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Abstract

In this note we revisit the use of exclusion restrictions in the semiparametric binary choice
panel data model introduced in Honore and Lewbel (2002). We show that in a dynamic
panel data setting (where one of the pre-determined explanatory variables is the lagged
dependent variable), the exclusion restriction in Honore and Lewbel (2002) implicitly re-
quires serial independence condition on an observed regressor, that if violated in the data
will result in their procedure being inconsistent. We propose a new identification strategy
and estimation procedure for the semiparametric binary panel data model under exclusion
restrictions that accommodate the serial correlation of observed regressors in a dynamic
setting. The new estimator converges at the parametric rate to a limiting normal distri-
bution. This rate is faster than the nonparametric rates of existing alternative estimators
for the binary choice panel data model, including the static case in Manski (1987) and the
dynamic case in Honore and Kyriazidou (2000).
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1 Introduction

We revisit the use of exclusion restrictions in the semiparametric binary choice panel data
model with predetermined regressors introduced in Honoré and Lewbel (2002). The identi-
fication strategy in Honoré and Lewbel (2002) requires an exclusion restriction (Assumption
A.2) that one of the explanatory variables (which we refer to as an “excluded regressor”
henceforth), is independent of the individual fixed effect and time-varying idiosyncratic
errors, conditional on the other regressors. Their model is presented in a general frame-
work where the explanatory variables are predetermined, e.g., including lagged dependent
variables. As explained in Honore and Kyriazidou (2000), such models allow for both “true
state dependence” in addition to unobserved heterogeneity.1 Without such an exclusion
restriction, identification and inference in dynamic binary choice panel data models (where
one of the predetermined explanatory variables is the lagged dependent variable) is com-
plicated and non-standard, as shown in Honore and Kyriazidou (2000) and Hahn (2001).
Thus the introduction of exclusion restriction into the model by Honoré and Lewbel (2002)
is well motivated.

However, here we show that in a dynamic binary choice panel data model, the exclusion
restriction in Honoré and Lewbel (2002) implicitly requires (conditional) serial indepen-
dence of the excluded regressor mentioned above. If such serial independence is violated,
then the main identifying condition (Assumption A.2) does not hold in general, and the
inverse-density-weighted estimator in Honoré and Lewbel (2002) is generally inconsistent.
We propose a new identification strategy and estimation method for this semiparametric
binary choice panel data model under exclusion restrictions which can accommodate serial
dependence of excluded regressors in a dynamic setting. The new estimator converges at
the parametric rate to a limiting normal distribution. This rate is faster than the non-
parametric rates of existing alternative estimators for the binary choice panel data model,
including the static case in Manski (1987) and the dynamic case in Honore and Kyriazidou
(2000), both of which do not impose the exclusion restrictions mentioned above.

To develop the intuition for how the exclusion restriction in Assumption A.2 of Honoré
and Lewbel (2002) could fail in a dynamic setting, consider the binary choice panel data
model:

yit = I[vit + x′itβ0 + αi + εit ≥ 0] (1.1)

where i = 1, 2, ..., n, and t = 1, 2, ..., T . Here I[·] is the indicator function that equals one
if ”·” is true and zero otherwise, vit ∈ R is the excluded regressor whose coefficient that
is normalized to one, xit is a vector of other regressors (possibly predetermined), β0 is a
vector of coefficients, αi is an individual-specific fixed effect, and the distribution of εit is
unknown.

Honoré and Lewbel (2002) estimate this model under an exclusion restriction that eit ≡
αi+εit is independent of vit, conditional on xit. In cross-sectional models with no individual-
specific fixed effects αi, such an exclusion restriction has proven useful. Examples include

1See also Heckman (1991) for a more detailed discussion on this matter.

2



Lewbel (2000), Lewbel and Tang (2015) and Chen, Khan, and Tang (2016). However, in a
dynamic panel data model, one of the components in xit is the lagged dependent variable
yit−1, which itself is a function of αi, εit−1 and vit−1. As a result, serial correlation in vit leads
to a complex dependence structure between yit−1, vit−1 and αi + εit, which is generally not
compatible with the exclusion restriction (Assumption A.2) in Honoré and Lewbel (2002).
This is true even if vit is independent of αi and εit conditional on the other components in
xit in each period.

The rest of the note is organized as follows. Section 2 uses a simplified version of (1.1)
to formalize the intuition about why the exclusion restriction in Honoré and Lewbel (2002)
does not hold in general when vit is serially correlated. Sections 3 and 4 introduce our
new approach for estimating dynamic binary choice panel data models, based on a pairwise
comparison approach that allows for serial correlation in the excluded regressor. Section
5 presents simulation evidence. Section 6 concludes. Technical proofs are collected in the
appendix.

2 A Simplified Model

To illustrate our main idea, consider a simplified version of the model in (1.1) with two
periods following the initial condition yi0 (T = 2) and only two explanatory variables, which
consist of an excluded regressor vit ∈ R and the lagged dependent variable yit−1:

yit = I[vit + yit−1γ0 + αi + εit ≥ 0] for t = 1, 2, (2.1)

where the parameter of interest is γ0. This specification is subsumed by the original model
in (1.1) with xit ≡ yit−1. Honoré and Lewbel (2002) maintain the following exclusion
restriction (on p.2055) on the model in (1.1) for identification and estimation:

ASSUMPTION A.2: For t = 1, 2, αi + εit is independent of vit conditional on xit and zi.

Note that Honoré and Lewbel (2002) states this assumption by conditioning on an instru-
ment zi, which may overlap with the exogenous variables. Likewise, our argument and
results throughout the current paper are also valid conditional on any instruments avail-
able. In what follows, we suppress such instruments in the conditioning events to lighten
the notation.

For simplicity, suppose that the initial value yi0 is degenerate at 0 in the data-generating
process. Assumption A.2 in Honoré and Lewbel (2002) requires

(αi + εit) ⊥ vit conditional on yit−1 for t = 1, 2. (2.2)

We show that, if vi1, vi2 are serially correlated, then (2.2) does not hold in general even
when (αi + εi1, αi + εi2) is independent of (vi1, vi2).

To simplify notation, we drop the subscript i for all random variables, and let et ≡
−(α + εt) for t = 1, 2. Assume that (e1, e2) is independent of (v1, v2); and that the joint
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distribution of (e1, e2) and the joint distribution of (v1, v2) are both exchangeable in the
index t ∈ {1, 2}.2 Let F (and f) denote the marginal distribution (and density) of vt; let
G (and g) denote the marginal distribution (and density) of et. Define F (s′|s) ≡ Pr(v1 ≤
s′|v2 = s) and G(r′|r) ≡ Pr(e1 ≤ r′|e2 = r). That F,G do not vary with t = 1, 2 is a
consequence of the exchangeability condition.

We will show that e2 is not independent of v2 conditional on y1 = 1 (or equivalently,

v1 − e1 ≥ 0) if vt is serially correlated between t = 1, 2. By definition,

∂2 Pr(e2 ≤ r̃, v2 ≤ s̃|y1 = 1)

∂r̃∂s̃

∣∣∣∣
r̃=r,s̃=s

=
∂2

∂r̃∂s̃

(
Pr(v1 − e1 ≥ 0, e2 ≤ r̃, v2 ≤ s̃)

Pr(v1 − e1 ≥ 0)

)∣∣∣∣
r̃=r,s̃=s

=
Pr(v1 − e1 ≥ 0|e2 = r, v2 = s)g(r)f(s)

Pr(v1 − e1 ≥ 0)

=
g(r)f(s)

∫
Pr(e1 ≤ s̃|v1 = s̃, e2 = r, v2 = s)dF (s̃|s)∫

G(s̃)dF (s̃)
=
g(r)f(s)

∫
G(s̃|r)dF (s̃|s)∫

G(s̃)dF (s̃)
.

where the third and fourth equalities follow from an application of the Law of Total Prob-

ability in the numerator and the denominator, and from the independence between (e1, e2)

and (v1, v2). On the other hand,

∂ Pr(e2 ≤ r̃|y1 = 1)

∂r̃

∣∣∣∣
r̃=r

=
∂

∂r̃

[
Pr(v1 − e1 ≥ 0, e2 ≤ r̃)

Pr(v1 − e1 ≥ 0)

]∣∣∣∣
r̃=r

=
Pr(v1 − e1 ≥ 0|e2 = r)g(r)

Pr(v1 − e1 ≥ 0)

=
g(r)

∫
Pr(e1 ≤ s̃|v1 = s̃, e2 = r)dF (s̃)∫

G(s̃)dF (s̃)
=
g(r)

∫
G(s̃|r)dF (s̃)∫
G(s̃)dF (s̃)

and

∂ Pr(v2 ≤ s̃|y1 = 1)

∂s̃

∣∣∣∣
s̃=s

=
∂

∂s̃

[
Pr(v1 − e1 ≥ 0, v2 ≤ s̃)

Pr(v1 − e1 ≥ 0)

]∣∣∣∣
s̃=s

=
Pr(v1 − e1 ≥ 0|v2 = s)f(s)

Pr(v1 − e1 ≥ 0)

=
f(s)

∫
Pr(e1 ≤ s̃|v1 = s̃, v2 = s)dF (s̃|s)∫

G(s̃)dF (s̃)
=
f(s)

∫
G(s̃)dF (s̃|s)∫
G(s̃)dF (s̃)

,

where the last two equalities hold because of similar reasons. Thus for all (e, v),(
∂2 Pr(e2≤r̃,v2≤s̃|y1=1)

∂r̃∂s̃

∣∣∣
r̃=r,s̃=s

)
(

∂ Pr(e2≤r̃|y1=1)
∂r̃

∣∣∣
r̃=r

)(
∂ Pr(v2≤s̃|y1=1)

∂s̃

∣∣∣
s̃=s

) =

(∫
G(s̃|r)dF (s̃|s)∫
G(s̃|r)dF (s̃)

)( ∫
G(s̃)dF (s̃)∫
G(s̃)dF (s̃|s)

)
. (2.3)

The right-hand side (r.h.s.) of (2.3) is 1 whenever v1 and v2 are serially independent (F (s′|s) =

F (s′) for all (s′, s) on the joint support of (v1, v2)). However, if v1 and v2 are serially dependent,

2Exchangeability is not assumed in Honoré and Lewbel (2002), but we introduce it here to demonstrate

how Assumption A2 could be violated.
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then the right-hand side of (2.3) is not equal to 1 in general. To see this, consider an extreme case

where vt has perfect correlation (vt is time-invariant with Pr(v1 = v2) = 1). Then the right-hand

side of (2.3) becomes:

G(s|r)∫
G(s̃|r)dF (s̃)

∫
G(s̃)dF (s̃)

G(s)
.

Because G(.|r) varies with r due to the dependence between e1 and e2, this expression is in general

not equal to 1 for all (s, r) on the support of (e1, e2). To sum up, the identifying condition A.2

in Honoré and Lewbel (2002) implicitly requires that the excluded regressors (vt)t=1,2 be serially

independent. Otherwise, A.2 does not hold in general, and the estimator in Honoré and Lewbel

(2002) is generally inconsistent.

3 Identification with Serially Correlated Regressors

Serial independence of observed covariates is hard to justify in a dynamic panel data setting. To

address this limitation of the method in Honoré and Lewbel (2002), we introduce an alterna-

tive approach that is valid in the presence of serial dependence in the regressors. Consider the

simplified version of the dynamic binary choice panel data model with two periods t = 1, 2 in

(2.1), where the initial value yi0 is stochastic and reported in the data. Let yi ≡ (yi0, yi1, yi2),

vi ≡ (vi1, vi2) and εi ≡ (εi1, εi2). Our method requires the following conditions:

EM1 (Random Sampling) For each cross-sectional unit i, the vector (yi,vi, αi, εi) is independently

drawn from the same data-generating process. The vector (yi,vi) is observed while (αi, εi)

is not.

EM2 (Exclusion Restriction) vi is independent of (εi, αi, yi0), and is continuously distributed over

a support V ⊆ R2.

EM3 (Exchangeability) Conditional on yi0, ei ≡ (ei1, ei2) ≡ (−αi − εi1,−αi − εi2) is continuously

distributed with positive density over R2, and is exchangeable in t = 1, 2.

EM4 (Overlapping Support) There exists v, v′ ∈ V such that either “v′1 = v2 and v′2 + γ0 = v1”

or “v′2 = v1 and v2 = v′1 + γ0”.

Unlike Assumption A.2 in Honoré and Lewbel (2002), the exclusion restriction in EM2 does

not condition on the endogenous lagged dependent variable yi1. The exchangeability in EM3

holds, for example, if εi is exchangeable in t = 1, 2 conditional on (αi, yi0). We impose no other
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restriction on the distribution of (αi, εi) given yi0 than EM3. Condition EM4 ensures that the

intersection of the marginal support of vi1 and vi2 is non-empty.

A few remarks about how these conditions are related to the existing literature are in order.

First, EM1-EM3 allow for the serial correlation between regressors in vi, which as we show above

are implicitly ruled out in Assumption A.2 in Honoré and Lewbel (2002). Second, our conditions

are non-nested with those in Honore and Kyriazidou (2000), which allows the initial condition yi0

to depend on vi. However, our identification result only requires the data to report two periods

T = 2 (not including the initial condition) whereas their approach requires T ≥ 3.

We state our identification theorem for the model in (2.1) with a stochastic initial value yi0.

Theorem 3.1 Consider the model in (2.1) with t = 1, 2. Under Assumptions EM1, 2, 3, 4, the

coefficient γ0 is identified.

Proof of Theorem 3.1. Consider two observations i, j such that yi0 = yj0 = 0 and vj1 = vi2 = v̄

for some v̄ and

Pr(yi1 = 0, yi2 = 1|vi, yi0 = 0) = Pr(yj1 = 1, yj2 = 0|vj , yj0 = 0). (3.1)

Such a pair i, j and v̄ exist under EM4. Under EM2, the left-hand side of (3.1) is

Pr(ei1 > vi1, ei2 ≤ vi2|yi0 = 0) = Pr(ei1 > vi1, ei2 ≤ v̄|yi0 = 0),

and the right-hand side of (3.1) is

Pr(ej1 ≤ vj1, ej2 > vj2 + γ0|yj0 = 0) = Pr(ej1 > vj2 + γ0, ej2 ≤ v̄|yj0 = 0),

where the equality follows from the exchangeability of (ej1, ej2) given yj0 = 0 in EM3. It follows

from EM1 and EM3 that (3.1) holds if and only if vi1 = vj2 + γ0. This implies γ0 is -identified

as γ0 = vi1 − vj2 using any pair i, j such that yi0 = yj0 = 0, vj1 = vi2 and (3.1) holds.

Likewise, we can look for another pair of cross-sectional units k, l with yk0 = yl0 = 1 and

vl2 = vk1 = ṽ for some ṽ and

Pr(yk1 = 0, yk2 = 1|vk, yk0 = 1) = Pr(yl1 = 1, yl2 = 0|vl, yl0 = 1) (3.2)

By a similar argument, the left-hand side of (3.2) is

Pr(ek1 > vk1 + γ0, ek2 ≤ vk2|yk0 = 1) = Pr(ek1 > ṽ + γ0, ek2 ≤ vk2|yk0 = 1)

and the right-hand side of (3.2) is

Pr(el1 ≤ vl1 + γ0, el2 > vl2 + γ0|yl0 = 1) = Pr(el1 > ṽ + γ0, el2 ≤ vl1 + γ0|yl0 = 1).

It then follows from EM1 and EM3 that (3.2) holds if and only if vl1 + γ0 = vk2. Hence γ0 is

over-identified as vk2 − vl1 using any pair k, l such that vl2 = vk1 and (3.2) holds. �
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3.1 Estimation

We propose two estimators for γ0 in (2.1), based on the constructive argument for identification

in Theorem 3.1. As we show in Appendix A, both estimators converge at the parametric rate to

a limiting normal distribution.

The first estimator has a closed form as follows:

γ̂CF ≡
∑

j 6=i [ωij,0(vi1 − vj2) + ωij,1(vi2 − vj1)]∑
j 6=i (ωij,0 + ωij,1)

, (3.3)

where
∑

j 6=i is shorthand notation for the summation over ordered pairs
∑N

i=1

∑
j∈{1,2,...,N}\{i}

and

ωij,0 ≡ Kh(p̂i0 − q̂j0, vj1 − vi2)(1− yi0)(1− yj0), ωij,1 ≡ Kh(p̂i1 − q̂j1, vj2 − vi1)yi0yj0,

p̂i0 ≡
∑

s ys2(1− ys1)Lσ(vs − vi)(1− ys0)∑
s Lσ(vs − vi)(1− ys0)

, q̂j0 ≡
∑

s ys1(1− ys2)Lσ(vs − vj)(1− ys0)∑
s Lσ(vs − vj)(1− ys0)

,

p̂i1 ≡
∑

s ys2(1− ys1)Lσ(vs − vi)ys0∑
s Lσ(vs − vi)ys0

, q̂j1 ≡
∑

s ys1(1− ys2)Lσ(vs − vj)ys0∑
s Lσ(vs − vj)ys0

,

with Kh(.) ≡ 1
hK( .h) and Lσ(.) ≡ 1

σL( .σ ) being shorthand notation for kernel smoothing.

The intuition for the consistency of γ̂CF is as follows. First off, under appropriate conditions,

the ratio
(∑

j 6=i ωij,0
)−1 [∑

j 6=i ωij,0(vi1 − vj2)
]

converges in probability to the expectation of vi1−
vj2 conditional on yi0 = yj0 = 0, vj1 = vi2 and on the equality in (3.1). By the proof of Theorem

3.1, such a conditional expectation is equal to γ0. Likewise,
(∑

j 6=i ωij,1
)−1 [∑

j 6=i ωij,1(vi2 − vj1)
]

also converges in probability to γ0. Thus the estimator γ̂CF in (3.3) is a weighted average of these

two components, each of which is consistent for γ0. This estimator avoids minimization, but

requires multiple kernel smoothing procedures. In Appendix A we show that this estimator is

root-n consistent and asymptotically normal (CAN).

The second estimator we propose is a kernel-weighted maximum rank correlation estimator:

γ̂MR ≡ max
γ

1

n(n− 1)

∑
j 6=i

[ω̃ij,0Gij,0(γ) + ω̃ij,1Gij,1(γ)] , (3.4)

where

Gij,0(γ) ≡ 1{di,01 > dj,10}1{vj2 + γ > vi1}+ 1{di,01 < dj,10}1{vj2 + γ < vi1};

Gij,1(γ) ≡ 1{di,01 > dj,10}1{vi2 > vj1 + γ}+ 1{di,01 < dj,10}1{vi2 < vj1 + γ}

with

di,01 ≡ (1− yi1)yi2 , dj,10 ≡ yj1(1− yj2), (3.5)

ω̃ij,0 ≡ K̃h(vj1 − vi2)(1− yi0)(1− yj0) , ω̃ij,1 ≡ K̃h(vj2 − vi1)yi0yj0
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and K̃h(.) ≡ 1
hK̃( .h). This estimator is motivated by the maximum rank correlation estimator

introduced by Han (1987) for cross-sectional models.

To understand the intuition for the consistency of γ̂MR, note that under appropriate regularity

conditions, the objective function in (3.4) converges in probability to a weighted integral of

E[Gij,0(γ)|vj1 = vi2, yi0 = 0, yj0 = 0] and E[Gij,1(γ)|vj2 = vi1, yi0 = 1, yj0 = 1]. (3.6)

Both conditional expectations in (3.6) are uniquely maximized at γ = γ0 under the support

condition in EM4.3 The formal argument is analogous to the proof of identification in Han (1987)

and omitted for brevity here. Thus the extremum estimator in (3.4) satisfies the identification

condition for consistency.

We note that this maximum rank correlation estimator has the advantage of requiring fewer

smoothing parameters than the first closed-form estimator. This comes at the expense of higher

computational costs as the maximum rank correlation estimator requires optimization of a non-

concave objective function. Nonetheless, desirable asymptotic properties such as root-n consis-

tency and asymptotic normality still hold, as we show in Appendix A using an argument similar

to Abrevaya, Hausman, and Khan (2010).

4 Model with Multiple Explanatory Regressors

We now discuss the identification and estimation of the model in (1.1) when xit includes other

regressors wit ∈ RL as well as the lagged dependent variable yit−1. That is, in the notation of

Honoré and Lewbel (2002), xit ≡ (yit−1, wit), β0 ≡ (γ0, δ
′
0)
′ and

yit = I[vit + γ0yit−1 + w′itδ0 + αi + εit ≥ 0] for t = 1, 2. (4.1)

Let wi ≡ (wi1, wi2), εi ≡ (εi1, εi2) and ei ≡ (−αi − εi1,−αi − εi2) as before. Let W ⊂ RLdenote

the support of wi. We maintain the following conditions:

EEM1 (Random Sampling) For each i, (yi,wi,vi, αi, εi) are independently drawn from the same

data-generating process. The vector (yi,wi,vi) is reported in data while (αi, εi) is not.

EEM2 (Exclusion Restriction) Conditional on wi, vi is independent of (ei, yi0) and is continuously

distributed over a connected support V ⊆ R2.

EEM3 (Exchangeability) Conditional on (wi, yi0), ei is continuously distributed with positive den-

sity over R2 and is exchangeable in t = 1, 2.

3Assumption EM4 implies that for all γ 6= γ0, there is positive probability that vi1 − vj2 is between γ

and γ0 conditional on vj1 = vi2, yi0 = 0, yj0 = 0.
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EEM4 (Support Condition) There exists C ⊂ RL such that C ⊗ C ⊆ W, and the support condition

in EM4 holds conditional on some wi = (w̄, w̄) ∈ C ⊗ C.

EEM5 (Rank Condition) There exists someW0 ⊆ W such that (i) the support of {wi2−wi1 : wi ∈
W0} is not contained in any proper linear subspace, and (ii) conditional on any wi ∈ W0,

there exists v, ṽ ∈ V with v1 = ṽ1, ṽ2 = v2 + γ0 and v1 = ṽ2 + (wi2 − wi1)′δ0.

Theorem 4.1 Consider the model in (4.1) with t = 1, 2. Under Assumptions EEM1, 2, 3, 4, 5,

the coefficients γ0 and δ0 are identified.

Proof of Theorem 4.1. For each i, define ηit ≡ −αi − εit − w′i1δ0 for t = 1, 2 (note that the

definition subtracts the first period index w′i1δ0 for both t = 1, 2). Under EEM3, the distribution

of ηi ≡ (ηi1, ηi2) is exchangeable in t = 1, 2 conditional on wi. Thus (4.1) can be written as:

yi1 = I[ηi1 ≤ vi1 + γ0yi0] and yi2 = I[ηi2 ≤ vi2 + γ0yi1 + ∆i],

where ∆i ≡ (wi2 − wi1)
′δ0. Consider a vector w̄i with w̄i1 = w̄i2 so that ∆i = 0. Such a

vector exists under the support condition in EEM4. Conditional on such a w̄i, the argument for

identifying γ0 in Theorem 3.1 applies (with the constant index w̄′i1δ0 absorbed in the fixed effect

αi).

With γ0 known, we can look for pairs of cross-sectional units i and j such that

wi = wj , vi1 = vj1 and vj2 = vi2 + γ0. (4.2)

Such pairs exist due to the condition (ii) in EEM5. By construction,

Pr(yi1 = 1, yi2 = 0|vi,wi, yi0 = 0) + Pr(yj1 = 0, yj2 = 0|vj ,wj , yj0 = 0)

= Pr(ηi1 ≤ vi1, ηi2 > vi2 + γ0 + ∆i|wi, yi0 = 0) + Pr(ηj1 > vj1, ηj2 > vj2 + ∆j |wj , yj0 = 0)

= Pr(ηj2 > vj2 + ∆j |wj , yj0 = 0),

where the first equality follows from EEM2 and the second follows from the equalities in (4.2)

and EEM1. Also by EEM2,

Pr(yi1 = 0|vi,wi, yi0 = 0) = Pr(ηi1 > vi1|wi, yi0 = 0).

It then follows from EEM3 that for any pair i and j that satisfy the equalities in (4.2),

Pr(yi1 = 1, yi2 = 0|vi,wi, yi0 = 0) + Pr(yj1 = 0, yj2 = 0|vj ,wj , yj0 = 0)

= Pr(yi1 = 0|vi,wi, yi0 = 0) (4.3)
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if and only if

vi1 = vj2 + ∆j .

This identifies ∆j = (wj2 − wj1)′δ0 for wj conditional on the equalities in (4.2). Replicating the

same argument conditional on other values of wj allows us to identify δ0 under the rank condition

(i) in EEM5.4 �

We now discuss how to translate the identification result in Theorem 4.1 to an estimation

procedure, conditioning on the set of time-invariant regressors mentioned in EEM4. For ease of

illustration, suppose for now that the vector wit consists of discrete components only. Then we

can construct a closed-form estimator and a kernel weighted maximum rank correlation estimator

for γ0 similar to those in Section 3.1 conditioning on “wi1 = wi2”, an equality that occurs with

positive probability due to the discreteness of wit. Specifically, we need to replace the weights

ωij,s, ω̃ij,s in (3.3) and (3.4) with ωij,s1{wi1 = wi2} and ω̃ij,s1{wi1 = wi2} respectively for s = 0, 1.

If wit contains a continuous component, the event “wi1 = wi2” occurs with zero probability and

we need to replace 1{wi1 = wi2} with kernel weights 1
hK(wi1−wi2

h ) in order to implement the

estimation procedure. Note that in such an estimation procedure we are trimming out all but a

shrinking fraction of the cross-sectional population, as opposed to trimming all but a shrinking

fraction of pairwise comparisons as before. Consequently, the resulting estimator converges at

a nonparametric rate. In comparison, the estimator proposed in Honore and Kyriazidou (2000)

does not impose any exclusion restriction, but requires more time periods yet still attains a

nonparametric rate.

The non-standard, slower rate of convergence of our estimator described in the preceding

paragraph motivates the need to strengthen model assumptions in order to construct root-n CAN

estimators. The following two subsections present two cases where root-n CAN estimators are

available under strengthened model assumptions.

4.1 Exchangeability in Regressors

Consider the following condition of exchangeability:

EEM3’ (Exchangeability) The distribution of ei ≡ (ei1, ei2) conditional on yi0 and wi ≡ (wi1, wi2)

is exchangeable in the time index t = 1, 2.

EEM4’ (Support Condition) There exists (w,v) and (w̃, ṽ) such that (w1, w2) = (w̃2, w̃1) and either

“ṽ1 = v2, v1 = ṽ2 + γ0” or “ṽ2 = v1, v2 = ṽ1 + γ0”.

4A symmetric argument identifies δ0 from analogous conditional probabilities under similar support

conditions, using other pairs with yi0 = 1 and yj0 = 1.
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The condition EEM3′ strengthens the exchangeability in (ei1, ei2) in EEM3 into a stronger

notion of exchangeability in (ei1, ei2) as well as the explanatory variables (wi1, wi2) that are

conditioned on. This notion of exchangeability in EEM3′ has been previously used to attain

identification results in the econometrics literature. See, for example, Honoré (1992) for censored

panel models, Fox (2007) for multinomial choice models, and Altonji and Matzkin (2005) for non-

separable models in both cross-sectional and (random-effect) panel data models. In a binary choice

random effect model, Altonji and Matzkin (2005) uses the following condition (Assumption 2.3) on

the unobserved errors and observed regressors (assuming two time periods for ease of exposition)

f(eit|wi1, wi2) = f(eit|wi2, wi1) for t = 1, 2,

where f(·|·) notes the density of eit conditional on wi. Hence their Assumption 2.3 means that

the value of the conditional density function does not change even if the order of the condition-

ing variables does. Their Assumption 2.3, along with a conditional i.i.d. (or exchangeability)

assumption on εit would imply our Assumption EEM3′.

Theorem 4.2 Consider the model in (4.1) with t = 1, 2. Under Assumptions EEM1, 2, 3′, 4′, 5,

the coefficients γ0 and δ0 are identified .

Proof of Theorem 4.2. Consider a pair (wi,vi) and (wj ,vj) such that

(wi1, wi2) = (wj2, wj1) and vj1 = vi2 (4.4)

and

Pr(yi1 = 0, yi2 = 1|wi,vi, yi0 = 0) = Pr(yj1 = 1, yj2 = 0|wj ,vj , yj0 = 0). (4.5)

As we show below, such a pair exists under the support condition in EEM4′. By construction,

the left-hand side of (4.5) is

Pr(ei1 > w′i1β0 + vi1, ei2 ≤ w′i2β0 + vi2|wi, yi0 = 0),

where the equality is due to EEM2. Besides, the right-hand side of (4.5) is

Pr(ej1 ≤ w′j1β0 + vj1, ej2 > w′j2β0 + vj2 + γ0|Wj = (wj1, wj2),yj0 = 0)

= Pr(ej2 ≤ w′j1β0 + vj1, ej1 > w′j2β0 + vj2 + γ0|Wj = (wj2, wj1),yj0 = 0)

= Pr(ei2 ≤ w′i2β0 + vi2, ei1 > w′i1β0 + vj2 + γ0|Wi = (wi1, wi2),yi0 = 0),

where the first equality follows from the exchangeability in EEM3′ and the second follows from

i.i.d. sampling assumption (EEM1) and the equalities in (4.4). Thus the equality in (4.5) holds

11



if and only if vi1 = vj2 + γ0. Thus γ0 = vi1 − vj2 is over-identified using any pair (wi,vi) and

(wj ,vj) that satisfy (4.4) and (4.5).

By a symmetric argument, we can look for pairs of (wi,vi) and (wj ,vj) such that

(wi1, wi2) = (wj2, wj1), vj2 = vi1

and

Pr(yi1 = 0, yi2 = 1|wi,vi, yi0 = 1) = Pr(yj1 = 1, yj2 = 0|wj ,vj , yj0 = 1),

and show that γ0 is (over-)identified as γ0 = vi2 − vj1.

With γ0 identified, we can replicate the argument in Theorem 4.1 to identify δ0 through

pairwise comparison under the rank condition in EEM5. �

Based on the identification strategy in Theorem 4.2, we propose a two-step estimator for γ0, δ0.

In the first step, use a kernel-weighted maximum rank correlation estimator to estimate γ0:

γ̂EX ≡ max
γ

1

n(n− 1)

∑
j 6=i
Kij [ω̃ij,0Gij,0(γ) + ω̃ij,1Gij,1(γ)]

where di,01, dj,10, ω̃ij,0 and ω̃ij,1 are defined as in (3.5) and Kij ≡ Kσ(wi1 − wj2, wi2 − wj1) is a

kernel weight for matching i and j with (wi1, wi2) = (wj2, wj1). In the second step, use γ̂EX to

construct a closed-form estimator for δ0 by matching pairs i and j that satisfy the equalities in

(4.2) and (4.3) simultaneously.

Remark 4.1 For the model with lagged dependent variables as well as strictly exogenous variables

we are able to identify the regression coefficients for three times periods. Furthermore the closed-

form estimator we propose converges at the parametric rate with a limiting normal distribution.

In comparison, Honore and Kyriazidou (2000) require four periods for identification and achieve

a nonparametric rate in estimation. They impose an i.i.d. assumption on εit which is stronger

than what we assume here; but they do not impose the exclusion restriction in EEM2 nor the

exchangeability assumption in EEM3′. They require that the support of wit to be overlapping over

time so that the difference in regressors across adjacent time periods has a positive density in a

neighborhood of 0.

Remark 4.2 Our new identification and estimation results extend to static binary choice models

with fixed effects, where the vector of explanatory variables in a period does not include the lagged

dependent variable from the previous period. (See Appendix B for details.) In fact, it can be shown

that the same pairwise comparison procedure provides root-n CAN estimators of the regression

coefficients under weaker conditions. Specifically, in a static binary choice panel data model with
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the exclusion restriction, we only need observations of the dependent and explanatory variables in

two time periods, do not require the exchangeability in wit (EEM3′), and only impose a conditional

stationarity restriction on eit. The assumed behavior on eit would then be identical to that imposed

in Manski (1987). The model in Manski (1987) is more general as exclusion was not assumed

for his identification result, but the parameters could not be estimated at the parametric rate. Ai

and Gan (2010) also study static models (e.g. without lagged dependent variables) and, like ours,

their estimator converges at the parametric rate. However, they require wit to be independent of

eit, which we do not impose in the static model considered in Appendix B.

4.2 Exogenous Initial Condition

Another way to attain root-n CAN estimation is to further require that ei1, vi1 and the initial

condition yi0 be mutually independent conditional on wi1. Then a similar two-step estimator

based on pairwise comparison across cross-sectional units with different initial conditions can be

constructed.

To see this, suppose that ei1, vi1 and yi0 are mutually independent given wi1, and that ei1 is

continuously distributed over R given wi1. First, look for pairs of observations i and j such that

wi1 = wj1 and Pr(yi1 = 1|yi0 = 0, wi1, vi1) = Pr(yj1 = 1|yj0 = 1, wj1, vj1). (4.6)

Under the mutual independence condition above, the second equality in (4.6) is equivalent to

Pr(ei1 ≤ w′i1δ0 + vi1|wi1) = Pr(ej1 ≤ w′j1δ0 + vj1 + γ0|wj1).

Such pairs exist under mild support conditions. It then follows that γ0 is over-identified as

γ0 = vi1 − vj1 using any pair of i and j that satisfies both equalities in (4.6). Second, with

γ0 identified, we can identify δ0 under EEM1, 2, 3, 5 by the same argument as in the proof of

Theorem 4.1, which uses variables observed in both periods t = 1, 2. This line of constructive

identification argument lends itself to a two-step estimator that is based on pairwise comparisons,

and root-n CAN under appropriate regularity conditions.

5 Simulation Study

In the this section we compare the finite-sample performance of the new estimators we propose

with that of existing estimators in dynamic panel data models. The first class of designs we

consider have no other strictly exogenous regressors than vit. We randomly generate data from

the following equation:

yit = I[αi + vit + γ0yi,t−1 + εit > 0] t = 1, 2
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where (vi1, vi2) is bivariate normal with mean (0, 0) and unit standard deviation (1, 1). We report

the results for several designs, with the coefficient of correlation between vi1 and vi2 ranging

from 0 to 0.75. The error terms (εi1, εi2) are independent of (vi1, vi2, αi) with a bivariate normal

distribution with mean (0, 0), standard deviation (1, 1) and a correlation coefficient of 0.5. For

the fixed effect αi, we considered designs where αi is binary and independent of (vi1, vi2) with

Pr(αi = 1) = Pr(αi = 0) = 0.5.

Table 1 reports simulation results for two estimators of γ0 = 0.5: the inverse weighting pro-

cedure in Honoré and Lewbel (2002) (HL) and our two estimators based on pairwise comparison,

i.e., the closed-form estimator (CKT1) and the kernel-weighted maximum rank correlation estima-

tor (CKT2). In practice, each of these three estimators requires some nonparametric estimation

procedure and hence smoothing parameters. To focus on these estimators’ sensitivity to serial

dependence in vit (as opposed to their sensitivity to tuning parameters), we compare the infeasible

version of each estimator in our simulation exercises. That is, we use knowledge of the true con-

ditional density for the estimator in Honoré and Lewbel (2002), and the true conditional choice

probability for both of our estimators introduced here.

For matching the probabilities in the CKT1 estimator we followed the procedure outlined in

Chen, Khan, and Tang (2016), where there is under-smoothing in the choice of bandwidths for

the kernel estimation of propensity scores in the preliminary step (relative to the bandwidths used

for matching explanatory variables).

We report the mean bias (BIAS) and the root mean square errors (RMSE) of all three esti-

mators for γ0 (HL, CKT1 and CKT2) in the design above, with the correlation coefficients for

(vi1, vi2) ranging between ρv ∈ {0, 0.25, 0.5, 0.75}. For each sample size n ∈ {200, 400, 800, 1600},
we calculate the mean bias and RMSEs using 1601 replications of simulated samples.

The findings from this simulation exercise under dynamic designs are in accordance with

our theoretical results. When there is serial correlation in vit (ρv 6= 0), the mean bias of the

HL estimator does not decline monotonically with the sample size, and the RMSE diminishes

at a rate much slower than root-n. In contrast, both of our estimators proposed in this paper

demonstrate a faster rate of decline in RMSE as the sample size increases, regardless of the level

of serial correlation in vit.
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TABLE 1. Performance of Estimators for γ0 in a Simple Model

(Exogenous variable: vi)

HL CKT1 CKT2

ρv 0 1/4 1/2 3/4 0 1/4 1/2 3/4 0 1/4 1/2 3/4

n=200

BIAS 0.067 0.001 -0.045 -0.123 -0.113 -0.117 -0.130 -0.179 -0.018 -0.006 -0.016 0.008

RMSE 1.572 1.597 1.511 1.501 0.152 0.153 0.161 0.200 0.317 0.318 0.317 0.318

n=400

BIAS -0.038 -0.152 -0.149 -0.316 -0.096 -0.099 -0.115 -0.162 -0.001 -0.031 -0.002 -0.004

RMSE 1.196 1.122 1.136 1.216 0.118 0.118 0.129 0.173 0.283 0.288 0.279 0.280

n=800

BIAS 0.055 -0.097 -0.225 -0.288 -0.086 -0.088 -0.106 -0.147 -0.001 -0.006 0.004 0.009

RMSE 1.027 1.025 1.023 1.216 0.097 0.097 0.114 0.153 0.229 0.232 0.227 0.234

n=1600

BIAS 0.006 -0.104 -0.214 -0.382 -0.074 -0.079 -0.096 -0.140 -0.003 -0.005 0.003 0.009

RMSE 1.024 0.992 0.857 0.890 0.079 0.084 0.100 0.143 0.176 0.176 0.180 0.173

Next, we study a more general design which includes other explanatory variables wit in addi-

tion to vit:

yit = I[αi + vit + witδ0 + γ0yi,t−1 + εit > 0].

In our simulation we let δ0 = 1 and wi be independent of (αi,vi, εi). We let (wit, wi2) be serially

independent and drawn from a binary distribution Pr(wit = 1) = Pr(wit = 0) = 0.5 for t = 1, 2.

The other elements of the model are specified as in the simple design above.

Table 2 and Table 3 report the performance of HL and CKT1 estimators for δ0 and for γ0

respectively in small and moderate-sized samples. Table 3 shows in general neither the mean bias

or the RMSE of the HL estimator for γ0 decreases with the sample size in the presence of serial

correlation in vit. Table 2 demonstrates similar results for the HL estimator for δ0. In comparison,

CKT1 exhibits a noticeable bias for both δ0 and γ0 (especially δ0) but the RMSE diminishes as

the sample size increases.
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TABLE 2. Performance of Estimators for δ0 in a Full Model

(Exogenous variables: wi and vi)

HL CKT1

ρv 0 1/4 1/2 3/4 0 1/4 1/2 3/4

200 obs.

Mean Bias -0.0546 -0.1286 -0.1522 -0.0655 -0.2412 -0.2541 -0.2651 -0.3244

RMSE 1.0879 0.8127 1.1537 1.2749 0.2475 0.2600 0.2713 0.3323

400 obs.

Mean Bias -0.0486 -0.0448 -0.1031 -0.1093 -0.2188 -0.2304 -0.2412 -0.2993

RMSE 1.4033 1.5027 0.7018 1.3616 0.2220 0.2339 0.2447 0.3033

800 obs.

Mean Bias 0.0324 -0.0057 -0.0869 -0.1413 -0.1990 0.2100 -0.2213 -0.2817

RMSE 1.7034 1.0512 0.8770 0.4258 0.2007 0.2117 0.2231 0.2835

1600 obs.

Mean Bias -0.0873 -0.0812 -0.1043 -0.0838 -0.1811 -0.1902 -0.2012 -0.2577

RMSE 0.4085 0.4692 0.8775 0.7066 0.1822 0.1911 0.2011 0.2588

TABLE 3. Performance of Estimators for γ0 in a Full Model

(Exogenous variables: wi and vi)

HL CKT1

ρv 0 1/4 1/2 3/4 0 1/4 1/2 3/4

200 obs.

Mean Bias -0.1014 -0.0441 -0.1960 -0.3782 -0.1286 -0.1598 -0.1796 -0.1946

RMSE 7.76673 9.9655 6.1891 4.9221 0.1435 0.1791 0.1897 0.2037

400 obs.

Mean Bias -0.0734 -0.1767 -0.0921 -0.2216 -0.1195 -0.1437 -0.1644 -0.1828

RMSE 6.8646 3.2316 3.5076 4.6439 0.1269 0.1493 0.1694 0.1872

800 obs.

Mean Bias 0.2720 -0.1397 -0.5554 -0.3128 -0.1108 -0.1334 -0.1510 -0.1661

RMSE 6.9441 2.7588 5.4450 2.0464 0.1146 0.1369 0.1539 0.1686

1600 obs.

Mean Bias -0.1448 -0.2419 -0.2386 -0.3757 -0.1014 -0.1206 -0.1386 -0.1516

RMSE 2.2697 2.2712 3.4023 2.4554 0.1035 0.1222 0.1401 0.1530
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6 Conclusions

We explore the use of exclusion restrictions in dynamic binary choice panel data models introduced

in Honoré and Lewbel (2002). Their model was partly motivated by the difficulty in identifying

models that allow for both state dependence and unobserved heterogeneity. However, here we

show that the exclusion restriction in Honoré and Lewbel (2002) requires (conditional) serial

independence of the excluded regressor. Thus their inverse-density-weighted estimator in Honoré

and Lewbel (2002) is generally inconsistent when the excluded regressors are serially correlated

in a dynamic panel data model.

We propose a new approach of identification and estimators for semiparametric binary choice

panel data model under exclusion restrictions. Our approach accommodates the serial dependence

in the excluded regressors, and the new estimators converge at the parametric rate to a limiting

normal distribution. This rate is faster than the nonparametric rates of existing alternative

estimators for the binary choice panel data model, including the static case in Manski (1987) and

the dynamic case in Honore and Kyriazidou (2000).
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A Regularity Conditions and Asymptotic Theory

We outline the regularity conditions and arguments for deriving the limiting distribution of the

closed-form estimator γ̂CF in Section A.1 and the rank-based estimator γ̂MR in Section A.2. In

both cases we focus on the simplified model where the two regressors are the excluded variable

vit and the lagged dependent variable yit−1.

A.1 Closed-Form Estimator

Recall the closed-form estimator was expressed as

γ̂CF ≡
∑

j 6=i [ωij,0(vi1 − vj2) + ωij,1(vi2 − vj1)]∑
j 6=i (ωij,0 + ωij,1)

(A.1)
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where
∑

j 6=i denote the summation over N(N − 1) ordered pairs and

ωij,0 ≡ Kh(p̂i0 − q̂j0, vj1 − vi2)(1− yi0)(1− yj0) , ωij,1 ≡ Kh(p̂i1 − q̂j1, vj2 − vi1)yi0yj0;

p̂i0 ≡
∑

s ys2(1− ys1)Lσ(vs − vi)(1− ys0)∑
s Lσ(vs − vi)(1− ys0)

, q̂j0 ≡
∑

s ys1(1− ys2)Lσ(vs − vj)(1− ys0)∑
s Lσ(vs − vj)(1− ys0)

;

p̂i1 ≡
∑

s ys2(1− ys1)Lσ(vs − vi)ys0∑
s Lσ(vs − vi)ys0

, q̂j1 ≡
∑

s ys1(1− ys2)Lσ(vs − vj)ys0∑
s Lσ(vs − vj)ys0

,

with Kh(.) ≡ 1
hK( .h) and Lσ(.) ≡ 1

σL( .σ ).

Our arguments for the limiting distribution theory for the closed form estimator are based on

the following conditions:

Assumption A.1 (Non-singularity) The matrix Σ defined in (A.6) is positive and finite.

Assumption A.2 (Kernels for matching) (i) Let K(·, ·) = K1(·)K2(·) where K1, K2 have com-

pact supports, are symmetric around 0, integrate to 1, are twice continuously differen-

tiable and are eighth-order kernels. (ii) supt∈R h
−1
2 |K2 (t/h2) |, supt∈R h

−1
1 |K ′1 (t/h1)| and

supt∈R h
−1
1 |K ′′1 (t/h1)| are all O(1) as h1, h2 → 0.

Assumption A.3 (Bandwidths for matching) h1 ∝ n−δ1 and h2 ∝ n−δ2 where δ1 ∈ ( 1
12 ,

1
9) and

2δ2 <
2
3 − δ1.

Assumption A.4 (Smoothness) The functions p̃, q̃ and the conditional density f0, g0, f1, g1 de-

fined below are all M = 6 times continuously differentiable with bounded derivatives.

Assumption A.5 (Kernel for estimating propensity scores) (i) L has compact support, is sym-

metric around zero, integrates to one, and is twice continuously differentiable. (ii) L has

an m-th order with m > 12

Assumption A.6 (Smoothness of population moments) The propensity score p0(.), q0(.), p1(.)

and q1(.) defined below and the density of (vi1, vi2) are continuously differentiable of order

m with bounded derivatives, where m > 12.

Assumption A.7 (Bandwidth for estimating propensity scores) σn ∝ n−γ/3, where

3
m

(
1
3 + δ1

)
< γ < 1

3 − 2δ1.

Assumption A.8 (Finite second moments) The function χi defined in (A.13) has finite second

moment.

Proposition 1 Under Assumptions A.1-A.8,

√
n (γ̂CF − γ0)

d→ N
(
0,Σ−2E[χ2

i ]
)
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Proof. By construction, we can write

γ̂CF − γ0 =

∑
j 6=i [ωij,0(vi1 − vj2 − γ0) + ωij,1(vi2 − vj1 − γ0)]∑

j 6=i (ωij,0 + ωij,1)
. (A.2)

The proof of the asymptotic distribution of γ̂CF requires us to derive a linear representation for

the right-hand side of (A.2).

First, we look for the probability limit of 1
n(n−1)

∑
j 6=i ωij,0. Under Assumption A.2, we apply

a Taylor expansion of ωij,0 around the actual conditional expectation in the data-generating

process pi0 ≡ p0(vi) ≡ E [yi2(1− yi1)|vi, yi0 = 0] and qj0 ≡ q0(vj) ≡ E [yj1(1− yj2)|vj , yj0 = 0].

This allows us to write

1
n(n−1)

∑
j 6=i

ωij,0 = 1
n(n−1)

∑
j 6=i

ω̄ij,0 + op(n
−1/4), (A.3)

where

ω̄ij,0 ≡ Kh(pi0 − qj0, vj1 − vi2)(1− yi0)(1− yj0). (A.4)

That the remainder term in (A.3) is op(n
−1/4) follows from Assumptions A.2, A.3, A.5, A.6, A.7

and an argument used in Lemma D.3 in Chen, Khan, and Tang (2016). Under Assumption A.2,

A.3 and A.6, E[|ω̄ij,0|2] = o(n). By an application of the Law of Large Numbers for U-statistics

(e.g., Lemma 3.1 in Powell, Stock and Stocker (1989)), 1
n(n−1)

∑
j 6=i ω̄ij,0 converges in probability

to the limit of the expectation of ω̄ij,0 as n → ∞. To evaluate this limit, first note that the

conditional expectation of ω̄ij,0 given yi0, yj0 is

(1− yi0)(1− yj0)
∫
K1h(p− q)K2h(vj1 − vi2)f0(p, vi2|yi0)g0(vj1, q|yj0)dvj1dpdqdvi2,

where K1h ≡ 1
h1
K1(

.
h1

), K2h ≡ 1
h2
K2(

.
h2

), f0(., .|yi0) denotes the density of (pi0, vi2) given yi0,

and g0(., .|yj0) denotes the density of (vj1, qj0) given yj0. By changing variables between vj1 and

u ≡ (vj1 − vi2)/h2 while fixing (p, q, vi2), we write this expression as:

(1− yi0)(1− yj0)
∫
K1h(p− q)f0(p, vi2|yi0)

(∫
K2(u)g0(vi2 + uh2, q|yj0)du

)
dpdqdvi2.

Next, change variables between p and ũ = (p− q)/h1 while fixing (u, q, vi2), we can write this as

(1− yi0)(1− yj0)
∫
K1(ũ)K2(u)f0(q + ũh1, vi2|yi0)g0(vi2 + uh2, q|yj0)dudũdqdvi2.

By the Dominated Convergence Theorem, this converges to the following expression as h1, h2 → 0:

H0(yi0, yj0) ≡ (1− yi0)(1− yj0)
∫
f0(q, vi2|yi0)g0(vi2, q|yj0)dqdvi2. (A.5)

where we have used the fact
∫
K1(ũ)dũ =

∫
K2(u)du = 1. Thus the probability limit of

1
n(n−1)

∑
j 6=i ω̄ij,0 is E[H0(yi0, yj0)]. It then follows from (A.3) that 1

n(n−1)
∑

j 6=i ωij,0 converges in
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probability to E[H0(yi0, yj0)]. Using an analogous argument, we conclude that 1
n(n−1)

∑
j 6=i ωij,1

converges in probability to E[H1(yi0, yj0)] where

H1(yi0, yj0) ≡ yi0yj0
∫
f1(vi1, q|yi0)g1(q, vi1|yj0)dqdvi1,

and f1(., .|yi0) is the density of (vi1, pi1) given yi0, and g1(., .|yj0) the density of (qj1, vj2) given

yj0, with p1(vi) ≡ E [yi2(1− yi1)|vi, yi0 = 1] ≡ pi1 and q1(vj) ≡ E [yj1(1− yj2)|vj , yj0 = 1] ≡ qj1.

Combining these results, we have shown that

1
n(n−1)

∑
j 6=i

(ωij,0 + ωij,1)
p→ Σ

where

Σ ≡ E[H0(yi0, yj0) +H1(yi0, yj0)]. (A.6)

and is strictly positive and finite under Assumption A.1.

We now turn to the linear representation of the numerator in the right-hand side of (A.2). The

first term in the numerator is:

1
n(n−1)

∑
i 6=j

ωij,0(vi1 − vj2 − γ0). (A.7)

By a second-order Taylor expansion around pi0 and qj0, we can write this expression as

1
n(n−1)

∑
i 6=j

[
ω̄ij,0(vi1 − vj2 − γ0) + ω̄

(1)
ij,0(vi1 − vj2 − γ0)(p̂i0 − q̂j0 − pi0 + qj0)

]
+Rn (A.8)

where ω̄ij,0 is defined in (A.4) and

ω̄
(1)
ij,0 ≡

1

h21
K ′1

(
pi0 − qj0

h1

)
1

h2
K2

(
vj1 − vi2

h2

)
(1− yi0)(1− yj0),

and Rn is the second-order term in the Taylor expansion. Under Assumptions A.2, A.3, A.5,

A.6 and A.7, Rn is op(n
−1/2) by an argument that follows Lemma D.3 in Chen, Khan, and Tang

(2016). The lead term 1
n(n−1)

∑
i 6=j [ω̄ij,0(vi1 − vj2 − γ0)] is op(n

−1/2) by our identification result

and under the maintained assumptions. It remains to derive a linear representation of the first-

order term (i.e., the second term) in the approximation in (A.8). Consider the first additive

component in that term:

1
n(n−1)

∑
i 6=j

ω̄
(1)
ij,0(vi1 − vj2 − γ0)(p̂i0 − pi0). (A.9)

Let m̂i0, f̂i0 denote the numerator and denominator in the definition of p̂i0; let mi0 ≡ E[yi2(1 −
yi1)(1− yi0)|vi]f(vi) and fi0 ≡ E(1− yi0|vi)f(vi) so that pi0 = mi0/fi0 by construction. Applying

a first-order Taylor expansion of (A.9) around (mi0, fi0), we get

1
n(n−1)

∑
i 6=j

ω̄
(1)
ij,0(vi1 − vj2 − γ0)

fi0

[
m̂i0 −mi0 − (f̂i0 − fi0)pi0

]
+ R̃n (A.10)
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where R̃n is op(n
−1/2) under Assumption A.2, A.3, A.5, A.6 and A.7. Thus we can write the right-

hand side of (A.10) as the sum of a third-order U-statistic and some asymptotically negligible

term:

1
n(n−1)(n−2)

∑
i 6=j 6=s

ϕn(ξi, ξj , ξs) + op(n
−1/2) (A.11)

where

ϕn(ξi, ξj , ξs) ≡
ω̄
(1)
ij,0(vi1 − vj2 − γ0)

fi0
Lσ (vs − vi) (1− ys0) [ys2(1− ys1)− pi0]

where ξi ≡ (yi, vi, pi) with yi ≡ (yi0, yi1, yi2), vi ≡ (vi1, vi2) and pi ≡ (pi0, pi1). By Lemma 3.1 in

Powell, Stock and Stocker (1989), we can write (A.11) as

θn +
1

n

∑n

i=1

∑3

l=1
[r(l)n (ξi)− θn] + op(n

−1/2)

where r
(l)
n (ξ) ≡ E[ϕn(ξ1, ξ2, ξ3)|ξl = ξ] and θn ≡ E[ϕn(ξi, ξj , ξl)]. Using change of variables and

Taylor expansion, as well as the smooth conditions on the kernel L(.), we can show that θn =

E[r
(1)
n (ξi)] = o(n−1/2). Furthermore by the Dominated Convergence Theorem, the unconditional

variance of r
(1)
n (ξi) is o(1) under maintained assumptions. It then follows from the Chebyshev’s

Inequality that

1

n

∑n

i=1

[
r(l)n (ξi)− θn

]
= op(n

−1/2) for l = 1, 2.

By an argument similar to Chen, Khan, and Tang (2016), under Assumptions A2-A8, the third-

order U -statistic in (A.11) has the following representation:

1

n

n∑
i=1

Γ0 {yi2(1− yi1))− E[yi2(1− yi1)|vi]}+ op(n
−1/2) (A.12)

where Γ0 is the limit of the following expectation as n→∞ and h1, h2 → 0:

E

[
1

h21
K ′1

(
pi0 − qj0

h1

)
1

h2
K2h

(
vj1 − vi2

h2

)
(1− yi0)(1− yj0)(vi1 − vj2 − γ0)

]
.

That is, Γ0 = E[(1− yi0)(1− yj0)H(yi0, yj0)] with

H(yi0, yj0) ≡
∫
G0(q, q, vi2, vi2, yi0)g0(vi2, q|yj0)dqdvi2,

where

G0(p, q, vi2, vj1) ≡ −
∂{f0(p, vi2|yi0) [p̃0(p, vi2)− q̃0(q, vj1)− γ0]}

∂p
;

with p̃0(t, vi2) ≡ inf{vi1 : p0(vi1, vi2) ≤ t}; q̃0(t, vj1) ≡ inf{vj2 : q0(vj1, vj2) ≤ t}; and f0 and g0

denote the joint density of (pi0, vi2) and (vj1, qj0) conditional on yi0 and yj0 respectively.
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By an analogous argument, the linear representation of

1

n(n− 1)

∑
i 6=j

ω̄
(1)
ij,0(vi1 − vj2 − γ0)(q̂j0 − qi0).

is similar to (A.12), only with yi2(1 − yi1) replaced by yi1(1 − yi2). Combining these results, we

get the following linear representation of (A.7) as

1

n

∑n

i=1
Γ0 [yi2 − yi1 − E (yi2 − yi1|vi)] + op(n

−1/2).

We can use identical arguments to the second part of the numerator:

1

n(n− 1)

∑
i 6=j

ωij,1(vi2 − vj1 − γ0)

and derive the following asymptotic linear representation:

1

n

∑n

i=1
Γ1 [yi2 − yi1 − E (yi2 − yi1|vi)] + op(n

−1/2)

where Γ1 = E[yi0yj0H̃(yi0, yj0)] with

H̃(yi0, yj0) ≡
∫
G1(q, q, vi1, vi1, yi0)g1(q, vi1|yj0)dqdvi1

and

G1(p, q, vi1, vj2) ≡ −
∂ {f1(vi1, p|yi0) [p̃1(vi1, p)− q̃1(vj2, q)− γ0]}

∂p

and p̃1(vi1, t) ≡ inf{vi2 : p1(vi1, vi2) ≥ t} and q̃1(vj2, t) ≡ inf{vj1 : q1(vj1, vj2) ≥ t}; and f1(., .|yi0)
and g1(., .|yj0) denote the density of (vi1, pi1) and (qj1, vj2) conditional on yi0 and yj0 respectively.

Gathering these results (i.e., the probability limit of the denominator and the linear representa-

tion of the numerator), we get the following asymptotic linear representation of our closed-form

estimator:

γ̂CF − γ0 = Σ−1
(

1
n

∑n

i=1
χi
)

+ op(n
−1/2)

where

χi ≡ (Γ0 + Γ1) [∆yi − E (∆yi|vi)] , (A.13)

with ∆yi ≡ yi2 − yi1.
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A.2 Weighted Maximum Rank Correlation Estimator

Recall the weighted maximum rank correlation estimator is

γ̂MR ≡ arg max
γ

1

n(n− 1)

∑
j 6=i

[ω̃ij,0Gij,0(γ) + ω̃ij,1Gij,1(γ)] , (A.14)

where

Gn,0(γ) ≡ 1{di,01 > dj,10}1{vj2 + γ > vi1}+ 1{di,01 < dj,10}1{vj2 + γ < vi1}

Gn,1(γ) ≡ 1{di,01 > dj,10}1{vi2 > vj1 + γ}+ 1{di,01 < dj,10}1{vi2 < vj1 + γ}

with

di,01 ≡ (1− yi1)yi2 , dj,10 ≡ yj1(1− yj2), (A.15)

ω̃ij,0 ≡ K̃h(vj1 − vi2)(1− yi0)(1− yj0) , ω̃ij,1 ≡ K̃h(vj2 − vi1)yi0yj0

and K̃h(.) ≡ 1
hK̃( .h) being shorthand for kernel smoothing.

Before stating the regularity conditions, we define the following functions:

Gr(vi, vj , yi0, yj0) = E[di,01 ≥ dj,10]|vi, vj , y0i, y0j ]

Υ̂n(γ) =
1

n(n− 1)

∑
j 6=i

[ω̃ij,0Gij,0(γ) + ω̃ij,1Gij,1(γ)]

Υn(γ, y0i, y0j , vi, vj) = E[Υ̂n(γ)|y0i, vi, y0j , vj ]

Ῡ1n(γ, y0i, vi) = E[Υn(γ, y0i, vi, y0j , vj)|y0i, vi]

Ῡ2n(γ, y0j , vj) = E[Υn(γ, y0i, vi, y0j , vj)|y0j , vj ]

Υn(γ) = E[Υn(γ, y0i, vi, y0j , vj)]

Υ0(γ) = lim
n→∞

Υn(γ)

Throughout this part of the appendix, we maintain that the true parameter γ0 lies in the interior

of Ξ0, a compact parameter space (interval) on the real line. Our arguments for the limiting

distribution theory for the rank estimator are based on the following conditions:

Assumption MR.1 The constant Σ0, (defined formally in (A.19)) is positive and finite.

Assumption MR.2 (Kernel for matching) (i) Let K(·) where K has compact support, is sym-

metric around 0, integrate to 1, is twice continuously differentiable and of order M . (ii)

supt∈R h
−1|K (t/h) |, is O(1) as h→ 0.

Assumption MR.3 (Bandwidth for matching) nhMn → 0 and nhn →∞.
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Assumption MR.4 (Smoothness) The functions Gr and the joint density of vi are all M times

continuously differentiable with bounded derivatives.

Assumption MR.5 (Smoothness) The function Υn(γ) is twice continuously differentiable in γ

for all γ in a neighborhood of γ0 and all n.

Assumption MR.6 (Finite moments) The random variable χ1i, defined in (A.26) has finite

second moment.

Proposition 2 Under Assumptions EM1-EM4 and MR.0-MR.6,

√
n (γ̂MR − γ0)

d→ N
(
0,Σ−20 E[χ2

1i]
)

where χ1i is a mean 0 random variable formally defined in (A.26).

Proof: We note that the objective function in (A.14) is not smooth in the parameter γ which

complicates analysis in the sense that the usual linearization method based on mean value expan-

sions of the sample objective function is not feasible. Nonetheless we can show that the “limiting”

objective function, Υ(γ) is smooth and work with its quadratic expansion in a neighborhood of

γ = γ0. This approach would be similar to that taken in Sherman (1993), but the presence of the

kernel function and bandwidth in our objective function here further complicates things so we

make the necessary adjustments used in, e.g. Sherman (1994), Abrevaya, Hausman, and Khan

(2010).

We begin by deriving the form of the limiting objective function Υ0(γ). To do so we evaluate the

expectation of the term in the double sum in the definition of Υ̂n(γ). Like in the previous proof

we will focus on the first “half” as identical arguments can be used for the second half. Taking

the expectation we first condition on yi0, yj0, vi, vj as before. This gives us the term:

(1− yi0)(1− yj0)Kh(vj1 − vi2)I[vj2 + γ > vi1]Gra(vi, vj , yi0, yj0) (A.16)

where

Gra(vi, vj , yi0, yj0) ≡ E[di,01 > dj,10]|vi, vj , y0i, y0j ] (A.17)

we now take the expectation of (A.16) with respect to vi, vj , conditional on y0i, y0j . Like before

we will change variables u = (vj1 − vi2)/h yielding an integral of the form for the first half of

Gij,0(γ):

(1−y0i)(1−y0j)
∫
K(u)I[vj2+γ > vi1]Gr(vi, uh+vi2, vj2, yi0, yj0)f1(vi|y0i)f2(vi2+uh, vj2|y0j)dvidvj2
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where above f1(·|·) denotes the conditional density function of vi conditional on y0i and f2(·|·)
the conditional density function for vj given y0j . Taking limits as h → 0 results in a function of

y0i, y0j , γ, which we denote here by S1a(yi0, yj0, γ). Crucially, given our smoothness assumptions

on K(·) and the density of vi, vj , S1a(yi0, yj0, γ) is a smooth function in γ even though γ is inside

an indicator function inside the integral. We can apply identical arguments to the second half of

Gij,0 now working with the function

Grb(vi, vj , yi0, yj0) ≡ E[di,01 < dj,10]|vi, vj , y0i, y0j ] (A.18)

Now when we take limits as h → 0, the resulting function of y0i, y0j , γ will be denoted by

S1b(y0i, y0j , γ). So we can define

S1(y0i, y0j , γ) ≡ S1a(y0i, y0j , γ) + S1b(y0i, y0j , γ)

Also, note we can use identical arguments to express the second ”half” of the summand in the

objective function, involving Gij,1(γ), as y0iy0j times S2(yi0, yj0, γ). So by a LLN for U-processes

(see, e.g. Sherman (1994)) we can express:

Υ0(γ) = E[(1− y0i)(1− y0j)S1(y0i, y0j , γ) + y0iy0jS2(y0i, y0j , γ)]

Note that Υ0(γ) is smooth in γ. This permits the following second order expansion of Υ(γ) around

Υ(γ0):

Υ(γ) = Υ(γ0) + Υ′(γ0)(γ − γ0) +
1

2
Υ′′(γ0)(γ − γ0)2 + o(γ − γ0)2

We note that Υ′(γ0) = 0 by our point identification result. The second derivative of Υ(·) evaluated

at γ = γ0 relates directly to the Hessian term in our limiting distribution theory:

Σ0 = Υ′′(γ0) (A.19)

To complete our linear representation, we return to (A.14) and work with its Hoeffding decom-

position. (see, e.g. Sherman (1994).)

The next term in the decomposition is of the form

1

n

n∑
i=1

(Ῡ1n(γ, y0i, vi)−Υn(γ)) (A.20)

We can handle Ῡ1n(γ, y0i, vi) exactly as we handled Υ(γ): changing variables inside the integral

with respect to the regressor density. As before this will result in a smooth function of γ which

we can again expand around γ0. Denote the resulting smooth function as F1(γ, y0i, vi), where

F1(γ, y0i, vi) = (1− y0i)ξ(vi, y0i) (A.21)
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where

ξ(vi, y0i) = f1(vi|y0i)E
[
(1− y0j)

∫
I[vj2 + γ > vi1]Gra(vi, vi2, vj2, yi0, yj0)f2(vi2, vj2|y0j)dvj2

]
+ f1(vi|y0i)E

[
(1− y0j)

∫
I[vj2 + γ < vi1]Grb(vi, vi2, vj2, yi0, yj0)f2(vi2, vj2|y0j)dvj2

]
so after the expansion the above average in (A.20) can be expressed as:

1

n

n∑
i=1

F ′1(γ0, y0i, vi)(γ − γ0) + rn (A.22)

where the remainder term rn can shown to be negligible (op(n
−1), uniformly in γ in shrinking

neighborhoods of γ0 ) using the arguments in Abrevaya, Hausman, and Khan (2010). We can

conduct the same exercise for the next term in the decomposition:

1

n

n∑
j=1

Ῡ2n(γ, y0j , vj)−Υn(γ) (A.23)

Using the same arguments we will express this as:

1

n

n∑
i=1

F ′2(γ0, y0i, vi)(γ − γ0) + rn (A.24)

where

F2(γ, y0j , vj) = (1− y0j)ξ2(vj , y0j) (A.25)

where

ξ2(vj , y0j) = f2(vj |y0j)E
[
(1− y0i)

∫
I[vj2 + γ > vi1]Gra(vi, vi2, vj2, yi0, yj0)f1(vi2, vj2|y0j)dvi2

]
+ f2(vj |y0j)E

[
(1− y0i)

∫
I[vj2 + γ < vi1]Grb(vi, vi2, vj2, yi0, yj0)f2(vi2, vj2|y0j)dvi2

]

Note that F ′1(γ0, y0i, vi), F
′
2(γ0, y0i, vi) are each mean zero random variables. They came from the

linear term in the first ”half” of the objective , that involved Gij,0(γ). One could use similar

arguments for the second “half” of the objective function that involved Gij,1(γ). We denote these

mean 0 random variables as F ′3(γ0, y0i, vi), F
′
4(γ0, y0i, vi)

Collectively they relate to the influence function in our linear representation in the following way:

χ1i = F ′1(γ0, y0i, vi) + F ′2(γ0, y0i, vi) + F ′3(γ0, y0i, vi) + F ′4(γ0, y0i, vi) (A.26)

Under the finiteness of the second moment in Assumption MR.6, this implies γ̂MR is root-n CAN

as stated in Proposition 2.
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B Exclusion Restriction in Static Binary Choice Panel

Data Models

We can also apply a pairwise approach under the exclusion restriction to estimate static binary

choice panel data models which do not include any lagged dependent variable. Consider the

following model:

yit = 1[witβ0 + vit + αi + εit ≥ 0] for t = 1, 2.

where vit ∈ R and wit ∈ RL does not include any lagged dependent variable yit−1. Let yi ≡
(yi1, yi2), wi ≡ (wi1, wi2) and vi ≡ (vi1, vi2). Assume the data contains i.i.d. observations of

(yi, wi, vi) for i = 1, 2, ..., N .

Assumption B.1 (εi1, εi2, αi) are independent of vi conditional on wi.

Assumption B.2 The marginal distribution of εit conditional on (αi, wi) is continuous with

positive density over R, and is the same for t = 1, 2.

For t = 1, 2, let

πt(wi, vi, αi) ≡ E(yit|wi, vi, αi) = Pr(−εit ≤ witβ0 + vit + αi|wi, αi)

where the equality holds because of Assumption B.1. Furthermore, define

pt(wi, vi) ≡ E(yit|wi, vi) =

∫
E(yit|wi, vi, αi)dF (αi|wi, vi) =

∫
πt(wi, vi, αi)dF (αi|wi)

where the last equality is again due to Assumption B.1. Note that πt(wi, vi, αi) is not identified

from the data because the fixed effect αi is not reported in the data. However, pt(wi, vi) is

identified from the data by definition.

Now consider a pair of observations i, j = 1, 2, ..., N such that wi = wj . Then it can be shown

that under Assumptions B.1 and B.2,

p1(wi, vi) = p2(wj , vj) if and only if wi1β0 + vi1 = wj2β0 + vj2. (B.1)

To see why (B.1) is true, suppose wi = wj and wi1β0 +vi1 = wj2β0 +vj2. Then under Assumption

B.1,

π1(wi, vi, α) ≡ Pr(−εi1 ≤ wi1β0 + vi1 + αi|wi, αi = α)

= Pr(−εj2 ≤ wj2β0 + vj2 + αi|wj , αj = α) ≡ π2(wj , vj , α)
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for all α on the support of αi given wi (or, equivalently, given wj , because wi = wj). The equality

above holds because of the fact that observations i and j are independent draws from the same

data-generating process, Assumption B.2 as well as that wi = wj and wi1β0 + vi1 = wj2β0 + vj2.

Thus

p1(wi, vi) =

∫
π1(wi, vi, α)dF (α|wi) =

∫
π2(wj , vj , α)dF (α|wj) = p2(wj , vj)

because wi = wj . Next, suppose wi = wj and wi1β0 + vi1 > wj2β0 + vj2. Then π1(wi, vi, α) >

π2(wj , vj , α) for all α, and p1(wi, vi) > p2(wj , vj) using a similar argument. Given this result, the

coefficient β0 is point identified under the following rank condition.

Assumption B.3 The support of wi2 − wi1 does not lie in any proper linear subspace of RL.

An implication of Assumption B.3 is that the support of wj2 − wi1 conditional on wi = wj is

not contained in any proper linear subspace of RL. This implies we can recover β0 by regressing

vj2 − vi1 on wi1 − wj2 conditional on wi = wj .

Based on this identification argument, we propose a closed-form estimator for β0 as follows.

Let Kh(·) ≡ 1
hK

( ·
h

)
, where K is a multivariate (product) kernel function and h ∈ RL+2

++ is a

sequence of bandwidth vectors. Define a data-dependent, pairwise weight function:

ωij = Kh(p̂j2 − p̂i1, wj − wi),

where

p̂it =

∑
l 6=i yltKσ(vl − vi, wl − wi)∑
l 6=iKσ(vl − vi, wl − wi)

is a kernel regression of yit condition on (wi, vi), with K being a multivariate (product) kernel

function and σ ∈ RL+1 a sequence of bandwidth vectors. The closed-form estimator of β0 is

β̂CF =
(∑N

i=1

∑
j 6=i

ωij(wj2 − wi1)(wj2 − wi1)′
)−1 (∑N

i=1

∑
j 6=i

ωij(wj2 − wi1)(vi1 − vj2)
)
.

Under suitable kernel regularity conditions, which are standard in the literature and similar to

those in Appendix A, this estimator converges at the parametric rate with a limiting normal

distribution.

Alternatively, we can define a weighted maximum rank correlation estimator for β0. To

understand how it works, note that conditional on wi = wj , the ranking between p1(wi, vi) and

p2(wj , vj) is identical to the ranking between wi1β0 + vi1 and wj2β0 + vj2 once conditioning on

wi = wj . Thus a maximum rank correlation estimator can be constructed as follows:

β̂MR ≡ max
β

1

n(n− 1)

∑
i

∑
j 6=i

K̃σ̃(wi − wj)Gij(β), (B.2)
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where

Gij(β) ≡ 1{yi1 > yj2}1{wi1β + vi1 > wj2β + vj2}+ 1{yi1 < yj2}1{wi1β + vi1 < wj2β + vj2}.

and K̃σ̃(.) ≡ 1
σ̃ K̃( .σ̃ ), with K̃ being a product kernel and σ̃ ∈ RL a sequence of bandwidth vectors.

Note the double sum in (B.2) is over ordered pairs of i and j. This is because Gij(β) 6= Gji(β)

in general. A tradeoff between computational complexity and tuning parameters (similar to the

one discussed in the text) exists between β̂CF and β̂MR proposed above.
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