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Abstract

In this paper, we propose a model for futures returns that has the potential to
provide both individual investors and firms who have positions in financial and energy
commodity futures a valid tail risk management tool. In doing so, we also aim to
explore the commonalities between these markets and the degree of financialization of
energy commodities. While empirical studies in energy markets embed either leverage
or jumps in the futures return dynamics, we show that the introduction of both features
improves the ability to forecast volatility as an indicator for risk for both the S&P500
and natural gas futures markets. Unlike most of the existing studies in energy derivative
markets based on daily data, our empirical analysis makes use of high-frequency (tick-
by-tick) data from the futures markets, aggregated to 10-minute intervals during the
trading day. The intraday variation is then utilized to generate daily time series of
prices, returns and realized variance. Our analysis shows that overall, the introduction
of both leverage and jumps in the SVJL model provides the best forecast for risk in both
a VaR and a CVaR sense for investors who have any position in natural gas futures
regardless of their degree of risk aversion. In the S&P500 market, the SVJL model
provides the most precise forecast of risk in a CVaR sense for risk-averse investors with
any position in futures, regardless of their degree of risk aversion.

Focusing on a firm’s internal risk management, the introduction of both jumps and
leverage in the SVJL model would benefit speculative firms who are short natural gas
futures aiming at minimizing tail risk in a VaR sense, as well as speculative firms who
are long S&P500 futures and use either VaR or CVaR as financial risk management
criteria while wanting to minimize the opportunity cost of capital.
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1 Introduction

In this paper, we propose a model for futures returns that has the potential to provide
both individual investors and firms who have positions in financial and energy commodity
futures a valid tail risk management tool. In doing so, we also aim to explore the com-
monalities between these markets and the degree of financialization of energy commodities.
Unlike most of the existing studies in energy derivative markets based on daily data, our
empirical analysis makes use of high-frequency (tick-by-tick) data from the futures markets,
aggregated to 10-minute intervals during the trading day. The intraday variation is then
utilized to generate daily time series of prices, returns and realized variance. We estimate
stochastic volatility models using a GMM approach based on the moment conditions of the
Integrated Volatility derived from high frequency data. While existing empirical studies in
energy markets embed either leverage or jumps in the futures return dynamics, we show
that the introduction of both features improves the ability to forecast volatility as an indi-
cator for risk for both the S&P500 and natural gas futures markets using both the RMSE
and MAE criteria. Our analysis also shows that overall, the introduction of both leverage
and jumps in the SVJL model provides the best forecast for risk in both a VaR and a CVaR
sense for investors who have any position in natural gas futures regardless of their degree
of risk aversion. In the S&P500 market, the SVJL model provides the most precise forecast
of risk in a CVaR sense for risk-averse investors with any position in futures, regardless of
their degree of risk aversion.

Focusing on a firm’s internal risk management, the introduction of both jumps and
leverage in the SVJL model would benefit speculative firms who are short natural gas
futures aiming at minimizing tail risk in a VaR sense, as well as speculative firms who are
long S&P500 futures and use either VaR or CVaR as financial risk management criteria

while wanting to minimize the opportunity cost of capital.



2 Literature review

Traditionally, the term leverage effect indicates the negative correlation between asset re-
turns and changes in their volatility (see Ait-Sahalia et al.(2013) for an extensive literature
review). The interpretation of this effect is intuitive if events that have a negative impact
on financial markets would eventually cause an increase in their volatility.

As mentioned by Kristoufek (2014), the original interpretation of the leverage effect
was based on Black (1976) who related decreasing expected earnings of the company to a
decrease of the market value of the company which drives up the leverage ratio between
debt and equity. The negative relationship between returns and volatility was therefore
labelled the ‘leverage effect’. As market prices are driven by many more factors besides
simply expected returns, more recent literature has moved beyond this naive interpretation.
The leverage effect is simply seen as a negative relationship between returns and volatility.
Negative news usually increases volatility while driving prices down, resulting in negative
returns. This implies that negative shocks to the WTT and S&P500 futures markets are fol-
lowed by greater volatilities than upward movements of the same magnitude (see a related
study on Brent futures by Cheong (2009)). The leverage effect thus is a natural connection
of the two characteristics, returns and volatility, of the traded assets. In the recent liter-
ature, the negative correlation between returns and volatility is weak but persistent. The
causality goes from returns to volatility and not vice versa (Kristoufek 2014, Bollerslev et
al., 2006; Bouchaud and Potters, 2001; Bouchaud et al., 2001; Pagan, 1996). Bekaert and
Wu (2000) and Ait-Sahalia et al. (2013) study different possible interpretations. The latter
authors find that the leverage effect in high frequency data is not statistically significant
over short periods, but becomes negative and statistically significant over long periods.

In recent years, the commodity price literature has shown that there is evidence of
leverage effects in various energy markets. Chan and Grant (2016), considering lower
frequency (weekly) commodity returns conclude that stochastic volatility (SV) models

with a moving average component are able to replicate the main features of the data



more efficiently than GARCH models. At the same time, they find a significant negative
leverage effect in crude oil spot markets. Kristoufek (2014) focuses on the leverage effect
in commodity futures markets and provides an extensive literature review in this area.

As a measure of market risk, VaR has been widely developed since its introduction
in RiskMetrics by JP Morgan in 1994. It is defined as the maximum potential loss of an
underlying asset at a specific probability level over a certain horizon. Despite its popularity,
an obvious and distinctive limitation of the VaR approach is that it only specifies the
maximum one can lose at a given risk level, but provides no indication for how much more
than VaR one can lose if extreme tail events happen. A good alternative is conditional
Value-at-Risk (CVaR), which is a coherent risk measure and retains the benefits of VaR in
terms of the capability to define quantiles of the loss distribution.

Fan et al. (2008) estimate VaR for crude oil prices using a GED-GARCH approach
with daily WTT and Brent prices from 1987 to 2006. They find that this type of model
specification does as well as the standard normal distribution at a 95% confidence level.
They also test and find evidence for asymmetric leverage effects without modelling them
directly. Youssef et al. (2015) evaluate VaR and CVaR for crude oil and gasoline markets
using a long memory GARCH-EVT approach. Their findings and backtesting exercise show
that crude oil markets are characterized by asymmetry, fat tails and long memory. In the
commodity price literature, Kristoufek (2014) and Nomikos and Andriosopoulos (2012),
using daily data, find an inverse leverage effect, or positive correlation coefficient, in the
natural gas market. Larsson and Nossman (2011) find evidence for stochastic volatility and
jumps in both the returns and volatility of daily spot prices of WTI crude oil from 1989
to 2009. See Kristoufek (2014) for an extensive literature review on the leverage effect in
commodity markets.

The inverse leverage effect arises because positive shocks to natural gas prices have a
much more pronounced effect on futures dynamics than negative shocks. As pointed out
by Benth and Vos (2013), an inverse leverage effect occurs in energy markets when the

volatility tends to increase with the level of power prices because of the negative relationship



between inventories and prices: the smaller the inventories available for that specific natural
gas, the higher its price volatility (see also Deaton and Leroque, 1992).

Schwartz (1997), Schwartz and Smith (2000), and Casassus and Collin-Dufresne (2005)
propose multi-factor models for energy prices where returns are only affected by Gaussian
shocks, but they constrain volatility to be constant. Pindyck (2004) examines the volatility
of energy spot and futures prices, estimating the standard deviation of their first differences.

Mason and Wilmot (2014) investigate the potential presence of jumps in two key daily
natural gas prices: the spot price at the Henry Hub in the US, and the spot price for
natural gas at the National Balancing Point in the UK. They find compelling empirical
evidence for the importance of jumps in both markets, though jumps appear to be more
important in the UK. They fit the data using a GARCH(1,1) jump diffusion process where
volatility is time-varying and show that the best fit for natural gas futures is a model with
both stochastic volatility and leverage.

We contribute to the current debate by testing for the existence of the leverage effect
and the presence of jumps in the context of a near-continuous observation of the processes
with the ability to study their volatility in great detail by using high frequency futures
returns in the S&P500, natural gas and crude oil markets and by studying the impact of
the leverage effect on measures of risk such as VaR and CVaR.

In terms of tail risk management, in the crude oil spot market, it has been shown
(see Chen, Zerilli and Baum (2019)) that the introduction of the leverage effect in the
traditional stochastic volatility (SV) model with normally distributed errors is capable of
adequately estimating risk in a VaR and CVaR sense for conservative oil suppliers in both
the WTT and Brent spot markets, while it tends to overestimate risk for more speculative
oil suppliers.

While Baum and Zerilli (2016) found evidence for jumps in the crude oil futures market,
this paper represents a generalization and a step forward compared to those results as it
finds evidence for jumps and leverage in the S&P500 and natural gas futures markets. It

also examines the impact of leverage on risk (in a VaR/CVaR sense) in the three futures



markets considered. Compared to Chen, Zerilli and Baum (2018) which presented evidence
for leverage in the crude oil spot market using daily data by estimating the SV models using
MCMC techniques, this new paper analyses evidence for both jumps and leverage in the
SEP500 and natural gas futures markets and evidence for leverage in the WTI crude oil
futures market using a GMM approach based on the moment conditions of the Integrated
Volatility derived from high frequency data. Our paper also examines the impact of jumps
and leverage on tail risk management for both individual investors and firms who are

focused on managing risk in a VaR/CVaR sense while minimizing their cost of capital.

3 Data

The raw data used in this study are 10-minute aggregations!' of natural gas, crude oil
and S&P500 futures contract transactions-level data provided by TickData, Inc. Industry
analysts have noted that to avoid market disruptions, major participants in the futures
market roll over their positions from the near contract to the next-near contract over several
days before the near contract’s expiration date. A continuous price series over contracts,
which expire monthly, is created by hypothetically rolling over a position from the near
contract to the next-near contract three days prior to expiration of the near contract.

The time series of daily futures returns and the corresponding Realized Variance for
these markets are given in Figs. 1 to 6.

S&P500 futures are traded on the CME Group’s NYMEX exchange. According to the
exchange, S&P 500 futures and options offer a capital-efficient means to manage exposure
to the leading large-cap companies of the U.S. stock market. Based on the underlying
Standard & Poor’s 500 stock index, which is made up of 500 individual stocks representing
the market capitalizations of large companies, the S&P 500 Index is a leading indicator of

large-cap U.S. equities. S&P500 futures trade in units of $250 x S&P 500 Index.

! Jiang and Oomen (2007) apply the GMM method to estimate a SVJ model find similar results when
using 10-minute and 5-minute aggregated data. Other research performed with these tick-level data aggre-
gations for crude oil and natural gas have concluded that the choice of 10-minute, 15-minute and 20-minute
intervals has minor effects on their findings: e.g., Wolfe and Rosenman (2014).



Henry Hub Natural Gas (NG) futures, traded on the CME Group’s NYMEX exchange,
allow market participants significant hedging activity to manage risk in the highly volatile
natural gas price, which is driven by weather-related demand. According to the exchange,
the NG contract is the third-largest physical commodity futures contract in the world by
volume.

The futures price is widely used as a national benchmark price for natural gas, which
continues to grow as a global and U.S. energy source. Natural gas futures trade in units
of 10,000 million British thermal units (mmBtu), which is approximately 10,000,000 cubic
feet of gas. Futures prices are quoted in US dollars and cents, with a minimum price
increment of $0.001 per mmBtu. At present, 118 consecutive months’ contracts may be
traded.

Light, sweet crude oil (West Texas Intermediate) began futures trading on the New
York Mercantile Exchange (NYMEX) in 1983 and is the most heavily traded commodity
future. Crude oil futures trade in units of 1,000 U.S. barrels (42,000 gallons), with contracts
dated for 30 consecutive months plus long-dated futures initially listed 36, 48, 60, 72, and
84 months prior to delivery. Additionally, trading can be executed at an average differential
to the previous day’s settlement prices for periods of two to 30 consecutive months in a

single transaction. Crude Oil Futures (CL) are quoted in dollars and cents per barrel.

3.1 Descriptive statistics

In this section we provide a detailed empirical characterization of futures returns and their
variance. More specifically, we are interested in considering whether the data are normally
distributed, behave in a white noise fashion and have a unit root.

Table 1 provides descriptive statistics for the futures contract returns and their realized
variance. Both series exhibit excess kurtosis, while the realized variance series have large
skewness coefficients. The Kolmogorov—Smirnov test (Table 2) for normality rejects its null
for both series, while the Shapiro—Francia test for normality concurs with those judgements.

The Box—Pierce portmanteau (or @) test for white noise rejects its null for all the series



with exception of the natural gas futures returns. Using the Augmented Dickey—Fuller and
Phillips-Perron tests, the null hypothesis of a unit root is rejected for all the futures daily

returns and corresponding realized variances.
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4 Estimation method

Following Bollerslev and Zhou (2002), who use continuously observed futures prices, we
build a conditional moment estimator for stochastic volatility models based on matching the
sample moments of Realized Variance with population moments of the Integrated Variance
(see Appendix I for details). In this paper, realized variance is computed as the sum of
high-frequency (10-minute interval) intraday squared returns. The returns on futures at

time ¢ over the interval [t — k, t] can be decomposed as
r(t,k) =InF, —In Fy_ (1)

The Realized Variance from the sample is defined as:

RV(tkn):§r<t—k+j1>2 (2)
st n'n

In this section, we introduce the four models to be estimated and compared in terms
of ability to fit the data, risk measurement and out of sample performance: the Stochastic
Volatility model with both jumps and leverage (SV.JL), the Stochastic Volatility model
with jumps (SVJ), the Stochastic Volatility model with leverage (SVL) and the Stochastic

Volatility model (SV).

4.1 Stochastic Volatility model with jumps and leverage (SVJL)

In the most comprehensive model, we model futures returns so as to account for a sig-
nificant interaction with volatility (leverage effect) and for sudden and substantial shocks
(jumps). This model is an extension of the Heston (1993) stochastic volatility model with
the addition of jumps:?

2 As in Bollerslev and Zhou (2002), the drift of the log price has been set equal to zero because in the
series here considered (see details in the Descriptive Statistics tables) the drift is not statistically significant.
In a risk neutral setting, from a theoretical point of view, for futures returns the drift is  —r = 0. In order
to apply this estimation method to other series for which the drift is nontrivial, a drift coefficient could be
included in the model.



dpy = dIn(F)

= \/VidWy; + xdPoisson (\t) (3)

AV, = k(0 — Vi) dt + o/ VidWay (4)

E (dWltdWQt) = pdt (5)
x~N (O, 0326)

In the original Heston model, there are two Wiener processes, dWi; and dWa;, driving
the evolution of returns and volatility and three parameters k,0 and o. In this extended
model, the two Wiener processes are augmented by a Poisson process that captures jumps
in returns. This gives rise to two additional parameters, A\ and o, governing the effects of
the jump process.

A is the indicator of the frequency of the jumps: it tells us, on average, how many times
we have extreme events (jumps in this case for us are extreme events) within the sample.

It is the parameter of the Poisson counting process that takes values:

1 when an extreme event happens
0 otherwise

We also allow for leverage effect: p # 0 as a sixth parameter.
We estimate this model over the full sample, imposing the five moment conditions
implied by the model in the GMM procedure. The main moment conditions used in this

section are
€1J
€2J
€3J
€4J
€s5J

augmented using ten lagged counterparts (see Appendices I and III for details). As
there are 15 moment conditions and 6 estimated parameters, there are 9 overidentifying

restrictions that may be used to evaluate the model for each market. The Hansen’s J
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statistic indicates that the overidentifying restrictions are valid (for details see Appendix
IIT). As shown in Tables 3, 4 and 5, the estimated parameters of the model are very
precisely estimated and take on sensible values from an analytical perspective showing
evidence for both jumps and leverage effect for both the S&P500 and the natural gas
futures series. However the SVJL model is not a good fit for the WTI crude oil futures
market when considering the whole sample. We can therefore conclude that both natural
gas and S&P500 futures show evidence for unexpected and substantial changes in returns
and they move in the same direction (inverse leverage effect) as volatility in the case of
natural gas futures while they move in opposite directions (leverage effect) in the case
of S&P500 futures. Inverse leverage effect derives from the fact that positive shocks to
natural gas prices have a much more pronounces effect on futures dynamics than negative
ones. As pointed out by Benth and Vos (2013), inverse leverage effect occurs in energy
markets when the volatility tends to increase with the level of power prices because of the
negative relationship between inventories and prices: the smaller the inventories available
for natural gas, the higher its price volatility (see also Deaton and Leroque, 1992). Clearly
inventories are less of an issue for crude oil.

Jumps in the natural gas market could be seen as a consequence of market deregulation
(see Cooper, 1983) or as a result of the financialization of this market.

We now explore special cases of this general model in order to find a suitable fit for the

WTTI crude oil futures market.

4.2 Stochastic Volatility with Jumps model (SVJ)

This is a special case of the general model where there is no leverage (p = 0). In this case,
these are the four main moment conditions, augmented using eight lagged counterparts

(see Appendices I and III for details):

€1J
€2J
€3J
€4J
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As there are twelve moment conditions (for details see Appendix III) and five estimated
parameters, there are seven overidentifying restrictions that may be used to evaluate the
model for each market. The Hansen’s J statistic indicates that the overidentifying restric-
tions are valid. As shown in Tables 3, 4 and 5, the three estimated parameters of the model
are very precisely estimated (except A and o, for the S&P500 dataset) and take on sensible
values from an analytical perspective showing empirical evidence for jumps in the crude
oil and natural gas futures markets.

Jumps in the natural gas and crude oil market could be seen as a consequence of
market deregulation (see Cooper, 1983, Paul 1978 and Nelson 1983) or as a result of the

financialization of these markets.

4.3 Stochastic Volatility with Leverage model (SVL)

In this special case, the correlation coefficient p between the shocks that are affecting
futures returns and their volatility (leverage effect coefficient) is not restricted to be zero
but its value is estimated from the data. There are no jumps (A = 0 and o, = 0).

In this case, these are the three main moment conditions, augmented using six lagged

counterparts (see Appendices I and III for details):

€1
€2
€3

We estimate this model over the full sample, imposing the nine moment conditions
implied by the data in the GMM procedure.

Additional details about the moment conditions and more specifically about the equa-
tions for the leverage effect can be found in Garcia et al. (2011). As shown in Tables 21,
25, 29 all the moment conditions are in accordance with the data and the overall Hansen’s
J statistic indicates that the overidentifying restrictions are valid. As shown in Tables 3,
4, 5 all estimated parameters of the model are very precisely estimated (x is significant at

10% level for WTI) and take on sensible values from an analytical perspective.
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We find that stochastic volatility models with leverage are effective in fitting the volatil-
ity of futures returns for all the three markets. More specifically, we find significant evidence
of a leverage effect for S&P500 and crude oil markets: a negative shock to returns increases
volatility in these markets. In contrast, we find evidence of inverse leverage effect for the

natural gas market (in line with Kristoufek (2014)).

4.4 Stochastic Volatility model (SV)

This is a special case of the general model where there are no jumps and no leverage
(A=0,0, =0and p=0).
In this case, these are the two main moment conditions, augmented using four lagged

counterparts (see Appendices I and III for details):

o]
€2

As there are six moment conditions and three estimated parameters, there are three
overidentifying restrictions that may be used to evaluate the model for each market. The
Hansen’s J statistic indicates that the overidentifying restrictions are valid. As shown in
Tables 3 and 4 the three estimated parameters of the model are very precisely estimated

(except & for the WTT dataset) and take on sensible values from an analytical perspective.?

3In order to implement this estimation, we define the moment conditions and build specific t-tests on
the moment conditions.
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Table 3: GMM estimates for the SV, SVJ, SVL, SVJL models for the S&P500
futures: 09/2001-06/2016

SV SVJ SVL SVIL
p 1,507 0.0869" 0.0424% 0.227%
(5.87) (4.58) (2.92) (29.99)
. 0.00398*** 0.00994***  0.00649*** 0.00376***
(8.41) (12.56) (5.55) (15.69)
J 0.283** 0.338"** 0.249*** 0.12015172**
(6.55) (19.62) (17.96) (—54.75)
\ 0.979 0.156923006***
(0.38) (—10.09)
0 0.0159 0.038120618***
@ (0.77) (—30.60)
—0.379*** —0.490***
P (—11.29) (—29.11)
N 3708

t statistics in parentheses
*p < 0.10,"* p < 0.05,*** p < 0.01

Table 4: GMM estimates for the SV, SVJ, SVL, SVJL models for Natural Gas
futures: 09/2001-06,/2016

SV SVJ SVL SVIL
0.923% 0772 0.760"** 0.0556*
" (2.19) (4.11) (3.45) (1.75)
; 0.0483*** 0.0568***  0.0460"*  0.0545"
(4.36) (6.15) (5.60) (4.97)
1.139** 1.041% 0.925%**  (.24293*
7 (2.33) (6.23) (3.49) (—3.82)
\ 0.0101%** 0.04345***
(4.03) (—18.52)
0.932%* 0.97814
7w (32.63) (—0.53)
0.201%** 0.0495**
P (4.57) (2.14)
N 3708

t statistics in parentheses
*» < 0.10,"* p < 0.05,"** p < 0.01
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Table 5: GMM estimates for the SV, SVJ, SVL models for WTI futures:
09/2001-06/2016

SV SVJ SVL
P 0.117 0.0596* 0.0963"
(1.43) (1.77) (1.71)
; 0.0247%** 0.0224*  0.0242"*
(5.75) (3.45) (6.43)
0.176** 0.131%* 0.162**
7 (2.04) (2.60) (2.50)
\ 0.0190**
(2.44)
0.439***
e (39.24)
—0.276"
P (—3.64)
N 3708

t statistics in parentheses
*p < 0.10,"* p < 0.05,"** p < 0.01

5 Robustness check for subsamples

In this section, we perform a robustness check by splitting the entire sample in two subsam-
ples: before and after the Lehman Brothers bankruptcy in mid-September 2008. Within
each subsample, the choice of the most appropriate model differs for the energy futures se-
ries, perhaps reflecting evolutionary forces in energy markets such as the widespread use of
fracking and the resulting increases in natural gas supply. Given the underlying structural
changes in the US energy sector, it is not surprising that a model fit over the entire period
may not be the best choice over a restricted subsample.

As shown in Table 6, the SVJL model provides the best fit for the S&P500 futures
market on the overall sample and on the two subsamples. For the natural gas futures
market, the SVJL model provides the best fit for the overall sample and for the pre-crisis

subsample, while the SVL model is the most appropriate to fit the post-crisis subsample.
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For the WTT crude oil futures market, the SVL model provides the best fit for the
overall sample and for the pre-crisis subsample while the SVJL model performs best for

the post-crisis subsample.
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Table 6: GMM estimates for S&P500, Natural Gas and WTI futures before and

after September 15, 2008 (Lehman Brothers bankruptcy)

S&P500 NG WTI
Before September 15, 2008
N — 1600 SVJL SVJL SVL
p 0.137° 0.0871%* 0.276"*
(13.27) (5.55) (3.87)
; 0.00331***  (0.0836"** 0.0328***
(16.47) (11.69) (8.33)
. 0.0577** 0.5455*** 0.343%**
(—57.58) (—12.32) (6.36)
\ 0.1325%** 0.0966***
(—7.37) (—26.15)
, 0.0364*** 0.4921%*
@ (—24.70) (—48.64)
—0.440*** 0.0137** —0.262*
p (—18.40) (2.20) (—6.66)
After September 15, 2008
N - 1900 SVJL SVL SVJL
p 0.188* 0.0434 0.0137
(13.22) (1.41) (0.75)
) 0.00807***  0.0286"** 0.0181%*
(15.57) (13.70) (3.49)
. 0.2170*** 0.0914*** 0.0665**
(—44.44) (2.62) (4.51)
\ 0.4098** 0.0298***
(—1.96) (2.93)
. 0.0290*** 0.140%**
@ (—14.80) (8.05)
—0.351** 0.333%* —0.304**
P (—36.98) (2.96) (—2.48)

t statistics in parentheses

*p < 0.10,"* p < 0.05,"** p < 0.01
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6 Out-of-sample performance

In this section we compare all the models in terms of forecasting ability both from a
risk hedging point of view in a VaR and CVaR sense and also considering the statistical
properties of the out of sample simulations. The period we are aiming to forecast is July

to December 2016.

6.1 Forecasting ability

In this section we are interested in testing how closely the simulated series, both futures
returns and their volatility, resemble the actual data. We compute Root Mean Square
Error (RMSE) and Mean Absolute Error (MAE) criteria for the futures return series and
for their variance. As an additional measure, we also test the two models on the basis of
the predictive accuracy proposed by Diebold and Mariano (1995).

Tables 7 and 8 show the out-of-sample performance of the SV and SVL models for the
period July-December 2016 for the futures returns and stochastic variance respectively.
The SVL model performs better than the SV model for all the markets considering both
the RMSE and MAE criteria for both series. The SVJ model outperforms both the SV
and SVL only when forecasting the variance of the returns for the WTI market. For the
S&P500 and NG markets, the SVJL is the best choice. Table 9 presents the results of
Engle’s LM ARCH test on the forecast errors for the SV, the SVL and the SVJL models
for all the markets. Considering the series of forecast errors, there is evidence of ARCH
effects for the SV, SVJ, SVL and the SVJL models for all the series considered. These
results give an opportunity to increase efficiency by modeling ARCH but do not violate any
assumptions made when estimating the underlying model. From Table 10, we can see that
the Kolmogorov—Smirnov test for normality does not reject its null for the S&P500 market
considering all the models. The same conclusion applies for the NG market considering the
SVJL model and for the WTT crude oil market considering the SV and SVL models. The

Shapiro-Francia test (1972) for normality concurs with those judgments for the forecast
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errors coming from all the models. The Box—Pierce portmanteau (or Q) test for white
noise rejects its null for all the series of forecast errors with the exception of the residuals

for the S&P500 market.

Table 7: Out-of-sample performance of SV, SVL and SVJL models: July-December 2016
RMSE and MAE for the returns process.

SV SVJ SVL SVJL
RMSE
S&P500 0.08014 0.1927v8 |0.07757 0.1104
WTI 0.26398 0.28523 |0.26231
NG 0.34547  0.3652 |0.33651 0.378
MAE
S&P500 0.06134 0.12978 |0.05884| 0.07281
WTI 0.20573 0.22121 |0.20444
NG 0.26411 0.28076 |0.25676| 0.27043

Table 8: Out-of-sample performance of SV, SVL and SVJL models: July-December 2016
RMSE and MAE for the variance process.

SV SVJ SVL SVJL

RMSE

S&P500 0.00447  0.013848 0.004074 |0.003308
WTI 0.021026 |0.019163] 0.020501
NG 0.066412  0.072497 0.057729 0.03341

MAE

S&P500 0.003215  0.005822 0.002886 |0.002195
WTI 0.015708 |0.014377] 0.015325

NG 0.041425  0.046088 0.037161 |0.023585

6.2 Diebold—Mariano test

This test calculates a measure of predictive accuracy proposed by Diebold and Mariano

(1995). We ran the test for each of 350 simulations per model and present summary
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Table 9: S&P500, natural gas and WTT futures: Engle’s Lagrange multiplier test for autore-
gressive conditional heteroskedasticity for standardized residuals and squared standardized
residuals for SV, SVJ, SVL and SVJL models.

1lag p-val 5lags p-val 10 lags p-val 30 lags p-val

SV SP res 4.80 0.03 520 0.39 6.07 0.81 1764 0.96
SV SP res squ 0.66 0.42 0.97 0.97 1.31 1.00 12.81  1.00
SV SP J res 0.09 0.76 21.50 0.00 31.89 0.00 5.59 1.00
SV SP J res squ 0.0 0.83 2744 0.00 36.50 0.00 0.67 1.00
SV SP L res 0.38 0.54 6.07 0.30 7.38 0.69 24.71 0.74
SV SP L res squ 0.00 096 1.65 0.90 2.21 0.99 9.59 1.00
SV SP JL res 0.17 0.68 5.11 0.40 7.67 0.66 23.01 0.81
SV SP JLressqu 0.27 0.61 430 0.51 5.96 0.82 2244 0.84
SV NG res 0.01 093 0.04 1.00 0.10 1.00 20.19 0.91
SV NG res squ 0.01 0.93 0.04 1.00 0.10 1.00 18.55 0.95
SV NG J res 0.01 094 0.04 1.00 0.10 1.00 22.97 0.82
SV NG J res squ 0.01 093 0.04 1.00 0.10 1.00 19.40 0.93
SV NG L res 0.0 0.83 0.06 1.00 0.25 1.00 19.37 0.93
SVNG Lressqu 0.01 092 0.05 1.00 0.11 1.00 13.84 0.99
SV NG JL res 6.68 0.01 7.15 0.21 11.43 0.32 22.10 0.85
SV NG JL ressqu 4.05 0.04 4.37 0.50 4.29 0.93 4.76 1.00
SV CL res 0.00 1.00 1.91 0.86 4.71 091 1786 0.96
SV CL res squ 0.15 0.69 0.76 0.98 1.52 1.00 1542 0.99
SV CL J res 0.00 098 205 0.84 4.67 091 1712 0.97
SV CL J res squ 0.10 0.75 0.65 0.99 1.30 1.00 10.38  1.00
SV CL L res 0.00 1.00 2.06 0.84 4.75 0.91 1722 0.97

SV CL L res squ 0.11  0.74 0.75 0.98 1.60 1.00 10.23  1.00
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Table 10: S&P500, natural gas and WTI futures: Test statistics and p-values for standard-
ized residuals and squared standardized residuals for SV, SVJ, SVL and SVJL models

KSmirnov p-val SFrancia p-val Qtest p-val

SV SP res 0.094 0.231 3.253 0.001 65.850 0.006
SV SP res squ 0.303 0.000 7.853 0.000 37.832 0.568
SV SP J res 0.296 0.000 8.172 0.000 40.898 0.431
SV SP J res squ 0.452 0.000 9.018 0.000 34.394 0.720
SV SP L res 0.068 0.626 0.928 0.177 85.452 0.000
SV SP L res squ 0.259 0.000 7.420 0.000 43.723 0.316
SV SP JL res 0.072 0.554 0.799 0.212 87.346 0.000
SV SP JL res squ 0.249 0.000 7.090 0.000 39.267 0.503
SV NG res 0.311 0.000 8.799 0.000 6.095 1.000
SV NG res squ 0.483 0.000 9.252 0.000 0.421 1.000
SV NG J res 0.314 0.000 8.809 0.000 5.425 1.000
SV NG J res squ 0.494 0.000 9.254 0.000 0.397 1.000
SV NG L res 0.151 0.007 7.048 0.000 20.472 0.996
SV NG L res squ 0.431 0.000 9.126 0.000 1.917 1.000
SV NG JL res 0.052 0.888 2.377 0.009 34.724 0.706
SV NG JL res squ 0.303 0.000 8.145 0.000 21.069 0.994
SV CL res 0.046 0.958 1.521 0.064 42.030 0.383
SV CL res squ 0.276 0.000 7.644 0.000 34.788 0.704
SV CL J res 0.046 0.957 1.547 0.061 42.792 0.352
SV CL J res squ 0.271 0.000 7.588 0.000 33.762 0.746
SV CL L res 0.046 0.954 1.470 0.071 42.557 0.362
SV CL L res squ 0.263 0.000 7.438 0.000 33.441 0.759
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statistics from that set of test results. Given an actual series and two competing predictions,
one can apply a loss criterion (such as mean squared error or mean absolute error) and
then calculate a number of measures of predictive accuracy that allow the null hypothesis
of equal accuracy to be tested. Table 11 reports the results for the futures returns and
corresponding variance for all the markets. The test rejects the null that the two models are
equally capable in terms of their MSEs at the 95% level of confidence. For the simulations
in which the test rejects equal forecast accuracy, we can compare the mean MSE for the
two models.

While the results are not conclusive for the futures returns series (see Table 11), in the
case of the corresponding variance, we can observe an high number of rejections and for
the S&P500 and WTI realized variance of the futures returns the SVL model compared to
the SV model has the smaller MSE for all the markets. In summary, for the S&P500 and
WTI realized variance of the futures returns, the SVL model has the smaller mean MSE
for those simulations in which the Diebold-Mariano test rejects its null hypothesis of equal
forecast accuracy. According to Table 12, the SVL model, compared to the SVJ model,
shows an higher forecasting accuracy for the S&P500 futures returns and for the natural
gas futures variance. Considering Table 13, for the S&P500 and NG realized variance of
the futures returns, the SVJL model has the smaller mean MSE compared to the SVL
model for those simulations in which the Diebold-Mariano test rejects its null hypothesis

of equal forecast accuracy.
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Table 11: Diebold—Mariano test for futures returns and their variance SV vs SVL: com-
parison of forecast accuracy over 350 out-of-sample predictions

futures returns variance of futures returns
SP500 WTI NG SP500 WTI NG
SV beats SVL 0 0 0 0

0 0
SVL beats SV 39 31 70 166

Test inconclusive 311 319 280 154 127 184
Total 350 350 350 350 350 350

Table 12: Diebold—Mariano test for futures returns and their variance SVJ vs SVL: com-
parison of forecast accuracy over 350 out-of-sample predictions

futures returns variance of futures returns
SP500 WTI NG SP500 WTI NG

SVJ beats SVL 0 0 0 0 0 0

SVL beats SVJ 336 45 60 165 69 304

Test inconclusive 14 305 290 185 281 46

Total 350 350 350 350 350 350
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Table 13: Diebold—Mariano test for futures returns and their variance SVL vs SVJL:
comparison of forecast accuracy over 350 out-of-sample predictions

futures returns variance of futures returns
SP500 NG SP500 NG
SVL beats SVJL. 0 0 0 0
SVJL beats SVL 71 8
Test inconclusive 279 342 92 151
Total 350 350 350 350

7 Forecasting VaR and CVaR

In this section we want to explore whether the forecasts provided by the two models are
able to provide a financial investor with a valid tool for hedging risk. Therefore, we derive
VaR and CVaR using the simulated volatility series when fixing the parameter values at
the GMM estimates and we then backtest them against the actual market futures returns.
We perform this analysis for the SV, SVJ, SVL and SVJL models only are they are the
best contenders overall.

As a measure of market risk, VaR has been widely developed since its introduction
in RiskMetrics by JP Morgan (1994). It is defined as the maximum potential loss of an
underlying asset at a specific probability level over a certain horizon. Despite its popularity,
an obvious and distinctive limitation of the VaR approach is that it only specifies the
maximum one can lose at a given risk level, but provides no indication for how much more
than VaR one can lose if extreme tail events happen. This may lead to an equivalent VaR
estimate for two different positions, though they have completely different risk exposures.
Artzner et al. (1999) proposed the concept of coherent risk measure, which has become the
paradigm of risk measurement. A good alternative is conditional Value-at-Risk (CVaR),
which is a coherent risk measure and retains the benefits of VaR in terms of the capability
to define quantiles of the loss distribution.

Although the CVaR approach has been widely used for risk analysis, the implementa-

tion of backtesting for CVaR models is much harder than for VaR models. Nevertheless,
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formal backtesting methods can be found in literature, such as the most commonly used
approach zero-mean residual test by McNeil and Frey (2000) which relies on bootstrapping,
the censored Gaussian method by Berkowitz (2001) and the functional delta approach by
Kerkhol and Melenverg (2004).* However, applying these methods tend to be difficult and
overly complex. The application of these methods is based upon the realization of specific
conditions, hence it is possible to backtest CVaR only under specific circumstances. Kerk-
hol and Melenverg (2004) suggest a viable and simpler alternative to backtesting CVaR on
the basis of equal quantiles, after finding a nominal risk level @ for CVaR.

We now focus on the models for which we have the most evidence of a substantial impact
of the introduction of leverage and jumps on the prediction accuracy of the model. In order
to classify the competing models, we follow a two-stage model evaluation procedure where
in the first stage models are selected in terms of their statistical accuracy (the backtesting
stage), while in the second stage the surviving models are evaluated in terms of their
“efficiency” (the efficiency stage).’

Stage 1: Backtesting the VaR and CVaR models

In order to backtest the accuracy of the estimated VaRs, it is necessary to calculate the
empirical failure rates for the estimates. The Failure Rate (FR) or violation rate, computes
the ratio of the number of times returns exceed the estimated VaRs over the total number
of observations. The model is said to be correctly specified if the calculated ratio is equal
to the pre-specified VaR level (i.e. @ = 5% and a = 1%). If the Failure Rate is higher than
a , we can conclude that the model underestimates the risk, and vice versa.

The failure rate FFRV aR, for the downside risk of a long trading position, is calculated
as the percentage of negative returns that are smaller than the left quantile VaRs, while the

failure rate FFRV aRy for the upside risk of a short trading position is the ratio of positive

YA comprehensive discussion of various CVaR backtesting methodologies as well as their implementa-
tions at different circumstances is provided by Wimmerstedt (2015).
SFor details see Sarma et al. (2003).
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returns larger than the right quantile VaRs. We define FRVaRs and FFRVaR, as follows:

T
1
FRVaRy = ; I (yr < —VaRgy)

T
1
FRVaR, = ; I (y: > VaRy,)

where ValRg; and VaR,; are the estimated VaRs for downside and upside risk at time
t for a given confidence interval, T" is the number of observations and I;(-) is the indicator

function which is defined as:
1 if y<—VaRg,
0 ’Lf Yt Z VaRu,t

1 Zf Yt > VaRu,t
0 if ye<VaRg,;

Downside : I} = {

Upside : Iy = {

There are three formal tests based on the above criteria to backtest the VaR estimates.
The unconditional coverage test (LR,.), proposed by Kupiec (1995), examines whether the
null hypothesis Hy : FFR = « can be satisfied. A good performance of the VaR model should
be accompanied by accurate unconditional coverage, that is, the failure rate is statistically
expected to be equal to the prescribed VaR level a.

The method proposed by Kupiec (1995) is capable to test the overestimates or un-
derestimates of a VaR model. It does not, however, consider whether the exceptions are
scattered or if they appear in clusters.® In order to examine whether the VaR violations are
serially uncorrelated over time, Christoffersen (1998) proposes the independent likelihood
ratio test (LRjng)-

In addition, a more selective conditional coverage test (LR..) which jointly examines the
unconditional coverage and independence of violations has been developed by Christoffersen
(1998). This test investigates if the failure rate is equal to the expected prescribed risk

level and if the exceptions are independently distributed over time. The null hypothesis

SKupiec’s (1995) approach is an unconditional test. On the other hand, we need to conditionally examine
the VaR performance under the time-varying volatility framework. A good VaR model should be able
to reflect this dynamic behavior, which implies that losses exceeding VaR should be independent and
unpredictable.
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for this test is that the exceptions are independent and that the expected failure rate is
equal to the prescribed risk level.
Stage 2: Efficiency measures

Lopez (1998, 1999) was the first to propose the comparison between VaR models on
the basis of their ability to minimize some specific loss function which reflected a specific
objective of the risk manager. Adhering to the Basel Committee’s guidelines, supervisors
are not only concerned with the number of violations in a VaR model but also with the
magnitude of these violations (Basel Committee on Banking Supervision, 1996a,b). In
order to address this aspect, following Sarma et al. (2003), we compare the relevant models
in terms of the Regulatory Loss Function (RLF) which focuses on the magnitude of the
failure and in terms of the Firm’s Loss Function (FLF) which, while giving relevance to
the magnitude of failures, imposes an additional penalty related to the opportunity cost of
capital.” We use a non-parametric sign test to check the ability the relevant VaR models

to minimize these loss functions.®

7.1 Out-of-sample VaR and CVaR estimations

Stage 1: Backtesting the VaR and CVaR models

As in Fan et al. (2008) and Youssef at al. (2015), we test the forecasting ability of
the SV, SVL, SVJ and SVJL models by computing the out-of-sample VaR and CVaR
and comparing them with the actual returns. The out-of-sample VaR predictions are
generated from simulated volatilities based on the GMM parameter estimates. A criterion
for evaluating our results comes from the consideration that a conservative investor (see for
example, Zhao et al. (2015) and Hung et al. (2008)) would choose a greater confidence level
and estimate a relatively greater risk (corresponding to o = 1% in the VaR definition),
while a more speculative investor would estimate a smaller risk and face a relatively smaller

confidence level, corresponding to @ = 5% in the VaR definition. In order to backtest the

"This criterion penalizes large failures more than small failures (see Sarma et al., 2003).
8For the sign test see Lehmann (1974), Diebold and Mariano (1995), Hollander and Wolfe (1999) and
Sarma et al. (2003).
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accuracy of the estimated VaRs and CVaRs, the three formal tests described in the previous
section are applied to the model forecasts using empirical failure rate criteria.

Because the LR test is the most rigorous among the three tests considered, we will
focus on the outcomes of this test. When all the models pass the LR, test, they are also
compared on the basis of the Failure rate (FR): the model whose FR is the closest to « for
VaR or a for CVaR, is considered to be the most precise in forecasting risk. If the ratio
is greater than « for VaR or a for CVaR, we conclude that the model underestimates risk
and vice versa.

Table 14 reports the out-of-sample VaR backtesting results. For the S&P500 futures
market, the SV, SVL and SVJL models adequately forecast risk in a VaR sense for risk
averse and speculative investors who are long futures but the SV model shows the highest
precision. For the WTT futures market, the SV, the SVL and the SVJ models adequately
forecast risk in a VaR sense for risk-averse and speculative investors who are long futures.
For speculators, the SV and SVL models are more accurate than the SVJ model. These
models are also appropriate for risk-averse and speculative investors who are short futures.
For speculative investors, the SV model shows the highest precision. For the natural gas
futures market, the SVJL model is superior in forecasting risk in a VaR sense for investors
holding any position in futures regardless of their degree of risk aversion.

Table 15 reports the out-of-sample CVaR backtesting results.? For the S&P500 futures
market, both the SV and SVL models adequately forecast risk in a CVaR sense for risk-
averse investors with any position in futures, with the SVL model being the most precise.
The SV model is more precise for speculative investors who are long futures. None of the
four models is able to forecast risk in a CVaR sense for speculative investors who are short
futures. For the WTI futures market, both the SV and SVL models adequately forecast
risk in a CVaR sense with similar precision, implying that the impact of leverage on tail

risk management is not relevant. For the natural gas futures market, neither the SV model

9NA denotes uncomputable statistics for the corresponding LR test due to zero failure rate: it means
that the model considered provides very accurate CVaR forecasts.
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nor the SVL model adequately forecast risk in a CVaR sense.

Table 16 presents a summary of the main conclusions that we can draw from the out-
of-sample VaR/CVaR backtesting results.

We classify the results of a test inconclusive when multiple models show the same results
in terms of the statistical significance and the failure rate. We declare that none of the
models is adequate in the cases where none of the models passes the LR.. test. Overall,
the introduction of both leverage and jumps (SVJL model) provides the best forecast for
risk in both a VaR and a CVaR sense for investors who have any position in natural gas
futures regardless of their degree of risk aversion. In the S&P500 market, the SVJL model
provides the most precise forecast of risk in a CVaR sense for risk-averse investors with

any position in futures, regardless of their degree of risk aversion.
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Stage 2: Efficiency measures.

Table 17 compares the best performing models within the VaR backtesting process using
the Regulatory loss function (RLF) and Firm’s loss function (FLF) as ranking criteria.
Panel A presents the average loss values for the RLF and the FLF for the competing
models at various risk levels in the three markets. The models with the lowest average
loss values are underlined. Panel B reports the standardized sign statistics values. Sap
denotes the standardized sign statistics with null of “non-superiority” of the SVL model
over the SVJL model while Sp4 represents the standardized sign statistics with null of
“non-superiority” of the SVJL model over the SVL model. S¢cp denotes the standardized
sign statistics with null of “non-superiority” of the SVL model over the SVJ model while
Spc represents the standardized sign statistics with null of “non-superiority” of the SVJ
model over the SVL model. “*” denotes significance at the corresponding level.

SVL vs SVIJIL

The results in Panel A show that the SVL model achieves a lower average loss than the
SVJL model under the RLF approach while the SVJL model scores a lower average loss
under the FLF approach. To address the statistical significance of the losses, we report
the values of the standardized sign test in Panel B. For the RLF criterion, the competing
models are not significantly different from each other. Under the FLF criterion, the SVJL
model is significantly better than the SVL model for firms who are long S&P500 futures
and for firms who are short natural gas futures at a 95% confidence level. The SVL
model outperforms the SVJL model only for firms who are short S&P500 futures at a 95%
confidence level.

SVL vs SVIJ

The results in Panel A indicate that, under the RLF criterion, the SVL model is more
likely to achieve lower average losses than the SVJ model for financial regulators who focus
on the risk affecting long positions in futures, while the SVJ model has the potential to
achieve a smaller average loss compared to the SVL model for financial regulators who

focus on the risk affecting short positions in futures. Considering the FLF approach, firms
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who use the VaR criterion for tail risk management while minimizing the opportunity cost
of capital in the S&P500 and WTI crude oil futures markets should prefer the SVJ model
while firms operating in the natural gas futures market would be better off adopting the
SVL model.

In order to examine the statistical significance of the losses, we report the values of the
standardized sign test in Panel B. For the RLF criterion, the competing models are not
significantly different from each other. Under FLF criterion, the SVJ model is significantly
better than the SVL model for firms who are long futures in the SP&500 and WTI markets
at both 95% and 99% confidence level. On the contrary, the SVL model is significantly
better than the SVJ model for firms who are short futures in the SP&500 and WTT markets
at both the 95% and 99% levels of confidence.

Our results indicate that under the RLF criterion, financial regulators who are inter-
ested in minimizing VaR in all the futures markets considered, would be indifferent to the
choice of models. Under the FLF criterion, the introduction of both jumps and leverage in
the SVJL model would benefit speculative firms who are long S&P500 futures and spec-
ulative firms who are short natural gas futures and use VaR for risk management while
wanting to minimize the opportunity cost of capital. Under the same logic, firms who are
short S&P500 or WTI crude oil futures would be better off considering the SVL model
with leverage only, while firms who are long WTT crude oil futures and those who are long
S&P500 futures would be better off by adopting the SVJ model for their VaR forecasts.

Table 18 presents the summary results of RLF and FLF loss functions for the models
chosen at the CVaR backtesting stage. Its interpretation is similar to the one described
for Table 17 but it is in terms of CVaR.

SVL vs SVJL

Under the RLF criterion, both the two models score similarly. Under the FLF criterion,
the SVJL model is more likely to perform better than the SVL model for both firms who are
short and long futures. Similarly, the standardized sign test values for the RLF criterion

in Panel B indicate that there are no significant differences between the two models. The
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SVJL model is more likely to perform better than SVL only for firms who are long S&P500
futures at a 1.96% nominal level while SVL scores better for firms who are short S&P500
futures at a 1.96% nominal level.

SVL vs SVIJ

There is no absolute advantage of one over the other under the RLF criterion. Under
the FLF criterion, the SVJ model performs better than the SVL model for firms who hold
any positions in the SP&500 and the WTTI futures markets. Similarly, the standardized sign
test values for the RLF criterion in Panel B indicate that there are no significant differences
between the two models. Under the FLF criterion, the SVJ model is significantly better
than the SVL model for firms who are long futures in the SP&500 and WTI markets at
both the 95% and 99% confidence levels. On the contrary, the SVL model is significantly
better than the SVJ model for firms who are short futures in the SP&500 and WTT markets
at the 95% and 99% levels of confidence.

Our results indicate that under the RLF criterion, financial regulators who are inter-
ested in minimizing CVaR in all the futures markets considered, would be indifferent to the
choice of models. Under the FLF criterion, the introduction of both jumps and leverage
in the SVJL model would benefit speculative firms who are long S&P500 futures (at 5%
significance level), use CVaR for risk management while wanting to minimize the opportu-
nity cost of capital. Under the same logic, for both VaR and CVaR forecasting, firms who
are short S&P500 or WTT crude oil futures would be better off considering the SVL model
with leverage only while firms who are long WTI crude oil futures and those who are long

S&P500 futures would be better off by adopting the SVJ model.
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8 Conclusions

In this paper we have proposed a model for futures returns that provides both individual
investors and firms who have positions in financial and energy commodity futures a valid
tail risk management tool.

Our paper contributes to the existing literature, which is generally based on lower
frequency data, by examining the informational content of high-frequency data using a
Generalized Method of Moments (GMM) approach. While existing literature examines
models for commodity market futures returns with either leverage or jumps, we find that
a stochastic volatility model which embeds both features, the SVJL model, is effective
in fitting the volatility of natural gas and stock indexes futures returns. While empirical
studies in energy markets embed either leverage or jumps in the futures return dynamics,
we show that the introduction of both features improves the ability to forecast volatility as
an indicator for risk for both the S&P500 and natural gas futures markets. Unlike most of
the existing studies in energy derivative markets based on daily data, our empirical analysis
makes use of high-frequency (tick-by-tick) data from the futures markets, aggregated to 10-
minute intervals during the trading day. The intraday variation is then utilized to generate
daily time series of prices, returns and realized variance. We find significant evidence of
a leverage effect for S&P500 and crude oil markets: a negative shock to returns increases
volatility in these markets. We also find evidence of an inverse leverage effect for the
natural gas market: volatility becomes higher when energy returns increase.

We show that the use of the SVJL model improves the ability to forecast volatility
for the S&P500 and for the natural gas futures markets using both the RMSE and MAE
criteria. We also show that overall, the introduction of both leverage and jumps in the
SV JL model provides the best forecast for risk in both a VaR and a CVaR sense for investors
who have any position in natural gas futures regardless of their degree of risk aversion. In
the S&P500 market, the SVJL model provides the most precise forecast of risk in a CVaR

sense for risk-averse investors with any position in futures, regardless of their degree of risk
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aversion. Focusing on a firm’s internal risk management, the introduction of both jumps
and leverage in the SVJL model would benefit speculative firms who are short natural gas
futures aiming at minimizing tail risk in a VaR sense, as well as speculative firms who are
long S&P500 futures and use either VaR or CVaR as financial risk management criteria

while wanting to minimize the opportunity cost of capital.
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Appendix I: Realized Variance and Moment conditions

Following Bollerslev and Zhou (2002), who use continuously observed futures prices, we
build a conditional moment estimator for stochastic variance models based on matching
the sample moments of Realized Variance with population moments of the Integrated Vari-
ance. In this paper, realized variance is computed as the sum of high-frequency (10-minute

interval) intraday squared returns.
8.1 No jumps

The returns on futures at time ¢ over the interval [t — k,t] can be decomposed as

t t

M(T)dT—i—/ o (1)dW;

r(t,k)zlnFt—lnFtk:/ -

t—k

When no jumps are considered, the Quadratic Variation coincides with Integrated Variance

from the population and it is defined as
t

QV(t,k:):IV(t,k):/ o? (1) dr

t—k

The Realized Variance from the sample is defined as:

n-k . 2
RV(t,k,n):Zr(t—kJrj,l)

X n n
Jj=1

RV (t,k,n)> IV (¢, k)

as n — oo

where n is the sampling frequency.
Residual 1
From Bollerslev and Zhou (2002), page 56 Appendiz A.1 equation (A.3)

e1 = E [Vig1,42| Gi) — Vig1,i42 (6)

=aFE V41| G + 8 — Vig1,i42
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where Vii1 42 is the realized variance and G; is the information set.

dt=T—-t=t+1-t=1

=t+2—(t+1)=1

a=e
B=0(1-a)

_ 1 _A
G_E(l_a)_ﬁﬁ
b=60(1-a)

_g_ "B

N K

Residual 2

B [Vt2+1,t+2| Qt] =Hl-E [Vt2,t+1‘ gt] + 1 EVien| Gl +J
ea=FE [Vtz-l-l,t-f—?’ gt] - Vt2+1vt+2 (7)

=H1-F [Vt%tﬂ‘ Qt] +1-EVi1|Gi] +J — Vt2+1,t+2

where

H1=a?

Gl =p?
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Residual 3
Residuals 3 is built in order to deal with the leverage aspect as they focus on the
relationship between futures returns and their variance.
This moment condition derives from the paper by Garcia et al. (2011) page 32 top
equation in Box I:
_ Elpti+1Vir1142| G — b

e3 = a - pt,t+1V2,t+1 (8)

Considering the relationship between the population variance V; and the realized vari-

ance Vi yi1

E [Vt,t+1| Fil=aVi+b
B[Vl Fi] - b
a

Vi

_ Ab+ab® —aB — (A= 2ab)E [V 1| Fil + aE [V}, | Fi]

a3

‘/;2

ope ®

Epii+1Vies1| G = (E Vi1 Gl e+ 0 (e —k —1))
E [pti+1 V1,642 Gel — b _ ope” " (E WVitt1|Ge) — bl{,

a K a

o ko)

K V —-b
oy = OP° < t,t—i; K40 (" —k— 1)> — Pt+1 Vit

K

where G; C F; is the “discrete time filtration”.
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8.2 Jumps

When we allow for discrete jumps, the returns on futures at time ¢ over the interval [t — k, t]

can be decomposed as

r(t,k) =InF, —In F,_

_/tt M(T)d7+/t U(T>dWT+/t 2 (7)dN (A7)

—k t—k t—k
In this case, Integrated Variance and Quadratic Variation do not coincide:
t

TVumps (t, k) = / o (r)dr+ Y (x(s)dN (Xs))’

t—k

=QV (t,k)+ > (z(s)dN (xs))’

t—k<s<t
Barndorff-Nielsen and Shephard (2004) proposed the Realized Bipower Variation as a

consistent estimate of integrated variance component in the presence of jumps:

BV(t,k;n):gZ?:";}r(t_k_;_ﬁ l)"r (t_k+(i—1)k l)

n’n n n

RV (t,k,n) — BV (t,k;n) — QV (t,k) — IV (t,k)
QV(tk)—IV(tE)= Y (z(s)dN (As))’

t—k<s<t

as n — o0

A similar approach was used in Baum and Zerilli (2016).

Residual 1

From Bollerslev and Zhou (2002) Appendiz B page 62 (B.14) affects all the moment
conditions (impact of jumps)

At time (t,t+ 1)
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e1y = E[BP. ;11| Gi] + \oZdt — RV, ;44
since

E[RVi141|Gt]| = E[BP; 41| Gt + Aﬁgdt

combining with equation (A.3) on page 56, Appendiz A.1
Residual 2
At time (t 4 1,t + 2)

e27 = E[RViy1412| Gt — RVig1,12
= E[BPii1412|Gi] + Ao2dt — RV 442
= aE[BP441|Gi] + B+ Aoadt — RViy1440
= a (B [RViy41| G| — Ao2dt) + B + Aordt — RVipq 442
= aE[RV,411|Gi) + o2 (1 —a)dt — RVii1410
=aE [RVi 11| G) + 7 — RVig1,042
where 7 = Ao2 (1 — a)dt = (RVi411 — E[BPy11]G)) (1 — )
E [RV; 41| Gt] is the observed realized Variance
E [BP;4+1] G| is the observed BiPower variation

RVi41,t42 is the realized variance in the next period

Residual 3

From Bollerslev and Zhou (2002) Appendiz B page 62 (B.14) affects all the moment
conditions (impact of jumps)

At time (t,t+ 1)

ess = E[RV}11]Gl] — RV

— E[BP2,1|Gi] + 2002E [RV2 1| Gi] dt — Aodt — RV,
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combining with equation (A.9) on page 58, Appendiz A.1
Residual 4
At time (t+1,t+2)

eq) =F [thil,tw’ gt} - RVt%r1,t+2
but
E[RVit1,442|G) = E[BPiy1,42| Gi) + )\ogdt
= ol [RV411|Gi] +

E[BP} 2|6 =H1-E[BP} |G| +1-E[BPyy1| G+ J
E[BP,141|Gi) = E[RVi41|Gi| — AoZdt

E[BP 1G] = E[RV7,1| Gt — 2X02E [RV 1| G| dt + Aopdt

ess = E [BP?y 1 119| Gt] + 2X02E [RViq110| Gl dt — Aopdt — RV 1
=H1-E[BP} |G| +1-E[BP1|G]+ J+
+ 2002 E [RViy1,042| Gi] dt — Aogdt — RV 1o
= H1- (E[RV72,,|Gt] — 2Ac2E [ RV 1| G| dt + Aosdt)
+1-(E[RVigs1| G — )\Ugdt)
+J +2X03 (0B [RV; 11| Gi] +7) — Aogdt — RV 14

=H1 E[RV%,1|G] + N3-E[RVi141]G] + N4

where
N3 =2X\o2(a— H1)+1

Nd=Xo2 (o2 (H1—1)+2y+28—1)+J
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E [‘/;S?t+1‘ gt] can be observed from the realized variance

Vtil’t o is the realized variance in the next period

Residual 5

ope” " <RVi,t+1 -b
€5J =

a

K+0(e" —k— 1)) — Dt,t+1Vit41

where

E[RV; 4411 Gi) = E[BP 11| Gi] + )\agdt
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Appendix II: Figures

Daily Futures Returns, SP500, 2001-2016
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Figure 1

Daily Realised Variance, SP500 fut, 2001-2016
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Daily Futures Returns, Natural Gas, 2001-2016
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Daily RV WTI

Daily Futures Returns, WTI, 2001-2016
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Figure 5

Daily Realised Variance, WTI fut, 2001-2016
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Appendix III: t and J tests on the moment conditions
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