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Abstract

When can structural shocks be recovered from observable data? We present
a necessary and sufficient condition that gives the answer for any linear model.
Invertibility, which requires that shocks be recoverable from current and past
data only, is sufficient but not necessary. This means that semi-structural
empirical methods like structural vector autoregression analysis can be applied
even to models with non-invertible shocks. We illustrate these results in the
context of a simple model of consumption determination with productivity
shocks and non-productivity noise shocks. In an application to postwar U.S.
data, we find that non-productivity shocks account for a large majority of

fluctuations in aggregate consumption over business cycle frequencies.
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1 Introduction

Economists usually explain economic outcomes in terms of structural “shocks,” which
represent exogenous changes in underlying fundamental processes. Typically, these
shocks are not directly observed; instead, they are inferred from observable processes
through the lens of an economic model. Therefore, an important question is whether
the hypothesized shocks can indeed be recovered from the observable data.

We present a simple necessary and sufficient condition under which structural
shocks are recoverable for any linear model. The model defines a particular linear
transformation from shocks to observables, and our condition amounts to making sure
that this transformation does not lose any information. This can be done by checking
whether the matrix function summarizing the transformation is full column rank
almost everywhere. If it is, then the observables contain at least as much information
as the shocks, and knowledge of the model and the observables is enough to perfectly
infer the shocks.

Our approach differs from existing literature because we do not focus on the
question of whether shocks are recoverable from only current and past observables.
This more stringent “invertibility” requirement is often violated in economic models.
For example, it may be violated if structural shocks are anticipated by economic
agents.? However, in many cases it is still possible to recover shocks using future
observables as well. Because there is no reason in principle to constrain ourselves to
recover shocks only from current and past data, we focus on the question of whether
shocks are recoverable from the data without any temporal constraints.

Non-invertibility is usually viewed as a problem from the perspective of using
semi-structural empirical methods in the spirit of Sims (1980). The reason seems
to be that that the first step of these methods often entails obtaining an invertible
reduced-form representation of the data. But if the structural model of interest is
not invertible, then it is impossible that the reduced-form shocks be equal to the
underlying structural shocks. As a result, it is common practice first to verify that a
model is invertible (using tests such as the one in Fernandez-Villaverde et al. (2007)),

and if this can’t be done, then to resort to fully structural methods, which impose

IFor some examples, see Hansen and Sargent (1980, 1991), Lippi and Reichlin (1993, 1994), Futia

(1981), and Quah (1990).
2As in Cochrane (1998), Leeper et al. (2013), Schmitt-Grohé and Uribe (2012), and Sims (2012).



additional theoretical restrictions on the data generating process.?

We respond to these concerns by adopting a different perspective on semi-
structural methods.* We view the reduced-form model simply as a parametric way
of characterizing the information in the autocovariance function of the observable
processes. Given this function, the structural step involves imposing a subset of
the economic model’s theoretical restrictions to obtain a “structural representation”
with shocks that are the structural shocks of interest. If the structural representation
happens to be non-invertible, so be it. Just because it may be desirable to estimate
an invertible model in the reduced-form step, that should not in any way tie our
hands when we get to the structural step. There are generally many different
representations consistent with the same autocovariance function, and it is the role
of economic theory to help us pick out an economically interesting one.

From this perspective, it is also easy to see that the reduced-form model doesn’t
have to be invertible either. The econometrician could easily estimate a non-invertible
or even non-parametric model in the reduced-form step. All that is required is to
obtain a characterization of the autocovariance function of the observable processes.
Naturally, some reduced-form models will do a better job than others in specific
contexts. Our purpose in this paper is not to advocate for any particular one. Instead,
it is to determine when it is possible to recover structural shocks of interest given a
satisfactory reduced-form representation of the autocovariance structure of the data.

One strand of the macroeconomic literature in which semi-structural methods have
been eschewed involves models with purely belief-driven fluctuations. In particular,
Blanchard et al. (2013) argue that structural vector autoregression (VAR) analysis
cannot be applied to models with non-fundamental noise shocks because they are
inherently non-invertible. In a determinate rational expectations model, if economic
agents could tell on the basis of current and past data that a shock was pure noise,
they would not respond to it. Therefore it is impossible to recover noise shocks from

current and past data.’

3This is the original remedy proposed by Hansen and Sargent (1991), and has been adopted by
a large part of the literature on anticipated shocks. See the arguments in Schmitt-Grohé and Uribe

(2012); Barsky and Sims (2012); and Blanchard et al. (2013).
4In fact, this is the original perspective taken by Sims (1980); see his description on p.15. In

his application, he uses an invertible vector autoregression as the reduced-form model, but neither

invertibility nor vector autoregressions are necessary features of his proposed empirical strategy.
SFor a more extended discussion of the limitations of using structural VAR analysis in this



While it is true that noise shocks are not invertible, they are often recoverable.
As an application of our results, we show that our recoverability condition is satisfied
in an analytically convenient model of consumption determination with noise shocks
taken from Blanchard et al. (2013). We then perform a Monte Carlo exercise to show
how structural VAR analysis can be applied in this situation. Finally, we apply the
same procedure to a sample of postwar U.S. data on consumption and productivity.
We find that less than 15% of the business-cycle variation in consumption can be
attributed to productivity shocks, with all remaining fluctuations attributed to non-
productivity noise. This finding represents a challenge for theories of consumption
determination that rely primarily on beliefs about productivity. It implies that in any
such theory, beliefs about productivity must be fluctuating in ways that are mostly
unrelated to productivity itself.

A few papers have suggested that semi-structural methods are not necessarily in-
applicable when invertibility fails. Lippi and Reichlin (1994) examine a particular
subset of non-invertible representations (“basic” ones) given an invertible reduced-
form model. Sims and Zha (2006) propose an iterative algorithm to check whether
certain structural shocks are “approximately invertible,” even if they are not in-
vertible. Dupor and Han (2011) develop a four-step procedure to partially identify
structural impulse responses whether or not non-invertibility is present. In a paper
closely related to our empirical application, Forni et al. (2017) write down a particu-
lar model with noise shocks and show that it is possible to identify those shocks by
finding appropriate dynamic rotations of reduced-form VAR residuals. Our contri-
bution is to point out that it is recoverability, not invertibility, that really matters
for empirical work, and to provide a simple but general condition to check whether

recoverability is satisfied.

2 Recoverability Condition

This section presents our main theorem. We begin with some notation and definitions.
For an arbitrary ne x 1 dimensional covariance stationary vector process {&}, we let
H(£) denote the Hilbert space spanned by the variables &, for k = 1,...,n¢ and

t € Z, closed with respect to convergence in mean square. Similarly, we let H,;(&)

literature, see the review article by Beaudry and Portier (2014).



denote the space spanned by these variables over all £ but only up through date t.

This is enough for us to define what we mean by recoverability.

Definition 1. {1} is “recoverable” from {&} if

H(n) € H(E)

This says that each of the variables 7, is contained in the space H(&). That is,
each of these variables is perfectly revealed by the information contained in {&}. In

the Gaussian case, this can be expressed in terms of mathematical expectations as

Mt = E[nk,t\%(f)]-

Recoverability is different from the familiar concept of invertibility, which has to
do with whether one collection of random variables can be recovered only from the

current and past history of another.
Definition 2. {r,} is “invertible” from {&} if
Hi(n) C H(§) forallt e Z.

Since H. (&) C H(E), it is easy to see that invertibility is necessary but not sufficient
for recoverability.

It turns out that an equivalent characterization of recoverability can be given in
terms of an appropriate Hilbert space of complex vector functions. We write the

spectral representation of {&} as

ft:/ ei/\tq)f(d/\)a

where ®; is its associated random spectral measure. We say that a 1 x ng dimensional
vector function ¥ (), defined for A € [—, 7], belongs to the space L2(Fy) if

ORI = Y [ OB Feald) < oc.

In this expression, F¢ denotes the spectral measure of {&} and the asterisk denotes

complex conjugate transposition.® If we define the scalar product

(%wzfmwwwww,

6That is, Fy ji(A) = E[®¢ x(A)Pe(A)] for k0 =1,...,n¢ and any Borel set A in [—7, 7.
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and do not distinguish between two vector functions that satisfy ||ty — || = 0, then
L?(F¢) becomes a Hilbert space. Using these definitions, the following lemma gives

an alternative charaterization of recoverability.

Lemma 1. {n,} is recoverable from {&} if and only if there exists an n, X ne matriz
function o(N\) with rows in L*(Fg) such that

= /_7r Mo\ @e(dN)  for all t € Z. (1)

Proof. Define the operator T such that Th = 1, where h € H(§) is an arbitrary

element of the form i
h = / PY(AN)Pe(dN), (2)

and |7 [¢h(N)[*Fepn(dX) < oo for k= 1,...,ne. This operator can be extended to
an isometric mapping of H(§) onto L*(F;).” Therefore, h € H(E) if and only if there
exists some 1) € L2(F;) such that equation (2) holds. By introducing a scale factor
e for each t, it follows that n, € H(¢) for k = 1,...,n, if and only if there exists
some @i(A\) € L2(Fy) for k=1,...,n, such that

Miet = / eEMpp(N)@e(dN) for 1,...,m,.

—T

Since ny; € H(&) for all k, ¢ if and only if H(n) C H(E), we can define the n, x ng
function ¢ by stacking the vectors ¢ one on top of the other. O]

We will say that a process {n;} can be obtained from {&} by a “linear transfor-
mation” whenever it has a representation of the form in equation (1), and we will
call ¢ the “spectral characteristic” associated with this transformation. Using this
language, Lemma (1) says that {rn;} is recoverable from {¢} if and only if it can be
obtained from {&} by a linear transformation.

In this paper, we are interested in determining the conditions under which a
collection of structural economic shocks can be recovered from a collection of variables
that are observable to an outside economist. We suppose that an n,-dimensional
observable process {y;} can be obtained from an n.-dimensional structural shock
process {e;} by a linear transformation of the form

e = / T NN (). 3)

—T

"See Rozanov (1967), Chapter 1.



The process {y;} is covariance stationary and linearly regular, and the structural
shocks are uncorrelated over time and normalized to have mean zero and an identity

covariance matrix, I,,_.8

Ezample 1. A special case of the model in equation (3) is when the observables are

related to the structural shocks by a linear state-space structure of the form

(observation) Yy = Axy (4)
(state) r; = Bry_1 + Cey,

where x; is an n,-dimensional state vector. In this case, the spectral characteristic
() takes the form
p(\) = AL, — Be™)7'C. (5)

The solution to a wide class of linear (or linearized) dynamic equilibrium models can

be written in this form.’ O

By Lemma (1), the model in equation (3) says that the observables are recoverable
with respect to the structural shocks. Naturally, knowledge of the inputs of the system
is enough to perfectly reveal the outputs. Our question is: when can the shocks be

recovered from the observables? The following theorem provides the answer.!®

Theorem 1. The structural shocks {e;} are recoverable from the observables {y;} if
and only if
rank(¢(N)) = ne

for almost all A € [—7,].

Proof. Sufficiency: {y;} can be obtained from {e;} by a linear transformation with
spectral characteristic ¢(A). This means that the random spectral measure of {y;}
can be decomposed as'!

Dy (dA) = p(X)Pc(dA). (6)

Because ¢(A) has constant rank n., there exists an n. x n, matrix function such that

PNe(A) = .. (7)

SLinear regularity means that (2 ___ H:(y) = 0.
9Some authors include errors in the observation equation as well as the state equation. Those

representations can be rewritten in the form of equation (4) by augmenting the state vector.
0The proof comes from Rozanov (1967), Chapter 1.
"'More precisely, equation (6) means that ®,(A) = [, ¥(\)®(d\) for any Borel set A in [—,7].
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Combining equations (6) and (7), we get
BB () = B (dN).

Moreover, note that the rows of ¢ are elements of L£*(F,) because for any k =

1,...,ne, equations (6) and (7) imply that

/ GO E, (@A) (A / BN (A dA = 1 < 00,

Therefore {e;} can be obtained from {y;} by a linear transformation with spectral
characteristic ¥ (). By Lemma (1), it follows that the shocks are recoverable.
Necessity: To the contrary, suppose that the shocks are recoverable, so H(g) C
H(y), but that ¢(\) has rank different than n. on some set of positive measure.
Because ¢(\) has n. columns, its rank can never be greater than n.. Therefore, its
rank on this set must be strictly less than this.
Now we find an element in H(e) that is not in H(y), which is a contradiction.

Because rank(¢(\)) < n. on some set of positive measure, there exists a 1 x n. vector

function ¢ € L£2(F.) such that ||¢)()\)]| # 0 and

PN =0

for all A € [—m, 7]. This would mean that the element

n=/:w<m> ax

is orthogonal to H(y), because, for all k =1,...,n, and t € Z,
@mmz/eW%QWQWM:Q

But this contradicts the hypothesis that H(y) = H(e). O

Before moving on, a couple of remarks are in order.

Remark 1. In the special case from Example (1), the condition in the theorem is

equivalent to the condition that the matrix

I,, — Be ™ C

8
—A Onyxns ( )

R(A) = [




be full column rank for almost all A\ € [—m,«]. This follows from the so-called
Guttman rank additivity formula. Specifying the condition in terms of R(A) has
the advantage that it does not involve any matrix inverses, and may be more efficient
to check on a computer. To do so, we can draw a random number A, from the uniform

distribution over [—m, 7| and check whether R(\,) is full column rank.

Remark 2. A corollary of the theorem is that a necessary condition for the structural
shocks to be recoverable is that there be at least as many observable variables as
shocks, n, > n.. This is intuitive; it isn’t possible to recover n. separate sources of

random variation without observations of at least n. stochastic processes.

For the purposes of comparison, we would also like to have a set of necessary
and sufficient conditions for the invertibility of the structural shocks. Despite all the
attention invertibility has received in the literature, it does not seem that conditions
of this type have been articulated.'? Since invertibility is stronger than recoverability,
the condition in Theorem (1) must always be satisfied if we are to recover the shocks
from current and past observables. Therefore, we can suppose that rank(p(X)) = n.
as we look for the additional restrictions that are needed.

The first step is to recall that, using Wold’s decomposition theorem, it is possible

to represent {y;} by a linear transformation of the form

= /_ " M) D (), ()

where ®,, is the random spectral measure associated with an uncorrelated process
{w,;} with spectral density f,(\) = %Ing. This uncorrelated process has the property
that w for s <t form a basis in H;(y) at each date, so that H,(y) = H(w). This
implies that {w;} is both invertible and recoverable from {y;}.

Using the spectral characteristic 6(A\) from equation (9) and the function ()

defined in equation (7), we can state the following result.

Theorem 2. The structural shocks {e;} are invertible from the observables {y:} if

and only if they are recoverable and
1 LN
— eMP(N)(N)dA = 0

2 ) .

for all integers j < 0.

12There are places where sufficient conditions appear, however. The condition of Ferndndez-

Villaverde et al. (2007) is one example.



Proof. The fact that ws, s < t forms a basis in H;(y) at each date means that a
variable h is an element of H,(y) if and only if it can be represented in the form of a

series -
h = Z QW j (10)
=0

that converges in mean square. What we need to show is that each element of the
vector £; has a representation of this form.
By equations (7) and (9),
£ = / MNP, (dN) = / eMp(N)S(N) Dy (dN). (11)
The rows of ¥ ()\) are elements of £?(F),), but they may not be square integrable
with respect to the Lebesgue measure on [—m,7w]. On the other hand, the rows of
a(X) = ¢¥(M)d(A) are square integrable, because F,(d\) = 51, dX. Therefore, a(\)

has a Fourier series expansion of the form

> o 1 [™ ..
() = Z aje”™  where a; = %/ eMa(N)dA.

Jj=—00
Combining this with equation (11), we can see that the elements of £, have a represen-
tation of the form (10) if and only if the Fourier coefficients {ca;} vanish for negative

values of 7, which is the condition stated in the theorem. O]

We now illustrate our recoverability condition in the context of a simple permanent
income model of consumption. This example is borrowed from Fernandez-Villaverde
et al. (2007), who use it to illustrate a situation when their invertibility condition
fails to hold. We will show that the structural shocks are not invertible with respect

to the observables, but nevertheless that the shocks are recoverable.

Ezxample 2. An econometrician tries to recover labor income shocks {e;} from obser-
vations of surplus income, s; = y; — ¢;, where ¢; is date-t consumption and y; is date-t

labor income, which satisfies
Yt = 0&, & 1}3 (O, 1)7 (12>

with ¢ > 0. The optimal path for consumption is a random walk

1
= Ci_q + <1 — E) o€y, (13)

where R > 1 is the constant gross real interest rate.!> Combining equations (12) and

13See Sargent (1987), Chapter XII for a presentation of this model.



(13) with the definition of surplus income, it follows that
1
ASt = EO’&} — O0&¢—1, (].4)

where A denotes the first-difference operator, As, = s; — s;_1. Therefore, the change
in surplus income follows a first-order moving average process.

The spectral characteristic linking the shocks to observables is

o= (g-c)e (15)

It is easy to see that ¢(\) has rank equal to 1 everywhere on [—7, 7] except for
at \o = —In(1/R)/i. Therefore by Theorem (1) the shocks are recoverable from
observations on surplus income only.

To apply Theorem (2), we first use the spectral characteristic in equation (15) to
solve for 1(\) from equation (7). In this case, we simply have )(\) = 1/p(\). Next,
the Wold representation of {As;} is

As; = owy — ant_l,

which means that the spectral characteristic in equation (11) is given by

O(\) = (1 — %e—ﬂ) o.

Multiplying ¥ (A) and 0(\), we have

R — e—'i>\
A)=——"——. 16
o) = (16)
However, the Fourier coefficient of a(\) for j = —1 does not vanish, since for R > 1,
== M ——— | d\ == — 1.
T ). C (1—R6M> R
Therefore, according to Theorem (2), the shocks are not invertible. O

Remark 3. In this section we have focused exclusively on covariance-stationary pro-
cesses; however, the discussion can be generalized to allow for deviations from sta-
tionarity. For example, consider a process {{;} that is stationary only after suitable

differencing. That is,
APE = G (17)
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for some integer p > 0, where {(;} is a stationary process. In this case we can define

a NEew pProcess

&(0) = /W e“tméc(d/\), (18)

which is stationary for each value of # € [0,1). We can say that a process {n:}
is recoverable (or invertible) with respect to {&} whenever {n;} is recoverable (or
invertible) with respect to {&(#)} for almost all 6 € [0,1).

3 Semi-Structural Empirical Methods

So far we have presented a condition that is necessary and sufficient to recover struc-
tural shocks from a set of observables, using complete knowledge of the structural
model. That is, using knowledge of the coefficient matrices A, B, and C in the
state-space system (4), or more generally, the spectral characteristic p(\) associated
with the linear transformation from shocks to observables. Given this knowledge, it
is possible to use equation (7) to obtain the spectral characteristic ¥(\) associated
with the linear transformation from observables to shocks. We refer to the process
of recovering shocks in this way, using all the restrictions embedded in the structural
model, as the “fully structural” approach.

An alternative approach, which goes back to the seminal paper of Sims (1980), is
to ask whether it is possible to recover the shocks using only a subset of the theoretical
restrictions implied by the structural model. If it is, then one’s empirical conclusions
can be interpreted as being robust across a range of different structural models that
only need to agree on the relevant subset of theoretical restrictions. The motivation
for this strategy was to combine the advantages of unrestricted large-scale econo-
metric models with fully specified dynamic equilibrium models, while minimizing the
limitations of each. It has found wide acceptance in the macroeconomic literature,
and we refer to it as the “semi-structural” approach.

In more detail, the semi-structural approach is made up of two steps. The first,
which we call the “reduced-form” step, involves using time series methods to obtain
an empirically adequate characterization of the autocovariance function (equivalently,
the spectral density) of the observable processes. The goal of this step is essentially
just to summarize the data. The second “structural” step involves imposing some

(sub-) set of restrictions derived from economic theory, which are sufficient to re-

11



cover the structural shocks of interest. The goal of this step is to entertain and test
hypotheses with economic content.

It should be clear that recoverability is a necessary condition for using semi-
structural methods to recover economic shocks. If the shocks cannot be recovered
even with the full set of structural restrictions, then there can be no hope of doing
so with only a subset of those conditions. However, it should be equally clear that
invertibility is not a necessary condition, either for the reduced-form model or the
structural model. Both models could be invertible, but they could also both be non-
invertible, or one could be invertible but not the other. Moreover, nothing about
this approach ties it to using vector autoregressions, although that is typically the
common practice.

To illustrate how semi-structural methods can be used in situations when invert-
ibility fails but recoverability does not, we return to the simple permanent income
model of the previous section. We have already seen in this example that the re-
coverability condition in Theorem (1) is satisfied. Now we will show how, given an
estimate of the autocovariance function (equivalently, the spectral density) of surplus
income changes, it is possible to recover the structural income shocks by imposing a
subset of the model’s theoretical restrictions. Then, we will show how to impose these

restrictions in the special case that the reduced-form model is an autoregression.

Ezample 2 (continued). Suppose that the econometrician has an estimate of the au-
tocovariance function of surplus income changes, summarized by its spectral density
Fas(A) = L i E[AsAs,_jle™™

s o7 t t—3g

j=—o00

In other words, he has completed the reduced-form step of the analysis and is ready
to perform the structural step.

First, let us consider what he would do if the model were invertible, since that case
should be familiar. From equation (14), the structural model says that surplus income
changes are a first-order moving average process with respect to the income shocks.
If it were somehow true that R < 1, the Fourier coefficients of «(z) in equation (16)
would vanish for negative values of j, so this model would be invertible according to

Theorem (2). In this case, he would impose the following theoretical restrictions

& € Hi(As) o H—1(As) forallt € Z, (19)

12



where A © B = C' means that A = B @ (', and & denotes the direct sum.
This way of writing the structural restrictions may seem unusual; often the re-

)

strictions are described simply as “orthogonality conditions,” and written in the form

EléAs;_j] =0 forall j <O. (20)

However, there is a subtle but important difference. Equation (19) implies that the
orthogonality conditions in (20) hold. But it also implies that e, € H;(As); that
is, that the structural shocks are invertible. Without this additional restriction, the
orthogonality conditions in equation (20) would not be sufficient to identify the true
income shocks, even up to a scale factor. The general point is that invertibility is
itself a theoretical restriction that the econometrician would need to impose as part
of the structural step of his semi-structural analysis.

To find a estimated process satisfying equation (19), the econometrican would

obtain the Wold representation of {As,;} by factoring the spectral density function as
~ 1 -
s(A) = —]o(\)? 21
FaslN) = 5150V (21)

where the Fourier coefficients of 4(\) vanish for negative values of j.** This means
that {As;} can be related to the uncorrelated Wold shock process {w;} through a
one-sided moving average, N
Asy =Y bjiy. (22)
j=0
By construction, these shocks {w;} satisfy equation (19), and are unique up to a scale
factor. Therefore, the econometrician sets £; = w;, and under the null hypothesis that
the theoretical restrictions in equation (19) are valid, he would recover the true income
shocks up to a scale factor.

Unfortunately, as we saw in the previous section, the theoretical restrictions in
equation (19) are not valid in the economically relevant case that R > 1 because the
income shocks are not invertible from surplus income changes. Nevertheless, since
the shocks are recoverable, the econometrician can proceed in a similar fashion. Let

us use H'(As) to denote the Hilbert space spanned by As, for t < 7 < oco. The

14Procedures for doing this in practice are well known. For example, when the reduced-form model

delivers an estimate fAs(/\) which is a rational function of e~

in Chapter 1 of Rozanov (1967).

, we can use the procedure outlined
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econometrician can require that
& € HH (As) o H!'T*(As) for all t € Z. (23)
These restrictions imply that the orthogonality conditions
ElgAs;_j]=0 forall j <—1

hold, as well as that &, € H'T1(As).
To find an estimated shock process satisfying equation (23), the econometrician
needs to solve a spectral factorization problem analogous to the one in equation (21).

Specifically, he needs to compute the spectral factor ¢(\) such that

faslh) = 516 (24)

where now the Fourier coefficients of ¢(A) vanish for all j < —1. The solution to this

problem can be obtained immediately from the Wold factorization in equation (21):
G(A) = 6(—=N)e ™.

(The additional multiplication by e** corresponds to a one-period time shift, since
the model’s timing convention says that the restrictions in equation (23) hold for
j < —1not j <0.) Under the null hypothesis that the theoretical model is correctly
specified, the econometrician will recover the structural shocks up to a scale factor.
We have shown that the structural step of the analysis involves solving a spectral
factorization problem, where the constraints on that problem come from economic
theory. Now we can step backward to the reduced-form step and ask what sort of
spectral density estimate the econometrician might use. One possibility is that he use
a standard autoregression as the reduced-form model. Under this choice, he obtains

a reduced-form representation of the form

00
E VjASt—j = U,
Jj=0

where {u,;} is an uncorrelated “reduced-form” shock process with zero mean and unit
variance, and the coefficients {~,} are square-summable. Based on this representation,

his spectral density estimate is given by

1

fas(\) = VR

14



where v()) is the Fourier transform of the sequence {7;}. Using this reduced-form

model, his solution for the structural factor in equation (24) is

O

The permanent-income example just discussed is a situation in which invertibility
fails to hold because agents inside the model have more information at each date
than the econometrician. Their date-t information set is given by the subspace H;(¢),
while the information set of the econometrician is given by H;(As). When R > 1,
we have shown that H;(As) C H.(e). If the econometrician were placed on the
same informational footing as agents, then of course the structural shocks would
be invertible from past observables (the agents know their current income shocks).
However, there are situations in which, even if an econometrician were on equal
footing with economic agents, he would still be unable to recover structural shocks
from current and past observables. Models with noise shocks are one example, and

we discuss these at length in the following section.

4 Noise shocks

The macroeconomic literature on noise shocks considers situations in which the be-
liefs of economic agents fluctuate for reasons entirely unrelated to the underlying
economic fundamentals. Agents’ beliefs fluctuate in this way because they receive
imperfect signals about fundamentals, and must solve a signal extraction problem
to form expectations about underlying outcomes. At the time that they make their
decisions, the agents are unable to determine whether changes in their signals are
due to actual fundamental developments or just unrelated noise. As a result, noise
shocks can generate rational fluctuations in their expectations (and therefore also
their actions) that nevertheless turn out to be incorrect after the fact.

We might say that the failure of non-invertibility in models with noise shocks is
more severe than in other contexts, such as the permanent-income model we consid-
ered in previous sections. This is because, even if an econometrician has exactly the
same information as economic agents, he would still be unable to recover the struc-

tural shocks from the history of observables. If he could, then the agents could as well,
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which means they would be able to distinguish fundamental shocks from noise shocks,
and would never respond to the latter. But then there would be no non-fundamental
fluctuations in beliefs.

This line of reasoning, originally due to Blanchard et al. (2013), has lead a number
of researchers to conclude that semi-structural methods cannot be applied to models
with noise shocks.'> The usual suggestion is that to make progress the econometri-
cian must rely more heavily on his theoretical model by adopting a fully structural
empirical approach. However, these conclusions rest on the premise that invertibility
is a necessary condition for using semi-structural methods; a premise that so far we
have provided reason to doubt.

In this section we describe how semi-structural methods can be applied to recover
noise and fundamental shocks. We first describe a simple bivariate model of consump-
tion determination taken from Blanchard et al. (2013) with noise and fundamental
shocks. Then we explain how semi-structural methods — in particular structural VAR
analysis — can be applied to recover these shocks. We verify our results through a
Monte Carlo simulation study. Then we apply exactly the same empirical procedure
on an actual sample of U.S. data to quantify the importance of non-TFP fluctuations

in aggregate consumption from 1984:Q1-2016:Q4.

Example 3. Model: At each date, consumption is equal to agents’ long-run forecast
of total factor productivity,
Ct = hn;] Et[at+j]. (25)

1=
This forecast is made conditional on the current and past history of productivity and

signals about future productivity, a, and s, for 7 < t. Productivity is a random walk,
ap = Q1 + 047, (26)

and the signal about future productivity is given by
_(1=P\ S i

The parameter p € (0,1) controls how much information the signal contains about

future productivity. When p = 0, s; = a; + v4, so the signal contains no additional

5Indeed, this is the main methodological conclusion drawn by Blanchard et al. (2013). See also

the literature reviews by Beaudry and Portier (2014) and Lorenzoni (2011).
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information beyond «; itself. The process {v;} represents non-fundamental noise, and

is assumed to follow a law of motion of the form

vy = 2p0_1 — PPU_g + 0wl — (B + B)ovel_y + BBoLE,. (28)

', is independent and iden-

The vector of fundamental and noise shocks, ¢; = (¢, £})
tically distributed over time with zero mean and identity covariance matrix. There
is also a nonlinear restriction on the parameters o,, 0,, p, and 3, which ensures that
{a;} can be written alternatively as the sum of a permanent component with first-
order autoregressive dynamics in first differences, and a transitory component with
first-order autoregressive dynamics in levels.!©

Because {a;} is not covariance stationary, we need to clarify the precise meaning
of the forecast in equation (25). Following the discussion in Remark (3), we let {£,(8)}
for |#] < 1 denote the stationary counterpart to any process {&;} that is stationary

only after suitable differencing, and H (&) the Hilbert space generated by its values.

In this example, by letting ¢; = (a¢, s;)’ we can understand
Eilaiy;] = lim Eylae;(0)],
0—1—

where the conditional expectation on the right side is the linear projection of @, ;(6)
onto H;(q). To illustrate, in the case that the signal is completely redundant (p = 0),
this would mean that

Et[at+j] = 91_1)1’{1_ 9]&,5(9) = Q.

Recoverability: We can now show that the structural shocks {e;} are recoverable
with respect to {y;}, where y; = (a4, ¢;)’. To see this, first note that it is sufficient to
establish these results with respect to {g;}, since H;(y) = H:(q) whenever the signal
is not redundant. According to equations (26) and (27), {G(6)} can be obtained from

{e:} by a linear transformation with spectral characteristic

Oq 0
(hif) =
PEUTI0R | (1o, (1 e (1 - fe (1 - e,
1= pe=? (1= pe=)?

6Blanchard et al. (2013) write the information structure in this alternative but observationally
equivalent way. For more details on the mapping from their representation to the noise representation

presented above, including the nonlinear parameter restriction, see Chahrour and Jurado (2017).
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Here we have used the fact that for any integer 7,

i " oM (1 —P)'z d\ — (ﬂ) p|j|.
21 J_. |1 — pe=iA>? 1+p

It is easy to see that ¢(A;0) has full rank for almost all A\ € [—m, 7] and 6 € [0,1)

whenever o,,0, > 0. By Theorem (1), this means that the structural shocks are

recoverable with respect to {g;(6)} for almost all §. Using the terminology introduced

in Remark (3), it follows that the shocks are recoverable from {y;}.

Structural step: Now we illustrate how semi-structural methods can be applied
to recover the noise and fundamental shocks from observations of productivity and
consumption. As in Example (2), we first suppose that the econometrician has an es-
timate of the spectral density of {Ay,}, fAy()\). The structural step involves factoring

the spectral density as
1

ﬁﬂMZ%ﬂMﬂMﬂ (29)

where the factor () is defined by a set of theoretical restrictions that are sufficient

to correctly identify the structural shocks in the model. One such set is

éta S ’Ht(Aa) S Ht71<Aa) (30)
€V € Hi(AD) © Hy1(AD) (31)

for all t € Z, where A, is the orthogonal projection of Ac; onto H(Ay) © H(Aa).
Equation (30) says that the fundamental shock is the Wold innovation in productivity
growth, and equation (31) says that the noise shock captures the fluctuations in cur-
rent consumption growth that are orthogonal to productivity growth at all horizons.

These restrictions imply that the factor ¢(\) has a lower-triangular form

o | PN 0
o) = [ G\ (V) ] | %)

Alternatively, in terms of the associated moving average representation, that

= ... 4 00 5:§+1 n * 0 f?i? I * 0 5:?—1
* 0 SHRY koK Ef *oK i1
—— —— ——

b1 bo b1

Aat
ACt

+...’

where {b;} are the sequence of Fourier coefficients associated with ¢(\).
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To obtain the factor ¢(\), we can write equation (29) out more explicitly, using

equation (32), as

Faa) fAAaAcm]:i[ EnP euNga ()
facaa(X)  fac(A) 2 | p1(N)@a1(A) @22V + @21 (V)2

The restrictions in equation (30) say that ¢11(A) is nothing other than the canonical

(33)

(Wold) factor of fag(A). This is unique and can be obtained in the usual way. The
lower-left equation in (33) uniquely determines Ga;(A) as a function of facaq(A) and
&11(A), the first of which is given and the second of which has already been determined
from the upper-left equation. The lower-right equation in (33) implies that

|22 (M)[? = 27 fac(A) — [@21 (M)

Together with the restrictions in equation (31), this means that ¢oe(A) is uniquely
determined as the canonical factor of 27 fAC()\) — |$21(N)|?. Therefore, we have shown
both that the factor ¢(\) is unique, and how to obtain it.

Reduced-form step: Lastly, we need to describe the reduced-form model the econo-
metrician uses to construct his esimtae of the spectral density fAy()\). Of course, there
are many possibilities. One popular proposal is to approximate the spectral density

using a p-th order VAR model of the form
p
nyjyt*j = Uy, (34)
j=0

where {u;} is a two-dimensional uncorrelated “reduced-form” shock process with zero
mean and identity covariance matrix. When this type of reduced-form model is used,

the entire semi-structural strategy is usually referred to as “structural VAR analysis.”
If we define

p
YA =D e,
=0

then the assumption that {y;} is difference stationary implies that the rows of (1 —
e~™)y()) are each square integrable. Therefore, the econometrician’s spectral density

estimate is .
fay(\) = 5 (1= e YA YA (1 = ™).

With this estimate, he can proceed to perform the factorization described in the

structural step. O
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4.1 A Monte Carlo Study

To demonstrate how semi-structural methods can be applied in practice to models
with noise shocks, we perform a Monte Carlo exercise using the model from Example
(3). The exercise entails simulating data on consumption and productivity from the
model, and placing ourselves in the shoes of an econometrician who has no knowledge
of the true data generating process. He receives a finite sample of realizations, and
is charged with estimating the importance of noise shocks and the effects of a noise
shock on consumption from that sample. To do so, he relies only on the structural
restrictions in equations (30) and (31).

In practice, we simulate N = 1000 samples of T" = 275 observations of consump-

tion and productivity from the model. The structural parameters are set to
p=0.8910, o, =0.6700, o0,=0.9937, and B =0.7833 — 0.15257,

which correspond to the same parameters chosen by Blanchard et al. (2013). The
reduced-form model is an unrestricted vector autoregression of the type in equation
(34). We fit the model to the data using the multivariate algorithm of Morf et al.
(1978), and the lag length is chosen to minimize the information criterion proposed
in Hannan and Quinn (1979).

The left panel of Figure (1) plots the true impulse response of consumption to a
noise shock that increases consumption by one unit on impact, together with 95%
bands constructed from the point estimates across the N different samples. The true
response of consumption is one of geometric decay; initially consumption increases
due to positive expectations about future productivity, but over time those effects die
out as people come to realize that their expectations had only responded to noise.
In the long run, the effect of noise shocks on consumption converges to zero. The
figure indicates that structural VAR analysis does a good job capturing the response
of consumption to a noise shock, even for samples of T" = 275 observations. Not
surprisingly, increasing the sample size increases the accuracy of our estimates.

Perhaps one puzzling aspect of this result is that it is apparently possible to
identify the effects of a shock that has non-flat effects on consumption. Blanchard
et al. (2013) explain that an econometrician with access to the same information con-
sumers or less, cannot identify any shock with non-flat effects on consumption. This
is because consumption is a random walk in this model, conditional on consumers’

information. We agree with this result.

20



\ 6
0.8\
\ St
0.6\ "« 4
N ‘ ‘
N
04 N\ NN 3
N
‘ ‘\\ ‘ 2
0.2f i N T
| ‘ S~ 1
0 : : : 0 : : :
0 5 10 15 20 0O 02 04 06 08 1

Figure 1: Strutural VAR analysis of data simulated from a model with noise shocks.
Left: the dashed line is the true impulse response of consumption to a unit noise
shock, while solid lines are 95% bands from the distribution of point estimates from
each of N = 1000 samples of length 7" = 275. Right: the dashed line is the true
contribution of noise shocks over business-cycle frequencies (6 to 32 quarters), and

solid line is the distribution of point estimates over all simulated samples.

However, the key observation is that as econometricians we always have more in-
formation than the agents in our models. To perform any sort of analysis on a sample
of data, that data must have been realized at some date in the past. As a result,
relative to agents at each date in our sample, we have access to more information
about both consumption and productivity. It is by using this additional information
that the we can successfully identify the effects of noise shocks.

The right panel of Figure (1) plots the share of the variance in consumption
explained by noise shocks over business cycle frequencies (6 to 32 quarters). The
vertical dashed line is the true noise share (0.69), while the solid line is the histogram
of point estimates from each of the N different samples. Again, the structural VAR
procedure evidently delivers accurate estimates of the importance of noise shocks.
Based on the distribution of point estimates, it appears that the estimated importance
of noise shocks does exhibit some slight downward bias due to the fact that the
sample is finite. A slight downward bias in this estimate would only strengthen the

conclusions we reach in the next section.
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4.2 Application to U.S. Data

In this subsection, we apply the same semi-structural procedure used in our Monte
Carlo study to actual U.S. consumption and productivity data. We measure consump-
tion by the natural logarithm of real per-capita personal consumption expenditure
(NIPA table 1.1.6, line 2, divided by BLS seires LNU00000000Q) and productivity
by the natural logarithm of utilization adjusted total factor productivity (Federal
Reserve Bank of San Francisco). Our sample is 1948:Q1 to 2016:Q4, which gives
T = 276 observations.

Before discussing the results, a cautionary remark is in order regarding the inter-
pretation of noise shocks in actual data. In the model from Example (3), productivity
is the only fundamental process, and agents have rational expectations. As a result,
the only reason that consumption can possibly move without some corresponding
movement in current, past, or future productivity is because of rational errors in-
duced by noisy signals. In the data, it is plausible that consumption is driven by
fundamentals other than productivity, by sunspots, or even by non-rational fluctu-
ations in people’s beliefs. Therefore, noise shocks should be interpreted broadly in
this subsection as composite shocks that capture all non-productivity fluctuations in
consumption.

Keeping that interpretation in mind, we turn to Figure (2). The left panel plots
the estimated impulse response of consumption to a noise shock that increases con-
sumption by one unit on impact. The response is hump-shaped, increasing for six
quarters after the shock, and then slowly decaying back toward zero. The effect of
noise shocks is also highly persistent; even after 20 quarters the response is still sta-
tistically different from zero. To the extent that these shocks do represent rational
mistakes due to imperfect signals, the high persistence means that it takes a while
for people to recognize their errors.

The right panel of Figure (2) plots the share of the variance in consumption
explained by noise shocks over business cycle frequencies (6 to 32 quarters). The
vertical dashed line is our point estimate (0.86), while the solid line is the histogram
of point estimates across N = 1000 bootstrap samples. The point estimate indicates
that productivity only explains 14% of the variation in consumption. Evidently a
large majority of consumption fluctuations are not due to productivity shocks.

Cochrane (1994) reaches a similar conclusion. Using structural VARs, he argues
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Figure 2: Structural VAR analysis of quarterly U.S. consumption and total factor
productivity from 1948:QQ1 to 2016:Q4. Left: response of consumption to unit noise
shock. The dashed line is the point estimate, and the solid lines are 95% bootstrap
confidence bands. Right: share of consumption variance due to noise shocks over
business-cycle frequencies (6 to 32 quarters). The dashed line is the point estimate
(0.86) and the solid line is the distribution of bootstrap estimates.

that the bulk of economic fluctuations is not due to productivity shocks (or a number
of other shocks including those due to monetary policy, oil prices, and credit). But, he
does not control for the possibility that fluctuations might be due to future changes
in productivity to which people respond in advance. Indeed, he suggests that funda-
mentals might matter mainly in this way. Here we provide evidence to the contrary,
at least in the case of total factor productivity. While people’s beliefs about future
productivity may be moving around a lot, it appears either that those movements
are mostly unrelated to subsequent changes in productivity, or that people’s beliefs

about future productivity do not matter very much for their current actions.

5 Conclusion

At least since Hansen and Sargent (1991), economists have been keenly aware of the
difficulties that non-invertible models pose for semi-structural methods of the type
originally proposed by Sims (1980). Our purpose has been to argue that, at least from

an econometric perspective, these difficulties aren’t really difficulties at all. Nothing
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in the original empirical strategy of Sims (1980) required either one’s reduced-form
model or one’s structural model to be invertible.

Instead, we have argued that what is needed is the much weaker condition that
the structural shocks be recoverable from observables. We have presented a simple
necessary and sufficient condition that can be used to check for recoverability. We
have also presented similar conditions for invertibility, which have to the best of
our knowledge been absent from the literature so far. Hopefully by clarifying the
difference between invertibility and recoverability, and shifting attention to the later,
our results will allow semi-structural empirical methods to find greater applicability
across a broader class of economically interesting models.

There are a number of practical issues that we have not addressed in this paper.
Foremost among them is probably the task of characterizing precisely what constitutes
a “good” reduced-form model. Undoubtedly this will vary on a case-by-case basis, but
perhaps it is possible to say something about which reduced-form models are likely to
deliver better or worse approximations to the relevant features of the spectral density
function. Such guidance could be helpful for “fine-tuning” one’s empirical strategy.
A solution would likely involve relying on additional theoretical restrictions to rule
out certain types of reduced-form models and not others.

Our application to data on U.S. consumption and productivity also invites a more
comprehensive investigation. How important are other fundamentals, like monetary
policy shocks, oil price shocks, credit shocks, or government spending shocks? What
about other macroeconomic variables of interest like output, inflation, or unemploy-
ment? The empirical procedure we used in this paper can be helpful for determining
the importance of a any set of observable fundamental processes. Since our main pur-
pose in this paper is to clarify the difference between invertibility and recoverability,

we save such an investigation for future research.
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