To simplify the presentation of our analytical results, we also assume that the inflow of type

B-A pairs is at least as much as the inflow of type A-B pairs. This assumption is superfluous and

symmetric results hold if the inequality is reversed.

Assumption 2 pAλBπB ≥ pBλAπA.

Since there are far fewer type A-O pairs in the pool than their reciprocal type O-A pairs by

Assumption 1, it is possible to match every A-O pair as soon as they arrive. While an arriving type

A-O pair is tissue-type incompatible with a θ fraction of type O-A pairs in the pool, it is mutually

compatible with a much larger fraction (1 − θ). Similarly, for any two distinct blood types X, Y

with X . Y, it is possible to match every type Y-X pair as soon as they arrive. This is also the

case for any type A-B pair by Assumption 2. It turns out that this simple procedure is an optimal

exchange mechanism.

Theorem 1 (ABO-identical exchange is optimal) Suppose Assumptions 1 and 2 hold. Then

the exchange policy where an arriving incompatible pair is immediately matched with a mutually

compatible pair of its reciprocal type maximizes the measure of transplants to pairs arriving at that

11Based on 2012-2014 data from the three largest kidney-exchange clearinghouses in the US, the percentage of
“underdemanded” O-A, O-B, O-AB, A-AB, B-AB pairs was in the range 41.9-43.1 percent and the percentage of
“overdemanded” A-O, B-O, AB-O, AB-A, AB-B pairs was in the range 14-15.2 percent (Agarwal et al., 2017).
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instance. Moreover, this policy maximizes the mass of pairs who arrive in any interval that can be

matched within that interval.

Observe that the structure of the above described optimal exchange can also accommodate FIFO

matching where, whenever possible, an arriving type X-Y pair is matched with the longest waiting

pair of its reciprocal type Y-X. This is the kidney-exchange mechanism we consider in this paper.

3.1 Effect of Kidney Exchange on Patients with Living Donors

The following grouping of transplants from kidney exchange is not only helpful to explain the

effect of exchange on patients with living donors, but also to highlight the welfare loss that results

from excluding compatible pairs from exchange.

1. For each blood type X, transplants due to tissue-type incompatible pairs of type X-X: While

these patients are blood-type compatible with their donors, they are tissue-type incompatible.

Kidney exchange renders tissue-type incompatibility immaterial for them, since each one can

be matched with a mutually compatible pair of identical type as soon as they join the kidney-

exchange pool. The net increase in the flow of transplants at steady state is θpXλXπX for each

blood type X.

2. For each pair of distinct blood types X, Y with X . Y, transplants due to tissue-type incompatible

pairs of type Y-X: Tissue-type incompatibility becomes immaterial for such patients as well,

since they too can be matched with a mutually compatible pair as soon as they join the kidney-

exchange pool. However, the net increase in the flow of transplants at steady state is 2θpXλY πY ,

since each tissue-type incompatible pair of type Y-X also facilitates a transplant for a patient of

its reciprocal type X-Y.

3. Transplants due to pairs of types A-B and B-A: For patients of type A-B (which has a lower

inflow than type B-A under Assumption 2), both blood-type and tissue-type incompatibility

become immaterial; they can immediately be matched with a pair of type B-A. The net increase

in the flow of transplants at steady state is 2pBλAπA, since each pair of type A-B also facilitates

a transplant for a patient of type B-A.

Intuitively, kidney exchange eliminates tissue-type incompatibility from being a barrier to a

living-donor transplantation, and, in doing so, it also facilitates an additional transplant to a patient

with a blood-type incompatible donor. In addition, it also facilitates transplants to all patients of

type A-B, and as many transplants to patients of type B-A. For pairs with O or AB patients,

kidney exchange is directly tied to tissue-type incompatibility. Pairs with blood type AB patients

in the kidney-exchange pool join the pool only because they are tissue-type incompatible with their

own donor. Pairs with blood type O patients in the pool, on the other hand, can only receive a

transplant if a mutually compatible pair of their reciprocal type becomes available for exchange

through a tissue-type incompatibility. As a result, the effect of kidney exchange on patient groups

of types O and AB is modest compared to its effect on patient groups of types A and B. (See also

Theorem 2-Part 2 in Section 4.4.) Indeed, in the absence of tissue-type incompatibility (i.e., for

θ = 0), the effect of kidney exchange would be exclusively limited to patients of types A and B.
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Let eX denote the steady-state flow of type X patients who receive a transplant through kidney

exchange. For blood type O and any blood type Y, a flow θpOλY πY of type O-Y pairs are matched

with type Y-O pairs. Therefore, eO = θpO(λOπO + λAπA + λBπB + λABπAB). Similarly,

eA = θpA(λAπA + λABπAB) + θpOλAπA + pBλAπA,

eB = θpB(λBπB + λABπAB) + θpOλBπB + pBλAπA, and

eAB = θ(pAB + pA + pB + pO)λABπAB = θλABπAB.

We can summarize the effect of kidney exchange on pairs with living donors as follows:

1. Type A-B & each type X-Y with Y . X: Each patient of these types either immediately receives

a transplant from his own donor or immediately receives a transplant through kidney exchange.

In either case, they immediately drop from the deceased-donor queue.

2. Type B-A & each type X-Y with X 6= Y and X . Y: Patients of these types join both the kidney-

exchange pool and the deceased-donor queue. They wait for a transplant, and hence some do

not survive.

(a) For any of these types X-Y, if the wait in the kidney-exchange pool is less than the wait in the

blood type X deceased-donor queue, then all surviving pairs of type X-Y receive a transplant

through exchange, and none of them receive a transplant from the deceased-donor queue.

(b) Since all patients of type X-Y receive the first available kidney, the wait in the kidney-exchange

pool cannot be more than the wait in the blood type X deceased-donor queue. If the wait

for the kidney-exchange pool X-Y is the same as the blood type X deceased-donor queue,

then patients of type X-Y pool with unpaired patients of blood type X. Among those who

survive, some receive a transplant through exchange and others receive a transplant from the

deceased-donor queue.

3.2 Effect of Kidney Exchange on Deceased-Donor Queues

The effect of kidney exchange on the type AB deceased-donor queue is very similar to the effect

of living donation, and it is more straightforward than the other blood types. That is because type

AB patients who receive a transplant through kidney exchange do so as soon as they become sick

without waiting. Indeed, between living donation and kidney exchange, all type AB patients with

living donors immediately receive a transplant, completely bypassing the deceased-donor queue

where patients without donors wait. Therefore, the availability of kidney exchange along with

living donation decreases the flow of incoming patients to the type AB deceased-donor queue by

lAB + eAB = λABπAB, but a fraction of that figure, φlλABπAB, reenter due to failure of living-donor

transplants. Therefore, the net inflow of patients entering or reentering the type AB deceased-donor

queue is given as

πe,dec
AB = πAB + φdδAB − (1− φl)λABπAB = (1− λAB)πAB + φdδAB + φlλABπAB.

At steady state, we have πe,dec
AB [1− F (te,decAB )] = δAB, and, therefore, the time spent on the type AB

deceased-donor queue can be found as

te,decAB = F−1

(
1− δAB

πe,dec
AB

)
= F−1

(
1− δAB

(1− λAB)πAB + φdδAB + φlλABπAB

)
< tl,decAB < td,decAB .
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For the other blood types, the effect of kidney exchange on the deceased-donor queue is more

involved. That is because some of the type A, B, or O patients with living donors have to wait for

a kidney exchange. And if the wait becomes too long, they are pooled with unpaired patients for

deceased-donor kidneys. For blood type A, patients of type A-AB are the only ones who have to wait

for a kidney exchange. Patients of types A-B, A-A, and A-O all receive their transplants as soon

as they become sick (either from their own donors or through exchange). Therefore, only patients

of type A-AB may have to be pooled with unpaired type A patients in the deceased-donor queue,

if a transplant through exchange does not become available before a deceased-donor transplant.

The flow of type A-AB to the kidney-exchange pool is pABλAπA, whereas the flow of their

reciprocal type, AB-A, to the kidney-exchange pool is θpAλABπAB. Therefore, in the absence of a

deceased-donor queue, the steady-state waiting time for kidney exchange is

tA−AB = F−1
(

1− θpAλABπAB
pABλAπA

)
for type A-AB. In contrast, the steady-state flow of patients to the type A deceased-donor queue

in the absence of patients of type A-AB is

πuA = (1− λA)πA + φdδA + φl[lA + eA]

and the waiting time at the type A deceased-donor queue is

tuA = F−1
(

1− δA
πuA

)
.

Therefore, if tA−AB ≤ tuA, then patients of type A-AB exclusively participate in kidney exchange

after a wait of tA−AB, whereas unpaired type A patients wait at the deceased-donor queue for a

period of tuA. If, on the other hand, tA−AB > tuA, then the two groups are pooled and the waiting

time for the type A deceased-donor queue becomes

F−1
(

1− δA + θpAλABπAB
πuA + pABλAπA

)
.

Observe that the two groups are pooled if and only if

δA
πuA

>
θpAλABπAB
pABλAπA

,

since the supply-to-demand ratio is more favorable for the deceased-donor queue than the kidney-

exchange pool. Since θ is very small, the pooling outcome is expected for the US population.

The analysis is similar for types B and O, but the pooling procedure can have one additional

step for type B and two additional steps for type O. For the case of type B, patients of types B-AB

or B-A may potentially be pooled with unpaired type B patients for the deceased-donor queue. For

the case of type O, patients of types O-AB, O-A, or O-B may potentially be pooled with unpaired

type O patients for the deceased-donor queue. (See Appendix A.2 and Theorem 4 therein for a

detailed analysis.)

4 A New Proposal: Incentivized Exchange

In Section 3, we have seen that kidney exchange increases transplants from living donors. How-

ever, exchanges at present are almost exclusively utilized by incompatible pairs, limiting their

11



welfare impact. To see how the exclusion of compatible pairs affects the gains from exchange, it is

helpful to focus on the grouping in Section 3.1.

The critical types of exchanges are those in group 2: For any two distinct blood types X,

Y with X . Y, a tissue-type incompatible Y-X pair exchanges its donor with a X-Y pair. To

simplify the discussion, let X=O and Y=A. Through this exchange, the patient of the tissue-type

incompatible A-O pair immediately receives a transplant from the donor of the O-A pair. Hence, in

the presence of kidney exchange, whether the A-O pair is tissue-type incompatible or not does not

affect when or if its patient receives a transplant. But more essentially, this exchange also benefits

an A-O pair. In a way, kidney exchange transforms the “misfortune” of the A-O pair (caused by

tissue-type incompatibility) to a life-saving opportunity for the O-A pair. Since the A-O pair is

blood-type compatible, they would not have participated in exchange in the absence of tissue-type

incompatibility. Kidney exchange not only eliminated tissue-type incompatibility as an obstacle for

the transplantation, but it also facilitated a transplant for an additional patient. Put differently,

from a social-welfare point of view, there is a welfare loss when a blood-type A patient receives

a transplant from a blood-type O donor. This welfare loss is avoided due to the combined roles

of tissue-type incompatibility together with kidney exchange, and a more efficient utilization of

living donors is obtained. But why depend on tissue-type incompatibility to avoid this welfare loss?

Any pair of type A-O, whether they are tissue-type incompatible or not, can participate in kidney

exchange, facilitating a transplant for an additional patient. The challenge here is that a compatible

A-O pair has no reason to participate in exchange.

As our main contribution, we propose incentivizing such compatible pairs to participate in

exchange by giving their patient an “insurance” against a potential future failure of his transplant.

The insurance takes the form of prioritizing the patient in the deceased-donor queue in the event

of a repeat kidney failure. To incentivize their participation in kidney exchange, these prioritized

reentrants are placed at the top of the deceased-donor queue of their own blood type altering its

FIFO structure. Since the welfare gains are due to inclusion of tissue-type compatible pairs of any

type Y-X where Y 6= X and X . Y, we propose that the incentive scheme be provided for these

pairs only. For each such pair of type Y-X, let ρY−X be the fraction of compatible pairs who are

willing to take up the incentivized exchange option.

In the absence of incentivized exchange, there is an abundance of O-A pairs compared to A-O

pairs. With incentivized exchange and for high values of ρA−O, this may change. We assume that

compatible pairs only take the incentivized-exchange option if they can immediately participate

in exchange, assuring that type A-O remains “overdemanded.” We use a terminology where the

parameter ρA−O already takes this potential adjustment into consideration. Hence, we assume:

Assumption 3 For any two distinct blood types X, Y with X . Y,

[ρY−X(1− θ) + θ]pXλY πY ≤ pY λXπX .

As in the case of kidney exchange, this assumption assures that it is possible to match every Y-X

pair at steady state as soon as they arrive for any two distinct blood types X, Y with X . Y. And

moreover, replacing Assumption 3 with Assumption 1 assures that the optimality result of Theorem
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1 continues to hold under incentivized exchange. Hence, we again consider the optimal exchange

mechanism where an arriving type X-Y pair, whenever possible, is matched with the longest-waiting

pair of its reciprocal type, Y-X.

4.1 Effect of Incentivized Exchange on Patients with Living Donors

Since incentivized exchange simply increases the scope of kidney exchange, the analysis in this

section parallels the analysis in Section 3.1. Recall that our target group for incentivized exchange

is tissue-type compatible pairs of types A-O, B-O, AB-O, AB-A, and AB-B. Consider such a pair of

type Y-X that takes the incentivized-exchange option. The patient of this pair could have received

a transplant from his own donor, and, hence, his own transplant does not directly increase the total

number of transplants. The increase is due to the patient of the reciprocal type X-Y, with whom

they engage in exchange. Therefore, at steady state, the number of living transplants increases by

one for each incentivized pair in the target group.

Let Y-X be any type targeted for incentivized exchange. The flow of all Y-X pairs is pXλY πY ,

the flow of tissue-type compatible Y-X pairs is (1− θ)pXλY πY , and the flow of Y-X pairs who take

the incentivized-exchange option is ρY−X(1− θ)pXλY πY .

For each blood type X, let iX denote the steady-state flow of the contribution of incentivized

exchange on blood-type X living-donor transplants. Living-donor transplants to blood-type A

patients with AB donors increases due to incentivized pairs of type AB-A, living-donor transplants

to type B patients with AB donors increases due to incentivized pairs of type AB-B, and living-donor

transplants to type O patients with blood-type incompatible donors increases due to incentivized

pairs of types A-O, B-O, and AB-O. Each type AB patient with a living donor already receives

a living-donor transplant under kidney exchange, and, hence, living-donor transplants to type AB

patients do not change. Therefore, iAB = 0,

iA = ρAB−A(1− θ)pAλABπAB, iB = ρAB−B(1− θ)pBλABπAB, and

iO = ρA−O(1− θ)pOλAπA + ρB−O(1− θ)pOλBπB + ρAB−O(1− θ)pOλABπAB.

Since blood type AB is rare, the flow is modest for types AB-A and AB-B. Therefore, while incen-

tivized exchange increases living-donor transplants to patients of blood types A, B, and O, the main

increase is for type O patients. We conclude this section by summarizing the effect of incentivized

exchange for each patient-donor type.

1. Type A-B and each type X-Y with Y . X: Patients of these types continue to immediately receive

a living-donor transplant under incentivized exchange. For those types targeted for incentivized

exchange, patients of pairs who have taken this option also receive a priority increase in the

deceased-donor queue for a potential future failure of their transplants.

2. Each type X-Y with X 6= Y and X . Y: Patients of these types are the primary (but not the

only) beneficiaries of incentivized exchange. For any of these types, waiting time for transplan-

tation decreases while the fraction of its patients who receive a living-donor transplant increases.

Patients of any of these types X-Y continue to join both the kidney-exchange pool and the

deceased-donor queue. However, due to the increased flow of pairs from their reciprocal type
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Y-X, the kidney-exchange option becomes more attractive than before with the inclusion of in-

centivized exchange. Therefore, patients of type X-Y are more likely to exclusively receive a

transplant through kidney exchange, and thus less likely to be pooled with unpaired patients at

the type X deceased-donor queue.

3. Type B-A: Patients of type B-A continue to join both the kidney-exchange pool and the type

B deceased-donor queue. Incentivized exchange does not affect the flow of the patients of type

B-A or the flow of the patients of its reciprocal type, A-B. Therefore, patients of type B-A are

affected to the extent that they utilize the type B deceased-donor queue. If they are not pooled

with unpaired type B patients at the type B deceased-donor queue in the absence of incentivized

exchange, their waiting time either stays the same or decreases. If, on the other hand, they

are pooled with unpaired type B patients in the absence of incentivized exchange, then their

waiting time may increase or decrease depending on the change of the waiting time at the type

B deceased-donor queue. If there is a change, it is small.

4.2 Effect of Incentivized Exchange on Deceased-Donor Queues

For each blood type X, let cX denote the flow of incentivized compatible pairs with blood-type

X patients. Since no pair with a type O patient is incentivized, cO = 0. For other blood types:

cA =ρA−O(1− θ)pOλAπA, cB = ρB−O(1− θ)pOλBπB, and

cAB =ρAB−O(1− θ)pOλABπAB + ρAB−A(1− θ)pAλABπAB + ρAB−B(1− θ)pBλABπAB.

Derivation of the steady-state waiting times at deceased-donor queues with incentivized exchange

closely follows the analysis in Section 3.2 with two simple modifications. For each blood type X,

a flow φlcX of deceased-donor kidneys are now reserved for prioritized reentrants. Furthermore,

the flow of new unpaired patients competing for the remaining flow of deceased-donor kidneys is

adjusted by removing the flow φlcX of prioritized reentrants. We further assume that δX > φlcX

so that all prioritized reentrants get matched right away.12 In the opposite direction, the steady-

state flow of new unpaired patients increases by φliX due to failure of the additional living-donor

transplants carried out under incentivized exchange.

As in Section 3.2, the derivation of the waiting time at the blood type AB deceased-donor

queue is straightforward. The inflow of patients entering or reentering the queue does not change

since iAB = 0, but a flow of φlcAB of them are prioritized, immediately receiving deceased-donor

transplants. Therefore, the flow of nonprioritized patients entering or reentering the type AB

deceased-donor queue is given as

πi,dec
AB = πe,dec

AB − φ
lcAB = (1− λAB)πAB + φdδAB + φlλABπAB − φlcAB.

Since nonprioritized & unpaired type AB patients compete for a reduced flow, δAB − φlcAB, of

deceased-donor kidneys, at steady state we have πi,dec
AB [1− F (ti,decAB )] = δAB − φlcAB, and, therefore,

12This inequality easily holds with the estimated US parameters. In particular, cO = 0 and δO > 0, and δA/φ
lcA =

11.92, δB/φ
lcB = 7.69, and δAB/φ

lcAB = 5.36 when for all eligible X − Y , ρX−Y = 1. The same holds for the
de-facto deceased-donor flows, (δ′X), defined in Section 5.
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the time spent at the type AB deceased-donor queue can be derived as

ti,decAB = F−1

(
1− δAB − φlcAB

πi,dec
AB

)
= F−1

(
1− δAB − φlcAB

πe,dec
AB − φlcAB

)
> te,decAB .

The waiting time at the deceased-donor queue strictly increases under incentivized exchange for

nonprioritized type AB patients. That is expected because, while no additional transplants are

carried out for type AB patients, prioritized reentrants receive their deceased-donor transplants

immediately without any wait. That means those who have to wait will have to wait longer.

Derivation of the steady-state waiting times at the other deceased-donor queues parallel the

analysis in Section 3.2, but due to incentivized pairs of their reciprocal types, a transplant through

exchange becomes more likely for patients of types A-AB, B-AB, O-A, O-B, and O-AB. As such, they

are less likely to be pooled with unpaired patients with the introduction of incentivized exchange.

(See the discussion in Appendix A.2 and Theorem 4 therein for a detailed analysis.)

For patients of blood type A, the main benefit of incentivized exchange is an increased flow of

living-donor transplants due to the exchanges with incentivized pairs of type AB-A. The benefit

is direct for patients of type A-AB, and indirect through reduced competition for deceased-donor

kidneys for nonprioritized & unpaired type A patients. Since blood type AB is rare, the magnitude

of this benefit is modest. For nonprioritized & unpaired type A patients, there is also a cost of

incentivized exchange in the form of a reduction in their access to deceased-donor kidneys. A flow

φlcA of type A deceased-donor kidneys are reserved under incentivized exchange for prioritized

reentrants of type A. Since φl is small, this effect is modest as well (especially if ρA−O is not very

high). Due to these opposing effects, the steady-state waiting time at the type A deceased-donor

queue may increase or decrease, but the change is expected to be small in either case. Similar

arguments also hold for blood type B.

For patients of blood type O, however, the benefits are more profound. Since θ is small, patients

of types O-A, O-B, and O-AB are expected to be pooled with unpaired type O patients in the

absence of incentivized exchange. The direct benefit of incentivized exchange for patients of types

O-A, O-B, and O-AB is an increase in living-donor transplants due to exchanges with incentivized

pairs of their reciprocal types. Owing to reduced competition for deceased-donor kidneys, the

same effect indirectly benefits unpaired type O patients as well. Unlike other blood types, the

lack of prioritized reentrants of type O means that the only potential cost to unpaired blood type

O patients is the additional flow φliO of returning patients due to the failure of additional living

transplants carried out with incentivized exchange. As such, patients of blood type O are the

primary beneficiaries of incentivized exchange.

4.3 Balanced Incentivized Exchange

While access to living-donor transplantation increases with the introduction of incentivized ex-

change, its benefits are mostly directed to type O patients. This can be considered a desirable feature

of incentivized exchange, since the type O patient population is disadvantaged under living-donor

transplantation and kidney exchange. One possible case that can be made against incentivized

exchange is that not only are its benefits uneven between various patient groups, it is actually
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detrimental for some: Nonprioritized & unpaired type AB patients are made worse off, and non-

prioritized & unpaired type A or type B patients could be made worse off with the introduction

of incentivized exchange. We next introduce a variant of incentivized exchange that does not hurt

any patient population.

Consider a compatible type AB-O pair who joins the kidney-exchange pool to benefit from the

insurance provided by incentivized exchange. The pair exchanges donors with a type O-AB pair,

thus directly helping a type O patient. If, in the future, the incentivized patient needs a repeat

transplant due to a subsequent kidney failure, he is given priority in the type AB deceased-donor

queue. So participation of the AB-O pair in the pool benefits the type O patient population but

incurs a cost on the type AB patient population. Thus, what they bring to the system and what

they may take from it are not “balanced.” They bring an extra type O living-donor kidney to the

system today, but they may take a type AB deceased-donor kidney in the future. If this feature is

considered undesirable, there is an easy adjustment. Type AB patient can instead receive priority

in the blood type O deceased-donor queue. And in general, the patient of any pair who participates

in incentivized exchange can be given priority for the deceased-donor queue of his donor’s blood

type rather than his own blood type. While this modification changes the ABO-i feature of the

deceased-donor queue, it is medically feasible since the pair is blood-type compatible. We refer to

this variant of our proposed mechanism as balanced incentivized exchange. As we show in the

next section, all patient groups weakly benefit from balanced incentivized exchange.

4.4 Equity Implications of Incentivized Exchange

We next present two results which formulate how access to living-donor and deceased-donor

transplantation differ across blood types with the introduction of each transplantation modality. For

these analytical results, we consider a baseline scenario where no blood type has an advantage over

another for access to transplantation beyond the asymmetry induced by blood-type compatibility

and the impact of the transplantation modalities analyzed.

The following result formulates how access to living-donor transplantation differs with the succes-

sive introduction of living-donor transplantation, kidney exchange, and either version of incentivized

exchange.

Theorem 2 Suppose Assumptions 2 and 3 hold. Let pA > pB. Suppose that λX = λ for any blood

type X, and πX
πY

= pX
pY

for any two blood types X and Y. Suppose also that the fraction of pairs taking

the incentivized exchange is uniform at a fixed ρ < 1 for any eligible type. Then:

1. For living donation only, the access to living donation is ranked as

lO
πO

<
lB
πB

<
lA
πA

<
lAB
πAB

.

2. Kidney exchange by itself increases access to living-donor transplantation for patients of type

B the most, patients of type A the next, and patients of types AB and O equally and last:
eB
πB

> eA
πA

> eAB
πAB

= eO
πO

. With the inclusion of kidney exchange, overall access to living donation

is ranked as
lO + eO
πO

<
lB + eB
πB

=
lA + eA
πA

<
lAB + eAB

πAB
= λ.
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3. Incentivized exchange (or its balanced version) by itself increases access to living-donor trans-

plantation for patients of type O the most, patients of types A and B equally and next, and does

not increase access for patients of type AB: iO
πO

> iA
πA

= iB
πB

> iAB
πAB

= 0. With the inclusion of

either version of incentivized exchange, overall access to living donation is ranked as

lO + eO + iO
πO

<
lB + eB + iB

πB
=

lA + eA + iB
πA

<
lAB + eAB + iAB

πAB
= λ.

Our last result formulates how access to deceased-donor transplantation differs with the succes-

sive introduction of deceased-donor transplantation, living-donor transplantation, kidney exchange,

and either version of incentivized exchange.

Theorem 3 Suppose Assumptions 2 and 3 hold. Let pA > pB. Suppose that λX = λ for any blood

type X, and δX
δY

= πX
πY

= pX
pY

for any two blood types X and Y. Suppose also that the fraction of pairs

taking the incentivized exchange is uniform at a fixed ρ < 1 for any eligible type. Then:

1. With deceased-donor transplantation only, the waiting time at each deceased-donor queue is the

same for any blood type X:

td,decO = td,decA = td,decB = td,decAB .

2. Introduction of living-donor transplantation reduces the waiting time at each deceased-donor

queue. The changes in waiting times and the waiting times are ranked as follows:

(td,decAB − tl,decAB ) > (td,decA − tl,decA ) > (td,decB − tl,decB ) > (td,decO − tl,decO ),

tl,decmax = tl,decO > tl,decB > tl,decA > tl,decAB = tl,decmin .

Further suppose that θ and φl are sufficiently small. Then:

3. Introduction of kidney exchange in addition to living-donor transplantation further reduces the

waiting time at each deceased-donor queue, but more for blood type B than blood type A equalizing

the deceased-donor queue waiting times for these two blood types. The combination of kidney

exchange and living-donor transplantation reduces the waiting time at the type AB deceased-

donor queue the most, at the type A and type B deceased-donor queues equally and next, and at

the type O deceased-donor queue the least:

(td,decAB − te,decAB ) > (td,decA − te,decA ) = (td,decB − te,decB ) > (td,decO − te,decO ).

The inclusion of kidney exchange with living-donor transplantation and deceased-donor trans-

plantation results in the following ranking of the waiting times:

te,decmax = te,decO > te,decB = te,decA > te,decAB = te,decmin .

4.(a) Inclusion of incentivized exchange with kidney exchange, living-donor transplantation, and

deceased-donor transplantation decreases the waiting times at the type O, A, and B deceased-

donor queue but increases it at the type AB deceased-donor queue. The waits at the type A

and B deceased-donor queues continue to be equal:

ti,decO < te,decO , ti,decA = ti,decB < te,decA = te,decB , ti,decAB > te,decAB .

(b) Inclusion of balanced incentivized exchange with kidney exchange, living-donor transplanta-

tion, and deceased-donor transplantation decreases the waiting times at the type A, B, and
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O deceased-donor queues, while keeping it the same at the type AB deceased-donor queue.

While the type A and type B deceased-donor queues continue to have equal waits, the type O

deceased-donor queue continues to have the longest wait, whereas the type AB deceased-donor

queue continues to have the shortest wait among the four deceased-donor queues.

The difference between the longest and the shortest wait times decreases with the introduction

of balanced incentivized exchange:

tb,decO < te,decO , tb,decA = tb,decB < te,decA = te,decB , tb,decAB = te,decAB ,

( tb,decmax︸︷︷︸
=tb,decO

− tb,decmin︸︷︷︸
=tb,decAB

) < ( te,decmax︸︷︷︸
=te,decO

− te,decmin︸︷︷︸
=te,decAB

).

5 Numerical Model Predictions

In Section 4, we have shown that when a population is homogeneous in attributes related to

becoming a kidney patient or deceased donor and to finding a living donor with respect to different

blood types, balanced incentivized exchange not only benefits all patient groups but also makes

both deceased donation and living donation more equitable than under regular exchange. In this

section, we extend this analysis to the US population by calibrating our model with the US patient

and donor characteristics. The US population has heterogenous characteristics among different

blood types for becoming a kidney patient and for finding a paired living donor. These numerical

calculations also give us predictions regarding waiting times and the number of transplants under

various transplantation technologies, including the current policies as well as our proposals.13

Calibration Parameters

O A B AB

ABO-i deceased-donor flows (δX) = 4982 3922 1225 314 Tissue-type incompatibility prob. θ = 0.0473
De-facto deceased-donor flows (δ′X) = 4726 3818 1347 554 Reentry fraction of the recipients φl = φd = 25.86%

New patient flows (πX) = 14693 9983 4466 1162 Incentivized-exchange particip. frac. (ρ) = 25%, 50%, 100%
Paired-donor blood-type prob. (pX) = 0.456 0.378 0.126 0.040 Survival probability function 1− F (t) = 0.9427e−0.1667t

Paired-donor fractions (λX) = 43.07% 29.32% 31.74% 21.31%

Table 1: Calibration parameters for the numerical policy experiments; time unit is one year

We report the calibration parameters for our model in Table 1. We explain in Appendix B how

these parameters are obtained. The second row of Table 1, de-facto deceased-donor flows (δ′X),

requires some further explanation. Deceased-donation regulations in the US explicitly dictate that

type O and type B deceased-donor kidneys are to be transplanted to their respective blood-type

patients. However, due to various reasons, type O kidneys are occasionally transplanted to type B

patients and less frequently to patients of other blood types (see also Subsection 5.2). Moreover,

type AB patients occasionally receive kidneys of other blood types. For these reasons, in addition

to the strict ABO-i allocation modality, we calculate our model’s predictions as if deceased donors

arrived according to this observed transplantation distribution across blood types. This is what we

refer to as the de-facto deceased-donor flow for each blood type, and we denote them collectively as

13We also run simulations with discrete arrivals using the US population characteristics. These give us similar
results as the numerical predictions. The simulations are reported in Appendix C.
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(δ′X). We conduct all of our analysis using this vector in addition to (δX), the flows used in ABO-i

deceased-donor allocation.

We calculate our model’s outcome using these calibration parameters and report outcome vari-

ables, such as deceased-donation and living-donation recipient flows, lX , eX , iX , for different trans-

plantation technologies (see Table 2). We also calculate the nonprioritized deceased-donor queue

waiting time for each blood type (see Table 3) and the transplant waiting time for each blood-

type-incompatible pair type (see Table 4) using the formulae that we derived in previous sections.

Finally, we report the average waiting times for any type of transplant (see Table 5).

5.1 Welfare Consequences

In terms of overall impact, 34.46 percent of patients receive deceased-donor transplants (mea-

sured as a fraction of new entrants, πX ; see the last column in the “Total Transplants” section of

Table 2). An additional 20.11 percent receive direct living-donor transplants. An additional 3.78

percent of patients benefit from regular exchange, resulting in 1144 more transplants annually.14

Our new policy proposal, incentivized exchange, helps an additional 1.75 percent of patients (or

about 530 additional patients) per quartile of participation of eligible, compatible pairs. Thus,

with full participation, an additional 6.98 percent of patients receive living-donor transplants. The

marginal impact of full-scale incentivized exchange is almost twofold that of regular exchange. In

this case, all exchange technologies help about 10.76 percent of annual new arrivals to receive trans-

plants in addition to direct living donation. Thus, all living-donation technologies help in aggregate

about 90 percent of the number of patients that deceased donation does.

The average waiting time for a nonprioritized deceased-donor transplant decreases from 6.51

years to 5.62 years and then to 5.37 years when direct living donation and regular exchange are

introduced, respectively (see the fifth column, entitled “Overall,” in Table 3). The waiting time

further decreases to 5.21 years and then to 5.05 years when the incentivized-exchange participation

rate increases from zero to ρ = 25% and then to ρ = 50% (see the tenth and fifteenth columns

in Table 3, entitled “Overall”). No further decrease occurs with a further increase of ρ, with

the exception of incentivized-exchange treatment with strict ABO-i allocation of deceased-donor

kidneys.

As we discussed before in Section 4, nonprioritized & unpaired patients of some individual blood

types are the only patient groups that can be adversely affected from incentivized exchange. For

example, under the de-facto deceased-donor allocation policy, for type A, type B, and type AB non-

prioritized recipients, we observe the following (see Table 3, columns for “incentivized exchange”):

The waiting times increase from 4.71, 5.80, and 3.88 years in regular exchange to 4.91, 6.17, and

4.20 years in incentivized exchange with ρ = 50%, respectively. As we articulated in Section 4.3,

this negative impact can be neutralized by balanced incentivized exchange. Recall that in this pol-

icy proposal, prioritized reentrants receive deceased-donor organs of their previous paired donor’s

blood type rather than their own. In this case with ρ = 50%, waiting times are 4.74, 5.82, and 3.88

14For the external validity of our predictions, we refer to a recent empirical paper by Agarwal et al. (2017), which
estimates the potential for annual number of kidney exchanges in the US as at most 1350 transplants using micro-level
data including various kinds of exchanges.
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Model Outcomes: Patients Receiving Transplant

O A B AB Overall

Treatments Living-Donor Transplants

Living-donor transplantation (lX) 2749.17 18.71% 2325.30 23.29% 785.76 17.59% 235.93 20.30% 6096.17 20.12%

Regular exchange (eX + lX) 2984.82 20.31% 2813.68 28.18% 1194.71 26.75% 247.65 21.31% 7240.85 23.89%

Incentivized ρ = 25% 3483.52 23.71% 2835.97 28.41% 1202.14 26.92% 247.65 21.31% 7769.28 25.64%

(eX + lX + iX) ρ = 50% 3982.23 27.10% 2858.26 28.63% 1209.56 27.08% 247.65 21.31% 8297.71 27.38%

ρ = 100% 4979.65 33.89% 2902.85 29.08% 1224.42 27.42% 247.65 21.31% 9354.56 30.87%

Treatments Dec. Donor A. Deceased-Donor Transplants

All except ABO-i (δX) 4981.85 33.91% 3921.51 39.28% 1224.57 27.42% 314.07 27.03%

10442.00 34.46%

Balanced inc. De facto (δ′X) 4726.00 32.16% 3815.00 38.21% 1347.00 30.16% 554.00 47.68%

Balanced inc. ABO-i 4852.86 33.03% 3997.96 40.05% 1262.47 28.27% 328.71 28.29%
ρ = 25% De facto 4597.01 31.29% 3891.45 38.98% 1384.9 31.01% 568.64 48.94%

ρ = 50%
ABO-i 4723.87 32.15% 4074.41 40.81% 1300.36 29.12% 343.35 29.55%

De facto 4468.02 30.41% 3967.9 39.75% 1422.79 31.86% 583.29 50.20%

ρ = 100%
ABO-i 4465.89 30.39% 4227.31 42.35% 1376.16 30.81% 372.64 32.07%

De facto 4210.05 28.65% 4120.79 41.28% 1498.58 33.56% 612.58 52.72%

Treatments Dec. Donor A. Total Transplants

Deceased-donor ABO-i 4981.85 33.91% 3921.51 39.28% 1224.57 27.42% 314.07 27.03%
10442.00 34.46%

transplantation De facto 4726.00 32.16% 3815.00 38.21% 1347.00 30.16% 554.00 47.68%

Living-donor ABO-i 7731.02 52.62% 6246.81 62.57% 2010.34 45.01% 550.00 47.33%
16538.17 54.57%

transplantation De facto 7475.17 50.88% 6140.30 61.51% 2132.76 47.76% 789.93 67.98%

Regular ABO-i 7966.67 54.22% 6735.19 67.47% 2419.29 54.17% 561.71 48.34%
17682.85 58.35%

Exchange De facto 7710.82 52.48% 6628.68 66.40% 2541.71 56.91% 801.65 68.99%

Incentivized ABO-i 8465.37 57.62% 6757.48 67.69% 2426.71 54.34% 561.71 48.34%
18211.28 60.10%

ρ = 25% De facto 8209.52 55.87% 6650.97 66.62% 2549.14 57.08% 801.65 68.99%

ρ = 50%
ABO-i 8964.08 61.01% 6779.78 67.91% 2434.14 54.50% 561.71 48.34%

18739.71 61.84%
De facto 8708.23 59.27% 6673.26 66.85% 2556.56 57.25% 801.65 68.99%

ρ = 100%
ABO-i 9961.50 67.80% 6824.37 68.36% 2448.99 54.84% 561.71 48.34%

19796.56 65.33%
De facto 9705.65 66.06% 6717.85 67.29% 2571.42 57.58% 801.65 68.99%

Balanced inc. ABO-i 8336.38 56.74% 6833.93 68.46% 2464.61 55.19% 576.36 49.60%
18211.28 60.10%

ρ = 25% De facto 8080.54 55.00% 6727.42 67.39% 2587.03 57.93% 816.29 70.25%

ρ = 50%
ABO-i 8706.10 59.25% 6932.67 69.44% 2509.93 56.20% 591.00 50.86%

18739.71 61.84%
De facto 8450.26 57.51% 6826.16 68.38% 2632.36 58.94% 830.94 71.51%

ρ = 100%
ABO-i 9445.54 64.29% 7130.16 71.42% 2600.57 58.23% 620.29 53.38%

19796.56 65.33%
De facto 9189.69 62.54% 7023.65 70.36% 2723.00 60.97% 860.22 74.03%

Table 2: Model outcomes for the flow of patients receiving transplant (measured in numbers per year)
for different patient blood types. The percentages on right of each number are the fractions with respect
to the new patient flow (πX).

Model Outcomes: Average Time to Nonprioritized Deceased-Donor Transplant

Dec. O A B AB Overall O A B AB Overall O A B AB Overall

Donor A. Deceased-donor transplantation Incentivized ρ = 25% Balanced inc. ρ = 25%

ABO-i 6.64 5.83 7.82 7.90 6.51 5.16 4.70 6.52 7.23 5.20 5.30 4.58 6.33 6.94 5.20
De facto 6.93 5.98 7.28 4.79 6.51 5.41 4.85 5.98 4.04 5.21 5.56 4.72 5.81 3.88 5.19

Living-donor transplantation Incentivized ρ = 50% Balanced inc. ρ = 50%

ABO-i 5.82 4.81 7.04 6.99 5.62 4.70 4.83 6.73 7.53 5.06 4.97 4.59 6.35 6.94 5.05
De facto 6.11 4.95 6.51 3.92 5.62 4.94 4.91 6.17 4.20 5.05 5.23 4.74 5.82 3.88 5.05

Regular exchange Incentivized ρ = 100% Balanced inc. ρ = 100%

ABO-i 5.67 4.56 6.32 6.94 5.37 4.37 5.03 7.08 8.18 5.00 5.02 4.54 6.29 6.94 5.05
De facto 5.95 4.71 5.80 3.88 5.37 4.64 5.19 6.48 4.55 5.05 5.34 4.69 5.76 3.88 5.06

Table 3: Model outcomes for deceased-donor waiting time for nonprioritized patients from different blood
types (measured in years)
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Model Outcomes: Average Time to Transplant for Blood-Type-Incompatible Pair Types

Treatments O-A O-B O-AB A-B A-AB B-A B-AB

Dec.&Living-Donor Trans. pooled w O pooled w O pooled w O pooled w A pooled w A pooled w B pooled w B

Regular exchange pooled w O pooled w O pooled w O 0 pooled w A 1.89 pooled w B

Incentivized ρ = 25% pooled w O pooled w O pooled w O 0 pooled w A 1.89 pooled w B

(with ABO-i ρ = 50% pooled w O pooled w O/4.78 pooled w O 0 pooled w A 1.89 pooled w B

dec. donor a.) ρ = 100% 3.14 0.90 pooled w O /4.50 0 1.00 1.89 3.24

Incentivized ρ = 25% pooled w O pooled w O pooled w O 0 pooled w A 1.89 pooled w B

(with de-facto ρ = 50% pooled w O 4.78 pooled w O 0 4.88 1.89 pooled w B

dec. donor a.) ρ = 100% 3.14 0.90 4.50 0 1.00 1.89 3.24

Table 4: Model outcomes for time to transplant for blood-type-incompatible pair types (measured in
years). “Pooled w X” means type X-Y pairs are pooled with type X nonprioritized & unpaired patients.
This is true for both incentivized and balanced-incentivized treatments except two cases: Pairs of type
O-AB are pooled with nonprioritized & unpaired O patients under ABO-i deceased-donor allocation for the
incentivized treatment with ρ = 100%, while this is not true for the balanced-incentivized treatment. The
same is true for type O-B when ρ = 50%. This happens as blood-type O nonprioritized deceased-donation
recipients wait shorter times in the incentivized treatments. These are denoted in the table in those two
cells with a “/” sign. The pooled groups’ waiting times are reported in Table 3.

Model Outcomes: Average Time to Any Type of Transplant

Dec. O A B AB Overall O A B AB Overall O A B AB Overall

Donor A. Deceased-donor transplantation Incentivized ρ = 25% Balanced inc. ρ = 25%

ABO-i 6.64 5.83 7.82 7.90 6.51 3.40 2.69 3.49 3.85 3.16 3.41 2.67 3.50 3.88 3.16
De facto 6.93 5.98 7.28 4.79 6.51 3.51 2.74 3.36 2.72 3.17 3.52 2.72 3.36 2.68 3.17

Living-donor transplantation Incentivized ρ = 50% Balanced inc. ρ = 50%

ABO-i 3.75 3.02 4.29 3.99 3.55 3.19 2.71 3.50 3.82 3.07 3.22 2.68 3.51 3.88 3.08
De facto 3.86 3.08 4.11 2.75 3.55 3.30 2.72 3.37 2.75 3.08 3.32 2.73 3.37 2.68 3.09

Regular exchange Incentivized ρ = 100% Balanced inc. ρ = 100%

ABO-i 3.61 2.66 3.49 3.88 3.24 2.71 2.66 3.41 3.72 2.81 2.78 2.61 3.45 3.88 2.84
De facto 3.72 2.71 3.35 2.68 3.24 2.81 2.71 3.30 2.81 2.84 2.86 2.66 3.31 2.68 2.84

Table 5: Model outcomes for average waiting time for any type of transplant for different patient blood
types (measured in years).

years for type A, type B, and type AB nonprioritized patients, respectively (Table 3, columns for

“balanced incentivized”). Moreover, the benefit to type O nonprioritized patients is still substantial,

with a wait of 5.23 years under this treatment, instead of 5.95 years under regular exchange.

5.2 Equity Consequences

Blood-type B patients are disadvantaged even when only deceased-donor transplantation is

available; they have the longest waiting time for a transplant (see Table 3). Blood type B is at

least twice more common among Asian and African minorities of the US population than among

Americans of European descent (see Table 6 of Appendix B). African-Americans are known to

be relatively more prone to kidney disease, while the type B deceased-donation rate is not much

different from that of other blood types. This explains their prolonged waiting times. Thus, the

treatment of type B under our proposed policies, as well as type O patients, bears additional

importance in equity considerations.
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We summarize our main findings regarding the equity consequences of different transplantation

policies as follows:

• De-facto deceased-donor and living-donor transplantation together help type AB patients the

most, followed by type A and then by type O and type B. While 67.98 percent of all AB patients

and 61.51 percent of all A patients benefit from these two modalities, less than 48 percent of all

B patients and 51 percent of all O patients receive transplant (these are the fractions
δ′X+lX
πX

; see

the “Total Transplants” section of Table 2).

• At the margin, type B patients benefit the most from regular exchange. Type A patients benefit

next most, while type O and type AB patients benefit the least. While 9.15 percent more of

type B patients and 4.89 percent more of type A patients benefit from regular exchange, these

fractions are 1.01 percent and 1.60 percent respectively for type AB and type O patients (these

are the fractions eX
πX

). The widest inequity gap, the gap between the fractions of type O and

type AB patients helped as a result of deceased donation, direct living donation, and regular

exchange, is more than 16.5 percent.

• Incentivized exchange with ρ = 50% helps an additional 6.79 percent of type O patients, which

is the main beneficiary group under our proposal. The overall transplant numbers are unaffected

for type AB, and the increase is modest for type A and type B. The widest inequity gap, the gap

between the fractions of type AB and type B patients benefitting from all transplant modalities,

decreases to below 12 percent.

• For nonprioritized deceased-donor recipients, the largest waiting-time gap in the deceased-donor

transplantation treatment with de-facto allocation is between types B and AB, as 2.49 years (see

Table 3). This gap further increases to 2.59 years with living-donor transplantation treatment.

Regular exchange decreases the largest gap to 2.07 years (though for this treatment the largest

gap is between types O and AB). Balanced incentivized exchange with ρ = 50% further decreases

the largest gap (which is between types B and AB) to 1.97 years.

Thus, balanced incentivized exchange not only helps all patient groups through more transplants,

but it also alleviates the inequities faced in access to deceased- and living-donor transplantation

among different patient groups due to medical incompatibilities (as in the case of blood type O)

and patient-arrival asymmetries (as in the case of blood type B).

6 Conclusion

Participation of compatible pairs in kidney exchange significantly increases the number of living-

donor transplants. We propose incentivizing them to do so by insuring their patient against a repeat

kidney failure through priority in the deceased-donor queue. Two key aspects of our proposal are

inclusion of compatible pairs in exchange and an adjusted priority ranking in the deceased-donor

queue. Our proposal is related to three sparsely practiced variants of kidney exchange. In conclusion,

we compare and contrast incentivized exchange with these variants.

An altruistically unbalanced exchange involves a kidney exchange between one compatible and

one incompatible pair. Ross and Woodle (2000) dismisses these exchanges based on ethical grounds.
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The phrase “altruistically unbalanced” reflects their dismissal of the concept. Their concern is po-

tential coercion of compatible pairs who have nothing to gain from exchange. In contrast, exchange

is no longer “altruistically unbalanced” under incentivized exchange, since patients of participating

pairs are insured against a repeat failure.

Under an indirect exchange, the donor of an incompatible pair donates a kidney to the deceased-

donor queue in exchange for a priority for his patient in the deceased-donor queue. Hence this

variant involves an exchange between an incompatible pair and the deceased-donor queue. Ross

and Woodle (2000) object to indirect exchange for blood-type incompatible pairs, but support it

for blood-type compatible (but tissue-type incompatible) pairs. Consider a type O patient with a

type A donor. Under an indirect exchange, the pair donates a type A kidney to the donor queue in

exchange for priority for a type O deceased-donor kidney. That is, they receive priority for a more

highly sought-after blood type kidney than the kidney they donate. This is the basis of the Ross

and Woodle (2000) objection:

“The indirect ABO-incompatible exchange does create a new ethical concern because

it may increase the vulnerability of O blood group recipients. If mechanisms can be

developed to avoid increasing the waiting time for blood group O recipients, we would

support the implementation of the indirect ABO-incompatible exchange.”

In contrast, they support indirect exchange for blood-type compatible pairs because those pairs

either donate the same blood type or a more highly sought-after blood type kidney than the one

they are prioritized for. While incentivized exchange is also based on priority in the deceased-donor

queue, there are two key differences: First, an incentivized pair donates a kidney of a more highly

sought-after blood type than its patient is prioritized for. And indeed, it mainly benefits the blood

type O patient population. And second, unlike indirect exchange, the priority is only used if the

patient needs a repeat transplant. Both factors are in favor of incentivized exchange based on the

above-mentioned ethical considerations.

A voucher for a chronologically incompatible pair (Veale et al. (2017)) involves a priority for a

(typically young) patient of a pair for a future transplant in exchange for a donation from an older

donor today. The donor will be too old to donate when the patient is expected to need a transplant.

Observe that this variant is very similar to indirect exchange, and indeed it can be interpreted as an

intertemporal version of it. Therefore, the same ethical considerations of Ross and Woodle (2000)

apply. That is, the case for these exchanges is stronger when the pair is blood-type compatible than

when they are blood-type incompatible. Different from an incentivized exchange or an indirect

exchange, the first three of these intertemporal exchanges were organized by the National Kidney

Registry, which arranges kidney chains initiated by good-samaritan donors.15 The older donor

starts a chain today, and the younger patient receives priority for a kidney at the end of a chain

when he needs a transplant in the future. However, these chains almost never end with a type O

kidney, and indeed they likely end with a type AB kidney. Hence, honoring the voucher may require

artificially terminating a kidney chain, especially if the patient is of type O. Perhaps motivated by

these concerns, Veale et al. (2017) suggest that patients also be prioritized at the deceased-donor

15These chains are introduced by Roth et al. (2006), and the proof of concept is documented in Rees et al. (2009).
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queue in case the patient cannot be placed at the end of a kidney chain. Conceptually incentivized

exchange is similar, but it evades the above-mentioned shortcomings since incentivized pairs are

blood-type compatible.

In summary, incentivized exchange harbors all the positive elements of the above variants of

kidney exchange without suffering from their shortcomings.
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For Online Publication

Appendix A Omitted Proofs and Additional Results on

Waiting Times

In this appendix, we provide the omitted proofs and some additional results on waiting times.

To do that, we first provide a formal model of tissue-type incompatibility: Each patient has a type,

depending on against which subset of HLA tissue proteins he has preformed antibodies. We study

the limit as the number of types goes to infinity. First, fix the number of types to a finite k. The

probability that a patient is of type i is mi,k > 0, so that
∑

imi,k = 1. Let θi,k be the tissue-

type incompatibility probability between any donor and patient of type i. If a donor is tissue-type

compatible with a type i patient, then the donor is tissue-type compatible with all patients of type

i. We take the number of types, k, to infinity and make some regularity assumptions on the growth

of mi,k and θi,k in the limit. See Appendix D for details. These assumptions hold for the special

case when θi,k = θ < 1 and mi,k → 0 for every patient type i as k →∞ (Lemma 7). In the current

appendix as well as for the results in the main text, we use this special case.

We also define steady states formally: A state is defined through the measures of type X-Y

pairs who have waited t years in the queue, denoted by (X − Y, t) and type X unpaired patients

who have waited t years in the queue, denoted by (X, t) for all blood types X and Y and waiting

time t. We say that the population under a given policy of transplantation is at a steady state

when the measures of all (X − Y, t) and (X, t) are constant through time, i.e., the state does not

change over time.

A.1 Optimal Regular and Incentivized Exchange

We first formally categorize pair types in the following three classes. The naming of these

classes is based on the comparison of the flows of the type and its reciprocal type for ABO-i optimal

exchange (Assumptions 1 and 2). The types X-Y with a weakly lower flow than that of Y-X are

overdemanded, while the ones with the weakly higher flow are underdemanded. Remaining types

are referred to as self-demanded, as each is matched with itself in ABO-i optimal exchange:

• Overdemanded Types: These are pair types X-Y such that Y . X and Y 6= X and pair type

A-B. There are six of these types, A-O, A-B, B-O, AB-O, AB-A and AB-B.

• Self-demanded Types: These are pair types X-X. There are four of these types, O-O, A-A,

B-B, and AB-AB.

• Underdemanded Types: These are pair types X-Y such that X . Y and X 6= Y and pair type

B-A. There are six of these types, O-A, O-B, O-AB, A-AB, B-A, and B-AB.

The following lemma characterizes feasible exchanges. It is useful in the proof of Theorem 1. Similar

results also appear in Roth, Sönmez, and Ünver (2007) and Ünver (2010), so we skip its proof.

Lemma 1 (Exchange blood-type feasibility) An underdemanded-type pair can be matched

only with an overdemanded-type pair in an exchange. An overdemanded-type pair can be matched
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with any type pair. A self-demanded-type pair can be matched with a same-type or overdemanded-

type pair. In particular, the following results hold:

• An underdemanded-type O-A (or O-B) pair can be matched only with a pair from overdemanded

types A-O (or B-O) or AB-O. An underdemanded-type A-AB (or B-AB) pair can be matched

only with a pair from overdemanded types AB-A (or AB-B) or AB-O. An underdemanded-type

O-AB pair can be matched only with an overdemanded-type AB-O pair.

• An overdemanded A-B (or underdemanded B-A) pair can be matched only with a pair from its

reciprocal type B-A (or A-B); or from overdemanded types B-O (or A-O), AB-A (or AB-B), or

AB-O.

• A self-demanded-type X-X pair can be matched with a same-type pair. Additionally, a type O-O

pair can be matched only with a pair from overdemanded types A-O, B-O, or AB-O; a type A-A

(or B-B) pair can be matched only with a pair from overdemanded types AB-A (or AB-B) or

AB-O; and a type AB-AB pair can be matched only with a pair from overdemanded types AB-A,

AB-B, or AB-O.

Proof of Theorem 1. Suppose Assumptions 1 and 2 hold. Under the proposed policy, by Lemma

6 in Appendix D, all self-demanded-type pairs can be matched with their own-type pairs as soon

as they arrive. Similarly, type A-B pairs, which have a weakly lower flow rate than that of type

B-A by Assumption 2, can be matched as soon as they arrive with type B-A pairs (Lemma 4 in

Appendix D). Hence, under this policy only type B-A pairs will remain in the exchange pool at any

point in time. These pairs can only be matched with some overdemanded-type pairs by Lemma 1,

as type A-B pairs are already committed to other type B-A pairs.

Next consider underdemanded-type pairs except those of B-A. These are type Y-X pairs such

that Y 6= X and Y . X. By Assumption 1, we have θpY λXπX ≤ pXλY πY . By Lemma 1, they

can only be matched with overdemanded-type pairs. Recall that the flow of each type Y-X pair

to the exchange pool is pXλY πY . Their reciprocal type X-Y, which is overdemanded, has flow

θpY λXπX ≤ pXλY πY . Hence, we can match all such overdemanded-type X-Y pairs as soon as they

enter the pool with their reciprocal-type pairs (by Lemma 5 in Appendix D). As all overdemanded-

and self-demanded-type pairs are matched as soon as they arrive, by Lemma 1, the proposed

policy achieves the maximum measure of pairs matched. At steady state, as no incompatible

overdemanded-type or self-demanded-type pair waits in the pool (i.e., moreover, get immediately

matched and help one additional pair), the maximum mass of possible exchanges is also conducted

in this manner in any closed time interval.

On the other hand, if we do not conduct the exchanges immediately whenever they become

available but only after some time interval, then some of the patients will not survive. Hence, when

we do not conduct the exchanges as soon as possible, we will match a strictly smaller mass of pairs

than we would have matched under the proposed policy.
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A.2 Pooling and Waiting Times under Regular and Incentivized Ex-

change

Recall that for all incentivized-exchange-eligible pairs, i.e., of all types X-Y such that Y . X, Y

6= X, and the patient and donor have no tissue-type incompatibility, ρX−Y ∈ [0, 1] is the fraction

that participate in incentivized exchange. Let ρ = (ρX−Y )Y .X,Y 6=X be the vector of such fractions.

We use the terms “regular exchange” and “incentivized exchange with ρ = 0%” interchangeably.

To determine the steady-state outcomes, we introduce certain flow rates.16 For each blood type X

and each Y 6= X, let

πi
X−Y =

{
[θ + ρX−Y (1− θ)]pY λXπX if Y . X

pY λXπX otherwise
(1)

refer to the pair-type X-Y flow to the exchange pool. Let the incentivized pair flow relevant for

blood type X be given by

cX =
( ∑
Y : Y .X&Y 6=X

ρX−Y (1− θ)pY
)
λXπX . (2)

Observe that φlcX is the reentry flow of previously incentivized type X patients. These patients will

be prioritized in the deceased-donor queue of blood type X and will not wait upon reentry. Thus,

the effective flow rate of deceased-donor kidneys for nonprioritized type X patients is δX − φlcX .

We also have

πi
X = (1− λX)πX︸ ︷︷ ︸

new unpaired

+ φdδX︸ ︷︷ ︸
reentry / deceased

+ φl[lX + eX + iX − cX ]︸ ︷︷ ︸
reentry / all live minus incentivized

(3)

as the total nonprioritized & unpaired type X patient flow.

We define the following ratios:

1. The ratio of the deceased-donor effective flow for nonprioritized patients to the nonprioritized &

unpaired patient flow is

rX =
δX − φlcX

πi
X

. (4)

2. For each underdemanded type X-Y except B-A (i.e., X 6= Y and X . Y), the ratio of the flow of

incompatible or incentivized type Y-X pairs to the total flow of type X-Y pairs is

rX−Y =
πi
Y−X

πi
X−Y

=
[θ + ρY−X(1− θ)]pXλY πY

pY λXπX
.

3. For the remaining underdemanded type B-A, the ratio of type A-B flow to type B-A flow is

rB−A =
πi
A−B

πi
B−A

=
pBλAπA
pAλBπB

.

The first ratio, rX , is less than one because of our assumption that there is a shortage of deceased-

donor kidneys for unpaired new entrants, i.e., (1 − λX)πX > δX . The second ratio, rX−Y , is less

than one by Assumption 3. Finally, the last ratio, rB−A, is less than or equal to one by Assumption

2. Ratio rX would be relevant if we wanted to allocate all type X deceased donors that are reserved

16Some of these were previously defined throughout Section 4.
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for nonprioritized patients to nonprioritized & unpaired type X patients. For an underdemanded

type X-Y, ratio rX−Y would be relevant if type X-Y pairs did not receive any deceased donation

but only participated in exchange. In these cases, the waiting time for a deceased-donor transplant

for nonprioritized & unpaired type X patients would be

tX = F−1
(

1− δX − φlcX
πi
X

)
,

and the waiting time of underdemanded-type X-Y pairs would be

tX−Y = F−1
(

1−
πi
Y−X

πi
X−Y

)
.

However, underdemanded-type pairs have another option besides exchange. If deceased donors

become available earlier than the exchange option, they will receive deceased-donor transplants.

As we mentioned in the main text, we assume that patients accept the first donor who is offered

to them, either through deceased-donor allocation or exchange. Hence, the patient of a type X-Y

pair will never wait for a type Y-X pair for exchange if a deceased donor becomes available first,

i.e., if tX−Y > tX . As waiting times are strictly decreasing functions of the r ratios defined above,

we need to compare these ratios in an iterative manner to decide whether pairs of one or more

underdemanded types will also receive deceased-donor transplants.

To this end, we first define X-Y1 , . . . , X-Yk(X) as the ordered list of underdemanded types

according to ascending rX−Y ratios, where we have k(O) = 3, k(B) = 2, k(A) = 1, and k(AB) = 0

as the respective numbers of underdemanded pair types whose patients have blood types O, B, A,

and AB. We define the following potential pooling ratio for each ` = 0, . . . , k(X) :

rX,X−Y1,...,X−Y` =
δX − φlcX + πi

Y1−X + . . .+ πi
Y`−X

πi
X + πi

X−Y1 + . . .+ πi
X−Y`

. (5)

Exchange technology iterative pooling procedure for unpaired and paired patients:

Fix a blood type X. We iteratively consider the following procedure starting with ` = 0.

Step `: Suppose types X-Y1, . . . , X-Y` have already been deemed to be receiving

both deceased-donor and exchange transplants.

• If rX−Y`+1
< rX,X−Y1,...,X−Y` then type X-Y`+1 pairs receive both exchange transplants

and deceased-donor transplants, together with the nonprioritized & unpaired type X

patients and type X-Y1,. . . , X-Y` pairs. We continue with Step `+ 1.

• If rX−Y`+1
≥ rX,X−Y1,...,X−Y` then all type X-Y`+1,. . . , X-Yk(X) pairs only receive

exchange transplants but no transplants from deceased donors. We terminate the

procedure.

Based on this procedure, we state the following theorem:

Theorem 4 (Waiting times under regular and incentivized exchange) Suppose Assump-

tions 2 and 3 hold. Consider the ABO-i deceased-donor allocation and incentivized-exchange policies

with a given incentivized-exchange participation-rate vector ρ = (ρX−Y )Y .X,Y 6=X (which can possibly

be zero). Consider a blood type X. Then the following statements hold:
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1. Blood-type X patients, who are in overdemanded-type or self-demanded-type pairs and who have

either incompatible donors or are eligible and willing to participate in incentivized exchange,

participate in exchange immediately upon their arrival to the exchange pool.

2. Suppose the patients in pairs of underdemanded types X-Y1, . . . ,X-Y`(X) receive both deceased-

donor and exchange transplants, while the patients in pairs of underdemanded types X-

Y`(X)+1, . . . ,X-Yk(X) receive only exchange transplants for some `(X) ∈ {0, . . . , k(X)}. Then

• nonprioritized & unpaired type X patients and the patients of type X-Y1, . . . ,X-Y`(X) pairs wait

for a deceased-donor (or exchange) transplant for the duration

ti,decX = F−1
(

1−
δX − φlcX + πi

Y1−X + . . .+ πi
Y`(X)−X

πi
X + πi

X−Y1 + . . .+ πi
X−Y`(X)

)
, and, (6)

• for all ` ∈ {`(X) + 1, . . . , k(X)}, type X-Y` pairs are exclusively matched through exchange

and wait for an exchange transplant for the duration

tiX−Y` = F−1
(

1−
πi
Y`−X

πi
X−Y`

)
≤ ti,decX . (7)

The average waiting time to a transplant for all type X patients is

ti,aveX =

[
δX − φlcX +

∑`(X)
`=1 π

i
Y`−X

]
ti,decX +

∑k(X)
`=`(X)+1

[
πi
Y`−X tiX−Y`

]
δX + lX + eX + iX

(8)

Proof. The proof follows from the procedure discussed before the statement of the theorem. Since

type X patients with compatible paired donors and type X patients with incompatible but blood-

type-compatible donors have 0 waiting time, Equation 8 is established.

When ρ = 0, we will refer to ti,decX as te,decX and ti,aveX as te,aveX .

A.3 Waiting Times under Balanced Incentivized Exchange

On the other hand, under balanced incentivized exchange, compatible pairs of types X-Y ∈ {A-

O, B-O, AB-O, AB-A, AB-B}, who participate in exchange and whose patients reenter later due

to transplant failures, are prioritized in the type Y deceased-donor queue, instead of the type X

deceased-donor queue.

In this case, in some equations given in the previous section, the term cX should be replaced

with a new term. While Equation 3 does not change, in Equations 4 (the new entity defined is

referred to as rbX) and 5 (the new entity defined is referred to as rbX,X−Y1,...,X−Y`), cX should be

replaced with cb
X , which is defined as

cb
X =

∑
Y : X.Y&X 6=Y

ρY−X(1− θ)pXλY πY . (9)

Similarly, in Equations 6 (the new entity defined is referred to as tb,decX ) and 8 (the new entity

defined is referred to as tb,aveX ) in Theorem 4, cX should be replaced with cb
X . As such, the pooling

procedure above and Theorem 4 continue to hold.

While contrasting cb
X with cX defined in Equation 2, observe that cb

X is the flow of all paired

type Y patients with compatible type X donors who participate in incentivized exchange and help
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the patient of a type X-Y pair to receive a transplant. If these patients reenter the queue, they

are prioritized in front of nonprioritized & unpaired type X patients, and this explains the −φlcb
X

term in the numerator of the new versions of Equations 4, 5, 6, and 8. On the other hand, the

term cX remains in Equation 3 as is because all incentivized reentering X patients are prioritized at

some deceased-donor queue and drop out of competition for the remaining type X deceased donors.

Thus, the πi
X expression in Equation 3 remains as the flow of nonprioritized & unpaired type X

patients. We have

cb
O = ρA−O(1− θ)pOλAπA + ρB−O(1− θ)pOλBπB + ρAB−O(1− θ)pOλABπAB,

cb
A = ρAB−A(1− θ)pAλABπAB,

cb
B = ρAB−B(1− θ)pBλABπAB, and

cb
AB = 0.

A.4 Equity Implications of Transplant Regimes on Access of Patients

with Living Donors

Proof of Theorem 2. Let pA > pB. Suppose that λX = λ for any blood type X, and πX
πY

= pX
pY

for

any two blood types X,Y. Also assume that the fraction of pairs taking the incentivized exchange

is uniform at a fixed ρ < 1 for any eligible type.

1. We consider lX , the overall flows of pairs with X blood type participating in direct living-donation

technology for each blood type X:

lO
πO

=
(1− θ)pOλπO

πO
= (1− θ)pOλ,

lA
πA

=
(1− θ)(pO + pA)λπA

πA
= (1− θ)(pO + pA)λ,

lB
πB

=
(1− θ)(pO + pB)λπB

πB
= (1− θ)(pO + pB)λ, and

lAB
πAB

=
(1− θ)λπAB

πAB
= (1− θ)λ.

Thus,
lO
πO

<
lA
πA
,

lB
πB

<
lAB
πAB

.

Moreover, since pB < pA, we have lB
πB

< lA
πA

.

2. We consider eX , the overall flows of pairs that have type X patients and participate in regular
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exchange, for each X:

eO
πO

=
θpOλ(πO + πA + πB + πAB)

πO
= (θpO + θpA + θpB + θpAB)λ = θλ,

eA
πA

=
θpOλπA + θpAλπA + pBλπA + θpAλπAB

πA
= (θpO + θpA + pB + θpAB)λ,

eB
πB

=
θpOλπB + pBλπA + θpBλπB + θpBλπAB

πB
= (θpO + pA + θpB + θpAB)λ, and

eAB
πAB

=
θpOλπAB + θpAλπAB + θpBλπAB + θpABλπAB

πAB
= (θpO + θpA + θpB + θpAB)λ = θλ,

where the second equality in each line (except the last) follows from the assumption that pX
πX

is

constant among all X. Since θ < 1 and pA, pB > 0, we have
eO
πO

=
eAB
πAB

<
eA
πA
,
eB
πB
.

With the additional assumption pA > pB, we obtain eA
πA

< eB
πB

.

We consider each lX + eX , the flow of direct living-donor and exchange transplants in total. We

have
lO + eO
πO

=(1− θ)pOλ+ θ(pO + pA + pB + pAB)λ = (pO + θpA + θpB + θpAB)λ,

lA + eA
πA

=(1− θ)(pO + pA)λ+ (θpO + θpA + pB + θpAB)λ = (pO + pA + pB + θpAB)λ,

lB + eB
πB

=(1− θ)(pO + pB)λ+ (θpO + pA + θpB + θpAB)λ = (pO + pA + pB + θpAB)λ, and

lAB + eAB
πAB

=(1− θ)λ+ θλ = λ.

Since θ < 1 and pA, pB, pAB > 0,

lO + eO
πO

<
lA + eA
πA

=
lB + eB
πB

<
lAB + eAB

πAB
= λ.

3. Next we consider iX , the overall flow of pairs with type X patients benefitting from incentivized

exchange for each blood type X:

iO
πO

=
ρ(1− θ)pOλπA + ρ(1− θ)pOλπB + ρ(1− θ)pOλπAB

πO
= ρ(1− θ)(pA + pB + pAB)λ,

iA
πA

=
ρ(1− θ)pAλπAB

πA
= ρ(1− θ)pABλ,

iB
πB

=
ρ(1− θ)pBλπAB

πB
= ρ(1− θ)pABλ, and

iAB
πAB

= 0,

where the second equality in each line (except the last) follows from the assumption that pX
πX

is

constant among all X. Since ρ > 0, θ < 1, and pA, pB, pAB > 0,

0 =
iAB
πAB

<
iA
πA

=
iB
πB

<
iO
πO
.

We consider each lX + eX + iX , i.e., direct living-donor, regular-exchange, and incentivized-
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exchange transplants in total. We have

lO + eO + iO
πO

=pOλ+ [θ + ρ(1− θ)] (pA + pB + pAB)λ,

lA + eA + iA
πA

=(pO + pA + pB)λ+ [θ + ρ(1− θ)] pABλ,

lB + eB + iB
πB

=(pO + pA + pB)λ+ [θ + ρ(1− θ)] pABλ, and

lAB + eAB + iAB
πAB

=λ.

Since ρ, pAB, λ > 0,

lO + eO + iO
πO

<
lA + eA + iA

πA
=

lB + eB + iB
πB

<
lAB + eAB + iAB

πAB
= λ,

and they are all equal if and only if ρ = 1, because θ < 1.

A.5 Consequences of Different Transplant Regimes on Waiting Times

In this subsection, we state a lemma that formalizes the marginal effects of living-donor ex-

change policies on the waiting times of the following 29 groups of patients under some reasonable

assumptions. These 29 groups are nonprioritized & unpaired patients of each blood type (4 groups),

compatible pairs of overdemanded and self-demanded types (5 groups for overdemanded types and

4 groups for self-demanded types; recall that the overdemanded type A-B pairs are never compat-

ible), incompatible pairs of overdemanded and self-demanded types (6 groups for overdemanded

types and 4 groups for self-demanded types), and pairs of underdemanded types (6 groups).

In addition to Assumptions 2 and 3, we also assume that the tissue-type incompatibility proba-

bility θ and the reentry rate of living-donation recipients φl are sufficiently small. Formally, “for a

vector of sufficiently small parameters x, some claim holds” means that “there exists some vector

x � 0 (i.e., all entries of the vector are larger than 0) such that for all x, 0 ≤ x ≤ x, that claim

holds.” These assumptions guarantee that all underdemanded-type pairs, except possibly type B-

A, are pooled with their respective nonprioritized & unpaired patients for deceased donation under

the regular-exchange technology. Furthermore, we also assume that the difference between flows of

pair types B-A and A-B is sufficiently small. This guarantees that B-A pairs only participate in

exchange and are never pooled for deceased donation in all of exchange regimes we consider. This

lemma will be used to prove Theorem 3.

Lemma 2 (Consequences of regular and incentivized exchange) Suppose Assumptions 2

and 3 hold for a given incentivized-exchange participation-fraction profile ρ∗ = (ρ∗X−Y )Y .X&Y 6=X .

Suppose also that the reentry fraction of living-donation recipients, φl, the flow difference between

types B-A and A-B, pAλBπB − pBλAπA, and the tissue-type incompatibility probability, θ, are suffi-

ciently small. Then the following results hold:

• With respect to living-donation technology, regular-exchange technology causes steady-state wait-

ing times of all nonprioritized & unpaired patient groups and all incompatible pair groups to

decrease. In particular, in addition to compatible pair groups, all incompatible overdemanded
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and self-demanded pair groups no longer wait for a transplant and receive exchange transplants

immediately upon entry.

• With respect to regular-exchange technology, incentivized-exchange technology causes the waiting

times of

◦ all overdemanded- and self-demanded-type pair groups to stay at zero,

◦ all underdemanded-type pair groups except type B-A pairs to decrease,

◦ type B-A pairs not to change,

◦ nonprioritized & unpaired type O, type A, and type B patient groups to decrease, and

◦ nonprioritized & unpaired type AB patient group to increase.

• With respect to regular-exchange technology, balanced-incentivized-exchange technology causes the

waiting times of

◦ all overdemanded- and self-demanded-type pair groups to stay at zero,

◦ all underdemanded-type pair groups except type B-A pairs to decrease,

◦ type B-A pairs not to change,

◦ nonprioritized & unpaired type O, type A, and type B patient groups to decrease, and

◦ nonprioritized & unpaired type AB patient group not to change.

Proof of Lemma 2. Suppose we fix an incentivized-exchange participation-fraction vector

ρ∗ = (ρ∗X−Y )Y .X&Y 6=X such that Assumptions 2 and 3 hold. Then under any of the exchange

policies (i.e., regular with ρ = 0, incentivized with ρ = ρ∗, or balanced incentivized with ρ = ρ∗),

the flow of underdemanded-type X-Y pairs and their reciprocal-type Y-X pairs (from Equation 1)

satisfy:

πi
X−Y = pY λXπX ≥ πi

Y−X =

{
[θ + ρY−X(1− θ)]pXλY πY if Y-X 6= A-B

pBλAπA otherwise
.

As we have established before, in the optimal, ABO-i exchange regime for each of the three ex-

change policies, none of the pairs of incompatible overdemanded and self-demanded types wait for

a transplant, as they immediately receive transplant through exchange.

In the rest of the proof, we focus on the other patient groups: underdemanded-type pairs and

nonprioritized & unpaired patients.

Suppose also that the tissue-type incompatibility probability, θ, and the flow difference between

types B-A and A-B, pAλBπB − pBλAπA, are sufficiently small.

We prove the following claim first:

Claim 1. Under regular exchange, patients of all underdemanded-types pairs except that of

B-A are pooled for deceased donation with the nonprioritized & unpaired patients of the same blood

type, while patients of type B-A pairs are never pooled under any exchange regime.

Proof of Claim 1. For a blood type X ∈ {O, A, B} (note that type AB patients are not in
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any underdemanded-type pairs), under regular exchange we have cX
∣∣
ρ=0

= 0. We also have

rX
∣∣
ρ=0

=
δX

πi
X

∣∣
ρ=0

> rX−Y
∣∣
ρ=0

=
θpXλY πY
pY λXπX

(10)

for any underdemanded type X-Y 6= B-A, where the inequality follows for sufficiently small θ.

Recall that k(A) = 1 and k(O) = 3 are the numbers of underdemanded pair types with type A

and type O patients, respectively.

Thus, pairs of the only underdemanded type with A patient, A-AB, are pooled with nonpriori-

tized & unpaired type A patients under regular exchange by Equation 10.

We order underdemanded pair types with patient blood type O according to the ascending order

of their r ratios as O-Y1, O-Y2, and O-Y3. Then, for ` = 1, 2,

rO,O−Y1,...,O−Y` |ρ=0 =
δO +

∑`
m=1 θpOλYmπYm

πi
O

∣∣
ρ=0

+
∑`

m=1 pYmλOπO
>
θpOλY`+1

πY`+1

pY`+1
λOπO

= rO−Y`+1

∣∣
ρ=0 (11)

because of the assumption that θ is sufficiently small.

Thus, under regular exchange, underdemanded-type pairs with type O patients are pooled for

deceased donation with nonprioritized & unpaired type O patients.

On the other hand, for the underdemanded pair type B-A, we have

rB−A =
pBλAπA
pAλBπB

> rB (12)

for any ρ, when the difference pAλBπB − pBλAπA is sufficiently small. Thus, pairs of type B-A are

never pooled with nonprioritized & unpaired type B patients under incentivized exchange for any

ρ. The same holds for balanced incentivized exchange, when we replace, in Equation 12, rB with

rbB. Thus, pairs of type B-A are never pooled with nonprioritized & unpaired type B patients under

balanced incentivized exchange for any ρ, either.

Equation 10 with X = B and Equation 12 imply that pairs of type B-AB are pooled with

nonprioritized & unpaired type B patients under regular exchange. �

We also assume that the fraction of living-donation recipients reentering the deceased-donor

queue, φl, is also sufficiently small in the rest of the proof.

Transition from Living-Donor Transplantation to Regular Exchange:

Consider a blood type X. The flow of pairs that benefit from direct living donation is given

by lX =
∑

Y :Y .X(1 − θ)pY λXπX . The flow of pairs that benefit from regular exchange satisfies

eX =
∑

Y :Y .X θpY λXπX +
∑

Y :X.Y,Y 6=X θpXλY πY + 1{
X∈{A,B}

}pBλAπA > 0.17 This is also the flow

of patients that fall out of competition from the type X deceased-donor queue with respect to the

living-donor transplantation technology.

We consider the ratio of the available deceased-donor flow to the flow of patients who cannot

receive direct living donation, which we refer to as rlX , and rX,X−Y1,...,X−Y`(X)|ρ=0

∣∣
ρ=0

when pairs of un-

17The indicator function 1{Z}gets value 1 if the event Z is true and value 0 if the event Z is false.
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derdemanded types X-Y1, . . . ,X-Y`(X)|ρ=0 are pooled for deceased donation under regular exchange.

We have

rlX =
δX

πX −
∑
Y :Y .X

(1− θ)pY λXπX︸ ︷︷ ︸
=lX

+ φdδX + φllX
and (13)

rX,X−Y1,...,X−Y`(X)

∣∣
ρ=0

=
δX +

∑`(X)|ρ=0

m=1 (θpXλYmπYm)

πX − λXπX + φdδX + φllX + φleX︸ ︷︷ ︸
=πi

X

∣∣
ρ=0

+
∑`(X)|ρ=0

m=1 (pYmλXπX)
. (14)

Claim 2. The waiting time decreases under regular exchange with respect to living donation

for unpaired patients and underdemanded-type pairs.

Proof of Claim 2. For all X, we have from Equations 13 and 14 that, when φl = 0

rlX
∣∣
φl=0

=
δX

πX − (1− θ)
∑

Y :Y .X pY λXπX + φdδX
and

rX,X−Y1,...,X−Y`(X)

∣∣
ρ=0,φl=0

=
δX +

∑`(X)

∣∣
ρ=0,φl=0

m=1 (θpXλYmπYm)

πX − (1−
∑`(X)

∣∣
ρ=0,φl=0

m=1 pYm)λXπX + φdδX

.

Since B-A pairs are not pooled for deceased donation by Claim 1, we have B-A 6= X-Ym for

any X and m. Thus, for each Ym, X . Ym and Ym 6= X. Thus, we obtain 1−
∑`(X)

∣∣
ρ=0,φl=0

m=1 pYm ≥
1−

∑
Y :X.Y,Y 6=X pY . We also have 1−

∑
Y :X.Y,Y 6=X pY =

∑
Y :Y .X pY > (1− θ)

∑
Y :Y .X pY , as θ > 0.

Thus,

rlX
∣∣
φl=0

< rX,X−Y1,...,X−Y`(X)

∣∣
ρ=0,φl=0

.

By the continuity of the r ratios in φl, for sufficiently small φl we have rlX < rX
∣∣
ρ=0

, implying that

tl,decX = F−1
(
1− rlX

)
> F−1

(
1− rX,X−Y1,...,X−Y`(X)

∣∣
ρ=0

)
= te,decX . (15)

Since by Claim 1 pairs of underdemanded types except B-A are pooled with deceased donation

under regular exchange, their waiting times also decrease. Moreover, the waiting time of type B-A

pairs decreases even more, as it is not pooled for deceased donation by Claim 1.18 �

Transition from Regular Exchange to Incentivized Exchange:

Consider a blood type X ∈ {A, B, O}. Suppose ρ∗ is the participation profile for incentivized

exchange. The flow of pairs who benefit from incentivized exchange with any ρ in addition to

regular exchange satisfies

iX =
∑

Y :X.Y,Y 6=X

ρY−X(1− θ)pXλY πY ,

18Claim 2 is actually stronger for blood type AB. We established in the main text that the claim is true for blood
type AB regardless of the magnitudes of θ and φl.
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while the flow of prioritized reentrants satisfies

φlcX = φl

( ∑
Y :Y .X,Y 6=X

ρX−Y (1− θ)pY λXπX

)
.

As a result, for some `(X) ∈ {0, . . . , k(X)}, pairs of underdemanded types X-Y1,. . . ,X-Y`(X) are

pooled for deceased donation at ρ, and thus, we have

rX,X−Y1,...,X−Y`(X)
=

δX − φlcX +
∑`(X)

m=1 ([θ + ρYm−X(1− θ)]pXλYmπYm)

πX − λXπX + φdδX + φllX + φleX + φliX︸ ︷︷ ︸
=πi

X

+
∑`(X)

m=1 pYmλXπX
. (16)

Claim 3. The waiting time decreases under incentivized exchange with respect to regular ex-

change for nonprioritized & unpaired X patients and all underdemanded-type pairs with X patients

— except type B-A.

Proof of Claim 3. We will show that all ratios rX−Ym for all m = 1, ..., k(X), such that

X-Ym 6= B-A, and ratio rX,X−Y1,...,X−Y`(X)
increase from ρ = 0 to ρ = ρ∗, and thus, the related

waiting time decreases. We have `(X) = `(X)
∣∣
ρ=0

(i.e., the number of pooled types at ρ = 0) for

sufficiently small ρ profiles, since r ratios are continuous around ρ = 0 and there are no sudden

jumps in pooling by Claim 1. Thus, for sufficiently small ρ, when φl = 0

rX,X−Y1,...,X−Y`(X)

∣∣
φl=0

=
δX +

∑`(X)|
φl=0

m=1 ([θ + ρYm−X(1− θ)]pXλYmπYm)

πX − λXπX + φdδX +
∑`(X)|

φl=0

m=1 pYmλXπX
and

rX−Ym =
[θ + ρYm−X(1− θ)]pXλYmπYm

pYmλXπX

are increasing in ρ. Suppose that we increase each ρW−Z from 0 to ρ∗W−Z in uniform speed ρ∗W−Z
throughout so that ρ reaches ρ∗ at time t = 1. We can compare the rates of change in both entities

along this line as the inner product of their gradient vector and speed vector:(
∇ρrX,X−Y1,...,X−Y`(X)

)
· ρ∗
∣∣
φl=0

=

∑`(X)|
φl=0

m=1 ρ∗Ym−X(1− θ)pXλYmπYm
πX − λXπX + φdδX +

∑`(X)|
φl=0

m=1 pYmλXπX

<
ρ∗Ym−X(1− θ)pXλYmπYm

pYmλXπX
= (∇ρrX−Ym) · ρ∗,

for m = `(X)|φl=0, i.e., the r ratio for the pooled nonprioritized & unpaired patients and

underdemanded-type pairs changes slower than the largest of the r ratios of the underdemanded

types that are pooled when φl = 0. Thus, as ρ increases to ρ∗, either ρ reaches ρ∗ without `(X)|φl=0

changing or there will be a profile ρ1 such that 0 � ρ1 < ρ∗, at which `(X)|φl=0 decreases to

`(X)
∣∣
ρ=0,φl=0

− 1 so that pairs of the underdemanded type with the highest r ratio are no longer

pooled with the rest. Similarly, the resulting new r value relevant for the pool of nonprioritized &

unpaired patients and remaining underdemanded-type pairs will be increasing in ρ until ρ reaches a

new cutoff ρ2 ≤ ρ∗. At this new cutoff `(X)
∣∣
ρ=ρ2,φl=0

= `(X)
∣∣
ρ=0,φl=0

−2, and so on, so forth. Possi-

bly, no underdemanded pairs may remain pooled at sufficiently high ρ, implying that `(X)|φl=0 = 0,
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and thus,
(
∇ρrX,X−Y1,...,X−Y`(X)

)
· ρ∗
∣∣
φl=0

= 0. Except after this last iteration, all r ratios strictly

increase at each iteration until t = 1 at different speeds when φl = 0.

In the end, for sufficiently small φl, by the continuity of the r ratios (and their gradients) in

φl and by the fact that all underdemanded-type pairs were pooled initially at ρ = 0, all gradients

are strictly positive at least for small ρ. Thus, we obtain that the r ratios strictly increase from

ρ = 0 to ρ = ρ∗. As the waiting time is decreasing in its relevant r ratio for each patient group, for

all underdemanded types with X patient blood type — except type B-A — and nonprioritized &

unpaired X patients, waiting times strictly decrease with respect to their levels at ρ = 0. �

On the other hand, in the main text in Section 4 we showed that the waiting time of nonprior-

itized & unpaired type AB patients strictly increases from ρ = 0 to ρ = ρ∗ regardless of φl and θ.

For sufficiently small type B-A and type A-B flow difference, since pairs of type B-A are not pooled

with nonprioritized & unpaired B patients regardless of ρ∗ by Claim 1, their waiting time remains

unaffected for any ρ, including ρ = 0 and ρ = ρ∗.

Transition from Regular Exchange to Balanced Incentivized Exchange:

The flow of underdemanded-type pairs who benefit from balanced incentivized exchange with

participation fraction profile ρ∗ satisfies

bX = iX =
∑

Y :X.Y,Y 6=X

ρY−X(1− θ)pXλY πY ,

while the flow of prioritized reentrants in front of the type X deceased-donor queue satisfies

φlcb
X |ρ=ρ∗ = φl

∑
Y :X.Y,Y 6=X

ρ∗Y−X(1− θ)pXλY πY .

Then Claim 3’s proof follows line by line after replacing cb
X

∣∣
ρ=ρ∗

with cX
∣∣
ρ=ρ∗

in Equation 16 for X

∈ {O, A, B}.
On the other hand, for type X = AB, since cb

AB

∣∣
ρ=ρ∗

= 0, bAB
∣∣
ρ=ρ∗

= 0, and there are no

underdemanded types, the relevant ratio in Equation 16 reduces to

rbAB
∣∣
ρ=ρ∗

=
δAB

πAB − λABπAB + φdδAB + φllAB + φleAB︸ ︷︷ ︸
=πb

AB

∣∣
ρ=ρ∗

=πi
AB

∣∣
ρ=0

= rAB
∣∣
ρ=0

,

which is also the relevant ratio for regular exchange. Therefore, tb,decAB

∣∣
ρ=ρ∗

= F−1
(

1− rbAB
∣∣
ρ=ρ∗

)
=

F−1
(

1− rAB
∣∣
ρ=0

)
= te,decAB , completing the proof of the lemma.

A.6 Equity Consequences of Different Transplant Regimes on

Deceased-Donor Queues

Proof of Theorem 3. Suppose Assumptions 2 and 3 hold. Let pA > pB. Suppose that λX = λ

for any blood type X, and δX
δY

= πX
πY

= pX
pY

for any two blood types X,Y. Also assume that the

fraction of pairs taking the incentivized-exchange option is uniform at a fixed ρ < 1 for any eligible

pair type.
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1. With deceased-donor transplantation only , the waiting time at each deceased-donor queue

is td,decX = F−1
(

1− δX
πX+φdδX

)
= F−1

(
1−

δX
πX

1+φd
δX
πX

)
for any blood type X. Since δX

πX
= δY

πY
for

any two blood types X and Y, we have td,decX = td,decY .

2. Introduction of living-donor transplantation reduces the waiting time at each deceased-

donor queue X, since tl,decX = F−1
(

1−
δX
πX

1+φd
δX
πX
−(1−φl)plXλ

)
< F−1

(
1−

δX
πX

1+φd
δX
πX

)
= td,decX . Since

the probability of being compatible with the paired donor conditional on having a living donor

satisfies for each blood type

plO = (1− θ)pO, plB = (1− θ)(pO + pB),

plA = (1− θ)(pO + pA), plAB = (1− θ)(pO + pA + pB + pAB) = (1− θ),

and pA > pB, we have plO < plB < plA < plAB. Thus, as tl,decX is decreasing in plX and δX
πX

is constant

among blood types, we have

tl,decAB < tl,decA < tl,decB < tl,decO .

Moreover, Part 1 implies that(
td,decAB − tl,decAB

)
>
(
td,decA − tl,decA

)
>
(
td,decB − tl,decB

)
>
(
td,decO − tl,decO

)
.

Further assume that θ and φl are sufficiently small in the rest of the proof. We also have the flow

difference between type B-A and type A-B as pBλπA− pAλπB = 0 since pA
pB

= πA
πB

. Thus, hypothesis

of Lemma 2 holds.

3. Introduction of regular exchange , in addition to direct living-donor transplantation and

deceased-donor transplantation, causes the deceased-donor waiting times for all blood types to

decrease by Lemma 2. By Claim 1 in the proof of the same lemma, pairs of all underdemanded

types except B-A are pooled for deceased donation with unpaired patients of their patients’ blood

types. By Equation 14 and πX
πY

= pX
pY

for any two blood types X and Y, we obtain

rO,O−A,O−B,O−AB
∣∣
ρ=0

=
δO + (θpOλπA + θpOλπB + θpOλπAB)

πO − λπO + φdδO + φl (lO + eO) + (pAλπO + pBλπO + pABλπO)

=

δO
πO

+ (θpAλ+ θpBλ+ θpABλ)

1− λ+ φd δO
πO

+ φl
(

lO+eO
πO

)
+ (pAλ+ pBλ+ pABλ)

,

rA,A−AB
∣∣
ρ=0

=
δA + (θpAλπAB)

πA − λπA + φdδA + φl (lA + eA) + (pABλπA)
=

δA
πA

+ (θpABλ)

1− λ+ φd δA
πA

+ φl
(

lA+eA
πA

)
+ (pABλ)

,

rB,B−AB
∣∣
ρ=0

=
δB + (θpBλπAB)

πB − λπB + φdδB + φl (lB + eB) + (pABλπB)
=

δB
πB

+ (θpABλ)

1− λ+ φd δB
πB

+ φl
(

lB+eB
πB

)
+ (pABλ)

,

rAB =
δAB

πB − λπAB + φdδAB + φl (lAB + eAB)
=

δAB
πAB

1− λ+ φd δAB
πAB

+ φl
(

lAB+eAB
πAB

) .
Since πX

πY
= δX

δY
for any two blood types X and Y, we have by Theorem 2, lA+eA

πA
= lB+eB

πB
, and
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thus, rA,A−AB
∣∣
ρ=0

= rB,B−AB
∣∣
ρ=0

implying that

te,decA = F−1
(

1− rA,A−AB
∣∣
ρ=0

)
= F−1

(
1− rB,B−AB

∣∣
ρ=0

)
= te,decB .

Suppose φl = 0. Then,

rO,O−A,O−B,O−AB
∣∣
ρ=0,φl=0

=

δO
πO

+ (θpAλ+ θpBλ+ θpABλ)

1− λ+ φd δO
πO

+ (pAλ+ pBλ+ pABλ)
,

rA,A−AB
∣∣
ρ=0,φl=0

=

δA
πA

+ (θpABλ)

1− λ+ φd δA
πA

+ (pABλ)
, and

rAB
∣∣
φl=0

=

δAB
πAB

1− λ+ φd δAB
πAB

.

Since for sufficiently small θ,
δX/πX

1−λ+φdδX/πX
> θ for any X, we have that

δX/πX+θq(X)
1−λ+φdδX/πX+q(X)

is decreas-

ing in q(X) for any q(X) ≥ 0. Thus, we can rank the above entities as rO,O−A,O−B,O−AB
∣∣
ρ=0,φl=0

<

rA,A−AB
∣∣
ρ=0,φl=0

< rAB
∣∣
φl=0

. By the continuity of these r ratios in φl, for sufficiently small φl we

still have rO,O−A,O−B,O−AB
∣∣
ρ=0

< rA,A−AB
∣∣
ρ=0

< rAB. As the generic waiting time t = F−1(1− r)
is decreasing in r, we can rank the waiting times for deceased donation in the queue under regular

exchange as

te,decAB < te,decA = te,decB < te,decO ,

and thus, by Part 1,(
td,decAB − te,decAB

)
>
(
td,decA − te,decA

)
=
(
td,decB − te,decB

)
>
(
td,decO − te,decO

)
.

4.(a) Introduction of incentivized exchange in addition to regular exchange, direct living-

donor transplantation, and deceased-donor transplantation causes the waiting time for a

deceased-donor transplant to decrease for all blood types except AB, for which it increases

by Lemma 2, with respect to regular exchange. Since pX
pY

= πX
πY

for any two blood types X

and Y, the relevant r ratios for waiting times in the deceased-donor queue satisfy for each

k = 0, ..., k(X), such that X-Yk 6= B-A,

rX,X−Y1,...,X−Yk =

δX
πX
− φl cX

πX
+
∑k

m=1 ([θ + ρ(1− θ)]pYmλ)

1− λ+ φd δX
πX

+ φl lX+eX+iX
πX

+
∑k

m=1 pYmλ
,

where lO+eO+iO
πO

< lA+eA+iA
πA

= lB+eB+iB
πAB

< lAB+eAB+iB
πB

= λ by Theorem 2, and

cO
πO

= 0 <
cA
πA

= ρ(1− θ)pOλ =
cB
πB

= ρ(1− θ)pOλ <
cAB
πAB

= ρ(1− θ)(pO + pA + pB)λ.

Moreover, we have that for all underdemanded types X-Y except type B-A, the r ratio

rX−Y =
[θ + ρ(1− θ)]pXλπY

pY λπX
= θ + ρ(1− θ) (17)

is uniform. Define r̂X := rX,X−Y1,...,X−Y`(X)
. Thus, type A-AB pairs will be pooled with

nonprioritized & unpaired type A patients if and only if type B-AB pairs will be pooled with

nonprioritized & unpaired type B patients, implying r̂A = r̂B, and hence,

ti,decA = F−1 (1− r̂A) = F−1 (1− r̂B) = ti,decB .
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(b) Introduction of balanced incentivized exchange , in addition to regular exchange, direct

living-donor transplantation, and deceased-donor transplantation, causes the waiting time for

a deceased-donor transplant to decrease for all blood types except AB, for which it remains

constant by Lemma 2, with respect to regular exchange.

We next inspect the magnitude of these changes.

Note that bX = iX for each blood type X, i.e., the same flow of pairs benefit from both

balanced-incentivized-exchange and incentivized-exchange regimes. Given a blood type X,

the relevant r ratio for waiting times in the deceased-donor queue, which we will refer to as

r∗X for short, satisfies

r∗X := rbX,X−Y1,...,X−Y`b(X)
=

δX
πX
− φl cbX

πX
+
∑`b(X)

m=1 ([θ + ρ(1− θ)]pYmλ)

1− λ+ φd δX
πX

+ φl lX+eX+iX
πX

+
∑`b(X)

m=1 pYmλ
.

We prove several claims:

Claim 1. Deceased-donation waiting times in the A and B deceased-donor queues are the

same under incentivized balanced exchange, i.e., tb,decA = tb,decB .

Proof of Claim 1. We have lO+eO+iO
πO

< lA+eA+iA
πA

= lB+eB+iB
πB

< lAB+eAB+iB
πAB

= λ by Theorem

2 and δX
δY

= πX
πY

for any two blood types X and Y. Moreover, cbX
πX

satisfies

cb
O

πO
= ρ(1− θ)(pA + pB + pAB)λ >

cb
A

πA
= ρ(1− θ)pABλ =

cb
B

πB
>

cb
AB

πAB
= 0.

Moreover, Equation 17 holds in this case as well. Thus, type A-AB pairs will be pooled with

nonprioritized & unpaired type A patients if and only if type B-AB pairs will be pooled with

nonprioritized & unpaired type B patients, Hence, r∗A = r∗B, implying that

tb,decA = F−1 (1− r∗A) = F−1 (1− r∗B) = tb,decB .

�

Thus, without loss of generality, we will focus on blood type A among A and B in the rest of

the proof, i.e., everything we prove for blood type A will also hold for blood type B.

Claim 2. Suppose φl = 0. Let ρ =

(
r∗AB |φl=0

)
−θ

1−θ . Then

• if ρ < ρ, all underdemanded types will be pooled with their respective patient blood types

and r∗O
∣∣
φl=0

< r∗A
∣∣
φl=0

< r∗AB
∣∣
φl=0

such that each of these r ratios is increasing in ρ, and

• if ρ ≥ ρ, no underdemanded type will be pooled and r∗O
∣∣
φl=0

= r∗A
∣∣
φl=0

= r∗AB
∣∣
φl=0

is

constant in ρ.

Proof of Claim 2. We have the relevant r ratios for the waiting time for deceased donation
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for each blood type O, A, and AB as follows for any φl:

r∗O =

δO
πO
− φlρ(1− θ)(pA + pB + pAB)λ+

∑`b(O)
m=1

([
θ + ρ(1− θ)

]
pYmλ

)
1− λ+ φd δO

πO
+ φl

(
pOλ+

[
θ + ρ(1− θ)

]
(pA + pB + pAB)λ

)
+
∑`b(O)

m=1 pYmλ
,

r∗A =

δA
πA
− φlρ(1− θ)pABλ+

∑`b(A)
m=1

([
θ + ρ(1− θ)

]
pYmλ

)
1− λ+ φd δA

πA
+ φl

(
(pO + pA + pB)λ+

[
θ + ρ(1− θ)

]
pABλ

)
+
∑`b(A)

m=1 pYmλ
, and

(18)

r∗AB =

δAB
πAB

1− λ+ φd δAB
πAB

+ φlλ
.

Suppose φl = 0. First, observe that for all underdemanded types X-Y other than B-A Equation

17 holds, and thus, we have rX−Y = [θ + ρ(1 − θ)]. Moreover, the relevant r ratio regarding

nonprioritized & unpaired patient groups, when all deceased donors are served to them and

pairs of no underdemanded type are pooled with them, satisfies (for D and P defined as

below):

rbA
∣∣
φl=0

=

=D︷︸︸︷
δA
πA

1− λ+ φd
δA
πA︸ ︷︷ ︸

=P

=
D

P
(19)

= rbO
∣∣
φl=0

= r∗AB
∣∣
φl=0

because πX
πY

= δX
δY

for all X and Y.

Thus,

rbA
∣∣
φl=0

=
D

P
> rA−AB = θ + ρ(1− θ) ⇐⇒ rbO

∣∣
φl=0

=
D

P
> rO−X = θ + ρ(1− θ)

for any X ∈ {A, B, AB}. This means A-AB pairs will be pooled for deceased donation with

A patients if and only if all underdemanded-type pairs with O patients will be pooled for

deceased donation with O patients, in turn, each of these statements is equivalent to

D

P
> θ + ρ(1− θ). (20)

Define

ρ =
D
P
− θ

1− θ
. (21)

Two cases are possible for ρ.

• Case 1. ρ < ρ: Then Inequality 20 holds, and pairs of all underdemanded types except

B-A are pooled with their respective patients for deceased donation. Moreover, r∗X |φl=0 can

be written as

r∗X
∣∣
φl=0

=
D + [θ + ρ(1− θ)]q(X)

P + q(X)
, (22)

where q(X) =
∑`b(X)

m=1 pYmλ. Since ρ < ρ, we have rbX |φl=0 = D
P
> θ + ρ(1− θ) = rX−Y for
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all underdemanded pair types X-Y except B-A (where equalities follow by Equations 19

and 17). Thus, r∗X
∣∣
φl=0

is decreasing in q(X). Since

q(AB) = 0 < q(A) = pABλ < q(O) = (pA + pB + pAB)λ,

we obtain

r∗O
∣∣
φl=0

< r∗A
∣∣
φl=0

< r∗AB
∣∣
φl=0

.

Finally, each of these is increasing in ρ by Equation 22.

• Case 2. ρ ≥ ρ: Then Inequality 20 will not hold, and there will be no pooling of underde-

manded type pairs. Thus, r∗X |φl=0 = rbX |φl=0 = D
P

is constant in ρ. �

Claim 3. Under balanced-incentivized-exchange technology, the deceased-donation waiting

times are ranked as follows: tb,decAB < tb,decA = tb,decB < tb,decO .

Proof of Claim 3. Claim 1 shows tb,decA = tb,decB . First, we will show that r∗O < r∗A < r∗AB.

For X ∈ {O, A}, we have two cases for ρ (for ρ defined as in Equation 21 and D, P defined

as in Equation 19):

• Case 1. ρ < ρ: r∗X
∣∣
φl=0

= D+[θ+ρ(1−θ)]q(X)
P+q(X)

by Equation 22. For sufficiently small φl, we have

the ranking r∗O < r∗A < r∗AB by Claim 2 and the continuity of the r ratios in φl.

• Case 2. ρ ≥ ρ: r∗X
∣∣
φl=0

= D
P

is constant by Claim 2. Thus, we need to consider
∂r∗X
∂φl

evaluated at φl = 0 to find the ranking of r∗X for sufficiently small φl using Equation

system 18 and the fact that no underdemanded-type pair is pooled in this case (from

Claim 2). We have:

∂r∗O
∂φl

∣∣
φl=0

=
−ρ(1− θ)(pA + pB + pAB)λP −

(
pO +

[
θ + ρ(1− θ)

](
pA + pB + pAB

))
λD

P 2
< 0,

∂r∗A
∂φl

∣∣
φl=0

=
−ρ(1− θ)pABλP −

((
pO + pA + pB

)
+
[
θ + ρ(1− θ)

]
pAB

)
λD

P 2
< 0, and

∂r∗AB
∂φl

∣∣
φl=0

=
−λD
P 2

< 0.

Moreover,

∂r∗O
∂φl

∣∣
φl=0
−∂r

∗
A

∂φl
∣∣
φl=0

= −(1− θ)(pA + pB)λ

P

(
ρ
(

1 +
D

P

)
− D

P

)
,

and since 1− pAB = pO + pA + pB,

∂r∗A
∂φl

∣∣
φl=0
− ∂r∗AB

∂φl
∣∣
φl=0

= −(1− θ)pABλ
P

(
ρ
(

1 +
D

P

)
− D

P

)
.

Suppose θ = 0. Since ρ > ρ|θ=0 = D
P

, we have ρ(1 + D
P

)− D
P
> D

P
(1 + D

P
)− D

P
=
(
D
P

)2
> 0.

Thus,
∂r∗O
∂φl

∣∣
φl=0,θ=0

<
∂r∗A
∂φl

∣∣
φl=0,θ=0

<
∂r∗AB
∂φl

∣∣
φl=0,θ=0

< 0.

Moreover,
∂r∗O
∂θ

∣∣
φl=0,θ=0

=
∂r∗A
∂θ

∣∣
φl=0,θ=0

=
∂r∗AB
∂θ

= 0.
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Hence, by the Taylor series expansion of the r ratios in (φl, θ) around (0, 0), for sufficiently

small (φl, θ) we have r∗O < r∗A < r∗AB. Since tb,decX = F−1 (1− r∗X) and by Claim 1 tb,decA =

tb,decB , we obtain

tb,decO < tb,decA = tb,decB < tb,decAB .

�

Finally, we complete the proof of Part 4(b) and the theorem as follows: Since tb,decmin = tb,decAB =

te,decAB = te,decmin and tb,decmax = tb,decO < te,decO = te,decmax , we obtain(
tb,decmax − t

b,dec
min

)
<
(
te,decmax − t

e,dec
min

)
.

Appendix B Construction of Calibration Parameters for

Numerical Predictions

In this appendix, we explain how the calibration parameters, reported in Table 1 in Section 5

and used to generate the numerical model predictions, are constructed.

In Table 6, we report the blood-type distribution for different ethnicities and fractions of these

ethnicities in the US population. Using these, we calculate an overall US blood-type distribution

(the last row of this table). We use this as the blood-type distribution of living donors, (pX), in our

model.

US Blood Type and Ethnicity Distribution Data

Ethnicities Blood Types Pop. %

O A B AB

African American 0.490 0.270 0.200 0.040 12.4%
Asian American 0.400 0.280 0.270 0.050 3.3%

Native American 0.790 0.160 0.040 0.010 0.8%
White American 0.450 0.400 0.110 0.040 83.4%

US population 0.456 0.378 0.126 0.040

Table 6: The US blood type and ethnicity distribution. Retrieved from http://bloodbook.com on
03/05/2018. The blood-type distribution for the overall US population is constructed using the ethnicity
distribution and could be slightly different from the general distributions reported in other sources.

In Table 7, we report the OPTN data for deceased-donor queue additions and deceased- and

living-donor transplants for the year of 2009. We measure time in 1 year units and calculate the flows

using the annual numbers reported in this data. First, we observe that on average 2×7248
10442

= 1.4407

kidneys are harvested from each deceased donor, since a total of 7248 deceased donors arrive while

10442 deceased-donor transplants are conducted. The deceased-donor flows, (δX), are constructed

by multiplying each entry in the second to last row of the table with 1.4407. The row above,

deceased-donation recipients, is used as the de-facto deceased-donor flows, (δ′X), in the numerical

calculations.

New patient arrival flows, (πX), are calculated as follows: We know the annual additions to

the deceased-donor queue (the first row of the table). However, some patients receive living-donor

A-19



The US OPTN Kidney Data

O A B AB Overall

Total Additions to the Queue 16323 11090 4919 1325 33657
Living-Donation Recipients not on Queue 432 406 127 35 1000

Reentrants 2062 1513 580 198 4353

Direct Living-Donation Recipients 2750 2326 786 236 5098
Exchange Participants 128 96 58 8 290

Deceased-Donation Recipients 4726 3815 1347 554 10442

Deceased Donors 3458 2722 850 218 7248

Average CPRA 4.73%

Table 7: Arrivals to and transplants from the kidney deceased-donor queue for 2009 entrants. Year
2009 is used because this is the latest year for which five-year dialysis survival rates are avail-
able as of May, 2017. Data is obtained from the OPTN using the “national data” option from
http://optn.transplant.hrsa.gov 05/12/2017.

transplants without even registering in the queue (the second row of the table). We add these two

numbers and subtract the number of reentrants (the third row of the table) from them to find πX

for each blood type X.

Reentry fractions, φl and φd, are assumed to be the same, as the OPTN national data do not

distinguish reentrants based on their previous transplantation type. We divide the total number of

reentrants (the last cell of the third row of the table) by the sum of direct living-donation recipients,

exchange participants, and deceased-donation recipients (the sum of the last cells of the fourth, fifth,

and sixth lines of the table).

The tissue-type incompatibility probability, θ, is taken as the average calculated panel reactive

antibody (CPRA), 0.0473, for the 2009 entrants (see Table 9 in Appendix C for its calculations

using the OPTN data). CPRA measures the percentage of the population with which the patient

is tissue-type incompatible.

The calculation of paired-donor fractions, (λX), requires the knowledge of the total number of

patients who arrive with paired donors. However, this information is not available since only the

realized living-donor transplants are recorded in this database. Most of these transplants are direct

transplants, i.e., those from the compatible paired donor of a patient. A small percentage of those

are from exchanges.19 In the fourth row of Table 7, we report the numbers of direct living donations

conducted (i.e., each entry is lX in our model). Assuming patients and living donors are paired

initially as in our model, we calculate the probability of having a compatible donor conditional on

being paired with a living donor. These probabilities are calculated as follows using the living-donor

blood-type distribution, (pX), reported in the last row of Table 6:

plO =(1− θ)pO = 0.4344, plB =(1− θ)(pO + pB) = 0.5545,

plA =(1− θ)(pO + pA) = 0.7974, and plAB =(1− θ) = 0.9527.

Then, we calculate λX = lX
plXπX

for each blood type X.

The incentivized-exchange participation fraction for a compatible pair type X-Y with Y . X and

19 In 2009, exchange transplants were still rare in the US, consisting of about 4.54 percent of all living-donor
transplants, while this percentage is more than 12 percent as of 2016.
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Y 6= X, ρX−Y , is our free calibration variable. We assume that this fraction is uniform for each

type, and we denote it as ρ. We consider three treatments with ρ = 25%, 50%, and 100%.

US On-dialysis Survival Rates

Time: 3 mo. 1 yr. 2 yr. 3 yr. 5 yr.

On dialysis 0.9215 0.7824 0.6648 0.5694 0.4230

Table 8: For the survival rate, 1 − F (t), we use the on-dialysis survival probability of US kidney dis-
ease patients for the 2009 entrant cohort. These 2009 estimates for dialysis patients are obtained from
the weighted average of hemodialysis and peritoneal dialysis survival rates reported in the 2016 An-
nual Report of the National Kidney Organization, Volume 2, Table 6.3 of Chapter 6 (retrieved from
https://www.usrds.org/2016/download/v2 c06 Mortality 16.pdf on 05/12/2017). The weights used
in the weighted average calculations are the average 2009–2014 percentages of patients on hemodialysis
versus peritoneal dialysis, reported in the same report’s Volume 2, Figure 1.2 of Chapter 1 (retrieved from
https://www.usrds.org/2016/download/v2 c01 IncPrev 16.pdf on 05/12/2017).

In Table 8, survival rates over time, 1 − F (t), are reported. These are obtained from the US

Renal Data System (USRDS) data for dialysis patients. We fit an exponential duration curve (for

t measured in years) as

F̂ (t) = 1− âeb̂t

and obtain the following estimates using non-linear least squares regression (through the fit com-

mand in MATLAB): â = 0.9427 with the 95 percent confidence interval (0.8945, 0.9909), and

b̂ = −0.1667 with the 95 percent confidence interval (−0.1922,−0.1411).

Appendix C Simulations

In addition to the numerical model predictions in Section 5, we also conduct simulations em-

ulating the discrete paired and unpaired patient and deceased-donor arrival processes in real life.

Our goal in conducting these simulations is to assess the welfare and equity consequences of our

policy proposal, incentivized exchange, more accurately. Moreover, the simulations give us a chance

to assess the validity of our continuum model in conducting policy analysis.

C.1 Simulation Methodology

In the simulations, we distribute deceased-donor kidneys according to the de-facto allocation

policy on a FIFO basis to a compatible patient. If no compatible patient is found in the queue,

the kidney immediately perishes. Our exchange policy is ABO-i two-way exchange, the optimal

mechanism for our model: Each arriving eligible type X-Y pair is immediately matched with a

mutually compatible type Y-X pair selected on a FIFO basis from the ones waiting in the queue. If

such a mutually compatible match does not exist and the type X-Y pair is a compatible pair that

wanted to take the incentivized exchange option, then it does not wait in the queue and its donor

directly donates to its patient. In this case, the patient shall not be prioritized if he reenters the

queue with a transplant failure. On the other hand, if the type X-Y pair is incompatible, then it

joins both the deceased-donor and exchange queues.
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We assume patients are heterogenous in their tissue-type incompatibility probabilities. We use

the entrant CPRA distribution reported in Table 9 to generate the tissue-type incompatibility

probability θi for each patient i. The mean of this distribution gives us the value of θ we use in

the numerical model predictions, 0.0473 (or 4.73 percentage points in the CPRA reporting metric),

in Section 5. This data gives the fraction of entrants in five different CPRA intervals. We assume

that all patients uniformly and randomly take CPRA values in their assigned CPRA intervals. For

example, the US OPTN data reports that 1.73 percent of all entrants have CPRA points between 0

percent and 20 percent (the second column of this table). We first assume that a simulated patient

i is assigned to this group with probability 0.0173. Then his exact tissue-type incompatibility

probability θi is determined uniformly randomly from the interval (0, 0.2).

The US OPTN Data for CPRA Distribution for Entrants

CPRA intervals (in % points)

0 (0,20) [20,80) [80,98) [98,100)

Fraction of Entrants 91.57% 1.73% 3.85% 1.88% 0.98%

Table 9: Data is obtained from the OPTN using the “national data” option for the year 2009 from
http://optn.transplant.hrsa.gov on 03/28/2018.

Our simulations use a scaled-down version of the calibrated inflow rates for new patients and

deceased donors. The US consists of 13 transplant regions of various sizes. Deceased-donor kidneys

are first offered to patients within their arrival regions. If a suitable match cannot be found in the

region, then they are offered nationally. Our simulation roughly maps to one region that comprises

one tenth of the size of the US and reflects the same patient and donor characteristics as the overall

US population does. Thus, we obtain deceased-donor and new-patient arrival flows by dividing the

population flows δ′X and πX reported in Table 1 by 10. For other parameters of the simulation,

(pX), (λX), φl, φd, and 1− F (t), we use the same parameters reported in this table.

In each iteration, we simulate the evolution of the kidney-allocation process in such a region for

55 years. Each year is divided into finite periods so that in each period either only one new patient,

reentrant, or deceased donor arrives. Thus, the number of periods in each year equals the sum of

the total flow of new patients,
∑

X πX/10, the total flow of deceased-donor kidneys,
∑

X δ
′
X/10,

and the total number of reentrants. The number of reentrants in the next year is calculated as the

minimum of (a) the reentry fraction φ multiplied by the number of total transplants in the previous

year and (b) the total number of patients who received a transplant since year 1. The numbers of

patients waiting in the queue, periods per year, and reentrants per year stabilize after a number of

years passes. For example, beginning from the end of year 31 until the end of last year, year 55, the

number of patients waiting in the deceased-donor queue at the year’s end has a standard deviation

less than 0.5 percent of its mean. This is approximately the steady state we are seeking. We report

the averages of the last year (year 55) for the numbers and percentages of patients matched. For

calculating average waiting times, we need for all of the patients of a cohort to exit the queue,

either with a transplant or without a transplant, i.e., because of death. We observe that in each of

the treatments and simulations no patient waits more than 25 years in the queue. We report the
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average waiting time of patients who arrive in year 31. Thus, when the simulation ends at year 55,

all patients have exited the queue in year 31 entry cohort with or without a transplant. We run a

total of 100 simulations and report their averages and standard errors.

The new-patient, deceased-donor, and reentrant generation processes are as follows: Each new

patient is generated independently and randomly with the underlying blood-type, tissue-type in-

compatibility probability, and living-donor pairing probability distributions. We also randomly

determine his survival time while waiting for a transplant so that the population probability of

remaining alive after waiting for t years is 1 − F (t). Once a patient is deemed paired, his living

donor’s blood type is also independently randomly generated in a similar fashion. We determine

whether they are compatible using their blood types and the patient’s tissue-type incompatibility

probability with a random donor. For a deceased-donor kidney, we only generate its blood type

according to the distribution dictated by (δ′X). A reentrant is determined according to the reentry

probability among the transplanted patients since year 1 with uniform distribution. For a reentrant,

we use his original tissue-type incompatibility probability and blood type. We assume that he is

now unpaired. We also calculate his new survival time using the same overall survival probability

function 1− F (t).

We consider nine treatments in our simulations. The first six treatments are deceased-donor

transplantation, living-donor transplantation, regular exchange, and balanced-incentivized exchange

for uniform participation rates ρ = 25%, 50%, 100%. These were also used in our numerical model

predictions. We also consider three additional balanced-incentivized exchange treatments in which

compatible type X-X pairs are also incentivized. In our continuum model, this incentivization

scheme does not have additional welfare benefits, as all incompatible type X-X pairs are matched

with each other in regular exchange as soon as they arrive. On the other hand, in our simulations,

as pair arrivals are discrete and patients are heterogenous in their tissue-type compatibility proba-

bilities, there could be potential welfare gains from the participation of compatible type X-X pairs

in exchange with incompatible X-X pairs already in the queue.

C.2 Simulation Results

The simulation results are very similar to the numerical model predictions for the de-facto

deceased-donor allocation policy. The numbers and percentages of transplanted patients are given

in Table 10. When compared with Table 2 in Section 5, the corresponding percentages are slightly

higher for the simulations. The new treatment, balanced incentivized exchange with compatible

X-X pairs, fares only slightly better than the balanced-incentivized treatment. The average waiting

times for a nonprioritized deceased-donor transplant and any type of transplant are displayed in

Tables 11 and 12, respectively. Similarly, they are slightly shorter than their counterparts predicted

by our model in Section 5. The balanced-incentivized treatment with compatible X-X pairs makes

almost no difference in waiting times for nonprioritized deceased-donor transplants, but slightly

shortens overall waiting times.
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Simulation Results: Patients Receiving Transplant

O A B AB Overall

Treatments Living-Donor Transplants

Living-donor transplantation 273.92 18.68% 232.82 23.22% 76.81 17.33% 22.98 19.82% 606.53 20.03%
(lX) (16.00) (0.99%) (14.15) (1.32%) (9.11) (1.81%) (4.93) (3.99%) (23.02) (0.75%)

Regular exchange 290.70 19.83% 278.95 27.82% 117.18 26.46% 23.90 20.61% 710.73 23.48%
(eX + lX) (17.20) (1.08%) (16.39) (1.50%) (11.73) (2.39%) (5.06) (4.09%) (28.64) (0.93%)

ρ = 25%
340.98 23.26% 280.78 28.00% 117.98 26.64% 23.93 20.64% 763.67 25.22%

Balanced (17.12) (1.11%) (16.99) (1.57%) (12.00) (2.47%) (5.02) (4.06%) (31.59) (1.03%)

Incentivized
ρ = 50%

390.20 26.62% 282.94 28.22% 118.51 26.76% 23.88 20.59% 815.53 26.94%
(eX + lX + bX) (18.56) (1.24%) (16.77) (1.55%) (12.01) (2.47%) (5.10) (4.10%) (33.30) (1.08%)

ρ = 100%
487.91 33.29% 287.33 28.66% 119.96 27.09% 23.88 20.59% 919.08 30.36%

(20.71) (1.42%) (17.08) (1.56%) (11.93) (2.46%) (5.07) (4.06%) (38.03) (1.23%)

Balanced
ρ = 25%

344.85 23.53% 282.39 28.16% 118.31 26.71% 23.96 20.66% 769.51 25.42%
Incentivized (17.01) (1.11%) (16.93) (1.55%) (11.93) (2.46%) (5.08) (4.10%) (31.58) (1.03%)

also with comp.
ρ = 50%

395.16 26.96% 285.05 28.43% 119.04 26.88% 23.91 20.61% 823.16 27.19%
type X-X pairs (18.17) (1.21%) (16.93) (1.54%) (11.91) (2.43%) (5.10) (4.10%) (32.52) (1.05%)

(eX + lX + bX)
ρ = 100%

493.40 33.67% 289.38 28.86% 120.19 27.14% 23.90 20.61% 926.87 30.61%
(20.92) (1.43%) (17.38) (1.59%) (11.79) (2.44%) (5.11) (4.12%) (38.40) (1.24%)

Treatments Deceased-Donor Transplants

Non-incentivized 474.77 32.41% 380.82 38.02% 134.51 30.43% 57.23 49.69%
Treatments (20.80) (1.72%) (18.32) (2.29%) (12.06) (3.05%) (7.14) (7.55%)

ρ = 25%
466.92 31.87% 384.71 38.40% 137.26 31.05% 58.44 50.73%

(21.13) (1.73%) (18.63) (2.33%) (12.19) (3.12%) (7.18) (7.60%)

Balanced
ρ = 50%

459.08 31.34% 388.21 38.75% 140.24 31.72% 59.80 51.93%
Incentivized (21.01) (1.72%) (18.52) (2.32%) (12.24) (3.11%) (7.27) (7.83%)

ρ = 100%
444.56 30.35% 395.70 39.50% 145.34 32.87% 61.73 53.59% 1047.33 34.60%

(21.98) (1.78%) (18.83) (2.38%) (12.26) (3.12%) (7.66) (8.10%) (28.03) (1.25%)

ρ = 25%
467.31 31.90% 384.21 38.35% 137.35 31.07% 58.46 50.76%

Balanced (20.83) (1.71%) (18.51) (2.32%) (12.19) (3.09%) (7.02) (7.58%)

Incentivized
ρ = 50%

458.89 31.32% 388.87 38.82% 139.91 31.65% 59.66 51.80%
also with comp. (21.54) (1.73%) (19.07) (2.35%) (12.07) (3.11%) (7.62) (7.98%)

type X-X pairs
ρ = 100%

444.67 30.35% 395.58 39.49% 145.46 32.91% 61.62 53.49%
(20.87) (1.68%) (18.31) (2.29%) (12.31) (3.21%) (7.31) (7.81%)

Treatments Total Transplants

Deceased-donor 474.77 32.41% 380.82 38.02% 134.51 30.43% 57.23 49.69% 1047.33 34.60%
transplantation (20.80) (1.72%) (18.32) (2.29%) (12.06) (3.05%) (7.14) (7.55%) (28.03) (1.25%)

Living-donor 748.69 51.09% 613.64 61.24% 211.32 47.76% 80.21 69.50% 1653.86 54.64%
transplantation (24.56) (1.90%) (22.63) (2.74%) (15.46) (3.53%) (8.34) (8.39%) (32.74) (1.49%)

Regular 765.47 52.24% 659.77 65.84% 251.69 56.88% 81.13 70.30% 1758.06 58.08%
Exchange (24.56) (1.91%) (24.34) (2.86%) (17.03) (3.94%) (8.35) (8.38%) (35.76) (1.57%)

ρ = 25%
807.90 55.13% 665.49 66.41% 255.24 57.69% 82.37 71.37% 1811.00 59.83%

(24.23) (1.98%) (25.29) (2.97%) (17.20) (4.04%) (8.33) (8.37%) (38.04) (1.64%)

Balanced
ρ = 50%

849.28 57.96% 671.15 66.97% 258.75 58.48% 83.68 72.52% 1862.86 61.54%
Incentivized (26.15) (2.15%) (25.08) (2.95%) (17.64) (4.09%) (8.48) (8.66%) (39.48) (1.69%)

ρ = 100%
932.47 63.64% 683.03 68.16% 265.30 59.96% 85.61 74.17% 1966.41 64.96%

(27.56) (2.34%) (24.80) (2.94%) (17.34) (4.03%) (8.55) (8.61%) (42.22) (1.76%)

ρ = 25%
812.16 55.43% 666.60 66.52% 255.66 57.78% 82.42 71.42% 1816.84 60.02%

Balanced (24.65) (2.01%) (24.62) (2.89%) (17.46) (4.07%) (8.27) (8.42%) (38.43) (1.66%)

Incentivized
ρ = 50%

854.05 58.28% 673.92 67.25% 258.95 58.53% 83.57 72.41% 1870.49 61.79%
also with comp. (25.78) (2.09%) (25.51) (2.93%) (17.19) (4.03%) (8.83) (8.78%) (38.50) (1.66%)

type X-X pairs
ρ = 100%

938.07 64.02% 684.96 68.35% 265.65 60.05% 85.52 74.10% 1974.20 65.22%
(26.73) (2.22%) (25.14) (2.90%) (16.90) (4.09%) (8.73) (8.79%) (42.20) (1.75%)

Table 10: Simulation results under the de-facto deceased-donor allocation policy for the flow of patients
receiving transplant (measured in numbers per year) for different patient blood types. The percentages on
the right of each number are the fractions with respect to the new patient flow in the region. Standard
errors in 100 simulations are reported in parentheses.

A-24



Simulation Results: Average Time to Nonprioritized Deceased-Donor Transplant

O A B AB Overall O A B AB Overall O A B AB Overall

Deceased-donor transplantation Balanced inc. ρ = 25% Balanced inc. also with X-X ρ = 25%

6.893 5.949 7.235 4.766 6.474 5.491 4.689 5.711 3.799 5.131 5.490 4.686 5.720 3.823 5.132
(0.105) (0.119) (0.193) (0.350) (0.064) (0.101) (0.124) (0.189) (0.316) (0.066) (0.098) (0.125) (0.205) (0.331) (0.066)

Living-donor transplantation Balanced inc. ρ = 50% Balanced inc. also with X-X ρ = 50%

6.074 4.928 6.459 3.897 5.585 5.107 4.678 5.667 3.768 4.947 5.111 4.674 5.667 3.758 4.948
(0.103) (0.126) (0.196) (0.288) (0.068) (0.103) (0.128) (0.175) (0.292) (0.065) (0.098) (0.125) (0.189) (0.306) (0.066)

Regular exchange Balanced inc. ρ = 100% Balanced inc. also with X-X ρ = 100%

5.932 4.707 5.752 3.837 5.347 4.997 4.699 5.630 3.684 4.895 5.009 4.691 5.620 3.680 4.895
(0.108) (0.125) (0.190) (0.325) (0.070) (0.105) (0.127) (0.180) (0.319) (0.070) (0.107) (0.136) (0.185) (0.309) (0.072)

Table 11: Simulation results under the de-facto allocation policy for deceased-donor waiting time for
nonprioritized patients from different blood types (measured in years).

Simulation Results: Average Time to Any Type of Transplant

O A B AB Overall O A B AB Overall O A B AB Overall

Deceased-donor transplantation Balanced inc. ρ = 25% Balanced inc. also with X-X ρ = 25%

6.893 5.949 7.235 4.766 6.474 3.587 2.676 3.265 2.597 3.159 3.548 2.655 3.258 2.599 3.133
(0.105) (0.119) (0.193) (0.350) (0.064) (0.107) (0.111) (0.157) (0.261) (0.066) (0.101) (0.106) (0.161) (0.274) (0.065)

Living-donor transplantation Balanced inc. ρ = 50% Balanced inc. also with X-X ρ = 50%

3.862 3.057 4.095 2.743 3.537 3.401 2.626 3.191 2.517 3.051 3.362 2.602 3.175 2.508 3.023
(0.118) (0.125) (0.206) (0.252) (0.076) (0.100) (0.111) (0.176) (0.260) (0.067) (0.091) (0.109) (0.157) (0.261) (0.062)

Regular exchange Balanced inc. ρ = 100% Balanced inc. also with X-X ρ = 100%

3.766 2.720 3.331 2.654 3.258 2.942 2.522 3.057 2.386 2.787 2.912 2.504 3.032 2.383 2.762
(0.114) (0.110) (0.171) (0.280) (0.067) (0.097) (0.109) (0.168) (0.252) (0.064) (0.092) (0.109) (0.161) (0.242) (0.061)

Table 12: Simulation results under the de-facto deceased-donor allocation policy for average waiting time
for any type of transplant for different patient blood types (measured in years).

Appendix D Perfect Matching with (Heterogenous)

Tissue-Type Incompatibilities

In this appendix, we study the limit assumptions on the patient types under which different

populations of pairs can be matched or patients can be assigned deceased-donor kidneys. The

lemmas that we establish below are used in all results regarding steady states of the transplantation

policies.

D.1 Matching Deceased-Donor Kidneys

We first consider the case when deceased-donor kidneys are matched with patients. We make the

following regularity assumption on the frequency and incompatibility probability of patient types.

Assumption 4 For every ε > 0, there exists k0 ∈ N, such that for every k > k0 and l ≤ k and

every permutation σ of patient types,

(1− ε)
∑l

i=1mσ(i),k ≤ 1−
∏l

i=1 θσ(i),k.

When ε → 0, the regularity assumption can be rewritten as
∑k

i=l+1mσ(i),k ≥
∏l

i=1 θσ(i),k. It

implies that if you take a set of patients and a set of kidneys with the same measure, then for any
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set of patient types the measure of patients with those types is greater than or equal to the measure

of the set of kidneys who are tissue-type incompatible with all the other patient types.

Under this assumption, we get the following result.

Lemma 3 Suppose Assumption 4 holds. Consider a measurable set of patients and deceased-donor

kidneys that are blood-type compatible with all the patients such that both sets have the same measure.

Suppose these sets are formed randomly using the governing population distributions. Then, as the

number of patient types k goes to infinity, almost every patient can be matched with a compatible

kidney.

Proof. Without loss of generality, consider the case when the measures of the two sets are the

same and equal to one. Fix a small ε > 0. By Assumption 4, there exists k0 such that, for every

k > k0, l ≤ k, and permutation σ,
1−

∏l
i=1 θσ(i),k∑l

i=1mσ(i),k
≥ 1− ε. Consider any such k.

We use Gale’s Supply-Demand Theorem (Gale, 1957) to show that 1− ε measure of the kidneys

can be matched with compatible patients. Consider a random measurable subset of patients with

measure 1− ε. Since the subset is chosen randomly, the compatibility of patients with the kidneys

can still be formed randomly using the governing population. We need to show that for any subset

of patients, the measure of kidneys that are compatible with at least one patient is weakly greater

than the measure of patients. Without loss of generality, instead of considering any set of patients

we can consider the set of all patients who have types from any given set. Let the set of patient

types be {σ(1), . . . , σ(l)}.
The measure of patients that have a type in this set is (1 − ε)

∑l
i=1mσ(i),k. The measure of

kidneys that are incompatible with all such types is
∏l

i=1 θσ(i),k because the measure of kidneys is

one. Therefore, the measure of kidneys that are compatible with at least one patient in the set is

1−
∏n

i=1 θσ(i),k. The desired inequality holds by Assumption 4. The claim of the lemma follows by

taking the limit as ε→ 0 and k →∞.

D.2 Matching Type A-B Pairs with Type B-A Pairs

We next consider the case when we match reciprocal pairs, A-B with B-A. For any such pair,

tissue-type compatibility is not known because the pair is blood-type incompatible. Therefore, for

any such pair, tissue-type incompatibility is determined randomly as in the overall population.

We make the following assumption on how the market grows, which guarantees that we can

match almost every patient in two measurable sets of A-B pairs and B-A pairs that have the same

measure.

Assumption 5 For every ε > 0, there exists k0 ∈ N such that for every k > k0, l ≤ k, and every

permutation σ of patient types,

(1− ε)
∑l

i=1mσ(i),k ≤
∑k

i=1mσ(i),k[1−
∏l

j=1(1− (1− θσ(j),k)(1− θσ(i),k))].

Consider two measurable sets of A-B and B-A pairs with the same measure. As ε → 0, the

assumption guarantees that for any measurable set of reciprocal-type pairs, say B-A, the measure
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of this set is smaller than the measure of A-B pairs that are compatible with at least one B-A pair

in this set.

Lemma 4 Suppose Assumption 5 holds. Consider two measurable sets of A-B and B-A pairs that

have the same measure. Suppose these sets are formed randomly using the governing population

distributions. Then, as the number of patient types k goes to infinity, almost every pair can be

matched with a compatible pair.

Proof. Without loss of generality, consider the case when the measures of the two sets are the same

and equal to one. Fix a small ε > 0. By Assumption 5, there exists k0 such that, for every k > k0,

l ≤ k, and permutation σ,
∑k
i=1mσ(i),k[1−

∏l
j=1(1−(1−θσ(j),k)(1−θσ(i),k))]∑l
i=1mσ(i),k

≥ 1− ε. Consider any such k.

Like before, we use Gale’s Supply-Demand Theorem (Gale, 1957) to show that 1− ε measure of

the B-A pairs can be matched with compatible A-B pairs. Consider a random measurable subset of

B-A pairs with measure 1−ε. Since the subset is chosen randomly, the compatibility of donors with

patients can still be formed randomly using the governing population. We need to show that for

any subset of B-A pairs, the measure of A-B pairs who are compatible with at least one B-A pair

in the chosen set is weakly greater than the measure of the chosen set of B-A pairs. Without loss

of generality, instead of considering any set of B-A pairs, we can consider the set of all B-A pairs

with patients that have types from any given set. Let the set of patient types be {σ(1), . . . , σ(l)}.
The measure of B-A pairs with patients that have a type in this set is (1 − ε)

∑l
i=1mσ(i),k.

The measure of A-B pairs with patient type σ(i) who are incompatible with all such pairs is

mσ(i),k

∏l
j=1(1 − (1 − θσ(j),k)(1 − θσ(i),k)). Therefore, the measure of A-B pairs with patient type

σ(i) who are compatible with at least one B-A pair from the chosen set is mσ(i),k[1−
∏l

j=1(1− (1−
θσ(j),k)(1 − θσ(i),k))]. Hence, the measure of A-B pairs that are compatible with at least one B-A

pair in the chosen set is
∑k

i=1mσ(i),k[1 −
∏l

j=1(1 − (1 − θσ(j),k)(1 − θσ(i),k))]. This sum is greater

than the measure of chosen B-A pairs, (1− ε)
∑l

i=1mσ(i),k, by Assumption 5.

Therefore, 1− ε measure of B-A pairs can be matched with compatible A-B pairs. The lemma

follows by taking ε→ 0 and k →∞.

D.3 Matching Overdemanded-Type Pairs Except A-B Pairs with

Underdemanded-Type Pairs Except B-A Pairs

We next consider the case when we match overdemanded-type pairs except A-B pairs with

underdemanded-type pairs except B-A pairs. In the rest of this subsection, when we mention

overdemanded-type pairs we exclude A-B pairs, and similarly, when we mention underdemanded-

type pairs we exclude B-A pairs.

We make the following assumption on the frequency and incompatibility probability of patient

types.

Assumption 6 For every ε > 0, there exists k0 ∈ N such that for every k > k0, l ≤ k, 0 ≤ ρ ≤ 1,

and every permutation σ of patient types,
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(1− ε)
l∑

i=1

mσ(i),k(θσ(i),k + ρ(1− θσ(i),k))
M

≤
k∑
i=1

mσ(i),k[1−
l∏

j=1,j 6=i

(1− (1− θσ(j),k)(1− θσ(i),k))],

where M =
∑k

i=1mσ(i),k(θσ(i),k + ρ(1− θσ(i),k)).

For overdemanded-type pairs, only tissue-type incompatible ones participate in the regular ex-

change. However, in the incentivized exchange, compatible pairs also participate. As a result,

a fraction of the overdemanded pairs are compatible, while the rest are incompatible. Here, ρ

is the participation rate of compatible pairs. The assumption guarantees that, for any set of

overdemanded-type pairs, the set of underdemanded pairs that are compatible with at least one

pair in the set has a greater measure as ε→ 0.

Lemma 5 Suppose Assumption 6 holds. Consider two measurable sets of overdemanded X-Y pairs

and underdemanded Y-X pairs with the same measure. Suppose that a fraction of overdemanded X-

Y pairs are known to be tissue-type incompatible and the rest are known to be tissue-type compatible,

but otherwise these sets are formed randomly using the governing population distributions. Then,

as the number of patient types k goes to infinity, almost every pair can be matched with a compatible

pair.

Proof. Without loss of generality, consider the case when the measures of the two sets are the same

and equal to one. Then, for underdemanded Y-X pairs, mi,k measure of the patients have type i for

every i. For overdemanded X-Y pairs, some are known to be tissue-type compatible while others are

tissue-type incompatible. The measure of compatible pairs is proportional to ρmi,k(1−θi,k) and the

measure of incompatible pairs is proportional to mi,kθi,k. Therefore, the measure of overdemanded

X-Y pairs with patient type i is
mσ(i),k(θσ(i),k+ρ(1−θσ(i),k))

M
where M =

∑k
i=1mσ(i),k(θσ(i),k+ρ(1−θσ(i),k)).

Fix a small ε > 0. Consider any k that satisfies Assumption 6. Like before, we use Gale’s

Supply-Demand Theorem (Gale, 1957) to show that 1 − ε measure of the overdemanded X-Y

pairs can be matched with compatible underdemanded Y-X pairs. Consider a random measurable

subset of overdemanded X-Y pairs with measure 1 − ε. Since the subset is chosen randomly, the

compatibility of pairs can still be formed randomly using the governing population. We need to

show that, for any subset of overdemanded X-Y pairs, the measure of underdemanded Y-X pairs

who are compatible with at least one overdemanded X-Y pair is weakly greater than the measure

of overdemanded X-Y pairs. In this calculation, we use a lower bound for the measure of such

underdemanded Y-X pairs by assuming that if their patient has type i, then they are incompatible

with overdemanded X-Y pairs with patient type i. Without loss of generality, instead of considering

any set of overdemanded X-Y pairs, we can consider the set of all overdemanded X-Y pairs with

patients who have tissue types from any given set. Let the set of patient types be {σ(1), . . . , σ(l)}.
The measure of overdemanded X-Y pairs with patients who have types in the set is

(1−ε)
∑l

i=1

mσ(i),k(θσ(i),k+ρ(1−θσ(i),k))
M

. The measure of underdemanded Y-X pairs with patient type σ(i)

for i ≤ l who are incompatible with all such pairs is mσ(i),k

∏l
j=1,j 6=i(1−(1−θσ(j),k)(1−θσ(i),k)). Note

that we are assuming that these pairs are incompatible with overdemanded X-Y pairs with patient
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of type σ(i). On the other hand, if i > l, then the measure of underdemanded Y-X pairs with patient

type σ(i) who are incompatible with all such pairs is mσ(i),k

∏l
j=1(1−(1−θσ(j),k)(1−θσ(i),k)). Hence,

the measure of underdemanded Y-X pairs that are compatible with at least one overdemanded X-Y

pair in the chosen set is at least
∑k

i=1mσ(i),k[1−
∏l

j=1,j 6=i(1− (1− θσ(j),k)(1− θσ(i),k))]. This sum is

greater than the measure of chosen overdemanded X-Y pairs Assumption 6.

The proof that 1− ε measure of overdemanded X-Y pairs can be matched follows. The lemma

follows by taking k →∞ and ε→ 0.

D.4 Matching Self-Demanded-Type Pairs

In this section, we consider the case when we match self-demanded type pairs. Fix any self-

demanded-type pair X-X for some blood type X. Any such pair in the exchange pool is tissue-type

incompatible. We match these pairs with each other. Therefore, in contrast with the previous

sections, this is a one-sided matching problem.

We make the following assumption to show that almost every pair can be matched in the limit.

Assumption 7 For every ε > 0, there exists k0 ∈ N such that for every k > k0, l ≤ k, and every

permutation σ of patient types,

(1− ε)
∑l

i=1mσ(i),kθσ(i),k ≤
∑k

i=1mσ(i),kθσ(i),k[1−
∏l

j=1,j 6=i(1− (1− θσ(j),k)(1− θσ(i),k))].

Our next result shows that under this assumption almost all self-demanded pairs can be matched.

Lemma 6 Suppose Assumption 7 holds. Consider a set of self-demanded-type pairs X-X that are

tissue-type incompatible. Assume that this set is formed randomly using the governing population

distributions. Then, as the number of patient types k goes to infinity, almost every pair can be

matched with a compatible pair.

Proof. Since the pairs are tissue-type incompatible, but otherwise formed randomly using the

governing population distributions, for each patient type i, the measure of pairs with patient type

i is proportional to miθi.

Fix a small ε > 0. Consider any k that satisfies Assumption 7.

We use Gale’s Supply-Demand Theorem (Gale, 1957) to show that 1 − ε fraction of the self-

demanded X-X pairs can be matched with compatible self-demanded X-X pairs. To show this, we

first construct a two-sided matching problem with these pairs. For any patient type i, we split the

set of pairs with patient type i into two sets with equal measure. These sets are then added to

different sides of the market. As a result, we get a two-sided matching problem where each side

has X-X pairs where those with patient type i have a measure proportional to miθi. For ease of

exposition, suppose that the measure is exactly miθi.

Consider one side of the market. To apply Gale’s Supply-Demand Theorem, take a random

measurable subset of pairs on this side of the market that has measure 1 − ε fraction of all pairs

on this side. Since the subset is chosen randomly, the compatibility of patients can still be formed

randomly using the governing population. We need to show that for any subset of pairs, the measure
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of pairs on the other side of the market that are compatible with at least one pair in the set is weakly

greater than the measure of chosen pairs. Without loss of generality, instead of considering any set

of patient types, we can consider the set of all patients that have types from any given set. Let this

set be {σ(1), . . . , σ(l)}.
The measure of the set of pairs that have patient types from this set is (1− ε)

∑l
i=1mσ(i),kθσ(i),k.

The measure of pairs that have patient type σ(i) on the other side that are incompatible with

all such types is mσ(i),kθσ(i),k
∏l

j=1,j 6=i(1 − (1 − θσ(j),k)(1 − θσ(i),k)). The measure of pairs that

have patient type σ(i) on the other side that are compatible with at least one type in the set is

mσ(i),kθσ(i),k[1−
∏l

j=1,j 6=i(1− (1− θσ(j),k)(1− θσ(i),k))]. Therefore, the measure of pairs on the other

side that are compatible with at least one pair in the chosen set is
∑k

i=1mσ(i),kθσ(i),k[1−
∏l

j=1,j 6=i(1−
(1 − θσ(j),k)(1 − θσ(i),k))]. This sum is greater than the measure of pairs that are chosen, which is

(1− ε)
∑l

i=1mσ(i),kθσ(i),k by Assumption 7.

Therefore, 1− ε fraction of pairs on both sides of the market can be matched. As we take ε→ 0

and k → ∞, we establish the desired result that almost every pair is matched with a compatible

pair.

D.5 Sufficient Limit Conditions

In the next lemma, we provide sufficient conditions under which all of the limit assumptions

hold.

Lemma 7 Suppose that θi,k = θ < 1 and mi,k → 0 for every i ≤ k as k →∞. Then Assumptions

4, 5, 6, and 7 hold.

Proof. When θi,k = θ for every i ≤ k, Assumption 4 reduces to

(1− ε)
l∑

i=1

mσ(i),k ≤ 1− θl

under the same conditions as stated therein. Likewise, Assumption 5 reduces to

(1− ε)
l∑

i=1

mσ(i),k ≤ 1− (1− (1− θ)2)l,

and Assumptions 6 and 7 reduce to

(1− ε)
l∑

i=1

mσ(i),k ≤
l∑

i=1

mσ(i),k[1− (1− (1− θ)2)l−1] +
k∑

i=l+1

mσ(i),k[1− (1− (1− θ)2)l].

If we show that (1 − ε)
∑l

i=1mσ(i),k ≤
∑l

i=1mσ(i),k[1 − βl−1] +
∑k

i=l+1mσ(i),k[1 − βl] for every

β < 1 under the conditions stated in these assumptions, then we will be done. This inequality can

be rewritten as

(βl−1 − ε)
l∑

i=1

mσ(i),k ≤
k∑

i=l+1

mσ(i),k[1− βl]. (23)

For a fixed ε such that 1 > ε > 0, there exists a natural number n such that βn−1 ≥ ε > βn.

Then Inequality 23 holds for l > n for every k because the left side of the inequality is negative
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whereas the right side is positive. Furthermore, as k →∞ Inequality 23 holds also for every l ≤ n

because mi,k → 0 for every i and n is a fixed natural number which does not depend on k. In this

case, the left side converges to zero and the right side is always positive.
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