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framework unifying existing definitions of point identification, 2. summarizes and compares
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discusses concepts closely related to identification, such as normalizations and the differences
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1 Introduction

Econometric identification really means just one thing: model parameters or features being uniquely deter-

mined from the observable population that generates the data.1 Yet well over two dozen different terms for

identification now appear in the econometrics literature. The goal of this survey is to summarize (identify)

and categorize this zooful of different terms associated with identification. This includes providing a new,

more general definition of identification that unifies and encompasses previously existing definitions.

This survey then discusses the differences between identification in traditional structural models vs.

the so-called reduced form (or causal inference, or treatment effects, or program evaluation) literature.

Other topics include set vs. point identification, limited forms of identification such as local and generic

identification, and identification concepts that relate to statistical inference, such as weak identification,

irregular identification, and identification at infinity. Concepts that are closely related to identification,

including normalizations, coherence, and completeness are also discussed.

The mathematics in this survey is kept relatively simple, with a little more formality provided in the

Appendix. Each section can be read largely independently of the others, with only a handful of concepts

carried over from one section of the zoo to the next.

The many terms for identification that appear in the econometrics literature include (in alphabeti-

cal order): Bayesian identification, causal identification, essential identification, eventual identification,

exact identification, first order identification, frequentist identification, generic identification, global iden-

tification, identification arrangement, identification at infinity, identification by construction, identifica-

tion of bounds, ill-posed identification, irregular identification, local identification, nearly-weak identi-

fication, nonparametric identification, non-robust identification, nonstandard weak identification, overi-

dentification, parametric identification, partial identification, point identification, sampling identification,

semiparametric identification, semi-strong identification, set identification, strong identification, structural

identification, thin-set identification, underidentification, and weak identification. This survey gives the

1The first two sections of this survey use identification in the traditional sense of what would now be more precisely called

"point identification." See section 3 for details.
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meaning of each, and shows how they relate to each other.

Let θ denote an unknown parameter, or a set of unknown parameters (vectors and/or functions) that we

would like to learn about, and ideally, estimate. Examples of what θ could include are objects like regressor

coefficients, or average treatment effects, or error distributions. Identification deals with characterizing

what could potentially or conceivably be learned about parameters θ from observable data. Roughly,

identification asks, if we knew the population that data are drawn from, would θ be known? And if not,

what could be learned about θ?

The study of identification logically precedes estimation, inference, and testing. For θ to be identified,

alternative values of θ must imply different distributions of the observable data (see, e.g., Matzkin 2013).

This implies that if θ is not identified, then we cannot hope to find a consistent estimator for θ . More

generally, identification failures complicate statistical analyses of models, so recognizing lack of iden-

tification, and searching for restrictions that suffice to attain identification, are fundamentally important

problems in econometric modeling.

The next section, Section 2, begins by providing some historical background. The basic notion of

identification (uniquely recovering model parameters from the observable population), is now known as

"point identification." Section 3 summarizes the basic idea of point identification. A few somewhat dif-

ferent characterizations of point identification appear in the literature, varying in what is assumed to be

observable and in the nature of the parameters to be identified. In Section 3 (and in an Appendix), this

survey proposes a new definition of point identification (and of related concepts like structures and ob-

servational equivalence) that encompasses these alternative characterizations or classes of point identified

models that currently appear in the literature.

Section 3 then provides examples of, and methods for obtaining, point identification. This section

also includes a discussion of typical sources of non-identification, and of some traditional identification

related concepts like overidentification, exact identification, and rank and order conditions. Identification

by functional form is described, and examples are provided, including constructed instruments based on

second and higher moment assumptions. Appropriate use of such methods is discussed.
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Next is Section 4, which defines and discusses the concepts of coherence and completeness of models.

These are closely associated with existence of a reduced form, which in turn is often used as a starting

point for proving identification. This is followed by Section 5, which is devoted to discussing identifica-

tion concepts in what is variously known as the reduced form, or program evaluation, or treatment effects,

or causal inference literature. This literature places a particular emphasis on randomization, and is de-

voted to the identification of parameters that can be given a causal interpretation. Typical methods and

assumptions used to obtain identification in this literature are compared to identification of more traditional

structural models. To facilitate this comparison, the assumptions of the popular local average treatment

effect (LATE) causal model, which are usually described in potential outcome notation, are here rewritten

using a traditional structural notation. The relative advantages and disadvantages of randomization based

causal inference methods vs. structural modeling are laid out, and a case is made for combining both

approaches in practice.

Section 6 describes nonparametric identification, semiparametric identification, and set identification.

This section also discusses the related role of normalizations in identification analyses, which has not been

analyzed in previous surveys. Special regressor methods are then described, mainly to provide examples

of these concepts.

Section 7 describes limited forms of identification, in particular, local identification and generic iden-

tification. Section 8 considers forms of identification that have implications for, or are related to, statis-

tical inference. These include weak identification, identification at infinity, ill-posed identification, and

Bayesian identification. Section 9 then concludes, and an Appendix provides some additional mathemati-

cal details.

2 Historical Roots of Identification

Before discussing identification in detail, consider some historical context. I include first names of early

authors in this section to promote greater knowledge of the early leaders in this field.

Before we can think about isolating, and thereby identifying, the effect of one variable on another, we
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need the notion of "ceteris paribus," that is, holding other things equal. The formal application of this

concept to economic analysis is generally attributed to Alfred Marshall (1890). However, Persky (1990)

points out that usage of the term ceteris paribus in an economic context goes back to William Petty (1662).2

The textbook example of an identification problem in economics, that of separating supply and demand

curves, appears to have been first recognized by Philip Wright (1915), who pointed out that what appeared

to be an upward sloping demand curve for pig iron was actually a supply curve, traced out by a moving

demand curve. Philip’s son, Sewall, invented the use of causal path diagrams in statistics.3 Sewall Wright

(1925) applied those methods to construct an instrumental variables estimator, but in a model of exogenous

regressors that could have been identified and estimated by ordinary least squares. The idea of using

instrumental variables to solve the identification problem arising from simultaneous systems of equations

first appears in Appendix B of Philip Wright (1928). Stock and Trebbi (2003) claim that this is the

earliest known solution to an identification problem in econometrics. They apply a stylometric analysis

(the statistical analysis of literary styles) to conclude that Philip Wright was the one who actually wrote

Appendix B, using his son’s estimator to solve their identification problem.

In addition to two different Wrights, two different Workings also published early papers relating to

the subject: Holbrook Working (1925) and, more relevantly, Elmer J. Working (1927). Both wrote about

statistical demand curves, though Holbrook is the one for whom the Working-Leser Engel curve is named.

Jan Tinbergen (1930) proposed indirect least squares estimation (numerically recovering structural

parameters from linear regression reduced form estimates), but does not appear to have recognized its

usefulness for solving the identification problem.

2Petty’s (1662) use of the term ceteris paribus gives what could be construed as an early identification argument, identifying

a determinant of prices. On page 50 of his treatise he writes, "If a man can bring to London an ounce of Silver out of the Earth

in Peru, in the same time that he can produce a bushel of Corn, then one is the natural price of the other; now if by reason of

new and more easie Mines a man can get two ounces of Silver as easily as formerly he did one, then Corn will be as cheap at

ten shillings the bushel, as it was before at five shillings caeteris paribus."

3Sewall’s first application of causal paths was establishing the extent to which fur color in guinea pigs was determined by

developmental vs genetic factors. See, e.g., Pearl (2018). So while the father Philip considered pig iron, the son Sewall studied

actual pigs.
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The above examples, along with the later analyses of Trygve Haavelmo (1943), Tjalling Koopmans

(1949), Theodore W. Anderson and Herman Rubin (1949), Koopmans and Olav Reiersøl (1950), Leonid

Hurwicz (1950), Koopmans, Rubin, and Roy B. Leipnik (1950), and the work of the Cowles Foundation

more generally, are concerned with identification arising from simultaneity in supply and demand. Other

important early work on this problem includes Abraham Wald (1950), Henri Theil (1953), J. Denis Sargan

(1958), and results summarized and extended in Franklin Fisher’s (1966) book. Most of this work empha-

sizes exclusion restrictions for solving identification in simultaneous systems, but identification could also

come from restrictions on the covariance matrix of error terms, or combinations of the two, as in Karl G.

Jöreskog (1970). Milton Friedman’s (1953) essay on positive economics includes a critique of the Cowles

foundation work, essentially warning against using different criteria to select models versus criteria to

identify them.

A standard identification problem in the statistics literature is that of recovering a treatment effect.

Derived from earlier probability theory, identification based on randomization was developed in this lit-

erature by Jerzy Splawa-Neyman (1923)4, David R. Cox (1958), and Donald B. Rubin (1974), among

many others. Pearl (2015) and Heckman and Pinto (2015) credit Haavelmo (1943) as the first rigorous

treatment of causality in the context of structural econometric models. Unlike the results in the statistics

literature, econometricians historically focused more on cases where selection (determining who is treated

or observed) and outcomes may be correlated. These correlations could come from a variety of sources,

such as simultaneity as in Haavelmo (1943), or optimizing self selection as in Andrew D. Roy (1951).

Another example is Wald’s (1943) survivorship bias analysis (regarding airplanes in world war II), which

recognizes that even when treatment assignment (where a plane was hit) is random, sample attrition that is

correlated with outcomes (only planes that survived attack could be observed) drastically affects the cor-

rect analysis. General models where selection and outcomes are correlated follow from James J. Heckman

(1978). Causal diagrams (invented by Sewall Wright as discussed above) were promoted by Judea Pearl

(1988) to model the connections between treatments and outcomes.

4Neyman’s birth name was Splawa-Neyman, and he published a few of his early papers under than name, including this

one.
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A different identification problem is that of identifying the true coefficient in a linear regression when

regressors are measured with error. Robert J. Adcock (1877, 1878), and Charles H. Kummell (1879)

considered measurement errors in a Deming regression, as popularized in W. Edwards Deming (1943)5.

This is a regression that minimizes the sum of squares of errors measured perpendicular to the fitted line.

Corrado Gini (1921) gave an example of an estimator that deals with measurement errors in standard

linear regression, but Ragnar A. K. Frisch (1934) was the first to discuss the issue in a way that would now

be recognized as identification. Other early papers looking at measurement errors in regression include

Neyman (1937), Wald (1940), Koopmans (1937), Reiersøl (1945, 1950), Roy C. Geary (1948), and James

Durbin (1954). Tamer (2010) credits Frisch (1934) as also being the first in the literature to describe an

example of set identification.

3 Point Identification

In modern terminology, the standard notion of identification is formally called point identification. De-

pending on context, point identification may also be called global identification or frequentist identifica-

tion. When one simply says that a parameter or a function is identified, what is usually meant is that it is

point identified.

Early formal definitions of (point) identification were provided by Koopmans and Reiersøl (1950),

Hurwicz (1950), Fisher (1966) and Rothenberg (1971). These include the related concepts of a structure

and of observational equivalence. See Chesher (2008) for additional historical details on these classical

identification concepts.

In this survey I provide a new general definition of identification. This generalization maintains the

intuition of existing classical definitions while encompassing a larger class of models than previous def-

initions. The discussion in the text below will be somewhat informal for ease of reading. More rigorous

definitions are given in the Appendix.

5Adcock’s publications give his name as R. J. Adcock. I only have circumstantial evidence that his name was actually

Robert.
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3.1 Introduction to Point Identification

Recall that θ is the parameter (which could include vectors and functions) that we want to identify and

ultimately estimate. We start by assuming there is some information, call it φ, that we either already

know or could learn from data. Think of φ as everything that could be learned about the population that

data are drawn from. Usually, φ would either be a distribution function, or some features of distributions

like conditional means, quantiles, autocovariances, or regression coefficients. In short, φ is what would

be knowable from unlimited amounts of whatever type of data we have. The key difference between the

definition of identification given in this survey and previous definitions in the literature is that previous

definitions generally started with a particular assumption (sometimes only implicit) of what constitutes φ

(examples are the Wright-Cowles identification and Distribution Based identification discussed in Section

3.3).

Assume also that we have a model, which typically imposes some restrictions on the possible values

φ could take on. A simple definition of (point) identification is then that a parameter θ is point identified

if, given the model, θ is uniquely determined from φ.

For example, suppose for scalars Y , X , and θ , our model is that Y = Xθ + e where E
(
X2
)
6= 0 and

E (eX) = 0, and suppose that φ, what we can learn from data, includes the second moments of the vector

(Y, X). Then we can conclude that θ is point identified, because it is uniquely determined in the usual

linear regression way by θ = E (XY ) /E
(
X2
)
, which is a function of second moments of (Y, X).

Another example is to let the model be that a binary treatment indicator X is assigned to individuals

by a coin flip, and Y is each individual’s outcome. Suppose we can observe realizations of (X, Y ) that are

independent across individuals. We might therefore assume that φ, what we can learn from data, includes

E (Y | X). It then follows that the average treatment effect θ is identified because, when treatment is

randomly assigned, θ = E (Y | X = 1) − E (Y | X = 0), that is, the difference between the mean of Y

among people who have X = 1 (the treated) and the mean of Y among people who have X = 0 (the

untreated).

Both of the above examples assume that expectations of observed variables are knowable, and so can
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be included in φ. Since sample averages can be observed, to justify this assumption we might appeal to

the consistency of sample averages, given conditions for a weak law of large numbers.

When discussing empirical work, a common question is, "what is the source of the identification?" that

is, what feature of the data is providing the information needed to determine θ? This is essentially asking,

what needs to be in φ?

Note that the definition of identification is somewhat circular or recursive. We start by assuming some

information φ is knowable. Essentially, this means that to define identification of something, θ , we start

by assuming something else, φ, is itself identified. Assuming φ is knowable, or identified, to begin with

can itself only be justified by some deeper assumptions regarding the underlying DGP (Data Generating

Process).

We usually think of a model as a set of equations describing behavior. But more generally, a model

is whatever set of assumptions we make about, and restrictions we place on, the DGP. This includes

both assumptions about the behavior that generates the data, and about how the data are collected and

measured. These assumptions in turn imply restrictions on φ and θ . In this sense, identification (even in

purely experimental settings) always requires a model.

A common starting assumption is that the DGP consists of n IID (Independently, Identically Distrib-

uted) observations of a vector W , where the sample size n goes to infinity. We know (by the Glivenko–

Cantelli theorem, see Section 3.4 below) that with this kind of data we could consistently estimate the

distribution of W . It is therefore reasonable with IID data in mind to start by assuming that what is

knowable to begin with, φ, is the distribution function of W .

Another common DGP is where each data point consists of a value of X chosen from its support, and

conditional upon that value of X , we randomly draw an observation of Y , independent from the other

draws of Y given X . For example, X could be the temperature at which you choose to run an experiment,

and Y is the outcome of the experiment. As n → ∞ this DGP allows us to consistently estimate and

thereby learn about F (Y | X), the conditional distribution function of Y given X . So if we have this kind

of DGP in mind, we could start an identification proof for some θ by assuming that F (Y | X) is knowable.
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But in this case F (Y | X) can only be known for the values of X that can be chosen in the experiment

(e.g., it may be impossible to run the experiment at a temperature X of a million degrees).

With more complicated DGPs (e.g., time series data, or cross section data containing social interactions

or common shocks), part of the challenge in establishing identification is characterizing what information

φ is knowable, and hence is appropriate to use as the starting point for proving identification. For example,

in a time series analyses we might start by supposing that the mean, variance, and autocovariances of a

time series are knowable, but not assume information about higher moments is available. Why not? Either

because higher moments might not be needed for identification (as in vector autoregression models), or

because higher moments may not be stable over time.

Other possible examples are that φ could equal reduced form linear regression coefficients, or, if

observations of W follow a martingale process, φ could consist of transition probabilities.

What to include in φ depends on the model. For example, in dynamic panel data models, the Arellano

and Bond (1991) estimator is based on a set of moments that are assumed to be knowable (since they

can be estimated from data) and equal zero in the population. The parameters of the model are identified

if they are uniquely determined by the equations that set those moments equal to zero. The Blundell

and Bond (1998) estimator provides additional moments (assuming functional form information about

the initial time period zero distribution of data) that we could include in φ. We may therefore have model

parameters that are not identified with Arellano and Bond moments, but become identified if we are willing

to assume the model contains the additional information needed for Blundell and Bond moments.

Even in the most seemingly straightforward situations, such as experimental design with completely

random assignment into treatment and control groups, additional assumptions regarding the DGP (and

hence regarding the model and φ) are required for identification of treatment effects. Typical assumptions

that are routinely made (and may often be violated) in this literature are assumptions that rule out cer-

tain types of measurement errors, sample attrition, censoring, social interactions, and general equilibrium

effects.

In practice, it is often useful to distinguish between two types of DGP assumptions. One is assumptions
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regarding the collection of data, e.g., selection, measurement errors, and survey attrition. The other is as-

sumptions regarding the generation of data, e.g., randomization or statistical and behavioral assumptions.

Arellano (2003) refers to a set of behavioral assumptions that suffice for identification as an identification

arrangement. Ultimately, both types of assumptions determine what we know about the model and the

DGP, and hence determine what identification is possible.

3.2 Defining Point Identification

Here we define point identification and some related terms, including structure and observational equiv-

alence. The definitions provided here generalize and encompass most previous definitions provided in

the literature. The framework here most closely corresponds to Matzkin (2007, 2012). Her framework is

essentially the special case of the definitions provided here in which φ is a distribution function. In con-

trast, the traditional textbook discussion of identification of linear supply and demand curves corresponds

to the special case where φ is a set of limiting values of linear regression coefficients. The relationship

of the definitions provided here to other definitions in the literature, such as those given by the Cowles

foundation work, or in Rothenberg (1971), Sargan (1983), Hsiao (1983), or Newey and McFadden (1994),

are discussed below. In this section, the provided definitions will still be somewhat informal, stressing the

underlying ideas and intuition. More formal and detailed definitions are provided in the Appendix.

Define a model M to be a set of functions or constants that satisfy some given restrictions. Examples of

what might be included in a model are regression functions, error distribution functions, utility functions,

game payoff matrices, and coefficient vectors. Examples of restrictions could include assuming regression

functions are linear or monotonic or differentiable, or that errors are normal or fat tailed, or that parameters

are bounded.

Define a model value m to be one particular possible value of the functions or constants that comprise

M . Each m implies a particular DGP (data generating process). An exception is incoherent models (see

Section 4), which may have model values that do not correspond to any possible DGP.

Define φ to be a set of constants and/or functions about the DGP that we assume are known, or
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knowable from data. Common examples of φ might be data distribution functions, conditional mean

functions, linear regression coefficients, or time series autocovariances.

Define a set of parameters θ to be a set of unknown constants and/or functions that characterize or

summarize relevant features of a model. Essentially, θ can be anything we might want to estimate. Para-

meters θ could include what we usually think of as model parameters, such as regression coefficients, but

θ could also be, e.g., the sign of an elasticity, or an average treatment effect.

The set of parameters θ may also include nuisance parameters, which are defined as parameters that

are not of direct economic interest, but may be required for identification and estimation of other objects

that are of interest. For example, in a linear regression model θ might include not only the regression

coefficients, but also the marginal distribution function of identically distributed errors. Depending on

context, this distribution might not be of direct interest and would then be considered a nuisance parameter.

It is not necessary that nuisance parameters, if present, be included in θ , but they could be.

We assume that each particular value of m implies a particular value of φ and of θ (violations of this

assumption can lead to incoherence or incompleteness, as discussed in a later section). However, there

could be many values of m that imply the same φ or the same θ . Define the structure s (φ, θ) to be the set

of all model values m that yield both the given values of φ and of θ .

Two parameter values θ and θ̃ are defined to be observationally equivalent if there exists a φ such that

both s (φ, θ) and s
(
φ, θ̃

)
are not empty. Roughly, θ and θ̃ observationally equivalent means there exists a

value φ such that, if φ is true, then either the value θ or θ̃ could also be true. Equivalently, θ and θ̃ being

observationally equivalent means that there exists a φ and model values m and m̃ such that model value m

yields the values φ and θ , and model value m̃ yields the values φ and θ̃ .

We’re now ready to define identification. The parameter θ is defined to be point identified (often

just called identified) if there do not exist any pairs of possible values θ and θ̃ that are different but

observationally equivalent.

Let 2 denote the set of all possible values that the model says θ could be. One of these values is the

unknown true value of θ , which we denote as θ0. We say that the particular value θ0 is point identified
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if θ0 not observationally equivalent to any other θ in 2. However, we don’t know which of the possible

values of θ (that is, which of the elements of 2) is the true θ0. This is why, to ensure point identification,

we generally require that no two elements θ and θ̃ in the set2 having θ 6= θ̃ be observationally equivalent.

Sometimes this condition is called global identification rather than point identification, to explicitly say

that θ0 is point identified no matter what value in 2 turns out to be θ0.

We have now defined what it means to have parameters θ be point identified. We say that the model

is point identified when no pairs of model values m and m̃ in M are observationally equivalent (treating

m and m̃ as if they were parameters). Since every model value is associated with at most one value of θ ,

having the model be identified is sufficient, but stronger than necessary, to also have any possible set of

parameters θ be identified.

The economist or econometrician defines the model M , so we could in theory enumerate every m ∈ M ,

list every value of φ and θ that is implied by each m, and thereby check every pair s (φ, θ) and s
(
φ, θ̃

)
to

see if θ is point identified or not. The difficulty of proving identification in practice is in finding tractable

ways to accomplish this enumeration. Note that since we do not know which value of θ is the true one,

proving identification in practice requires showing that the definition holds for any possible θ , not just the

true value.

We conclude this section by defining some identification concepts closely related to point identifica-

tion. Later sections will explore these identification concepts in more detail.

The concepts of local and generic identification deal with cases where we can’t establish point identi-

fication for all θ in 2. Local identification of θ0 means that there exists a neighborhood of θ0 such that,

for all values θ 6= θ0 in this neighborhood, θ is not observationally equivalent to θ0. As with point identi-

fication, since we don’t know ahead of time which value of θ is θ0, to prove that local identification holds

we would need to show that for any θ̃ ∈ 2, there exists a neighborhood of θ̃ such that, for any θ 6= θ̃ in

this neighborhood, θ is not observationally equivalent to θ̃ .

Generic identification roughly means that the set of values of θ in 2 that cannot be point identified is

a very small subset of 2. Suppose we took all the values of θ in 2, and divided them into two groups:
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those that are observationally equivalent to some other element of 2, and those that are not. If θ0 is in the

second group, then it’s identified, otherwise it’s not. Since θ0 could be any value in2, and we don’t know

which one, to prove point identification in general we would need to show that the first group is empty.

The parameter θ is defined to be generically identified if the first group is extremely small (formally, if

the first group is a measure zero subset of 2). Both local and generic identification are discussed in more

detail later.

The true parameter value θ0 is said to be set identified (sometimes also called partially identified) if

there exist some values of θ ∈ 2 that are not observationally equivalent to θ0. So the only time a parameter

θ is not set identified is when all θ ∈ 2 are observationally equivalent. For set identified parameters, the

identified set is defined to be the set of all values of θ ∈ 2 that are observationally equivalent to θ0. Point

identification of θ0 is therefore the special case of set identification in which the identified set contains

only one element, which is θ0.

Parametric identification is where θ is a finite set of constants, and all the different possible values of

φ also correspond to different values of a finite set of constants. Nonparametric identification is where θ

consists of functions or infinite sets. Other cases are called semiparametric identification, which includes

situations where, e.g., θ includes both a vector of constants and nuisance parameters that are functions.

As we will see in Section 6, sometimes the differences between parametric, semiparametric, and nonpara-

metric identification can be somewhat arbitrary (see Powell 1994 for further discussion of this point).

3.3 Examples and Classes of Point Identification

Consider some examples to illustrate the basic idea of point identification.

Example 1: a median. Let the model M be the set of all possible distributions of a random variable

W having a strictly monotonically increasing distribution function. Our DGP (data generating process)

consists of IID (independent, identically distributed) draws of W . From this DGP, what is knowable is

F (w), the distribution function of W . Let our parameter θ be the median of W . In this simple example,

we know θ is identified because it’s the unique solution to F (θ) = 1/2. By knowing F , we can determine

15



θ .

How does this example fit the general definition of identification? Here each value of φ is a partic-

ular continuous, monotonically increasing distribution function F . In this example, each model value

m happens to correspond to a unique value of φ, because each possible distribution of W has a unique

distribution function. In this example, for any given candidate value of φ and θ , the structure s (φ, θ) is

either an empty set or it has one element. For a given value of φ and θ , if φ = F and F (θ) = 1/2 (the

definition of a median) then set s (φ, θ) contains one element. That element m is the distribution that has

distribution function F . Otherwise, if φ = F where F (θ) 6= 1/2, the set s (φ, θ) is empty. In this exam-

ple, it’s not possible to have two different parameter values θ and θ̃ be observationally equivalent, because

F (θ) = 1/2 and F
(̃
θ
)
= 1/2 implies θ = θ̃ for any continuous, monotonically increasing function F .

Therefore θ is point identified, because its true value θ0 cannot be observationally equivalent to any other

value θ .

Example 2: Linear regression. Consider a DGP consisting of observations of Y, X where Y is a

scalar, X is a K−vector. The observations of Y and X might not be independent or identically distributed.

Assume the first and second moments of X and Y are constant across observations, and let φ be the set of

first and second moments of X and Y . Let the model M be the set of joint distributions of e, X that satisfy

Y = X ′θ+e, where θ is some K−vector of parameters, e is an error term, E (Xe) = 0 for an error term e,

and where e, X has finite first and second moments. The structure s (φ, θ) is nonempty when the moments

comprising φ satisfy E
[
X
(
Y − X ′θ

)]
= 0 for the given θ . To ensure point identification, we could add

the additional restriction on M that E
(
X X ′

)
is nonsingular, because then θ would be uniquely determined

in the usual way by θ = E
(
X X ′

)−1
E (XY ). However, if we do not add this additional restriction, then

we can find values θ̃ that are observationally equivalent to θ by letting θ̃ = E
(
X X ′

)−
E (XY ) for different

pseudoinverses E
(
X X ′

)−
.

As described here, identification of θ is parametric, because θ is a vector, and φ can be written as

a vector of moments. However, some authors claim linear regression as being semiparametric, because

it includes errors e that have an unknown distribution function. This distinction depends on how we
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define φ and θ . For example, suppose we had IID observations of Y, X . We could then have defined φ

to be the joint distribution function of Y, X , and defined θ to include both the coefficients of X and the

distribution function of the error term e. Given the same model M , including the restriction that E
(
X X ′

)
is nonsingular, we would then have semiparametric identification of θ .

Example 3: treatment. Suppose the DGP consists of individuals who are assigned a treatment of

T = 0 or T = 1, and each individual generates an observed outcome Y . Assume Y, T are independent

across individuals. In the Rubin (1974) causal notation, define the random variable Y (t) to be the outcome

an individual would have generated if he or she were assigned T = t . The observed Y satisfies Y = Y (T ).

Let the parameter of interest θ be the average treatment effect (ATE), defined by θ = E (Y (1)− Y (0)).

The model M is the set of all possible joint distributions of Y (1), Y (0), and T . One possible restriction

on the model is Rosenbaum and Rubin’s (1983) assumption that (Y (1) , Y (0)) is independent of T . This

assumption, equivalent to random assignment of treatment, is what Rubin (1990) calls unconfoundedness.

Imposing unconfoundedness means that M only contains model values m (i.e., joint distributions) where

(Y (1) , Y (0)) is independent of T .

The knowable function φ from this DGP is the joint distribution of Y and T . Given unconfound-

edness, θ is identified because unconfoundedness implies that θ = E (Y | T = 1) − E (Y | T = 0),

which is uniquely determined from φ. Heckman, Ichimura, and Todd (1998) note that a weaker suf-

ficient condition for identification of θ by this formula is the mean unconfoundedness assumption that

E (Y (t) | T ) = E (Y (t)). If we had not assumed some form of unconfoundedness, then θ might not

equal E (Y | T = 1) − E (Y | T = 0). More relevantly for identification, without unconfoundedness,

there could exist different joint distributions of Y (1), Y (0), and T (i.e., different model values m) that

yield the same joint distribution φ, but have different values for θ . Those different values would then be

observationally equivalent to each other, and so we would not have point identification.

The key point for identification is not whether we can write a closed form expression like E (Y | T = 1)−

E (Y | T = 0) for θ , but whether there exists a unique value of θ corresponding to every possible φ.

These constructions can all be generalized to allow for covariates, e.g., unconfoundedness can more
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generally be defined as the assumption that (Y (1) , Y (0)) is independent of T conditional on a set of

observed covariates X . This also corresponds to Heckman and Robb’s (1985) selection on observables

assumption. In this case identification requires an additional condition, called the overlap condition,

which says that for every value x that X can take on, we can observe individuals who have T = 1

and X = x , and other individuals who have T = 0 and X = x . This implies that we can identify both

E (Y | T = 1, X = x) and E (Y | T = 1, X = x), and the average treatment effect θ is then identified by

θ = E (E (Y | T = 1, X)− E (Y | T = 0, X)), where the outer expectation is over all the values that X

can take on.

Example 4: linear supply and demand. Consider the textbook example of linear supply and demand

curves. Assume we have, for each time period, a demand equation Y = bX+cZ+U and a supply equation

Y = aX + ε, where Y is quantity, X is price, Z is income, and U and ε are mean zero errors, independent

of Z . Each model value m could consist of a particular joint distribution of Z , U , and ε in every time

period. Note that these distributions could change over time. Different values of coefficients a, b, and c,

and different distributions of Z , U , and ε for all time periods correspond to different model values m. The

model M is the set of all possible model values m that satisfy the assumptions. Here φ could be defined

as the vector
(
φ1, φ2

)
of reduced form coefficients Y = φ1 Z + V1 and X = φ2 Z + V2 where V1 and V2

are mean zero, independent of Z . Suppose θ = a, meaning that what we want to identify is the coefficient

of price in the supply equation. Solving for the reduced form coefficients we have that φ1 = ac/ (a − b)

and φ2 = c/ (a − b).

In this example, what model values m comprise a given structure s (φ, θ)? Along with distributions,

each m includes a particular value of a, b, and c. So the model values m that are in a given structure

s (φ, θ) are the ones that satisfy the equations θ = a, φ1 = ac/ (a − b), and φ2 = c/ (a − b). Note in

particular that, if c 6= 0, then φ1/φ2 = a, so s (φ, θ) is empty if c 6= 0 and φ1/φ2 6= θ . Whenever s (φ, θ)

is not empty, it contains many elements m, because there are many different possible distributions of Z ,

U , and ε for the given value of φ and θ .

Without additional assumptions, θ is not identified in this example. This is because any two values
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θ and θ̃ will be observationally equivalent when φ = (0, 0). The more familiar way of saying the same

thing is that, for identification of the supply equation, we need the instrument Z to appear in the demand

equation, and therefore we need c 6= 0, which implies that φ2 6= 0. If we include in the definition of the

model that c 6= 0, then θ is identified.

Example 5: latent error distribution. Suppose the DGP is IID observations of scalar random vari-

ables Y, X , so φ is the joint distribution of Y, X . The model M is the set of joint distributions of X,U

satisfying the restrictions that X is continuously distributed, U ⊥ X (meaning U is independent of X ),

and that Y = I (X +U > 0), which means that Y is one if X+U is positive and zero otherwise. Consider

identification of the function FU (u), the distribution function of U , so in this example θ is a function, and

the identification is nonparametric.

For any value x that the random variable X can take on, we have E (Y | X = x) = Pr (X +U > 0 | X = x) =

Pr (x +U > 0) = 1 − Pr (U ≤ −x) = 1 − FU (−x). This shows that the function FU (u) is identified

for u = −x , since it can be recovered from the function E (Y | X = x), and that function is known given

φ. This is the logic behind the identification of Lewbel’s (2000) special regressor estimator, which is dis-

cussed further in Section 4. Note however that the function FU (u) might not be identified everywhere. It

is only identified for values of u that are in the support of −X .

In examples 1, 2, and 5 above, data are assumed to be IID observations of some vector we can call W ,

and therefore what we start by assuming is knowable, φ, is the distribution function of W . But in other

contexts like time series data, or in social interactions models, it is generally not reasonable to assume

the distribution function is known, because the dimension of the joint distribution function grows at the

same rate that the sample size grows. In such contexts it is more plausible to start by assuming that only

some stable features of the joint distribution of data are knowable. For example, if the data consists of

observations of a vector W in different time periods, with a distribution that potentially changes every

period, it might be reasonable to assume W follows a martingale process, and then φ might consist of

transition probabilities. Or for structures that correspond to linear stationary times series models, φ might

be autocovariances at all lag lengths. In examples 3 and 4 above, φ consists of the true values of linear
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regression coefficients. These could, e.g., be the probability limits of regression coefficients estimated

using time series, cross section, or panel data.

Many identification arguments in econometrics begin with one of three cases: Either φ is a set of

reduced form regression coefficients, or φ is a data distribution, or φ is the maximizer of some function.

These starting points are sufficiently common that they deserve names, so I will call these classes Wright-

Cowles identification, distribution based identification, and extremum based identification.

Wright-Cowles Identification: The notion of identification most closely associated with the Cowles

foundation concerns the simultaneity of linear systems of equations like supply and demand equations.

This is the same problem considered earlier by Philip and Sewall Wright, as discussed in the previous

section, so call this concept Wright-Cowles identification. Let Y be a vector of endogenous variables,

and let X be a vector of exogenous variables (regressors and instruments). Define φ to be a matrix of

population reduced form linear regression coefficients, that is, φ denotes a possible value of the set of

coefficients that are obtained from a linear projection of Y onto X .

The model M is a set of linear structural equations. The restrictions that define the model include

exclusion assumptions, e.g., an element of X that is known to be in the demand equation, but is excluded

from the supply equation, and therefore serves as an instrument for price in the demand equation.

Let θ be a set of structural model coefficients we wish to identify. For example, θ could be the

coefficients of one equation (say, the demand equation in a supply and demand system), or θ could be

all the coefficients in the structural model, or θ could just be a single price coefficient. More generally,

θ could be some function of coefficients, like an elasticity with respect to X in a model that is linear in

functions of X .

For a given value of θ and φ, the structure s (φ, θ) is the set of all model values having structural

coefficients (or functions of structural coefficients) θ and reduced form coefficients φ. Recall that point

identification of θ0 requires that there not exist any φ, θ , and model value m such that m is in both s (φ, θ0)

and s (φ, θ)where θ 6= θ0. This means there can’t be any θ 6= θ0 that satisfies the restrictions of the model

and has the same matrix of reduced form coefficients φ that the true θ0 might have. We say "might have"
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here because there could be more than one reduced form matrix value that is consistent with the true θ0.

For example, if θ0 is just the coefficient of price in the supply equation, there could be many possible

reduced form coefficient matrices φ, corresponding to different possible values of all the other coefficients

in the structural model.

A convenient feature of Wright-Cowles identification is that it can be applied to time series, panel, or

other DGP’s with dependence across observations, as long as the reduced form linear regression coeffi-

cients have some well defined limiting value φ.

Identification of linear models can sometimes be attained by combining exclusions or other restrictions

on the matrix of structural coefficients with restrictions on the covariance matrix of the errors. In this

case we could expand the definition of φ to include both the matrix of reduced form coefficients and the

covariance matrix of the reduced form error terms, conditional on covariates. Now we’re assuming more

information (specifically, the error covariance matrix) is knowable, and so the structure s can now include

restrictions not just on coefficients, but also on error covariances. More generally the structure could have

all kinds of restrictions on the first and second moments of Y given X . In models like these, identification

is sometimes possible even without instruments of the type provided by exclusion restrictions. Examples

include the LISREL model of Jöreskog (1970) and the heteroskedasticity based identification of Lewbel

(2012, 2018).

Distribution Based Identification: Distribution based identification is equivalent to the general defi-

nition of identification given by Matzkin (2007, 2012). It is derived from Koopmans and Reiersøl (1950),

Hurwicz (1950), Fisher (1966), and Rothenberg (1971). These authors defined notions of a structure,

observational equivalence, and identification with varying degrees of explicitness. In distribution based

identification, what is assumed to be knowable, φ, is the distribution function of an observable random

vector Y (or the conditional distribution function of Y given a vector X ). In these earlier references, the

restrictions of the model implied that φ was some known parametric family of distribution functions, and

so had a known functional form. In that case model parameters could typically be estimated by maximum

likelihood estimation. However, one might more generally define the model by only imposing nonpara-
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metric restrictions on the knowable distribution function, like continuity or existence of moments. Distri-

bution based identification is suitable for IID data, where φ would be knowable by the Glivenko-Cantelli

theorem, or may apply to some non-IID DGP’s where the distribution is sufficiently parameterized.

Here θ could be parameters of a parameterized distribution function, or features of the distribution φ

like moments or quantiles, including possibly functions like conditional moments. Alternatively, θ could

consist of constants or functions describing some behavioral or treatment model that is assumed to generate

data drawn from the distribution φ. The structure s (φ, θ) will be an empty set if the given distribution

function φ doesn’t have the features or parameter values θ . Two vectors θ and θ̃ are observationally

equivalent if there’s a distribution function φ that can imply values θ or θ̃ . So θ is point identified if it’s

uniquely determined from knowing the distribution function φ.

Note a key difference between Wright-Cowles and distribution based identification and is that the latter

assumes an entire distribution function is knowable, while the former is based on just having features of

the first and second moments of data be knowable.

Extremum Based Identification: Following Sargan (1959, 1983) and Amemiya (1985), Newey and

McFadden (1994) define a notion of identification that, by analogy with extremum estimators, we will call

extremum based identification. Extremum estimators are estimators that maximize an objective function,

such as GMM (generalized method of moments) or least squares estimation. For extremum based identifi-

cation, each model value m is associated with the value of a function G. What is assumed to be knowable,

φ, is the value (or set of values) of vectors or functions ζ that maximize G (ζ ). The parameters θ would

typically be subsets of or functions of elements of ζ , but could more generally be features of G or of the

underlying DGP that generates values of G.

To see the connection between extremum based identification and estimation, consider the example of

extremum estimators that maximize an average with IID data. Let ζ be a vector of parameters. Assume

φ̂ equals the set of all ζ that maximize
∑n

i=1 g (Wi , ζ ) /n where g is a known function, and IID Wi

are observations of an observable data vector. If −g (Wi , ζ ) is a squared error term for observation i ,

then this would be a linear or nonlinear least squares estimator, while if g is the log of the probability
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density or mass function of Wi , then this could be a maximum likelihood estimator. Now define G by

G (ζ ) = E (g (Wi , ζ )). More generally, G (ζ ) could be the probability limit of the objective function of

a given extremum estimator. The parameter θ is point identified if, for every value of G allowed by the

model, there’s only a single value of θ that corresponds to any of the values of ζ that maximize G (ζ ).

Suppose G is, as above, the probability limit of the objective function of a given extremum estimator.

A standard assumption for proving consistency of extremum estimators is to assume G (ζ ) has a unique

maximum ζ 0, and that θ0 equals a known function of (or subset of) ζ 0. See, e.g., Section 2 of Newey and

McFadden (1994). This is a sufficient condition for extremum based identification.

For linear models, Wright-Cowles identification can generally be rewritten as an example of, or a

special case of, extremum based identification, by defining G to be an appropriate least squares objective

function. In parametric models, distribution based identification can also often be recast as extremum

based identification, by defining the objective function G to be a likelihood function.

Extremum based identification can be particularly convenient for contexts like time series or panel

data models, where the distribution of data may change with every observation, or for social interactions

models where there is complicated dependence across observations. When the DGP is complicated, it

may be difficult to define everything that is knowable about the DGP, but feasible to show that the max-

imizing values of a given objective function G are knowable, which is all we need for extremum based

identification.

A key feature of extremum based identification is that, for the purpose of identification, nothing about

the DGP is considered to be known except for maximizing values of the objective function G. This is

an advantage in that extremum based identification is what is needed to establish consistency and other

asymptotic properties of any given extremum based estimator. But this key feature also has the drawback

of not saying anything about whether θ could have been identified from other features of the underlying

DGP that might be knowable. For example, suppose the DGP is IID observations wi of a bounded scalar

random variable W and θ0 = E (W ). Then, applying distribution based identification, we would conclude

that that θ0 is identified. However, suppose we had considered extremum based identification where the
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model consists of G functions defined by G (ζ ) = −E
[
(W − |ζ |)2

]
. The set of arguments that maximize

this G is the set φ = {θ0,−θ0}. As a result, θ0 and −θ0 are observationally equivalent, and therefore θ

is not identified using this G. Of course, in this case we failed to identify θ only because the objective

function failed to account for other information that would have been knowable given IID data. This is

precisely the limitation of extremum based identification. Failure of extremum based identification can be

due either to some fundamental source of nonidentification in the DGP, or due to the particular choice of

objective function.

This problem typically does not apply to parametric distribution based identification, because, under

regularity conditions, the likelihood function contains all of the information about parameters that is avail-

able in the population. However, this issue can arise in Wright-Cowles identification. By defining φ just

in terms of features of first and second moments, Wright-Cowles has the extremum based identification

problem of ignoring additional information in the DGP that might sometimes be both useful and available

for identification. In particular, third and higher moments are generally available in linear models, and

can sometimes be used to obtain identification even when Wright-Cowles type exclusion restrictions are

not available. One simple example is Lewbel (1997b), which uses some information in third moments to

obtain identification in models containing mismeasured covariates without instruments. Other examples

are given later in section 3.7, on identification by functional form.

Wright-Cowles, distribution, and extremum based identification are all examples of point identifica-

tion. They differ only in what they regard as the knowable information φ in the DGP.

3.4 Demonstrating Point Identification

How can we show that a given set of parameters θ are point identified? In each of the five specific

examples given in the previous section, we used "identification by construction." Identification by con-

struction means that we can write a closed form expression for θ as a function of φ. In example 1 we had

θ = F−1 (1/2), in example 2 we had θ = E
(
X X ′

)−1
E (XY ), and in 3 we had θ = E (Y | X = 1) −

E (Y | X = 0). Even when θ is a function rather than a vector, identification is often proved by construc-
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tion, as in example 5 where we had θ = FU (u) = 1− E (Y | X = −u). While identification by construc-

tion is the commonest way to prove that parameters are identified, it is not necessary for.identification that

such closed form expressions exist.

In the statistics literature, it is common to not consider identification separately from estimation, but to

instead just directly prove that a proposed estimator is consistent. Suppose you can find an estimator θ̂ and

prove that, under the assumed DGP, θ̂ is consistent. Then that also proves θ is identified by construction,

where the construction is that θ equals the probability limit of θ̂ . For example, suppose θ = E (W ) and

you want to prove that θ is identified. One way you could do so would be to let θ̂ be the sample mean of

W , and show that a weak law of large numbers applies to your given DGP. Then θ would be identified by

the construction θ = plim
(̂
θ
)
. One caution in applying this method is that some proofs of consistency

either implicitly or explicitly assume identification. For example, Theorem 2.1 of Newey and McFadden

(1994), which proves the consistency of extremum estimators, includes extremum based identification as

one of its assumptions. This theorem could therefore not be used to prove identification, because even

though it shows that θ = plim
(̂
θ
)
, it assumes identification to do so.

An important example of a direct consistency proof is the Glivenko–Cantelli theorem. Assume the

DGP is IID observations of a vector W . Let F (w) be the distribution function of W , evaluated at the

value w. The empirical distribution function F̂ is the estimator of the function F defined as F̂ (w) =∑n
i=1 I (Wi ≤ w) /n. This is nothing more than estimating the probability that W ≤ w by counting how

many observations of Wi in the sample are less than or equal to w, and dividing by the sample size. The

Glivenko–Cantelli theorem says that as long as our observations are IID, F̂ (w) is a uniformly consistent

estimator of F (w). This is the formal justification for our frequent starting assumption that, with IID

data, what is knowable, φ, is a distribution function. Similarly, with non-IID data, the weak law of large

numbers can justify assuming that means are knowable.

Although it is sometimes possible, as in the previous paragraph, to prove identification and estimator

consistency simultaneously, analysis of identification logically precedes estimation, and identification does

not by itself imply that estimators with any particular desired properties exist. For example, with IID
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observations of a random variable X that has a finite mean, we might desire an estimator for θ = E (X)

that converges in mean square, but if X has sufficiently thick tails then no such estimator may exist. Ill-

conditioned identification and non-robust identification (discussed later) are two other situations where,

despite being point identified, any estimator of θ will have some undesirable properties.

Another general method of showing that a parameter is identified is to prove that the true θ0 is the

unique solution to some maximization problem defined by the model. For example, if one can show that

a likelihood function is globally concave, then maximum likelihood will have a unique maximizing value,

and identification can then be established by showing that the unique maximizer in the population equals

the true θ0. Identification of the parameters in a standard probit or logit model can be established in this

way (see Haberman 1974).

Based on earlier work by Roehrig (1988), Matzkin (2008) provides a theorem that, for a large class of

regular simultaneous equations models, characterizes when two structures are observationally equivalent,

and so provides a useful tool for establishing identification. Yet another technique for proving identifica-

tion is to show that θ0 is the unique fixed point in a contraction mapping based on the model. This method

is employed, e.g., by Berry, Levinsohn, and Pakes (1995) in what is known as the BLP model. They

do not formally prove identification of the BLP model, but they do establish that an important necessary

condition for identification holds by showing that their error term inversion is a contraction mapping. Pa-

storello, Patilea, and Renault (2003) use a fixed point extremum based identification assumption for their

latent backfitting estimator.

Examples of identification proofs that apply many of the above techniques can be found in Matzkin

(2005, 2007, 2012). In some cases, it is possible to empirically test for identification. These are generally

tests of extremum based identification, in that they are based on the behavior of associated extremum based

estimators. Examples include Cragg and Donald (1993), Wright (2003), Inoue and Rossi (2011), Bravo,

Escanciano, and Otsu (2012), and Arellano, Hansen, and Sentana (2012).

An interesting property of point identification is that it can be applied without reference to any data

at all. One could for example propose a theoretical model in which some functions φ are assumed to
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be known, and then ask whether there exists a unique value of vectors or functions θ that satisfy the

restrictions defined by the structure s (φ, θ). Some results in economics do take this form, for example,

the revealed preference theory of Samuelson (1938, 1948), Houthakker (1950), and Mas-Colell (1978)

provides conditions under which indifference curves θ are point identified from demand functions φ. Here

the model is the set of restrictions on demand functions (e.g., homogeneity and Slutsky symmetry) that

arise from maximization of a regular utility function under a linear budget constraint. This identification

theorem makes no direct reference to data, though it is empirically relevant because we believe we can

estimate (and hence can identify) demand functions from observable data.

This example illustrates the sense mentioned earlier in which definitions of identification are some-

what circular or recursive. We start by assuming that a set of vectors or functions φ are ’knowable,’

which essentially means we assume φ is identified. Then given the assumed identification of φ, we de-

fine identification of a set of other parameters θ . Equivalently, identification of parameters θ can only be

proven conditional on already knowing that something else, φ, is identified. For example, the Samuelson,

Houthakker, and Mas-Colell theorems say that, given revealed preference assumptions, if demand func-

tions φ are identified, then indifference curves θ are identified. A separate question would then be when

or whether demand functions themselves can be identified.

3.5 Common Reasons for Failure of Point identification

Parameters θ often fail to be point identified for one of six somewhat overlapping reasons: model incom-

pleteness, perfect collinearity, nonlinearity, simultaneity, endogeneity, or unobservability.

Incompleteness arises in models where the relationships among variables are not fully specified. An

example is games having multiple equilibria, where the equilibrium selection rule is not known or speci-

fied. Incompleteness can also arise in structures characterized at least in part by inequality constraints. It

is sometimes possible for parameters to be point identified in incomplete models, but often incompleteness

causes, or at least contributes to, failure of identification. Incompleteness is discussed further in Section 4.

Perfect collinearity is the familiar problem in linear regression that one cannot separately identify
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the coefficients in a linear regression like Yi = a + bX i + cZi + ei when X i is itself linear in Zi . A

similar problem arises in nonparametric regression, in that one usually cannot nonparametrically identify

the function g (X, Z) = E (Y | X, Z) when the observed X is itself a deterministic function of Z , i.e.,

when X = h (Z) for some function h.

Nonlinearity can cause nonidentification by allowing equations to have multiple solutions. For exam-

ple, suppose we have the model Y = (X − θ)2 + e with E (e) = 0. Then all we may know about the

true value of θ is that it satisfies E
(
Y − (X − θ0)

2
)
= 0 and therefore the true θ equals one of the two

roots of the equation E
(
Y − X2

)
+ 2E (X) θ − θ2 = 0. Without more information, no amount of data

can tell us which root is the true θ , and therefore θ is not point identified (it is, however, set identified,

with the identified set consisting of the two roots). An example of more information that could yield point

identification might be knowing the sign of θ . See also Brown (1983).

Simultaneity is the familiar source of nonidentification that arises from X and Y being determined

jointly or simultaneously, as in the case of price and quantity in a market. This is the previously discussed

issue in Wright-Cowles identification. Recall example 4 in section 3.3, where we had the supply curve

Y = aX + ε and a demand curve Y = bX + cZ + U where Y is log quantity, X is log price, Z is log

income, and ε and U are error terms with E [(ε,U ) | Z ] = 0. For simplicity, assume all these variables

have mean zero. This allows us to simplify expressions by leaving out constant terms (nothing essential

would change here by including constants). Multiplying the supply and demand equations by Z and

taking expectations gives E (ZY ) = aE (Z X) and E (ZY ) = bE (Z X)+ cE
(
Z2
)
. These show that a is

identified by a = E (ZY ) /E (Z X) as long as E (Z X) 6= 0, and that E (Z X) = E
(
Z2
)

c/ (a − b).

The supply equation is identified using the instrument Z , but without more information, b and c are

not identified. The demand curve is observationally equivalent to Y = b̃X + c̃Z + Ũ where, for any

constant λ, b̃ = λb+ (1− λ) a, c̃ = λc, and Ũ = λU + (1− λ) ε. The standard graphical interpretation is

that variation in Z moves the demand curve, thereby causing the intersection of the two curves at various

values of Z to trace out the supply curve, but no information is provided about the slope of the demand

curve. Essentially, only one point on the demand curve is observed.
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Randomization is a useful source of identification, primarily because it prevents simultaneity. It can’t

be the case that Y and X are determined jointly if X is determined by a random process that is independent

of Y .

Endogeneity is the general problem of regressors being correlated with errors. Simultaneity is one

source of endogeneity, but endogeneity can arise in other ways as well. Sampling issues such as mea-

surement errors and selection can cause endogeneity. Even when a regressor X is determined by a coin

flip, if some people are not observed, or are observed with error, in ways that correlate with X , then we

could end up having an endogeneity problem. Endogeneity can also arise when errors that correspond to

unobserved covariates may correlate with observables, just as observables often correlate with each other.

For example, the error in a production function may correspond to an unobserved factor of production

such as entrepreneurship, and may therefore correlate with other factors of production. Or the error in a

wage equation may correspond to an individual’s ability or drive, and so correlate with other factors that

determine wages, like education. In the causal diagrams literature, colliders are endogenous covariates.

The last common source of nonidentification is unobservability. Many models contain unobserved

heterogeneity, which typically take the form of nonadditive or nonseparable error terms. Examples are

unobserved random utility parameters in consumer demand models, unobserved state variables in dynamic

optimization models, and unobserved production efficiency as in stochastic frontier models. The causal

or reduced form literature is often concerned with unobservable counterfactuals, e.g., what an untreated

individual’s outcome would have been had they been treated. In structural models, many of the concepts

we would like to estimate, such as an individual’s utility level, are unobservable.

Still other concepts may in theory be observable, but are difficult to measure, and so in practice are

treated as unobserved. Examples are an individual’s information set in a game or in a dynamic optimization

problem, and individual’s bargaining power within a household. Many identification theorems employ

combinations of assumptions and observable data to identify functions of unobservable (or unobserved)

variables. One example is the use of identifiable compensating variation and equivalent variation to bound

(set identify) unobserved true consumer surplus. Another is the use of unconfoundedness to overcome
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unobservability of counterfactuals in the identification of average treatment effects.

3.6 Control Variables

"I controlled for that." This is perhaps the commonest response to a potential identification question in

econometric modeling (particularly in simple regressions and in Difference-in-Difference analyses). Con-

sider a model where θ is (or includes) the effect of one variable X on another variable Y . The concern

is that the effect of X on Y identified by the model does not equal the desired estimand θ , because of the

presence of some other so-called "confounding" connection between X and Y .

The solution of adding a control variable refers to the inclusion of another variable Z in the model to

fix this problem. For example, in a study of how physical exercise X affects weight gain Y , one would

want to include age of the participants as a control Z . Another example is the "parallel trends" assumption

that underlies difference-in-difference models. Parallel trends is equivalent to assuming that inclusion of

time and group dummies Z in the model completely controls for all confounding relationships between X

and Y other than the desired causal treatment effect.

The idea of a control variable is that Z explains the confounding relationship between X and Y , so

by putting Z in the model we can statistically hold Z fixed, and thereby "control" for the alternative,

unintended connection between X and Y . Fixing Z is assumed to enforce the ceteris paribus condition

mentioned in section 2. Alternatives to adding control variables include various forms of matching, ran-

domization, and data stratification.

There are two reasons why simply including covariates intended to act as controls may not fix these

identification problems, and indeed can potentially make them worse. The first reason is functional form.

Unless we have a structural model of how Z affects Y , one should include Z in the model in a highly

flexible (ideally nonparametric) way. The alternative is accepting that the model might be misspecified. In

particular, the common practice of including controls additively and linearly (i.e., as additional regressors

in a linear regression) is a strong structural modeling assumption, even if the model is intended to be a
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reduced form, causal analysis like LATE or difference-in-difference.6

The second, more important reason is that Z itself could be endogenous, and the problems resulting

from adding an endogenous Z regressor to the model could be worse than the confounding issue. For

example, consider a regression of wages Y on a gender dummy X and other covariates to uncover a

causal effect of gender on wages (as might result from wage discrimination). One might think to include

occupation Z in the regression, to control for the fact that women may choose different occupations from

men, and that occupation affects wages. However Z is endogenous in this case, in that the wages that are

offered to men and to women affect their occupation choice. So unless we can properly instrument for Z

in the regression, including Z in the model will still not yield a causal effect of X on Y .

In the causal diagram literature (see, e.g., Pearl 2000, 2009), a distinction is made between "con-

founders" and "colliders." A confounder is an exogenous variable that, if observed, can be included in the

model as a control. In contrast, occupation Z in the above example is a collider, and, because of the nature

of its endogeneity, it cannot be simply included in the model as a control.

A similar argument applies to difference-in-difference models. The dummies and other covariates

included in these models are intended to act as controls for all sorts of potentially endogenous group and

time related effects. But if any of these dummies or covariates are colliders (or highly correlate with

colliders), the causal interpretation of the difference-in-difference estimand may be lost.

These issues with potential controls are closely related to the Berkson (1946) and Simpson (1951)

paradoxes in statistics. The bottom line is that either implicit or explicit consideration of underlying

structure is needed to convincingly argue that covariates included in the model as controls will actually

function as they are intended. This is true even in reduced form analyses like difference-in-difference

models.

6An exception is so-called "saturated" models. If the controls are binary, and one includes all possible interactions of the

controls with each other and with X , then the resulting model is equivalent to being nonparametric in the controls.
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3.7 Identification by Functional Form

Identification by functional form is when identification holds when we assume some functions in the model

have specific parametric or semiparametric forms, but where identification may fail to hold without these

parametric or semiparametric restrictions. An example of identification by functional form is given by the

Heckman (1978) selection model. That model consists of the two equation system Y =
(
b′X +U

)
D and

D = I
(
a′X + ε ≥ 0

)
where the data are observations of Y , D, and a vector X . This model says that the

dummy variable D is one when a′X + ε is positive, and Y is observed and equal to b′X + U when D is

one, otherwise Y is unobserved and so we just set it equal to zero. Assume errors U and ε are independent

of X . In this model, the coefficient vector b can be identified if the coefficient (an element of the vector b)

of a continuous element of X is known to equal zero. This is an exclusion restriction, like the kind used

to get instruments in Wright-Cowles identification of supply and demand equations. However, even if we

have no such exclusion restriction, b can still be identified by assuming that the errors U and ε are jointly

normal. Here it is the functional form of the error distribution that provides identification by functional

form.

Actually, in this selection model joint normality is much stronger than necessary for identification

without an exclusion restriction. Escanciano, Jacho-Chávez, and Lewbel (2016) show that little more than

nonlinearity in E (D | X) will suffice. A similar result is given in Dong (2012).

As noted in section 3.5, models that are nonlinear in parameters may fail to be identified because

nonlinear equations can have multiple solutions. However, nonlinearity can also sometimes help provide

identification by functional form, as the following surprising example shows. Suppose we continue with

the classical Cowles model considered in example 4 in sections 3.3 and 3.5, except that now, while the

demand curve is still Y = bX + cZ +U , we let the supply curve be Y = d X2 + aX + ε. Assume U and

ε are still independent of Z and have mean zero. Constant terms are omitted for simplicity. We still have

no exogenous variable in the supply equation to serve as an instrument for X in the demand equation. We

also only have the single exogenous Z in the demand equation, and two endogenous regressors (X and

X2) that have coefficients we need to identify in the supply equation. Despite this apparent shortage of
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instruments, in this model the parameters in both the supply and demand equations can be identified!

Substituting out Y in the two equations gives d X2 + (a − b) X − cZ + ε −U = 0, and solving for X

yields the reduced form equation X =
(

b − a ±
(
(b − a)2 + 4 (cZ − ε +U ) d

)1/2)
/2d. This shows that

X is linear in (Z + γ )1/2 for some γ , and squaring this shows X2 is linear in Z and (Z + γ )1/2. So Z is a

valid instrument for X2, and a function of Z that is correlated with (Z + γ )1/2 can serve as an instrument

for X . Generally Z1/2 would be correlated with (Z + γ )1/2, so we can identify and estimate b and c by

an instrumental variables regression of Y on X and Z , using Z1/2 and Z as instruments. Similarly, we can

identify and estimate d and a by an instrumental variables regression of Y on X and X2, again using Z1/2

and Z as instruments.

Formally proving identification entails showing that the equations E
(
Y − d X2 − aX | Z = z

)
= 0

and E (Y − bX − cZ | Z = z) = 0 for all z on the support of Z can be uniquely solved for a, b, c, and d.

This requires that the model contain a few mild additional assumptions. For example, identification would

fail if Z only took the values zero and one. For some rough graphical intuition on why identification is

possible here, observe now that since the supply curve is nonlinear, as Z shifts the demand curve, one sees

intersections of supply at different points along the demand curve, instead of always at the same point.

Unlike the linear case, we now get information about more than one point on the demand curve as Z

moves supply, allowing us to trace out and thereby identify the demand curve.

This idea of identifying linear coefficients by exploiting nonlinearity elsewhere in the system can be

greatly generalized. For example, consider the model Y = h
(
Z ′b, g (Z)

)
+ ε and X = g (Z)+U where

the functions h and g are unknown, and the joint distribution of ε and U is unknown but independent

of Z . Models like these can arise with endogenous regressors or with sample selection (the Heckman

selection model discussed at the start of this subsection is an example). A model like this would generally

be identified by making an exclusion assumption, e.g., assuming that some element of b equals zero.

Escanciano, Jacho-Chávez, and Lewbel (2016) show that the coefficients b and the functions h and g can

generally be identified in this model without exclusion assumptions, with a key requirement being that g

is nonlinear.
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Historically, identification by functional form assumed completely parameterized models with no un-

known functions. However, that is often much stronger than needed for identification. For example,

suppose, as in the previous supply and demand example, we have demand given by Y = bX + cZ + U

where X is endogenous, and so is correlated with U . In that example, if Z is independent of U , then

any nonlinear function of Z would be a valid instrument for X in the sense of being uncorrelated with U .

Identification wouldn’t require knowing that the supply equation was specifically a quadratic functional

form. Most forms of nonlinearity in supply would suffice. As these examples show, identification by

functional form does not necessarily require specific parametric models like a known error distribution or

a completely parameterized equation. Often what suffices is just some general functional restrictions on

the model, such as linearity in one equation and nonlinearity in another.

Consider again the model Y = a+ bX + c′Z +U with endogenous X , so X is correlated with U , and

suppose X = α+β ′Z + e. Suppose we have no exclusion assumption, meaning no element of c is known

to equal zero, and therefore we have no outside source of instruments. This model can sometimes be

identified by exploiting heteroskedasticity instead of nonlinearity in the X equation to identify the model.

Linearly regress X on a constant and on Z , then take the residuals ê from that regression and let R =(
Z − Z

)
ê where Z is the sample average of Z . Under some assumptions regarding heteroskedasticity,

Lewbel (2012) shows that R is a valid vector of instruments for X in the Y equation. See also Lewbel

(2018) and Baum and Lewbel (2019). One example of assumptions that make this identification work is

if X suffers from classical measurement error, so U contains both model and measurement error. If the

true model error in the Y equation is homoskedastic and e is heteroskedastic, then R is a valid instrument

for X . This procedure is also valid, resulting in consistent estimates, under some standard factor structure

assumptions. Other examples of heteroskedasticity based identification include Rigoban (2003) and Klein

and Vella (2010).

Still another example of identification by functional form is the model Y = a + bX + U where X is

assumed to suffer from classical measurement error. Assuming that the true model error and measurement

error are independent of the true, nonmismeasured X , Reiersøl (1950) obtained the surprising result that
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a and b are identified without any instruments or other outside information as long as either some error

or the true X is not normal. So the standard assumption of normality turns out to be the worst possible

functional form for identification with measurement error. Lewbel (1997b) shows that, in this model, if

the measurement error is symmetrically distributed and the true X is asymmetric, then
(
X − X

)2
is a

valid instrument for X . Schennach and Hu (2013) show that the Reiersøl result can be extended to obtain

identification of Y = g (X) + U with mismeasured X for almost any function g. This model is not

identified for only a few specific functional forms of g and a few specific functional forms of U . In these

models the assumption that the true regression error is not just uncorrelated with X but is independent of

X has strong identifying power.

Identification based on functional form (e.g., using constructed instruments as in the above examples),

generally depends on relatively strong modeling assumptions. So, when they are available, it is usually bet-

ter to instead use ’true’ outside instruments, that is, instruments that are known or believed to be excluded

and exogenously determined based on randomization or on strong economic theory. Some proponents of

causal inference methods (discussed in Section 5 below) only accept randomization as a valid source of

exogenous variation.

In practice one is often not sure if a candidate outside instrument is a valid instrument. An instrument

might be invalid because the economic theory leading to its exclusion restriction is wrong. Even with

randomized instruments in a causal or experimental setting, assumptions like SUTVA or no defiers (see

Section 5 below) could be violated, making the instrument invalid despite randomization. Or identification

with a randomized instrument could fail due to problems such as measurement errors or attrition correlated

with treatment (that is, observations that are missing not at random). It can therefore often be useful to

combine identification by outside instruments or randomization with identification based on functional

form.

In particular, identification based on functional form, such as constructed instruments, can be used

to provide overidentifying information for model tests and for robustness checks (see the next section

for the definition of overidentification). The overidentification provided by constructed instruments or by
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functional form restrictions can be used to test validity of a potential "true" instrument. For example, in

the linear model Y = a + bX + cZ + U , where Z is exogenous, we may have some outside variable W

that we think is a valid instrument for X . We could estimate the model by two stage least squares, using

a constant, W , Z , and Lewbel’s (2012) heteroskedasticity based constructed variable R defined above as

instruments. With both W and R as instruments for X , the model is overidentified (see the next section for

details on ove-ridentification), so one can test jointly for validity of all the instruments, using e.g., a Sargan

(1958) and Hansen (1982) J-test. If validity is rejected, then either the model is misspecified or at least one

of these instruments is invalid. If validity is not rejected, it is still possible that the model is wrong or the

instruments are invalid, but one would at least have increased confidence in both the outside instrument W

and the constructed instrument R. Both might then be used in estimation to maximize efficiency.

One could also just estimate the model separately using W or R as an instrument, and compare the

resulting estimates of b and c. If the estimates are similar across these different sets of identifying assump-

tions, then that provides support for the model and evidence that the results are not just artifacts of one

particular identifying assumption. More generally, identification based on functional form or constructed

instruments is preferably not used in isolation, but rather is ideally employed in conjunction with other

means of obtaining identification, both as a way to check robustness of results to alternative identifying

assumptions and to increase efficiency of estimation. We should have more confidence that estimated

effects are reliable if different sources of identification that may be available (randomization, exclusions,

functional form, constructed instruments) all yield similar estimates.

3.8 Over, Under, and Exact Identification, Rank and Order conditions

Models often contain collections of equalities involving θ . Common examples are conditional or uncondi-

tional moments, i.e., equations of the form E
[
g (W, θ)

]
= 0 or E

[
g (W, θ) | Z

]
= 0 where W and Z are

observable variables and g is a known function. Most parametric and many semiparametric estimators are

based on information of this form, including linear and nonlinear least squares, two stage least squares,

generalized method of moments (GMM) estimators, quantile regressions, and more generally the first or-
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der conditions arising from extremum estimators, such as the score functions associated with maximum

likelihood estimation.

Suppose the model consists mainly of a set of equalities like these. We then say that parameters

θ are exactly identified if removing any one these equalities causes θ to no longer be point identified.

The parameters are overidentified when θ can still be point identified after removing one or more of the

equalities, and they are underidentified when we do not have enough equalities to point identify θ .

If θ is a J−vector, then it will typically take J equations of the form E
[
g (W, θ)

]
= 0 to exactly

identify θ . Having the number of equations equal or exceed the number of unknowns is called the order

condition for identification. The order condition is typically necessary but not sufficient for point identi-

fication, though in many applications, satisfying the order condition may suffice for generic identification

as defined later in Section 7.

Being able to uniquely recover a vector θ from a set of linear equations of the form Bθ = 0 requires

the rank condition on the matrix B that the rank of B equal the number of elements of θ . More general

rank conditions for nonlinear models exist based on the rank of relevant Jacobian matrices. See Fisher

(1959, 1966), Rothenberg (1971), Sargan (1983) and Section 8.1 below on local identification. Bekker

and Wansbeek (2001) show that the rank conditions for identification can be evaluated from data in a

variety of settings.

Generally, when parameters are overidentified, it is possible to test validity of the moments used for

identification. Intuitively, given overidentification one could estimate the J vector θ using different com-

binations of J moments, and test if the resulting estimates of θ all equal each other. In practice, more

powerful tests exist that work with all the moments simultaneously, in particular, the Sargan (1958) and

Hansen (1982) J-test. Arellano, Hansen, and Sentana (2012) discuss testing for underidentification.

The terminology discussed in this section is generally from the Cowles foundation era, e.g., the term

’order condition’ dates back at least to Koopmans (1949). This terminology comes from the era where θ

would be a vector, not a function. An extension is Chen and Santos (2015), who define a notion of local

overidentification for semiparametric models.
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4 Coherence, Completeness, and Reduced Forms

Although often ignored in practice, consideration of coherence and completeness of models should log-

ically precede the study of identification. Indeed, most proofs of point identification either implicitly or

explicitly assume the model has a unique reduced form, and therefore (as discussed below) assume both

coherence and completeness. For example, the models considered in Matzkin’s (2005, 2007, 2012) iden-

tification surveys are coherent and complete. In contrast, incompleteness often results in parameters being

set identified but not point identified.

Let Y be a vector of endogenous variables, and let V be a set of observables and unobservables that

determine Y . Here V could contain unknown parameters, exogenous observed covariates and error terms.

Let�v and�y be the sets of all values that V and Y can take on, respectively. Consider a proposed model

M of the form Y = H(Y, V ). By saying this equation is the model M , what is meant that each model

value m ∈ M implies a DGP in which V and Y satisfy this equation.

This model is defined to be coherent if for each v ∈ �v there exists a y ∈ �y that satisfies the equation

y = H(y, v). The model is defined to be complete if for each v ∈ �v there exists at most one value of

y ∈ �y that satisfies the equation y = H(y, v). A reduced form of the model is defined as a function

(or mapping) G such that y = G(v), so a reduced form expresses the models’ endogenous variables Y in

terms of V . Having both coherence and completeness means that for each v ∈ �v there exists a unique

y ∈ �y that satisfies y = H(y, v). Having a model be both coherent and complete therefore guarantees

the existence of a unique reduced form y = G(v) for the model, because then G can be uniquely defined

by G(v) = H (G (v) , v).

This definition of completeness and coherence is used by Tamer (2003). Completeness as defined here

is an extension of the concept of statistical completeness. Statistical completeness is discussed in Newey

and Powell (2003) for identification of nonparametric IV models, and in parametric models is associated

with sufficient statistics. Gourieroux, Laffont, and Monfort (1980) defined a model to be coherent if, in

Tamer’s terminology, the model is both coherent and complete. Heckman (1978) referred to this combi-

nation of both coherence and completeness as the "principal assumption" and as "conditions for existence
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of the model."

Incoherent or incomplete models arise in some simultaneous games, e.g., based on Tamer (2003),

the industry entry game discussed by Bresnahan and Reiss (1991) can be incoherent if the game has no

Nash equilibrium, or incomplete if there are multiple equilibria. Aradillas-Lopez (2010) removes the

incompleteness in these games by showing how a unique Nash equilibrium exists when players each

possess some private information.

Entry games are an example of a system of equations involving discrete endogenous variables. More

generally, issues of incoherency and incompleteness can readily arise in simultaneous systems of equations

involving limited dependent variables. Examples are analyzed by Blundell and Smith (1994), Dagenais

(1997), and Lewbel (2007a). To illustrate, consider the simple model

Y1 = I (Y2 +U1 ≥ 0)

Y2 = θY1 +U2

where θ is a coefficient, U1 and U2 are unobserved error terms, V = (θ,U1,U2), Y = (Y1, Y2), and I is

the indicator function that equals one if its argument is true and zero otherwise. These equations could for

example be the reaction functions of two players in some game, where player one makes a binary choice

Y1 (such as whether to enter a market or not), and player two makes some continuous decision Y2 (such as

the quantity to produce of a good).

It is not obvious that this simple model could suffer from incoherence or incompleteness, and so a

researcher who is not familar with these issues could easily make the mistake of attempting to estimate

this model by standard methods (e.g., maximum likelihood assuming U1 and U2 are normal).

Subtstituting the second equation into the first gives Y1 = I (θY1+U1+U2 ≥ 0). Using this equation

one can readily check that if −θ ≤ U1 + U2 < 0 then both Y1 = 0 and Y1 = 1 satisfy the model, and

therefore the model is incomplete if the errors can satisfy this inequality. Also, if 0 ≤ U1 + U2 < −θ

then neither Y1 = 0 nor Y1 = 1 will satisfy the model, making the model incoherent. This model is both

coherent and complete if and only if θ = 0 or U1 +U2 is constrained to not lie between zero and −θ .

The above system of equations is simultaneous, in that Y1 is a function of Y2 and Y2 is a function
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of Y1. A pair of equations is said to be triangular if either Y1 is a function of Y2 or Y2 is a function of

Y1, but not both. For example, the model above is triangular if θ = 0 (since in that case Y2 depends

on Y1, but not vice versa), and in that case the model is also coherent and complete. In fact, if U1 and

U2 can take on any value (e.g., if they were normal), then the model is coherent and complete only if

θ = 0. Lewbel (2007a) shows this type of result is generic, i.e., that simultaneous systems of equations

containing a dummy endogenous variable and separable errors generally need to either be triangular or

to restrict the supports of the errors to be coherent and complete. It is possible to overcome this generic

problem, constructing complete, coherent simultaneous systems containing dummy endogenous variables,

by writing the system as a triangular one where the direction of triangularity is itself endogenous. This

means constructing a model where sometimes Y2 depends on Y1 and at other times Y1 depends on Y2. For

example, if we replace the above model with

Y1 = I (DY2 +U1 ≥ 0)

Y2 = (1− D) θY1 +U2

Where D is a binary random variable, then the model becomes complete and coherent. In the game

context, D could be an indicator of which player moves first, which could vary either deterministically

or randomly. Lewbel (2007a) shows that this is often the only way to attain coherence and completeness

without restricting the support of the errors.

Incoherence can be interpreted as a form of model misspecification, since it implies that for some

observable values of V there does not exist a corresponding value of Y , whereas in data when we observe

V we would also observe some value of Y . Incoherent models can therefore be invalidated by a single

data point (an observation of V and Y when the model says no Y value corresponds to that V value). This

also means that incoherent models cannot used to make predictions about Y over the space of all values of

V .

In contrast to incoherent models, we may think of an incomplete model as a model that is not fully

specified, since for some feasible values of V , the model does not determine the corresponding unique

value for Y . So, in many applications, a finding of incoherence can mean that the model is wrong and
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needs to be changed, while a finding of incompleteness means that the model may need to be completed.

Determining an equilibrium selection rule is an example of completing a model that is otherwise incom-

plete due to having multiple equilibria.

Even without changing or completing the model, parameters of incoherent or incomplete models can

sometimes be point identified and estimated. See Tamer (2003) for examples. However, incomplete

models usually have parameters that are set rather than point identified, as in Manski and Tamer (2002).

This is because, when multiple values of Y can correspond to each V , it will often be the case that the

different values of Y will correspond to different values of θ .

Incompleteness or incoherency can arise in models with multiple decision makers, such as strategically

interacting players in a game. Models of a single optimizing agent will typically be coherent though

sometimes incomplete, such as when the same utility or profit level can be attained in more than one way.

Incoherency or incompleteness can also arise in such models when the decision making process is either

incorrectly or incompletely specified, or is not characterized by optimizing behavior. Equilibrium selection

mechanisms or rules for tie breaking in optimization models can be interpreted as techniques for resolving

incompleteness. Another common source of incompleteness is behavioral restrictions on structures that

take the form of inequality rather than equality constraints, yielding multiple possible values of Y for the

same V .

5 Causal Reduced Form vs. Structural Model Identification

Among economists doing empirical work, recent years have seen a rapid rise in the application of so-called

reduced form or causal inference methods, usually based on randomization. This so-called "credibility

revolution," as exemplified by, e.g., Angrist and Pischke (2008), Levitt and List (2009), and Banerjee and

Duflo (2009), arose in economics long after the standard theory of identification was developed in the

context of structural modeling. As a result, most surveys of identification in econometrics, such as Hsiao

(1983) or Matzkin (2007, 2012), do not touch on identification as it is used in this literature.

Proponents of these methods often refer to their approach as a reduced form methodology. Other
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commonly used terms for these methods include causal modeling, causal inference, treatment effects

modeling, program evaluation, or mostly harmless econometrics.7

To distinguish them from structural model based methods, I will simply refer to these types of analyses

as causal, or causal reduced form methods. Two key characteristics of causal methods are 1. A focus

on identification and estimation of treatment effects rather than deep parameters, 2. An emphasis on

natural or experimental randomization (rather than restrictions on how treatment may affect outcomes) as

a key source of identification. However, many exceptions to these characterizations exist. For example,

numerous structural analyses, like the famous Roy (1951) model, also seek to identify treatment effects.

Some reduced form methods, like difference in difference estimation (see section 3.6), are not based on

random assignment. Some literatures, such as Pearl (2000, 2009), focus on using minimal structural type

assumptions (like causal diagrams) to aid in identifying causal effects. And a growing number of empirical

structural analyses make use of data obtained from randomized control trial (RCT) experiments.

Despite these many exceptions, causal methods generally focus on identification and estimation of

treatment effects based on random assignment, either of treatment itself from a RCT, or of some variable

that correlates with treatment (i.e., a randomly assigned instrument). In the causal literature, instruments

are defined as variables that one can plausibly argue are randomly determined, and that correlate with

treatments of interest. A large part of the causal literature is devoted to designing and interpreting RCTs.

These are particularly popular in, e.g., development economics. Much of the rest of the causal literature

entails searching for and exploiting instruments (as from natural experiments) for identification.

Causal methods largely forego attempts to identify so-called structural or deep parameters, that is,

parameters of models based on equations representing the behavior of various economic agents (such

parameters are assumed to be unaffected by the treatment). Instead, causal analyses focus on identifying

treatment effects. These are the average (across the population or across some subpopulation) of the

7Terms like reduced form modeling or causal modeling are potentially confusing, since "reduced form" has a specific mean-

ing discussed earlier in the structural modeling context, and structural methods are also often employed to identify causal or

treatment effects. Mostly Harmless Econometrics is the title of Angrist and Pischke’s (2008) book promoting these approaches.

The name is in turn based on a satirical science fiction novel, that humorously also features the phrase, "infinite improbability."
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change in outcome that results from a change in a covariate (the treatment). Examples of such treatment

effect parameters are average treatment effects (ATE), average treatment effects on the treated (ATT),

marginal treatment effects (MTE), local average treatments effects (LATE), and quantile treatment effects

(QTE).

A counterfactual is defined as what would have occurred under some different treatment than the one

that was actually administered. More generally, a counterfactual can be what an outcome would have

equaled if a covariate had taken a different value from the value it actually had. As discussed earlier,

typical obstacles to attaining identification in structural models include simultaneity and endogeneity.

In contrast, in the causal framework, as emphasized by Rubin (1974) and Angrist and Pischke (2008),

the main obstacle to identification is that parameters of interest are defined in terms of unobservable

counterfactuals. Note, however, that treatment effect parameters can also be expressed in structural terms,

and their identification issues can then be recast as endogeneity issues. See, e.g., Pearl (2000, 2009, 2015)

and Heckman (2008, 2010).

5.1 Randomized Causal or Structural Modeling? Do Both

Heated debates exist on the relative merits of causal vs. structural methods. An implication of Angrist

and Pischke’s (2008) book title is that structural modeling includes harmful econometrics. Proponents of

structural methods have in turn referred to reduced form studies demeaningly as cuteonomics, and their

practitioners as randomistas (implying an emphasis on randomization based methodology over economic

importance). Some prominent economics journals are known for being either friendly or hostile to struc-

tural methods. These debates have even spilled over into the popular press, e.g., Scheiber (2007).

Before getting into details regarding the two methodologies, it should be pointed out that the per-

ceived conflict between proponents of causal, reduced form methods vs. structural modeling approaches

is somewhat artificial. Researchers do not need to choose between building structural models vs. esti-

mating treatment effects. For both identification and estimation, the strengths of both approaches may be

combined in many ways, including these:
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1. Causal analyses based on randomization can be augmented with structural econometric methods to

deal with identification problems caused by data issues such as attrition, sample selection, measurement

error, and contamination bias. For example, Conlon and Mortimer (2016) use a field experiment to esti-

mate the causal effects of temporarily removing a popular brand from vending machines. They combine

observed experimental outcomes with a simple structural model of purchase timing, to deal with the fact

that purchase outcomes are only observed when the machines are serviced.

2. It is not just reduced form methods that require instrument independence. Identification in struc-

tural models also often depends on independence assumptions, and the use of randomization can increase

confidence that required structural assumptions are satisfied. In short, good reduced form instruments are

generally also good structural model instruments. An example is Ahlfeldt, Redding, Sturm, and Wolf

(2015), which uses a natural experiment (the partition of Berlin) to identify a structural model of the

economic gains associated with people living and working near each other in cities.8

3. Identifiable causal effects can provide useful benchmarks for structural models. For example,

suppose we have a structural model with parameters that are identified by assumed behavioral restrictions.

One might estimate these behavioral model parameters using data from large surveys, and then check

whether treatment effects implied by the estimated structural parameters equal treatment effects that are

identified and estimated using small randomized trial data sets drawn from the same underlying population.

Another example is Andrews, Gentzkow and Shapiro (2017, 2018), who construct summary statistics

based on the estimated joint distribution of reduced form parameters (like the moments used to estimate

LATE) and structural model parameters. They use these statistics to assess the extent to which structural

results depend on intuitively transparent identifying information.

4. Economic theory and structure can provide guidance regarding the external validity of causal pa-

rameters. For example, in a causal analysis one can’t say how even a small change in treatment policy

would change the resulting effects of treatment. Weak structural assumptions can overcome this limita-

8In awarding this paper the 2018 Frisch Medal, the Econometric Society’s medal committee wrote that this paper, "provides

an outstanding example of how to credibly and transparently use a quasi-experimental approach to structurally estimate model

parameters."
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tion. For example, in regression discontinuity designs the cutoff, i.e., the threshold discontinuity point,

is often a relevant policy variable (such as the grade at which one qualifies for a scholarship). Dong and

Lewbel (2015) show that, with a mild structural assumption called local policy invariance, one can identify

how treatment effects estimated by regression discontinuity designs would change if the threshold were

raised or lowered, even when no such change in the threshold is observed. Their estimator also provides

a direct measure of the stability of regression discontinuity treatment effects (see Cerulli, Dong, Lewbel,

and Poulsen 2017). Frölich and Huber (2017) use structural assumptions regarding a second instrument

to separate direct from indirect effects of treatment on outcomes. Yet another example is Rosenzweig and

Udry (2016), who use structure to model how average treatment effects (returns from policy interventions)

estimated from randomized control trials, vary with macro shocks such as weather.

5. One can use causal methods to link randomized treatments to observable variables, and use struc-

ture to relate these observables to more policy relevant treatments and outcomes. For example, it has been

documented that middle aged and older women in India have much higher mortality rates than would be

expected, based on household income levels and the mortality rates of their spouses. Calvi (2016) uses a

causal analysis to link changes in women’s household bargaining power (stemming from a change in inher-

itance laws) to their health outcomes. One might then speculate that this established causal link between

household power and health could explain the excess mortality rates of older women. But such specula-

tion is nothing more or less than crude structural modeling. Instead of speculating, Calvi then constructs

estimates of women’s relative poverty rates based on structural models of their bargaining power, as de-

fined by their consumption and control of household resources. She finds that these structurally estimated

relative poverty rates can explain more than 90% of the women’s higher than expected observed mortality

rates by age. Most causal analyses include informal speculation regarding the wider implications of es-

timated treatment effects. More convincing than such informal discussions is formally establishing those

connections and correlations with the rigor imposed by structural model identification and estimation.

Another, related example is Calvi, Lewbel, and Tommasi (2017). This paper estimates a LATE where

treatment is defined as women’s control over most resources within a household, and as above the out-
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comes are family health measures, and the instrument is changes in inheritance laws. However, in this case

the relevant treatment indicator cannot be directly observed, and so is estimated using a structural model of

household behavior. Since structural models can be misspecified and have estimation errors, the estimated

treatment indicator will be mismeasured for some households. The paper therefore proposes and applies

an alternative estimator, called MR-LATE (mismeasurement robust LATE), that accounts for the potential

measurement errors in observed treatment that may arise from misspecification or estimation errors in the

structural model. In this example, the use of structure allows the application of LATE to identify a more

policy relevant treatment effect than would otherwise be possible.

6. Big data analyses on large data sets can uncover promising correlations. Structural analyses of

such data could then be used to uncover possible economic and behavioral mechanisms that underlie these

correlations, while randomization might be used to verify the causal direction of these correlations. It

is sometimes claimed that machine learning, natural experiments, and randomized controlled trials are

replacing structural economic modeling. This is, if anything, backwards: as machine learning and ex-

periments uncover ever more previously unknown correlations and connections, the desire to understand

these newfound relationships will rise, leading to an increase, not a decrease, in the demand for structural

economic theory and models.

7. Structural type assumptions can be used to clarify when and how causal effects may be identified.

Examples are the structural causal models and causal diagrams, like directed acyclic graphs, summarized

in Pearl (2000, 2009) and the more accessible Pearl and Mackenzie (2018). Another line of research that

formally unifies structural and randomization based approaches to causal modeling is Vytlacil (2002),

Heckman, Urzua and Vytlacil (2006), Heckman and Vytlacil (2007), and Heckman (2008, 2010).

5.2 Randomized Causal vs. Structural Identification: An Example

An obstacle to comparing causal vs. structural analyses is that these methods are usually described using

different notations. So, to facilitate the comparison, a causal model’s assumptions will here be rewritten

completely in terms of the corresponding restrictions on a structural model, and vice versa. Both models
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will be described in both notations.

Let Y be an observed outcome, let T be a binary endogenous regressor (think of T as indicating

whether one receives a treatment or not), and let Z be a binary variable that is correlated with T , which

we will use as an instrument. Assume φ includes the first and second moments of (Y, T, Z). In practice

the DGP is such that these moments can be consistently estimated by sample averages.

The example structural model considered here will be the linear regression model Y = a+ bT + e for

some error term e and constants a and b, under the standard instrumental variables identifying assumption

that E (eZ) = 0. The corresponding causal model will be the local average treatment effect (LATE)

model of Imbens and Angrist (1994). The key difference between these specific models is that, in the

structural model, any heterogeneity of the impact of T on Y is assumed to be included in the error term

e and hence is assumed to be uncorrelated with Z . This is a behavioral assumption, since it restricts

the distribution of responses to treatment (i.e., behavior) in the population. The LATE model drops this

behavioral restriction, replacing it with a randomized Z and a "no defiers" assumption (defined later), and

instead identifies the average effect of T on Y for a subpopulation called compliers. While comparison of

these models is not new (see, e.g., Imbens and Angrist 1994, Angrist, Imbens, and Rubin 1996, Imbens

and Rubin 1997, Vytlacil 2002 and Heckman 1997, 2008, 2010), the goal here is to use the models to

illustrate differences between identification in a popular structural and a popular causal model, both in

terms of their assumptions and their notation.

What makes one model or analysis structural and another causal? As discussed earlier, structural

models are generally assumed to have fixed deep or policy invariant parameters (like the coefficient b) and

identifying restrictions (like E (eZ) = 0) that together summarize and place assumed limits on behavior.

In short, structural models are generally models of economic behavior, ideally derived from and identified

by economic theory.

In contrast, while it is impossible to avoid making some assumptions regarding behavior, causal models

attempt to make as few such assumptions as possible. Causal models instead usually exploit randomiza-

tion as the primary source of parameter identification (though some models that don’t involve explicit
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randomization, like difference in difference designs, are also associated with the causal literature). Also,

instead of identifying deep behavioral parameters, causal models instead focus on just identifying treat-

ment effects, i.e, the average across some subpopulation of the change in an outcome that results from a

change in a covariate (the treatment).

It must be emphasized that what we are here calling structural vs. causal restrictions are just common

examples in the literature. They do not define what makes a model structural or causal. Not all structural

models are linear regressions, not all linear regressions are structural, and not all causal analyses are

LATEs. Rather, these are just typical examples of the kinds of models each literature uses, and the kinds

of restrictions that each literature imposes. Structural models generally include behavioral restrictions

regarding outcomes, such as assumptions on how Y may depend on T and Z . Causal models generally

minimize such behavioral assumptions regarding outcomes, and instead assume more about how Z and T

are determined.

We begin with a general triangular model where Y is determined by T along with error terms, and T

is determined by Z and errors. Because both T and Z are binary, we can without loss of generality write

this model as a linear random coefficients model, where

Y = U0 +U1T and T = V0 + V1 Z

for some error terms U0, U1, V0, and V1.9

As noted earlier, consideration of identification involving outcomes based on treatment goes back

to Splawa-Neyman (1923), Wright (1925), Haavelmo (1943), Wald (1943), Roy (1951), and Heckman

9To see that this construction is without loss of generality, suppose we had Y = G
(
T, Ũ

)
and T = R

(
Z , Ṽ

)
where Ũ and

Ṽ are vectors of unobservable errors and both G and R are completely arbitrary, unknown functions. This structure assumes

that Z does not directly affect Y , that is, we could have equivalently started from the more general model Y = G
(
T, Z , Ũ

)
and then assumed that G

(
T, z, Ũ

)
takes the same value whether z = 1 or z = 0. Similarly, this structure assumes that Y does

not directly affect T . Now define U0 = G
(
0, Ũ

)
, U1 = G

(
1, Ũ

)
− G

(
0, Ũ

)
, V0 = R

(
0, Ṽ

)
, and V1 = R

(
1, Ṽ

)
− R

(
0, Ṽ

)
.

We then without loss of generality have Y = U0 + U1T and T = V0 + V1 Z . This derivation depended crucially on having T

and Z be binary. Generally, having a nonparametric model be the same as a linear model is a very special property of binary

regressors.
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(1978). 10 Notwithstanding this long history, reduced form causal analyses often start with the counter-

factual notation of Rubin (1974). In this notation, Y (t) is defined as the random variable denoting the

outcome Y that would occur if the treatment T equals t . Since Y = U0 +U1T , it follows that Y (0) = U0

(since that’s what you get if you set T = 0) and Y (1) = U0 + U1. So both Y (1) and Y (0) are random

variables. Note that observed Y satisfies Y = Y (T ).

In the same way, T (z) denotes the random variable describing what one’s treatment T would be if

Z = z, so T (0) = V0 and T (1) = V0 + V1. Note that since T and Z are both binary, we can without loss

of generality say that V0 and V0 + V1 are binary, that is, both V0 and V0 + V1 can only equal zero or one.

Consistent with the above structural random coefficients model, this potential outcome notation as-

sumes that Z does not directly affect Y . We could have started (see Angrist, Imbens, and Rubin 1996)

from a more general counterfactual Y (t, z) denoting the value of Y if both T = t and Z = z, and the

exclusion assumption would then be that Y (t, 1) = Y (t, 0). Similarly the T (z) notation assumes that Y

does not directly affect T . See Heckman (2008) for further generalizations allowing for explicit sources

of nonrandomness in treatment assignment.

The treatment effect for an individual is defined as Y (1) − Y (0), or equivalently as U1, which is

the difference between the outcome one would have if treated vs. not treated. This treatment effect

is random and generally varies across individuals. So we can think of the general model as being one

of heterogeneous treatment effects. The average treatment effect, ATE, would then be defined as θ =

E (Y (1)− Y (0)).

So far, no assumptions have been made apart from these exclusion restrictions, so at this level of

generality there is no difference between the causal and structural framework. Now we start to make

assumptions regarding the random variables U1,U0, V1, and V0, or equivalently regarding the random

variables Y (1), Y (0), T (1) and T (0).

A common assumption in the causal inference literature is the stable unit treatment value assumption,

10Notions of causality that are relevant to the economics and econometrics literature have an even longer history, going back

to Hume (1739) and Mill (1851). There are also the temporal based definitions of causality due to Granger (1969) and Sims

(1972). See Hoover (2006) for a survey of alternative notions of causality in economics and econometrics.
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or SUTVA, which is the assumption any one person’s outcome is unaffected by the treatment that other

people receive. The term SUTVA was coined by Rubin (1980), but the concept goes back at least to Cox

(1958), and indeed may be implicit in Splawa-Neyman (1923), Neyman, Iwaszkiewicz, and Kolodziejczyk

(1935), and Fisher (1935). SUTVA is a strong behavioral assumption that essentially rules out social

interactions, peer effects, network effects, and many kinds of general equilibrium effects. Although a

goal of causal modeling is to make as few behavioral assumptions as possible, the behavioral SUTVA

assumption is generally accepted in this literature, in part because it can be enforced in many purely

experimental settings (by, e.g., physically separating experimental subjects until the experiment is over).

In contrast to laboratory settings, many natural or field experiments may (despite randomization) still

violate SUTVA, due to the effects of people interacting with each other, either directly or via markets.

When SUTVA is violated, most causal inference estimators become invalid, and point identification of

causal effects becomes far more difficult to obtain. When SUTVA is violated one must typically make

behavioral assumptions (i.e., the types of assumptions more commonly associated with structural models)

to gain point identification, or construct more complicated experiments aimed at identifying the magnitude

of spillover effects of some people’s treatments to other’s outcomes, or settle for set identification of causal

effects. See Manski (2013), Lazzati (2015), Angelucci and Di Maro (2016), and Laffers and Mellace

(2016) for examples of dealing with SUTVA violations by each of these methods. See also Rosenbaum

(2007), who discusses inference when SUTVA is violated.

SUTVA can be interpreted as another type of exclusion restriction, in which Yi (0) and Yi (1), the

potential outcomes for any given person i , are assumed to be independent of T j for any other person j .

In the structural model, SUTVA corresponds to a restriction on the causal correlations of U1i ,U0i (the

outcome model random coefficients of person i) with V0 j , V1 j , and Z j . For simplicity, let us assume that

the set of random variables {U1i ,U0i , V0i , V1i , Zi } is independent across individuals i , which is sufficient

and stronger than necessary to ensure that SUTVA holds. A structural model alternative to SUTVA might

be to model the dependence of these variables across individuals, e.g., by specifying a social interactions

model as in Blume, Brock, Durlauf, and Ioannides (2011).
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We have now assumed some exclusions and some independence. Next, observe that the regressor T

is, by construction, related to V0 and V1. The regressor T is also potentially endogenous, and so could be

correlated with U0 and U1 as well. However, Z is supposed to be an instrument, so now let us add the

causal assumption that {Y (1) , Y (0) , T (1) , T (0)} is independent of Z . This is equivalent in the structural

notation to assuming that {U1,U0, V0, V1} is independent of Z . This assumption would be justified by

assuming random assignment of Z . This assumption, while corresponding to standard unconfoundedness

in the causal literature, is stronger than would typically be assumed in the structural linear regression

model. However, let us maintain this independence to facilitate comparison between the two approaches.

One final assumption we maintain for both the structural and causal frameworks is that E (V1) 6= 0, or

equivalently in causal notation, that E (T (1)− T (0)) 6= 0. This assumption ensures that the instrument

Z is relevant.

Now define the parameter c by c = cov (Z , Y ) /cov (Z , T ), which is identified by construction. This

c would be the limiting value of the estimated coefficient of T in a linear instrumental variables regression

of Y on a constant and on T , using a constant and Z as instruments. We are going to consider the inter-

pretation of this parameter under the assumptions of the causal LATE model and under the assumptions of

our structural linear regression model. With just the assumptions we have so far the parameter c satisfies

c =
cov (Z , Y )

cov (Z , T )
=

cov (Z ,U0 +U1T )

cov (Z , (V0 + V1 Z))
=

cov (Z ,U0 +U1 (V0 + V1 Z))

cov (Z , (V0 + V1 Z))

=
cov (Z ,U1V1 Z)

cov (Z , V1 Z)
=

E (U1V1) var(Z)

E (V1) var (Z)
=

E (U1V1)

E (V1)
.

The difference between our particular causal and structural models will consist only of different assump-

tions regarding the equation c = E (U1V1) /E (V1).

Consider the structural model first. In the structural model, we may rewrite the Y = U0 + U1T

equation in the usual linear regression form Y = a + bT + e, where a is the constant term, b = E (U1) is

the coefficient of T , and the error is e = (U1 − b) T +U0 − a. Since the instrumental variables estimator

converges to c, the question we ask is, when does instrumental variables estimation yield the structural

coefficient b, or equivalently, when does c = b? The answer is that c = b when cov (e, Z) = 0. In

the structural linear regression model, this is the definition of validity of an instrument Z . But what does
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structural instrument validity, i.e., cov (e, Z) = 0, actually mean? Under the above assumption that Z is

independent of {U1,U0, V0, V1}, we have that cov (e, Z) = cov (U1, V1) var (Z), so the instrument Z is

valid in the structural sense if cov (U1, V1) = 0. Note from above that

c =
E (U1V1)

E (V1)
=

E (U1) E (V1)+ cov (U1, V1)

E (V1)
= E (U1)+

cov (U1, V1)

E (V1)

so the structural restriction cov (U1, V1) = 0 makes c = b = E (U1). What does this structural co-

efficient b correspond to in causal notation? Recall the average treatment effect (ATE) is defined by

E [Y (1)− Y (0)]. Now E [Y (t)] = E [(U0 +U1t)] = E (U0) + E (U1) t for t = 0 and for t = 1.

Therefore E [Y (1)− Y (0)] = E (U1) = b. So the structural coefficient b is precisely the causal ATE.

To summarize, first, the structural instrument validity assumption that cov (e, Z) = 0 is equivalent

to cov (U1, V1) = 0. Second, under this assumption, the instrumental variables estimand c equals the

structural linear regression coefficient b, which in turn equals the ATE. Again it should be emphasized

that what has been provided here is just one possible set of structural modeling assumptions. For example,

under milder assumptions, Heckman (1997) interprets the structural instrumental variable’s regression

coefficient as the ATT (the average treatment effect on the treated).

Now consider a causal identification argument. Define compliers to be individuals for whom T and Z

are the same random variable, that is, a complier is an individual i who has Ti = z when Zi = z for z

being either zero or one. Similarly, let defiers denote people for whom T and 1− Z are the same random

variable. Recalling that T = V0 + V1 Z , anyone who has V1 = 1 must also have V0 = 0 (otherwise T

would equal two which is impossible). It follows that compliers are exactly the people who have V1 = 1.

Imbens and Angrist (1994) define the local average treatment effect (LATE) to be the average treatment

effect among compliers. In our notation, LATE is defined to equal E [Y (1)− Y (0) | V1 = 1]. Note that

these authors use the word ’local’ in LATE to mean identification of the ATE for just a subset of people

(the compliers). This is quite different from how the word local was used in the previous identification

literature (see Section 6 below).

With these definitions in mind, consider again the equation for c. From the equation T = V0 + V1 Z ,

we noted that compliers are individuals who have V1 = 1, and these people must also have V0 = 0,
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making T = Z . It follows similarly that defiers are individuals who have V1 = −1 and V0 = 1, to make

T = 1− Z . The only remaining possibilities are called always takers, who have V1 = 0 and V0 = 1, and

never takers, who have V1 = 0 and V0 = 0. Let Pv denote the probability that V1 = v. Then, by definition

of expectations,

c =
E (U1V1)

E (V1)
=

E (U1V1 | V1 = 1) P1 + E (U1V1 | V1 = 0) P0 + E (U1V1 | V1 = −1) P−1

E (V1 | V1 = 1) P1 + E (V1 | V1 = 0) P0 + E (V1 | V1 = −1) P−1

=
E (U1 | V1 = 1) P1 − E (U1 | V1 = −1) P−1

P1 − P−1

Imbens and Angrist (1994) assume that there are no defiers in the population. This rules out the V1 = −1

case, making P−1 = 0. This in turn makes the above equation simplify to c = E (U1 | V1 = 1), which is

the LATE. So, under the no defiers assumption, the instrumental variables estimand c equals, and therefore

identifies, the LATE, which is the ATE for compliers.

Interestingly, if one imposes both our structural assumption cov (U1, V1) = 0 and our reduced form

"no defiers" restriction P−1 = 0, then it can be shown that

0 = [E (U1 | V1 = 0)− E (U1 | V1 = 1)] (1− P1) .

This means that, with the no defiers assumption, the only way LATE would equal ATE is either if

E (U1 | V1) is the same for V1 = 0 and V1 = 1, or if everyone in the population is a complier.

Even with binary treatment, it is possible to relax the above listed assumptions in both the structural and

the causal framework. For example, one might identify alternative LATEs (e.g., by allowing some defiers

to exist whose effects are offset by other compliers), and it is possible to have structural identification

under weaker or alternative assumptions (e.g., relaxing the independence assumptions and/or allowing

for selection effects). But, for simplicity, let us stick with the above described canonical assumptions on

binary treatment, and assess how the two approaches compare.

Given our independence and exclusion assumptions, the only difference between the structural and

causal assumptions we have made here is the following: The causal analysis assumes nobody has V1 = −1,

identifies LATE (which is ATE for compliers), and identifies nothing about people who are not compliers.

In contrast the structural analysis assumes cov (U1, V1) = 0 and identifies the population ATE. Both the
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structural and causal approaches require assumptions regarding unobservables (not just on V1 or U1, but

also assumptions like SUTVA), and a priori neither method’s identifying assumptions are more or less

plausible or restrictive than the other.

It is important to recall that these particular assumptions and models are not universal or required

features of causal vs. structural methods. For example, there exist structural analyses that don’t assume

cov (e, Z) = 0 and identify, or partially identify, objects similar to LATE, and there exist causal treatment

effects that can be identified even if defiers are present. The point of this example is just to illustrate the

different types of assumptions, and associated estimands, that are typical in the two methodologies.

One way to interpret the difference in assumptions in this example is that the structural assumption

cov (e, Z) = 0, which reduces to cov (U1, V1) = 0, is a restriction on the heterogeneity of the treatment

effect U1. Essentially this restriction says that an individual’s type V1 (complier if V1 = 1, defier if V1 =

−1, always or never taker if V1 = 0) is on average unrelated to the magnitude of their personal treatment

effect U1. This is a behavioral restriction regarding the outcome Y (or more precisely on how treatment

affects Y ), and behavioral restrictions on how covariates can affect outcomes are typical structural type

assumptions.

In contrast, the causal assumption that nobody has V1 = −1 (no defiers) is a restriction on the hetero-

geneity of types of individuals. This is still a behavioral restriction, but it only restricts behavior regarding

the determination of treatment T relative to the instrument Z . This no defiers assumption does not restrict

how the outcome Y might depend on treatment. This illustrates a general feature of causal methods, which

is to assume as little as possible about how outcomes depend on treatment, preferring instead to make rel-

atively stronger assumptions regarding the determination of treatment. In short, causal methods generally

make fewer or weaker assumptions regarding the Y equation and stronger assumptions regarding the T

equation.

In the causal model, we pay a price for dropping restrictions on the outcome equation. First, we can’t

know precisely who the compliers are, because the definition of a complier involves unobservables (or,

equivalently, counterfactuals). The LATE is the average treatment effect for a subset of the population,
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but we don’t know who is in that subset, and we don’t know how treatment may affect anyone else.

This disadvantage is mitigated by the fact that we can estimate the probability that anyone is a complier,

as a function of their observable characteristics (see Angrist and Pischke 2008). Also, if Z is a policy

variable, then compliers might be a subpopulation of interest. One more mitigating factor is that, given an

instrument or other covariates, one can often calculate bounds on ATE (an example of set identification).

See, e.g., Manski (1990) and Balke and Pearl (1997).

On the other hand, treatment might be something individuals actively seek out, typically for reasons

that relate to the outcome. An example is the Roy (1951) model, where people choose a treatment (like

moving to a new location, accepting a job offer, or taking a drug) because of the outcome they expect from

that treatment. Anyone who chooses their own treatment in this way will generally not be a complier (since

compliers have treatment given by the randomly determined Z ). This is a reappearance of the point made

earlier that structure is needed to identify causal relationships in which treatment correlates with outcomes.

For more on this point see Heckman (2008), who illustrates limitations of reduced form estimators like

LATE in comparison to more general treatment effect models that allow for self selection. By focusing

on compliers, LATE essentially only looks at the subset of people for whom treatment was randomly

assigned. To the extent that compliers are not representative of the population as a whole, LATE may be

unreliable for policy analyses. Of course, a similar objection might be made to the structural interpretation

of c; it too could be unreliable for policy analyses if the population does not, at least approximately, satisfy

the assumed behavioral restrictions.

Another limitation of the reduced form methodology is how it extends to more general treatments.

When the treatment is many valued or even continuous, the number of types (compliers, deniers, etc.) that

one needs to define and restrict becomes large and complicated in the causal framework. In contrast, the

structural restriction cov (U1, V1) = 0, or equivalently, cov (e, Z) = 0, remains unchanged regardless of

how many values T or Z can take on.

A related limitation of LATE is that the definition of a complier depends on the definition of the instru-

ment Z . Suppose we saw a different instrument Z̃ instead of Z , and we let c̃ = cov
(
Z̃ , Y

)
/cov

(
Z̃ , T

)
. If
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Z̃ is a valid instrument in the structural sense, then we will have c = c̃ = b, meaning that any structurally

valid instrument will identify the same population ATE b. This also provides potential testability or falsi-

fiability of the structural model, since one could estimate and thereby test if c = c̃. Rejecting the null that

c = c̃ corresponds to rejecting the structural identifying assumption, or more formally, rejecting the joint

hypothesis that both instruments are valid in the structural sense. Whether this test has power is a separate

question, e.g., it is possible that structural assumptions are violated but still c = c̃ just by chance.

In contrast, even if both Z and Z̃ are valid instruments from the causal point of view, then c 6= c̃ in

general. Both estimates are LATEs, but since Z and Z̃ are different, the definition of who is a complier

will also be different in the two cases, so c and c̃ will differ in value, meaning, and interpretation. Here

c and c̃ could have different signs or magnitudes, and the only causal conclusion one could draw is that

different complier populations have different responses to treatment. This difficulty of testing or falsifying

LATE is a possible drawback of the model.11

More simply, under the structural identifying assumptions, if different instruments yield different pa-

rameter values, then by definition at least one of the instruments must not be valid. In the causal version

of the model, different instruments yield different parameter values because they correspond to different

estimands, each of which is deemed to be causally meaningful, because each equals the average treatment

effect for some, albeit unknown, set of people in the population.

5.3 Randomized Causal vs. Structural Simultaneous Systems

Suppose that instead of a treatment affecting an outcome, where the direction of causality is assumed, we

had a simultaneous system of equations, say Y = U0 + U1 X and X = H (Y, Z , V ), where (U0,U1) and

V are unobserved error vectors, Y , X, and Z are observed variables, and H is some unknown function.

We now use X instead of T because it may no longer be a treatment and need not be binary. But the main

difference is that now Y appears in the H equation, so the model is no longer triangular.

11There are a few weak inequalities one can test that are implied by causal instrument validity in the LATE context. For

example, with a valid instrument the number of implied compliers in any subgroup of people can’t be negative. See, e.g.,

Kitagawa (2015) for associated tests.
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As before, let us again analyze the meaning of c = cov (Z , Y ) /cov (Z , X). For this simultaneous

system, the structural analysis is exactly the same as before: We can rewrite the Y equation as Y =

a + bX + e where b = E (U1) and e = U0 + (U1 − b) X . If the structural assumption cov (e, X) = 0

holds then c = b and both equal E (U1), the average marginal effect of X on Y .

In contrast, a causal analysis of this system is possible, but is much more complex. Angrist, Graddy

and Imbens (2000) provide conditions, similar to those required for LATE, under which c will equal a

complicated weighted average of conditional expectations of U1, with weights that depend on Z . And

even this limited result, unlike the simple structural restriction, requires X to be binary.

Another limitation of applying causal methods to simultaneous systems is that the counterfactual no-

tation itself rules out some types of structural models. For example, consider an incomplete model similar

to that of Section 4, where endogenous variables Y and X are determined by Y = I (X + U ≥ 0),

X = Y + Z + V , and −1 ≤ U + Z + V < 0. As above, Y , X , and Z are observables and U and V

are unobserved error terms. This model could represent a game between two players, where the equations

are the reaction functions of one player who chooses Y and the other who chooses X . In this model,

reduced form equations for Y and X as functions of Z , U , and V do not exist. Even if you knew the joint

distribution of (Z ,U, V ), the probability distribution of potential outcomes Y (x) would not be defined.

When we use the potential outcome notation, we assume that the potential outcomes Y (x) are random

variables having well defined (albeit unknown) distributions. This structural model cannot be represented

by the potential outcome notation. Use of the potential outcome notation in this model imposes additional

assumptions or restrictions that are not part of the underlying structural model, like assuming the existence

of an equilibrium selection rule for the game. More generally, use of counterfactual notation in a model

implicitly assumes that reduced forms exist in that model (indeed, causal models are often called reduced

form models).

A final limitation in applying causal analyses to simultaneous systems is the SUTVA restriction dis-

cussed earlier. Many kinds of structural models involving simultaneous systems exist in which treatment

of one person may causally affect the outcome of others. Examples include models of peer effects, so-
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cial interactions, network effects, and general equilibrium models. For example, the Progresa program in

Mexico (and its successor Oportunidades) is a widely cited example of randomized treatment assignment,

but people may choose to move to communities that have the program, or change behavior either from in-

teracting with treated individuals, or in expectation that the program will expand to their own community.

Behrman and Todd (1999) discuss these and other potential SUTVA violations associated with Progresa.

Similarly, macroeconomic treatments often either cannot be randomized, or would violate SUTVA if they

were. As noted earlier, some work does exist on causal model identification when SUTVA is violated, but

typically such models require behavioral, structural type assumptions for point identification of treatment

effects. See, e.g., Manski (2013).

As the above examples illustrate, in many settings involving interactions or simultaneous systems,

causal estimands can be difficult to identify or interpret without structural, behavioral type model restric-

tions. This may explain why causal inference is more popular in fields that traditionally focused on partial

equilibrium analyses (e.g., labor economics and micro development), but has made fewer inroads in fields

where general equilibrium models requiring simultaneous systems are the norm (e.g., industrial organiza-

tion and macroeconomics).

5.4 Randomized Causal vs. Structural Identification: Conclusions

This subsection provides a short summary of the relative advantages and disadvantages of causal vs. struc-

tural approaches to identification, though as noted earlier, best practice will often be to combine features

of both methodologies.

One great advantage of causal based methods is their long history of success in the hard sciences.

Randomized controlled trials are often referred to as the gold standard for empirical work in other fields

(despite recent alarms being raised regarding publication bias and failures of replication in some experi-

mental sciences). The goal of exploiting randomization in field and natural experiments in economics is

to get as close as possible to replicating that gold standard in economics.

Another virtue of causal methods is the fundamental nature of treatment effects as interpretable esti-
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mands. As long as the framework is coherent and complete, so that potential outcomes are well defined,

causal estimands like ATE, ATT, etc., are meaningful. In contrast, when a structural model is misspecified,

the deep policy invariant parameters it attempts to identify can become meaningless, or at best difficult to

interpret.

One advantage of structural models over causal models is that, as the name implies, they contain

information about underlying behavioral structure. Structural models can incorporate, or be used to test,

restrictions implied by economic theory, and can likewise gain identification from incorporating such

restrictions, even when external sources of randomization are not present.

Structural models can also cope with many data issues that cause difficulties for causal analyses. For

example, we can build structures that account for self selection into treatment, or account for measurement

problems such as sample attrition (observations that are missing not at random), or deal with SUTVA

violations like network effects and social interactions.

As Heckman (2008) emphasizes, random assignment makes it impossible to point identify some fea-

tures of the joint distribution of potential outcomes, like what fraction of the population would benefit from

treatment. But, e.g., in the Roy (1951) model and closely related competing risks models, the fact that se-

lection is based on maximization over potential outcomes provides information about the joint distribution

of potential outcomes that could not be identified if assignment were random. See Heckman and Honoré

(1989, 1990) and Lee and Lewbel (2013) for nonparametric identification of these types of models. An-

other example of self selection providing information (which is unavailable under random assignment) is

given in Brock and Durlauf (2001), who show that the presence of self selection can overcome the Manski

(1993) reflection problem, which is an obstacle to identification in many social interactions models.

A common objection to the structural approach is the question of its success. Where are the deep

parameters that structural models have uncovered? What are their widely agreed upon values? One

answer is to look at the use of calibration methods. Calibrated models, widely used in macroeconomics,

include a large number of parameters that users treat as known. Many of these parameters have values

that proponents of these models largely agree upon, e.g., there is very little variation across applications
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in the calibrated value of the rate of time preference (some other structural parameters, like the degree of

risk aversion, have less consensus). Most of these calibrated values are obtained from multiple structural

models, though some have been additionally investigated by laboratory and field experiments.

More generally, experience drawn from a variety of structural models has lead to a consensus among

economists regarding ranges of values for parameters, such as price and income elasticities, that are widely

recognized as reasonable. Empirical structural analyses have in addition revealed many behavioral rela-

tionships, going back at least to Engel’s (1857) law, that appear to hold up almost universally.

The main disadvantage of imposing behavioral restrictions for identification is that reality is compli-

cated, so every structural model we propose is likely to be oversimplified and hence misspecified. As Box

(1979) famously observed, "all models are wrong, but some are useful." Moreover, one generally does

not know the extent to which misspecification can corrupt the interpretation and applicability of structural

model estimates.

Causal models can of course also be misspecified, e.g., in the LATE model even if an instrument Z is

randomly assigned, the population may contain defiers or SUTVA may be violated. As discussed earlier,

the relative plausibility of structural vs. causal identifying assumptions depends on context. Methods like

those of Pearl (2000, 2009), using minimal structural assumptions to identify causal parameters, may be

particularly useful in this regard,

Another source of potential misspecification, in both structural and causal models, is the role of condi-

tioning covariates. Conditioning requires functional forms that may either be parametrically misspecified

(the popularity of linear probability models in reduced form methods is a case in point), or are nonpara-

metrically specified and thereby suffer the curse of dimensionality upon estimation.

A big issue for both structural and causal models is external validity, that is, if the environment changes

even slightly, how would an identified parameter or treatment effect change? The deep parameters in struc-

tural models are supposed to be constants that do not vary across environments, but behavioral restrictions

that are valid in one context may not hold in another, and correct specifications may change due to fac-

tors like the well known Lucas (1976) critique. External validity is an even larger problem with causal
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models, since these have no underlying economic or behavioral restrictions that one can assess in a new

environment. For example, Rosenzweig and Udry (2016) document how macro conditions that one cannot

control for, like weather, can dramatically affect estimated treatment effects obtained in randomized con-

trolled trials. The search for empirical methods of assessing external validity of both causal and structural

models is an active area of research.

Another limitation of causal methods is that economic policy is often concerned with characteristics

that cannot be directly observed, like utility, risk aversion, noncognitive skills, bargaining power, expecta-

tions, or social welfare. In general, structural, behavioral assumptions are required to link observables to

these elusive concepts, and hence to evaluate the impacts of treatment on them.

The rise of identification based on randomization in economics has been referred to as a "credibility

revolution." Applied economic research in recent years has certainly benefited from this focus on credib-

lity. But as the previous sections show, in practice both causal and structural methodologies in economics

depend on a host of assumptions, only some of which are testable. Either can lead to invalid (perhaps we

should say incredible) inference when their identifying assumptions are violated. Both sources of iden-

tification have their advantages and disadvantages. Ideally, future work will creatively combine the best

features of both.

6 Identification of Functions and Sets

The first two subsections below discuss two modern literatures: nonparametric or semiparametric iden-

tification, and set identification. These two subsections are relatively brief in comparison to the size of

these literatures, in part because good summaries of these literatures already exist. See Tamer (2010) for

a survey of the set identification literature, and Chesher and Rosen (2017) for more current definitions

and references on the subject. Surveys of semiparametric and nonparametric identification include Powell

(1994), Chesher (2007), and Matzkin (2007, 2012). Powell (1994) focuses on semiparametrics, Chesher

(2007) deals with nonadditive models with nonseparable errors, and Matzkin (2007, 2012) provides many

examples of using restrictions such as additivity, monotonicity, conditional independence, and index struc-
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tures to identify parameter vectors and functions.

The third subsection below describes the role of normalizations in identification. Normalizations are

prominently used in the literature on nonparametric, semiparametric, and set identification, but are rarely

discussed. The fourth subsection below uses special regressors to provide examples of nonparametric,

semiparametric, and set identification, and the use of normalizations.

6.1 Nonparametric and Semiparametric Identification

In Section 3.2, we defined nonparametric identification as the case where θ consists of functions or infinite

sets. As discussed earlier in Section 2.4, the Glivenko–Cantelli theorem proves that, with IID observations

of a vector W , the distribution function of W is consistently estimated by the empirical distribution func-

tion. It follows that the distribution function of W , F (W ), is nonparametrically identified by construction,

where the construction is to take the probability limit of the empirical distribution function. If W is contin-

uously distributed, then its probability density function f (W ) is also nonparametrically identified, using

the construction f (W ) = ∂F (W ) /∂W with F (W ) identified. For another example, assume IID obser-

vations of continuous Y, X . Suppose we have the nonparametric regression model Y = m (X) + e with

E (e | X) = 0. Then m (X) = E (Y | X) as long as this expectation exists. The conditional expectation

function m (X) can be constructed from the joint distribution of Y and X , which is itself identified, so we

have by construction that m (X) is nonparametrically identified.

Recall that parametric identification was defined as the case where θ is a finite set of constants, and

all the different possible values of φ also correspond to different values of a finite set of constants. Identi-

fication that is neither parametric nor nonparametric is called semiparametric identification. For example,

given we have IID observations of random variables Y, X, Z , a partially linear model is defined as the

model Y = m (Z)+ X ′β+ e where m is an unknown function, β is a finite vector of unknown parameters,

and E (e | X, Z) = 0. Here the unknown parameters include both a vector of constants β and a function

m. Identification of θ is semiparametric, since it contains both a parametric component (the parameter

vector β) and a nonparametric component m (Z). Following Robinson (1988), Observe that E (Y | Z)
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and E (X | Z) are nonparametrically identified, and Y − E (Y | Z) = (X − E (X | Z))′ β. It follows that

β is identified by construction, regressing Y − E (Y | Z) on X − E (X | Z), if var (X | Z) is nonsingu-

lar. Finally, given β, m is identified by m (Z) = E
(
Y − X ′β | Z

)
. Other relatively early examples of

semiparametric identification include Manski (1975, 1985) and Cosslett (1983).

Semiparametric identification can also used to refer to identification of a vector of constants that

are of interest in a nonparametric model. For example, in the nonparametric regression model Y =

m (X) + e, since m (X) is nonparametrically identified, it follows that the average derivative vector

β = E
[
∂m (X) /∂X

]
is identified. Identification and estimation of average derivatives and related es-

timators are generally called semiparametric. See, e.g. Härdle and Stoker (1989).

The difference between parametric and semiparametric identification can be somewhat arbitrary. For

example, consider the ordinary linear regression model where observations of Y, X are independent, Y =

X ′β + e with E (e) = 0, and e is independent of X . If we let θ be β and let φ be the first and second

moments of Y, X (like in Wright-Cowles identification), then this example is parametric identification.

But if we let θ be both β and the distribution of e, and let φ be the joint distribution of Y, X , then this

is semiparametric identification. Similarly, the distinction between semiparametric and nonparametric

identification can be somewhat arbitrary. See Powell (1994) for further discussion of the differences

between parametric, semiparametric, and nonparametric frameworks. These types of distinctions can be

traced back at least to Hurwicz (1950).

In principle, establishing nonparametric or semiparametric identification entails the same steps as para-

metric identification, establishing that different values of θ are not observationally equivalent.12 In prac-

tice establishing identification in these models can be much more difficult. For example, we cannot simply

count the number of known and unknown functions to establish an order condition, the way one can count

known and unknown parameters in parametric models.

To illustrate some differences, consider the nonparametric instrumental variables model. Here the goal

12When θ contains functions, as in nonparametric identification, a technical issue can arise in the choice of metric or norm

used to compare values θ and θ̃ . Depending on context, we might define any two values as being equal as long as any difference

between them has measure zero.
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is identification of the function m (X) in the model Y = m (X) + e, but instead of the nonparametric re-

gression assumption that E (e | X) = 0, it is assumed that E (e | Z) = 0 for some vector of instruments Z .

The parameter θ to identify is the function m (X), what is knowable, φ, is F (Y, X | Z) (the joint distribu-

tion of Y, X given Z ), and the restrictions that define the model are the equation E (e | Z) = 0 along with

some regularity conditions. This equation can be written as
∫

supp(Y,X |Z=z) (Y − m (X)) d F (Y, X | z) = 0

for all z ∈ supp (Z). We have identification if this integral equation can be uniquely solved for m (X). So

here identification corresponds to uniqueness of the solution of an integral equation. Newey and Powell

(2003) show that identification here is equivalent to an example of statistical completeness.

In contrast, if Y, X , and Z were all discrete, then identification of θ would be parametric identification.

In that case, the integral equation would reduce to a matrix equation, and identification would only require

simple nonsingularity of a moment matrix, as in linear instrumental variables regression models. When

identification of vectors of parameters depends on inverting nonsingular matrices, it is sometimes possible

to extend these same arguments to the identification of functions through the use of so-called operator

methods. These methods roughly correspond to inverting the integrals (like expectations of continuous

random variables) that express φ in terms of θ , in the same way that the sums (like expectations of discrete

random variables) may be solved for vectors θ by matrix inversion. Schennach (2007) is a prominent

example, identifying a nonparametric regression function with a mismeasured regressor. In applications

of operator methods, concepts like completeness and injectivity are crucial to identification, as infinite

dimensional analogues to the invertibility of matrices.

More generally, econometric models often involve moments, which take the form of integrals. As a re-

sult models requiring nonparametric or semiparametric identification frequently require integral equations

to have unique solutions. The above nonparametric instrumental variables model is one example. Other

examples where identification takes the form of a unique solution to an integral equation are random co-

efficients as in Beran, Feuerverger, and Hall (1996) and many of the structural models in Matzkin (2007,

2012). Additional examples of semiparametric identification are given in Section 6.4 below.
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6.2 Set Identification

Recall that we let θ denote the parameters we wish to identify, 2 is the set of all possible values of θ , and

θ0 is the unknown true value of θ . Partial Identification broadly refers to the analysis of situations where

φ provides some information about parameters θ , but not enough information to actually point identify

θ .. As defined in Section 3.2, the true parameter value θ0 is said to be set identified if there exist some

values of θ ∈ 2 that are not observationally equivalent to θ0. So the only time a parameter θ is not set

identified is when all θ ∈ 2 are observationally equivalent. For set identified parameters, the identified set

is defined to be the set of all values of θ ∈ 2 that are observationally equivalent to θ0. Point identification

of θ0 is therefore the special case of set identification in which the identified set contains contains only

one element, which is θ0. As with point identification, since we don’t know ahead of time which value of

θ is θ0, to prove that set identification holds we would need to show that for any θ̃ ∈ 2, there exist some

values of θ ∈ 2 that are not observationally equivalent to θ̃ . For more details formalizing the definition of

set identification, see Chesher and Rosen (2017).

To illustrate, let W be the fraction of a consumer’s total budget that is spent on food. The model M

is that we observe W and budget shares are nonnegative and sum to one. Suppose that what is knowable,

φ, is the distribution of W in the population (e.g., our data might be an IID sample of consumers). Then

we can identify β = E (W ), the expected budget share for food in the population. But suppose the θ that

we want to know is the expected budget share of clothing, not food. What we can know about θ from this

model is that θ must lie between zero and 1 − β. In this simple example we can say θ is set identified,

and the identified set is the interval [0, 1− β]. This set also provides bounds on the possible values of θ .

Sometimes a parameter can be set identified without also providing bounds. Sharp bounds are defined to

be the tightest bounds possible on θ , given M and φ.

An important tool used for studying set identification is the theory of random sets. See, e.g., Beresteanu,

Molchanov, and Molinari (2011), Bontemps, Magnac, and Maurin (2012), and Chesher and Rosen (2017).

The earliest example of a set identification analysis appears to be Frisch (1934). Other early examples

are Reiersøl (1941) on correlated errors, Marschak and Andrews (1944) on production functions, Fréchet
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(1951) on recovering joint distributions from marginals, and Peterson (1976) on competing risks models.

Much of the systematic study of set identification is attributed to Manski (e.g., Manski 1990, 1995, 2003).

While not typically associated with the set identification literature, an early example of combining

theoretical restrictions with data to obtain inequalities and hence bounds on behavior are the revealed

preference inequalities derived by Afriat (1967) and Varian (1982, 1983).

Interest in set identification grew when methods for doing inference on estimators of set identified

parameters began to be developed, as in Manski and Tamer (2002). In addition to inference, much of the

modern literature on set identification deals with the derivation of sharp bounds, with verifying that one

has obtained the smallest possible identified set given the available information, and with finding situations

where the identified set is very small relative to 2.

One reason why parameters may be set rather than point identified is incompleteness of the underlying

model. It can be difficult to uniquely pin down parameters when more than one value of the endogenous

variables Y can be associated with any given value of covariates and errors. See Tamer (2003) and Manski

(2007) for examples. Set rather than point identification is also common when data are incompletely

observed, e.g., when regressors are censored, discretized, mismeasured, or observations are missing not

at random. See, e.g., Manski and Tamer (2002) and references therein. We also often get sets rather than

points when economic theory only provides inequalities rather than equalities on behavior, as in Pakes,

Porter, Ho, and Ishii (2015).

As noted earlier, parameters may fail to be point identified when they are at least partly defined in terms

of unobserved variables, such as counterfactuals in treatment effects models (see, e.g., Manski (1990)

and Balke and Pearl (1997)). Different parameter values may be associated with different values these

unobservables may take on, leading to set identification. Schennach (2014) provides a general technique

for deriving a collection of observable moments that implicitly characterize the identified set in models

that are defined by moments over both observables and unobservables.

Some proponents of set identification methods, such as Chesher and Rosen (2017), argue that economic

theory rarely provides enough restrictions to point identify model parameters of interest, resulting in a
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great deal of econometric literature devoted to complicated or poorly motivated tricks to obtain point

identification. They essentially argue that set identification should be treated as the usual situation. A

less extreme view is that we should first see what assumptions are needed to obtain point identification.

Then, examine what happens to the identified set when the strongest or least defensible point identifying

assumptions are dropped. For example, Lewbel (2012) uses a strong heteroskedasticity restriction to

obtain identification in models where ordinary instruments would usually be used for estimation, but

are unavailable. That paper includes construction of identified sets when this strong point identifying

restriction is relaxed.

Khan and Tamer (2010) define non-robust identification as the situation where an otherwise point

identified parameter loses even set identification when an identifying assumption is relaxed. For example,

suppose we wish to estimate θ = E (Y ∗) where the scalar random variable Y ∗ can take on any value,

but what is knowable, φ is the distribution of Y , defined by Y = I (−b ≤ Y ∗ ≤ b) Y ∗ for some positive

constant b. For example, our DGP may consist of IID observations of Y , which is a censored version of

the true Y ∗. Here θ is not point identified unless there’s no censoring, meaning b = ∞. The identifying

assumption b = ∞ is non-robust, because if it does not hold then, whatever the distribution of Y is, θ

could take on any value. For example, even if Y has only a 1% chance of being larger than b, it could take

on an arbitrarily large value with that .01 probability, resulting in θ being arbitrarily large. A non-robust

identifying assumption is one that is crucial in the sense that, without it, the data do not limit the range of

values θ could take on.13

Set identification is an area of active research in econometric theory, but it is not yet frequently used

in empirical work. Perhaps the main obstacle to its application is that existing methods for estimation

and inference of set identified objects are complicated, generally requiring multiple tuning parameters and

penalty functions. See, e.g., Chernozhukov, Hong, and Tamer (2007). Development of more tractable

13This example of non-robust identification is also an illustration of nongeneric identification, the flip side of generic iden-

tification as discussed in a later section. Different values of b correspond to different DGP’s for Y . If we think b could have

taken on any value in some interval, then the set of DGP’s for which the model is not identified is a positive measure subset of

the set of possible DGP’s, and so is not generically identified.
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estimators and inference is an ongoing area of research.

Modern econometrics is often criticized for being too complicated. This is a theme that appears in,

e.g., Angrist and Pischke (2008) and in Freedman (2005). The essence of these critiques is that model

complexity makes it difficult to discern or assess the plausibility of underlying identifying assumptions,

and too difficult to implement modern estimators. It is therefore perhaps ironic that removing compli-

cated identifying assumptions often leads to set rather than point identification of parameters, which then

typically requires even more rather than less mathematically complicated econometrics for identification,

estimation, and inference.

6.3 Normalizations in Identification

Nonparametric or semiparametric identification results often require so-called normalizations, but I do

not know of any previous survey that has reviewed the general issues associated with normalizations for

identification and estimation. To see what is meant by a normalization, consider the linear index model

E (Y | X) = g
(
X ′β

)
, where g is some strictly monotonically increasing function and β is an unknown

vector. Many common econometric models are special cases of linear index models. For example, linear

regression is a linear index model where g is the identity function, and the binary probit model is a linear

index model where g is the cumulative standard normal distribution function. Binary logit models and

many censored and truncated regression models are also special cases of linear index models.

Assume φ is the joint distribution of Y and X and E
(
X X ′

)
is nonsingular. If g is known (like the logit

or probit model), then β is point identified. The proof is by construction: β =
[
E
(
X X ′

)]−1
E
[
Xg−1 (E (Y | X))

]
.

Is β still point identified when the function g is unknown? In general, the answer is no. Intuitively,

one could double β and suitable redifine g, leaving g
(
X ′β

)
unchanged. so β and 2β are observationally

equivalent. Formally, Let θ = {g, β}, so both the function g and the vector β are unknown. For any

given positive constant c, define β̃ = β/c, g̃ (z) = g (cz), and θ̃ = {g̃, β̃}. Then for any X we have

E (Y | X) = g
(
X ′β

)
= g̃

(
X ′β̃

)
, which shows that θ and θ̃ are observationally equivalent. So unless

our model contains some other information about g or β, the vector β is not identified. At best β might
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be set identified, where the identified set includes all vectors that are proportional to the true β. Suppose

that all of the elements of the identified set for β are proportional to the true β, so all have the form of

β̃ = β/c. Then we would say that β is identified up to scale. An early example in the semiparametric

literature is Powell, Stock, and Stoker (1989), who argue that their weighted average derivative estimates

are meaningful as linear index coefficients up to scale.

To have any chance of point identifying β, we need to impose a restriction on the model that rules out

all values of c 6= 1. For example, we might assume that the first element of β equals one, or that the length

of the vector β equals one. Given a β that satisfies one of these scale restrictions, any observationally

equivalent alternative of the form β̃ = β/c for c 6= 1 will violate this restriction, and so will be ruled out.

Suppose β is identified up to scale without a scale restriction. If we impose one of these scale restrictions,

then β will be point identified.

In the linear index model, there’s a sense in which restricting the scale of the vector β doesn’t entail any

loss of generality, because any rescaling of β can simply be absorbed into the definition of g. For example,

suppose we imposed the restriction that the length of the vector β equals one. Then if we find any β and g

that makes E (Y | X) = g
(
X ′β

)
, we can just let c =

√
β ′β, let β̃ = β/c, and let g̃ (z) = g (cz), thereby

creating a new β̃ and g̃ that still satisfies the model restriction E (Y | X) = g̃
(
X ′β̃

)
but in addition satisfies

the scale restriction that the length of the vector β̃ equals one. In this situation, we would call the scale

restriction a normalization.

Loosely speaking, calling a restriction on the model a normalization implies that the restriction does

not in any way limit or restrict behavior. Sometimes normalizations are specifically called "free" normal-

izations to emphasize this point, or are explicitly said to be imposed without loss of generality. Formally,

whether a restriction can really be considered a free normalization or is instead an actual behavioral re-

striction, depends in part on how we will use and interpret the model.

A restriction is really a free normalization, imposed without loss of generality, if economically mean-

ingful parameters or summary measures are unaffected by the restriction. For example, suppose in the

linear index model instead of defining the parameters of interest θ to be β and g, we instead define
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θ = {g
(
X ′β

)
, βg′

(
X ′β

)
} where g′ denotes the derivative of the function g. This θ equals the condi-

tional mean function E (Y | X) and its derivatives (i.e., marginal effects) ∂E (Y | X) /∂X . This says that

what we really want to estimate (what is economically meaningful) are not the coefficients themselves,

but rather the predicted value (mean) of Y given X , and the marginal effects of X on this predicted value.

Now let β̃ = β/c, and let g̃ (z) = g (cz), and so θ̃ = {g̃
(
X ′β̃

)
, β̃ g̃′

(
X ′β̃

)
} for any positive c. Then

{g̃, β̃} is observationally equivalent to {g, β} but θ = θ̃ . In words, if β is identified up to scale, then

the economically meaningful parameters θ are point identified. So in this case we would say that a scale

normalization, like restricting the length of β to equal one, really is a free normalization, since it has no

effect on θ .

In contrast to this choice of θ , an arbitrary scale restriction on β is not a free normalization if the level

of X ′β itself has some economic meaning, or is itself a parameter of interest. For example, suppose our

model is a willingness to pay study, where an individual reports Y = 1 if they would be willing to pay more

than V dollars for a product or service, and reports Y = 0 otherwise. Suppose an individual’s willingness

to pay function is given by X ′β + e where e is an unobserved mean zero error that is independent of

X . This means that X ′β is the expected number of dollars an individual would be willing to pay for

the product. Then Y = I
(
X ′β + e ≥ V

)
and therefore E (Y | X, V ) = g

(
X ′β − V

)
where g is the

distribution function of −e. Note that in this application we may think of X ′β − V rather than just X ′β

as the index being estimated, and the proper scaling to impose is to set the coefficient of V equal to minus

one. Any other scaling would yield X ′β̃ 6= X ′β and would therefore not correctly identify the mean

willingness to pay. In this application, scale is not a free normalization, but fortunately economic theory

tells us the right scaling, and so β is identified. Nonparametric and semiparametric identification and

estimation of general willingness to pay models like this are studied in more detail in Lewbel, Linton, and

McFadden (2012).

Scale restrictions, whether they are free normalizations or not, are commonly needed to point identify

semiparametric models. Also common are location normalizations. Suppose E (Y | X) = g (X + α),

where g is an unknown function and α is an unknown scalar. Then generally α is not identified, because
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given any α̃ we can define an observationally equivalent g̃ such that, g̃ (X + α̃) = g (X + α). As with

scale restrictions, location restrictions may or may not be free normalizations, depending on the use of the

model.

Consider a threshold crossing binary choice model, that is, Y = I
(
α + X ′β + e ≥ 0

)
where e is an

unobserved error that is independent of X . This is a special case of the linear index model, since it implies

that E (Y | X) = g
(
X ′β

)
where g is the distribution function of − (α + e). Here identification requires

both a location and a scale normalization. In parametric models, these normalizations are usually imposed

on e. For example, the probit model is the special case of the threshold crossing binary choice model

where e has a standard normal distribution. This includes the restriction that e has mean zero and variance

one, which uniquely determines the location and scale of α+ X ′β+ e. We could instead have imposed the

location and scale restrictions that α = 0, β ′β = 1, and assumed that e has an arbitrary mean and variance.

Both ways of expressing the model are observationally equivalent.

Unlike parametric models, in semiparametric models it is more common to impose location and scale

normalizations on model parameters like α and β instead of on error distribution parameters like E (e)

and var (e). This is done both because it often simplifies identification and estimation, and because

estimates of moments like var (e) will sometimes converge at slower rates than estimates of α or β. More

generally, though irrelevant for identification, the choice of normalization can affect the precision with

which parameters are estimated.

When comparing parametric to semiparametric estimators, or comparing two different semiparametric

estimators, it is important that the results from both be cast in the same location and scale normalization

to make the estimates comparable. Or alternatively, one may just compare summary measures that do not

depend on the choice of normalization, like estimated conditional means or average derivatives.

Another common use of normalizations for identification are in nonseparable error models. These are

models where error terms appear inside general functions, as opposed to showing up additively. Suppose,

e.g., that Y = g (X, e) where both the function g and the distribution of an unobserved continuously dis-

tributed scalar error e are unknown. This is observationally equivalent to the model Y = G (X, h (e))
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for an unknown strictly monotonic, invertible function h, where the function G (X, v) is defined by

G (X, v) = g
(
X, h−1 (v)

)
. Here identification of g may require assuming that the entire distribution

function of e is known. Common examples are to assume that e is uniform on [0, 1] or is a standard

normal. This is a free normalization when one only wishes to use the model to summarize the conditional

distribution of Y given X . Otherwise, if we wish to interpret g as a structural model, this normaliza-

tion generally corresponds to a strong behavioral restriction. See Lewbel (2007c) for details. Matzkin

(2007, 2012) provides multiple examples of nonseparable model identification results using this type of

normalization.

Returning to the example of threshold crossing models, when derived from utility maximization such

models embody an additional normalization to location and scale. Suppose αy + X ′β y + ey is the utility

one receives from making the choice Y = y, for y equal to zero or one. Utility maximization then means

choosing Y = I
(
α + X ′β + e ≥ 0

)
, where α = α1 − α0, β = β1 − β0, and e = e1 − e0. This means we

can interpret α+X ′β+e as being the utility obtained from choosing Y = 1 if we assume the restrictions or

normalizations that α0, β0, and e0 all equal zero. With these restrictions, choice zero is sometimes called

the outside option. In a static discrete choice model, these restrictions are generally free normalizations,

as long as one is careful to interpret α + X ′β + e as the utility of choice Y = 1 relative to the utility of

choice Y = 0. However, in dynamic discrete choice models, restricting the outside option to have zero

utility implies that the outside option has the same utility in every time period. This is then no longer a

free normalization, but instead corresponds to a real restriction on preferences and hence on behavior. See,

e.g., Rust (1994) and Magnac and Thesmar (2002).

Another normalization associated with utility is the arbitrary choice of cardinalization of ordinally

identified utility levels. In standard utility maximization, one chooses a quantity vector x to maximize a

utility function U (x) under some constraints (e.g., a budget constraint). The revealed preference theory

of Samuelson (1938, 1948), Houthakker (1950), and Mas-Colell (1978) provides conditions under which,

given demand functions, indifference curves (i.e., level sets) associated with U (x) are identified, though

we can’t identify the actual utility or happiness level U (x) associated with each indifference curve. This is
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equivalent to saying that utility is ordinally but not cardinally identified, or that utility is identified up to an

arbitrary monotonic transformation, which we may call a normalization. Similarly, the threshold crossing

model Y = I
(
α + X ′β + e ≥ 0

)
is observationally equivalent to Y = I

(
g
(
α + X ′β + e

)
≥ g (0)

)
where

g is any strictly monotonically increasing function. Without more information, we could therefore never

tell if one’s actual utility level were α + X ′β + e or g
(
α + X ′β + e

)
for any strictly monotonically

increasing function g. As before, whether choice of g corresponds to a free normalization or to a behavioral

restriction depends on context.

Some final notes on normalizations are these. First, parametric and semiparametric models often use

different normalizations. The location and scale normalizations on coefficients vs on error moments dis-

cussed above are an example. When comparing parametric and semiparametric estimates, one should

either recast θ in the same normalization, or compare summary measures like marginal effects that are

independent of the choice of normalization. Relatedly, choice of what normalization to make, even if

the normalization is free, can affect the precision and even rate of convergence of estimates, despite being

irrelevant for identifcation. Finally, in addition to normalizations, semiparametric and nonparametric iden-

tification also often requires additional behavioral restrictions on the model. Common restrictions include

continuity, differentiability, or monotonicity of functions in θ .

6.4 Examples: Some Special Regressor Models

Return now to example 5 from Section 3.3, regarding identification of a latent error distribution. Here

we consider the same model, except now we allow for the presence of additional covariates Z . The

DGP is IID observations of scalar random variables Y, X, Z , so φ is the joint distribution of Y, X, Z . The

model consists of the restrictions that the conditional distribution of X given Z is continuous, and that Y =

I (X +U > 0)where the unobserved U ⊥ X | Z . Consider identification of the function FU |Z (u | z), the

conditional distribution function of U given Z = z. In this model E (Y | X = x, Z = z) = Pr (X +U > 0 | X = x, Z = z) =

Pr (x +U > 0 | Z = z) = 1 − Pr (U ≤ −x | Z = z) = 1 − FU |Z (−x | z). This shows that the function

FU |Z (u | z) is identified, since it can be recovered from the function E (Y | X = x, Z = z), which itself
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is identified given φ. Note that FU |Z (u | z) is only identified for values of u that −X can equal.

This is an example of semiparametric identification of a function. The intuition behind this identi-

fication, which is the basis of special regressor estimation (see Lewbel 1997a, 2000, 2014), is that the

distribution of the unobserved latent error U can be identified because the model contains U + X for a

covariate X , and variation in X moves the dependent variable in the same way that variation in U does.

Let us now consider examples of models that exploit this idea.

Example: Set Identification of the Latent Mean. In this example we let Z be empty, and consider

identification of θ = E (U ). Let us also assume that U can take on any value (its support is the whole real

line). We have from above that FU (u) is identified, but only for value of u that are in the support of −X .

This means that if X has support on the whole real line, then FU (u) is identified for all values of u, and

therefore we can identify E (U ) =
∫∞
−∞ ud FU (u). This so-called large support assumption on X is needed

to identify E (U ), because calculating the mean of a random variable depends on the entire distribution

function of that variable. In contrast, other features of the distribution of U can be identified even if X has

very limited support. For example, if we wanted to identify the median rather than the mean of X , then

we would only require that the support of X includes the point x that makes E (Y | X = x) = 1/2.

Suppose now that the support of X equals the interval [a, b] for some finite constants a and b. Then

FU (u) is only identified for values of u in the range −b ≤ u ≤ −a. In this case, as noted by Khan and

Tamer (2010), E (U ) is not even set identified, so identification of E (U ) is non-robust. This is because

the distribution of U could have mass arbitrarily far below −b or arbitrarily far above −a allowing E (U )

to take on any value. On the other hand, if either a = −∞ or b = ∞, then we could place bounds on

E (U ), giving us set identification, and if both a = −∞ and b = ∞, then from above E (U ) is point

identified. Point or set identification of E (U ) is also possible when a and b are both bounded if we are

given some additional information about or restrictions on the tails of U . An example is that E (U ) will be

point identified with bounded a and b if a condition Magnac and Maurin (2007) call tail symmetry holds.

Even mild restrictions on the tails of U , such as having the variance of U be finite, may suffice to yield at

least set identification of E (U ) when a and b are bounded.
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Example: General Binary Choice. Suppose we continue to have IID observations of Y, X, Z with

Y = I (X +U > 0) where U ⊥ X | Z , but now in addition assume that U = g(Z) + e with g(Z) =

E (U | Z), so Y = I (X + g(Z)+ e > 0). If g(Z) were linear and e was normal, this would be a probit

model. Instead we have a very general binary choice model where the latent variable contains an unknown

function g(Z) and the distribution of the latent error term e is also unknown and could be heteroskedastic.

Note that the assumption that the coefficient of X equals one is a scale normalization (assuming the

effect of X on Y is positive). We could have instead given X an unknown coefficient and normalized the

variance of e to be one, as is usual in the probit model. Suppose that the model also includes the large

support assumption that the support of U given Z is contained in the support of −X given Z . Then the

unknown function g is identified because FU |Z (u | z) is identified for all u and g (z) = E (U | Z = z) =∫
supp(u|z) ud FU |Z (u | z).

As above, the large support restriction on the special regressor X is only needed because we wanted

to identify a mean, specifically, g(Z) = E (U | Z). Large support would not be needed to identify other

features of the distribution of U . For example, if we still let U = g(Z)+ e but now define g(Z) to be the

conditional median rather than the conditional mean of U given Z , then the support of −X would only

need to include a neighborhood of the median of U given Z to identify g(Z).

Another parameter we could identify in this model would be an elasticity function like ∂E (ln g(Z)) /∂ ln Z

(which is identified given g). Other economically interesting parameters we could identify are the distribu-

tion of e conditional on Z , and the model’s "average structural function" as defined in Blundell and Powell

(2004). For a general model of Y as a function of covariates Z and an error e, the average structural func-

tion is defined as what the function E (Y | X) would have been if the conditional distribution of the error,

Fe|Z , were replaced with its marginal distribution Fe. In the special regressor model, Fe|Z is identified by

Fe|Z (e | Z) = FU |Z (g(z)+ e | z). Then, given Fe|Z , we can calculate the unconditional distribution Fe,

and using Fe the average structural function is then identified, since in this application it is by definition

given by
∫

supp(e) I (X + g(Z)+ e > 0) d Fe (e). For related results and associated estimators, see Chen,

Khan, and Tang (2016) and Lee and Li (2018). Note that in all these examples the identification is by
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construction.

Example: Binary Choice With Random Coefficients. Before considering binary choice, consider

first the simpler linear random coefficients model. Suppose for the moment that we had IID observations

of continuous Ui and Zi , so the distribution function FU |Z is identified. Suppose further that U and Z

satisfy the linear random coefficients model U = Z ′e, where e is a vector of random coefficients having

an unknown distribution, and e is independent of the vector Z . Then it can be shown that, under some

standard conditions, the distribution of e is nonparametrically identified. See, e.g., Beran and Millar (1994)

or Beran, Feuerverger, and Hall (1996). The proof is based on the conditional characteristic function of

U given Z , but some intuition for why identification is possible can be obtained just by looking at simple

moments. From E (U | Z) = Z ′E (e) we can identify E (e), From E
(
U 2 | Z

)
= Z ′E

(
ee′
)

Z we can

typically identify E
(
ee′
)
, and similarly all the moments of e can (with some regularity) be identified, by

looking at the corresponding conditional moments of U given Z .

Now, instead of a linear model, consider the binary choice random coefficients model Y = I
(
Xex + Z ′ez > 0

)
,

where ex is a scalar random coefficient ez is a vector of random coefficients. Assume that ex > 0 and let

e = ez/ex (this is a scale normalization as in Section 4.3). This model can then be equivalently written

as Y = I
(
X + Z ′e > 0

)
where e is now the vector of random coefficients. In this model U = Z ′e is no

longer observed, but now FU |Z is identified by the special regressor X , instead of being identified by ob-

serving U directly. So again the distribution of e is identified. Ichimura and Thompson (1998) and Gautier

and Kitamura (2013) also show identification of the binary choice random coefficients model, but under

a different scale normalization. This special regressor based identification is extended to the multinomial

choice setting by Fox and Gandhi (2016).

Special regressors are used to identify games with discrete strategies in Lewbel and Tang (2014), and

semiparametric generalizations of the BLP (Berry, Levinsohn, and Pakes 1995) model as in Berry and

Haile (2014). In Berry and Haile the special regressors are never referred to by that name but are instead

just called x
(1)
j t . Many of the results in Matzkin (2015) have a similar unstated connection to special

regressors, e.g., her equations (2.2) and (2.4) make her so-called "exclusive regressors" Xg become special
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regressors.

Identification theorems for binary choice models that predate special regressors, but which can be

reinterpreted as special cases of special regressor based identification methods, include Cosslett (1983),

Manski (1985), Horowitz (1992), and Lewbel (1997a). For more on the construction and use of special

regressors for identification, see Lewbel, Dong, and Yang (2012), Lewbel (2014), and Dong and Lewbel

(2015).

7 Limited Forms of Identification

For many models it is difficult or impossible to lay out conditions that formally ensure parameters are point

identified. One possible response to this problem is to use estimators that only require set identification,

though these are often difficult or intractable to apply. At the other extreme, one might simply ignore

the problem and just assume identification, though any resulting estimator could be poorly behaved. A

middle way is to establish conditions that make identification likely in some sense. Examples are local

identification and generic identification. These are conditions that are weaker than point identification, but

are often easier to prove. Given local or generic identification, it is then less of a leap of faith to assume

point identification holds.

7.1 Local and Global Identification

For a given true value of θ0, recall that point identification of θ0 means that there is no other θ ∈ 2 (the

set of all possible values of θ , according to the model) that is observationally equivalent to θ0. Since the

true value of θ0 is unknown, proving point identification requires that no distinct pairs of values θ and θ̃ in

2 be observationally equivalent to each other. As noted earlier, this condition is sometimes called global

identification, emphasizing how point identification must hold whatever the true value of θ0 turns out to

be. A recent study that focuses on conditions for global identification is Komunjer (2012).

A necessary condition for global identification, and one that is often easier to verify in practice, is local
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identification. Intuitively, local identification of θ0 means that θ0 is identified among alternative values of

θ , if we restrict attention only to alternative values that are very close to the true value θ0.

Formally, local identification of θ0 means that there exists a neighborhood of θ0 such that no θ ∈ 2

exists in this neighborhood that is both unequal to θ0 and observationally equivalent to θ0. Since we

don’t know what θ0 equals, proving local identification requires showing that, for any two values θ and

θ̃ in 2 that are observationally equivalent to each other but not equal to each other, there must exist a

neighborhood of θ̃ that does not contain θ .

Note that this idea of local identification differs from (and predates), the term local as used in LATE

(local average treatment effect). In LATE, local means that what is being identified is the mean parameter

value for a particular subpopulation. In contrast, the word local in local identification refers to identifica-

tion of a population (not a subpopulation) parameter, but only relative to values the population parameter

might take on in a neighborhood of the true value.

To illustrate the difference between local and global identification, suppose m (x) is a known continu-

ous function. (equivalently, assume m (x) is point identified in some model with some given φ). Suppose

also that all we know about the parameter θ we wish to identify is that the true θ0 is a real valued scalar

(so 2 is the real line) that satisfies m (θ0) = 0. Consider three possible cases:

Case 1: Suppose we know m (x) is strictly monotonic. Then θ (if it exists) is globally identified,

because strict monotonicity ensures that only one value of θ can satisfy the equation m (θ) = 0.

Case 2: Suppose m is known to be a J ’th order polynomial for some integer J . Then θ may not be

globally identified, because there could exist up to J different values of θ that satisfy m (θ) = 0. However,

in this case θ is locally identified, because for any value of θ that satisfies m (θ) = 0, there always exists a

neighborhood of θ that is small enough to not contain any of the other roots of m (x) = 0. More generally,

if a real valued parameter vector θ is set identified, and the set has a finite number of elements (in this

example, no more than J elements), then that parameter must be locally identified.

Case 3: Suppose all we know about m is that it is continuous. Then θ might not be locally identified,

because m (x) could equal zero for all values of x in some interval, and any given θ in that interval will be
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observationally equivalent to any other value in that interval.

This example generalizes in some ways. For example, suppose in some model that 2 is an interval.

If θ is set identified, and the set has a finite number of elements, then θ is locally identified. Similarly,

consider an extremum identification problem where the objective function is complicated. In such cases

it may be difficult to rule out the possibility of a finite number of local optima, in which case one might

show local but not necessarily global identification. More generally, in nonlinear models it is often easier

to provide conditions that ensure local rather than global identification.

Local identification may be sufficient in practice if we have enough economic intuition about the

estimand to know that the correct θ should lie in a particular region. Lewbel (2012) gives an example of a

model with a parameter and associated estimator that is set identified. The parameter is a coefficient in a

simultaneous system of equations, and the identified set has two elements, one positive and one negative.

So in this case we only have local identification, but if economic theory is sufficient to tell us the sign of

the parameter a priori, then that local identification may suffice for estimation. Note that in this particular

example, we could have used economic theory to restrict the model, redefining 2 to only include values

of θ with the correct sign, and then declaring the parameter to be globally identified.

The notion of local identification is described by Fisher (1966) in the context of linear models, and is

generalized to other parametric models by Rothenberg (1971) and Sargan (1983). Letting θ be a J vector

of structural parameters and φ be a set of reduced form parameters, these authors consider models that

take the form r (φ (θ) , θ) = 0 for some known vector valued function r . Letting R (θ) = r (φ (θ) , θ), the

equation R (θ) = 0 characterizes all of the restrictions that are imposed by the model.

A sufficient condition for local identification of θ in this class of models is that R (θ) be differentiable

and that the rank of ∂R (θ) /∂θ equals J . Sargan (1983) calls any violation of this condition first order

(lack of) identification, and observes that there exist nonlinear models in which θ is locally identified

despite first order lack of identification. Implications of this first order underidentification for inference

are discussed by Lee and Chesher (1986), Dovonon and Renault (2009), and Arellano, Hansen and Sentana

(2012).
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For parametric models that can (if identified) be estimated by maximum likelihood, this first order

condition is equivalent to the condition that the information matrix evaluated at the true θ be nonsingu-

lar. Newey and McFadden (1994) and Chernozhukov, Imbens, and Newey (2007) give semiparametric

extensions of the Sargan rank result. Chen, Chernozhukov, Lee, and Newey (2014) provide a general rank

condition for local identification of a finite parameter vector in models defined by conditional moment

restrictions. Chen and Santos (2015) provide a concept of local overidentification that can be applied to a

large class of semiparametric models.

7.2 Generic Identification

Like local identification, generic identification is a weaker condition than point identification, is a neces-

sary condition for point identification, and is often easier to prove than point identification. Also like local

identification, one may be more comfortable assuming point identification for estimation purposes, if one

can show that at least generic identification holds.

Let 2̃ be a subset of 2, defined as follows: Consider every θ ∈ 2. If θ is observationally equivalent

to any other θ̃ ∈ 2, then include θ in 2̃. This construction means that if θ0 takes on a value that is in 2̃

then θ0 is not point identified, otherwise θ0 is point identified. Proving point identification for any value

θ0 might take on requires that 2̃ be empty. Following McManus (1992), the parameter θ is defined to be

generically identified if 2̃ is a measure zero subset of 2.

To interpret what generic identification means, imagine that nature chooses a value θ0 by randomly

picking an element of 2. Assume all elements of 2 are equally likely to be picked, so nature is drawing

from a uniform distribution over the elements of 2. Generic identification means that there is a zero

probability that nature chooses a value for θ0 that is not point identified.

In models that are systems linear equations (as in Wright-Cowles identification), generic identification

is closely related to the order condition for identification. Consider a system of linear regression equations

in which the order condition for identification is satisfied. Identification then only requires that a rank

condition holds, which can be expressed by saying that a certain, say J by J , matrix of coefficients is
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nonsingular. If we drew J 2 random numbers from some continuous distribution and put them in a matrix,

the probability that the matrix would be singular is zero, so in this example the order condition implies

generic identification of the model. Similarly, the coefficients in a linear regression model Y = X ′β + e

with E (e | X) = 0 are generically identified if the probability is zero that nature chooses a distribution

function for X with the property that E
(
X X ′

)
is singular.

Another example is the regression model with measurement error. Assume the DGP is IID observations

of Y, X . Suppose the model is X = X∗ +U and Y = X∗β + e, where the unobserved model error e, the

unobserved measurement error U , and the unobserved true covariate X∗ are all mutually independent with

mean zero. An early result in the identification literature is Reiersøl (1950), who showed that in this model,

despite not having instruments, the coefficient β is identified when (Y, X) has any joint distribution except

a bivariate normal. We could then say that β is generically identified if the set of possible joint distributions

that Y, X might be drawn from is sufficiently large, as would be true if, e.g., e could have been drawn

from any continuous distribution. Similarly, Schennach and Hu (2013) show that under the same mutual

independence of e, U , and X∗, the function m in the nonparametric regression model Y = m (X∗) + e is

nonparametrically identified as long as m and the distribution of e are not members of a certain parametric

class of functions. So again one could claim that mutual independence of e, U , and X∗ leads to generic

identification of m, as long as m could have been any smooth function or if e could have been drawn from

any smooth distribution.

Generic identification is sometimes seen in social interactions models. In many such models, showing

point identification is intractable, but one can establish generic identification. See, e.g., Blume, Brock,

Durlauf, and Ioannides (2011).

The term generic identification is sometimes used more informally, to describe situations in which

identification holds except in special or pathological cases, but where it might be difficult to explicitly

describe all such cases. An example is the generic identification results in Chiappori and Ekeland (2009).

These formal and informal definitions of generic identification coincide if we can interpret the special or

pathological situations as arising with probability zero.
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8 Identification Concepts That Affect Inference

For the most part, identification is treated as a precursor to estimation. We first assume or establish

identification, then consider inference and properties of specific estimators given identification of the

estimands. However, there are situations where the nature of the identification affects inference. These

include concepts like identification at infinity, weak identification, and ill-posed inverse problems. All are

forms of point identified parameters, but each describes situations where the nature of the identification

affects inference. These are considered identification (rather than estimation) issues, because they are not

properties of specific estimators, but rather refer to features of the underlying population that affect the

behavior of any estimator one might propose.

In this section we summarize these identification concepts that affect inference. However, it should

be noted that some previously discussed concepts are also related to inference, e.g., extremum based

identification applies only to objects that are defined in terms of the associated extremum estimators, and

inference differs greatly for parameters that are only set identified from those that are point identified.

8.1 Weak vs. Strong Identification

Informally, weak identification arises in situations that are, in a particular way, close to being not point

identified. Both weakly identified and strongly identified parameters are point identified. One might not

want to call these concepts identification at all, because weak vs. strong identification does not refer to

the question of whether the parameters θ are uniquely determined by the knowable information φ. The

difference between weak and strong identification instead refers to issues associated with inference. They

are referred to as forms of identification because they are features of the underlying model and associated

DGP, and hence affect any possible estimator we might propose.

Perhaps the earliest recognition of a weak identification problem is Sargan (1983), who wrote, "we

can conjecture that if the model is almost unidentifiable then in finite samples it behaves in a way which is

difficult to distinguish from the behavior of an exactly unidentifiable model." Other early work that at least

hints at the problem include the Handbook of Econometrics chapters by Phillips (1983) and Rothenberg
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(1984). Bound, Jaeger, and Baker (1995) specifically raised the issue of weak instruments in an empirical

context. An early paper dealing with the problem econometrically is Staiger and Stock (1997). A survey

of the weak instruments problem is Stock, Wright, and Yogo (2002).

The usual source of weak identification is low correlations among variables used to attain identification.

A typical example is when the correlation between an instrument Z and the covariate X it is instrumenting

is close to zero. Associated parameters would not be identified if the correlation was actually zero, and so

identification is weak (usually stated as saying the instrument Z is weak) when this correlation is close to

zero. Given a vector of regressors X and a vector of instruments Z in a linear regression model, the first

stage of two stage least squares is to regress X on Z to get fitted values X̂ , and some or all of the model

coefficients may be weakly identified if the matrix E
(
X̂ X ′

)
is ill conditioned, i.e., close to singular. More

generally, in a GMM model weak identification may occur if the moments used for estimation yield noisy

or generally uninformative estimates of the underlying parameters.

The key feature of weakly identified parameters is not that they are imprecisely estimated with large

standard errors (though they do typically have that feature). Rather, weakly identified parameters have the

property that standard asymptotic theory provides a poor approximation to the true precision of estimation.

Moreover, higher order asymptotics don’t help, since they too depend on precise parameter estimates. In

contrast, strongly identified parameters are defined as parameters for which standard estimated asymptotic

distributions provide good approximations to their actual finite sample distributions.

Nonparametric regressions are also typically imprecisely estimated, with slower than parametric con-

vergence rates and associated large standard errors. But nonparametric regressions are not said to be

weakly identified, because standard asymptotic theory adequately approximates the true precision with

which those parameters are estimated. Similarly, parameters that suffer from irregular or thin set identifi-

cation, such as those based on identification at infinity, are also not called weakly identified, since standard

asymptotic theory, again at slower than parametric rates, can still typically be applied.

To illustrate, consider a parameter vector that is identified, and could be estimated at parametric rates

using an extremum estimator (one that maximizes an objective function) like least squares or GMM or
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maximum likelihood. Elements of this parameter vector will be weakly identified if any objective func-

tion we might use for estimation is relatively flat in one or more directions involving those parameters.

This flatness of the objective function leads to imprecision in estimation. But more relevantly, flatness

also means that standard errors and t-statistics calculated in the usual ways (either analytically or by boot-

strapping) will be poorly estimated, because they depend on the inverse of a matrix of derivatives of the

objective function, and that matrix will be close to singular.

Weak identification resembles multicollinearity, which in a linear regression would correspond to

E
(
X X ′

)
instead of E

(
X̂ X ′

)
being ill-conditioned. Like multicollinearity, it is not the case that a pa-

rameter either "is or "is not" weakly identified. Rather, relative weakness of identification depends on

the sample size. A model that suffers from multicollinearity when the sample size is n = 100 may be

fine when n = 1000. Similarly, A parameter that is weakly identified (meaning that standard asymptotics

provide a poor finite sample approximation to the actual distribution of the estimator) when n = 100 may

be strongly identified when n = 1000. This is why weakness of identification is generally judged by

rules of thumb rather than formal tests. For example, Staiger and Stock (1997) suggest the rule of thumb

for linear two stage least squares models that instruments are potentially weak if the F-statistic on the

excluded regressors in the first stage of two stage least squares is less than 10. See also Inoue and Rossi

(2011) for who provide a test for (extremum based) strong identification, where alternatives include weak

identification and a lack of extremum based point identification.

It is important to make a distinction between parameters that are weakly identified, and the models

that econometricians use to deal with weak identification. In real data, weak identification is purely a

finite sample problem that disappears when n gets sufficiently large. This makes it difficult to provide

asymptotic theory to deal with the problem. Econometricians have therefore devised a trick, i.e., an

alternative asymptotic theory, to provide better approximations to true finite sample distributions than are

obtained with standard asymptotics.

To understand this trick, consider the simple two equation system Y = θX + U and X = βZ + V

where the DGP consists of IID observations of the mean zero random scalars Y, X, and Z , while U
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and V are unobserved mean zero errors that are uncorrelated with Z . In this case, as long as β 6= 0,

the parameter θ is identified by θ = E (ZY ) /E (Z X). A corresponding estimator would replace these

expectations with sample averages, yielding the standard linear instrumental variables estimator. However,

since E (Z X) = βE
(
Z2
)
, if β is close to zero then E (Z X) will be close to zero, making θ weakly

identified. But how close is close? Small errors in the estimation of E (Z X) will yield large errors in the

estimate of θ . The bigger the sample size, the more accurately E (Z X) can be estimated, and hence the

closer β can be to zero without causing trouble.

To capture this idea asymptotically, econometricians pretend that the true value of β is not a constant,

but instead takes a value that drifts closer to zero as the sample size grows. That is, we imagine that the

true model is X = βn Z + Ux , where βn = bn−1/2 for some constant b. The larger n gets, the smaller

the coefficient βn becomes. This gives us a model where θ suffers from the weak identification problem

at all sample sizes, and so can be analyzed using asymptotic methods. Typically, in a drifting parameter

model like this, the constant b and hence the parameter βn is not identified, so tests and confidence regions

for θ have been developed that are robust to weak instruments, that is, they do not depend on consistent

estimation of βn . See, e.g., Andrews, Moreira, and Stock (2006) for an overview of such methods.

In the econometrics literature, saying that a parameter θ in a model "is" weakly identified, means that

the asymptotics being employed for inference on θ are derived assuming relevant parameters drift towards

zero (or more generally towards any value that would result in nonidentification). For example, in the

above model an econometrician would say θ is strongly identified when the asymptotics he or she uses are

based on βn = β, and would say θ is weakly identified when the asymptotics used for inference are based

on (or at least allow for) βn = bn−1/2.

We rarely believe that parameters actually drift towards zero as n grows. Rather, when we assume

parameters are weakly identified we are expressing the belief that the drifting parameter model provides a

better asymptotic approximation to the true distribution than standard asymptotics do.

Other related terms in the weak instruments literature including nearly-weak identification, semi-strong

identification and nonstandard-weak identification. See, e.g., Andrews and Guggenberger (2015), Cheng
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(2015), and references therein. These refer to models where parameters, or their impact on θ , drift to zero

at rates other than n−1/2, or more generally where the model may contain a mix of drifting, nondrifting,

and purely unidentified parameters.

One final note is that weak instruments are often discussed in the context of models that also have

many instruments. However, the econometric difficulties associated with many instruments are distinct

from those associated with weak instruments, and some separate theory exists for dealing with many

instruments, weak instruments, or the combination of the two.

8.2 Identification at Infinity or Zero; Irregular and Thin set identification

Based on Chamberlain (1986) and Heckman (1990), identification at infinity refers to the situation in

which identification is based only on the joint distribution of data at points where one or more variables

go to infinity. For example, suppose our DGP is IID observations of scalar random variables Y, D, Z .

Assume Y = Y ∗D where D is a binary variable equal to zero or one, Y ∗ is a latent unobserved variable

that is independent of Z , and limz→∞ E (D | Z = z) = 1. The goal is identification and estimation of

θ = E (Y ∗). This is a selection model, where Y is selected (observed) only when D = 1. For example D

could be a treatment indicator, Y ∗ is the outcome if one is treated, θ is what the average outcome would

equal if everyone in the population were treated, and Z is an observed variable (an instrument) that affects

the probability of treatment, with the probability of treatment going to one as Z goes to infinity. Here θ is

identified by θ = limz→∞ E (Y | Z = z). The problem is that Y ∗ and D may be correlated, so looking at

the unconditional mean of Y confounds the two. But everyone who has Z equal to infinity is treated, so

looking at the mean of Y just among people having arbitrarily large values of Z eliminates the problem. In

real data we would estimate θ by θ̂ =
∑n

i=1w (n, Zi ) Yi/
(∑n

i=1w (n, Zi )
)

where w (n, Zi ) are weights

that grow to infinity with Z in some way. An example would be letting θ̂ equal the average value of Y just

for people that have Z > cn where cn →∞ as n →∞ (see Heckman 1990 and Andrews and Schafgans

1998), or letting w (n, Zi ) be the inverse of the density of Z as in Lewbel (2007b).

As first shown by Chamberlain (1986), the general problem with identification at infinity is that esti-
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mators based on such identification will typically converge slowly (slower than parametric root n rates).

The same estimation problems can also arise whenever identification is based on Z taking on a value or

range of values that has probability zero. Khan and Tamer (2010) call this general idea thin set identifi-

cation. For example, Manski’s (1985) maximum score estimator for binary choice models is based on the

assumption that the conditional median of a latent error equals zero. This assumption is another example

of thin set identification, because it gets identifying power only from information at a single point (the

median) of a continuously distributed variable.

Khan and Tamer (2010) and Graham and Powell (2012) use the term irregular identification to describe

cases where thin set identification leads to slower than root-n rates of estimation. Not all parameters that

are thin set identified or identified at infinity are irregular. For example, estimates of θ = E (Y ∗) above can

converge at parametric rates if Z has a strictly positive probability of equaling infinity. More subtly, the

’impossibility’ theorems of both Chamberlain and Khan and Tamer showing that some thin set identified

models cannot converge at rate root n assume that the variables in the DGP have finite variances. So, e.g.,

Lewbel’s (2000) binary choice special regressor estimator with endogenous regressors is thin set identified.

But this estimator can converge at rate root n, avoiding irregular identification and overcoming Khan and

Tamer’s impossibility theorem, either by having a special regressor with strictly larger support than the

model’s latent index, or by having a special regressor with infinite variance. Similarly, Khan and Tamer

point out that the average treatment effect model of Hahn (1998) and Hirano, Imbens and Ridder (2003)

is also generally irregularly identified, and so will not attain the parametric root n rates derived by those

authors unless a latent index has extremely thick tails, just as Lewbel (2000) requires a special regressor

with thick tails (or larger support than the latent variable) to avoid being irregular.

It is easy to confuse irregular identification with weak identification, but they are not the same. Both

types of parameters are point identified by the usual definitions, and both refer to properties of the un-

derlying data and model that cause problems with estimation and inference regardless of the choice of

estimator.

The difference is that asymptotic theory for weakly identified parameters is based on models where true
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parameter values are assumed to vary (typically drift toward zero) with the sample size, in order to obtain

good approximations to the true precision with which they can be estimated in moderate sized samples. In

contrast, estimates of irregularly identified parameters converge slowly for more or less the same reasons

that nonparametric regressions converge slowly, that is, they are based on a vanishingly small subset of the

entire data set. The rates of convergence of irregularly or thin set identified parameters can vary widely,

from extremely slow (such as log n) up to n1/2, depending on details regarding the shape of the density

function in the neighborhood of the identifying point. See Khan and Tamer (2010) for examples.

Sometimes proofs of identification rely on thin set identification arguments, but it is possible that

such parameters are still strongly identified, because the structure contains more information about the

parameter than is being used in the identification proof. For example, Heckman and Honore (1989) showed

that without parameterizing error distributions, the nonparametric Roy model or competing risks model

can be identified by observations where covariates drive individual risks to zero. Thus their proof is only of

thin set identification. However, Lee and Lewbel (2013) later showed that this model is actually strongly

identified, using information over the entire DGP, not just data where individual risks go to zero.

Another class of examples of thin set identification is what Hill and Renault (2011) call eventual

identification. They use this term to describe models where asymptotic trimming is used to obtain limit

normal inference based on means of thick tailed distributions.

8.3 Ill-Posed Identification

Suppose that parameters θ are point identified. Problems of ill-posedness arise when the connection from

φ to θ is not sufficiently smooth. For example, suppose that our DGP is n IID observations Wi of a

vector W , so φ corresponds to the distribution function of W . Let F (w) denote this distribution function

evaluated at the point W = w. Recall the Glivenko–Cantelli theorem that a uniformly consistent estimator

of F is the empirical distribution function, defined as F̂ (w) =
∑n

i=1 I (Wi ≤ w) /n. Suppose we want to

estimate a parameter vector or function θ , where θ = g (F) for some known g. Then θ is point identified,

by construction. Moreover, if g is continuous, then θ̂ = g
(
F̂
)

would be a consistent estimator for θ .
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However, if g is discontinuous, then θ̂ will generally not be consistent. This discontinuity is the problem

of ill-posedness.14 Ill-posedness is an identification concept like weak identification or identification at

infinity, because it is a feature of the underlying model, θ , and φ.

When identification is ill-posed, construction of a consistent estimator requires "regularization," that

is, some way to smooth out the discontinuity in g. However, regularization generally introduces bias, and

obtaining consistency then requires some method of shrinking this bias as the sample size grows. This in

turn generally results in slower convergence rates.

Nonparametric estimation of a probability density function is an example of an ill-posedness problem.

Consider estimation of the density function f (w), defined by f (w) = d F (w) /dw. There does not

generally exist a continuous g such that f = g (F). Correspondingly, one cannot just take a derivative

of the empirical distribution function F̂ (w) with respect to w to estimate f (w). This problem is ill-

posed, and so regularization is needed to consistently estimate f . The standard Rosenblatt-Parzen kernel

density estimator is an example of regularization. This estimator, using a uniform kernel, is equivalent to

letting f̂ (w) =
(
F̂ (w + b)− F̂ (w − b)

)
/ (2b), which for a small value of the bandwidth b is a smooth

(regularized) but biased approximation of d F (w) /dw. Shrinking b to zero as the sample size grows is

what asymptotically shrinks the bias in this estimator to zero. Other examples of regularization are the

kernel and bandwidth choices in nonparametric kernel regressions, and the selection of basis functions

and the number of terms to include in nonparametric sieve estimators. One might interpret the curse of

dimensionality, where rates of convergence slow as the dimension of nonparametric estimators rises, as a

property of the regularization required to overcome ill-posedness.

Depending on the application, the degree of ill-posedness can range from mild to moderate to severe.

In the case of one dimensional nonparametric density or regression estimation, ill-posedness results in just

a moderate slowing in the rate of convergence, typically n2/5 instead of n1/2. However, in other contexts,

such as nonparametric instrumental variables (see, e.g., Newey and Powell 2003), ill-posedness can be

severe, causing very slow convergence rates like ln(n).

14More precisely, continuity of the mapping g depends on the chosen norms. Ill-posedness arises when the norm selected for

proving consistency results in discontinuity of g.
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Other common situations in econometrics where ill-posedness arises are in models containing mismea-

sured variables where the measurement error distribution needs to be estimated, and in random coefficient

models where the distribution of the random coefficients is unknown. Although the term "Ill-Posed Identi-

fication" does not actually appear in the literature (that name is therefore being proposed here), the general

problem of ill-posedness in econometrics is well recognized. See, e.g., Horowitz (2014) for a survey. The

concept of well-posedness, the opposite of ill-posedness, is originally due to Hadamard (1923).

8.4 Bayesian and Essential Identification

We have already seen that the usual notion of identification can be called point identification or global

identification. Two more names for the same concept that appear in the literature are frequentist identifi-

cation and sampling identification. These terms are used to contrast the role of identification in frequentist

statistics from its role in Bayesian statistics. In a Bayesian model, a parameter θ is a random variable

rather than a constant, having both a prior and a posterior distribution. There is a sense in which point

identification is irrelevant for Bayesian models, since one can specify a prior distribution for θ , and obtain

a posterior distribution, regardless of whether θ is point identified or not. See Lindley (1971) and Poirer

(1998) for examples and discussions of the implications for Bayes estimation when parameters are not

point identified.

Still, there are notions of identification that are relevant for Bayesians. Gustafson (2005) defines para-

meters θ to be essentially identified (with respect to a given prior distribution) if θ is not point identified,

but would be point identified if the model included the additional assumption that θ is drawn from the

given prior distribution. The idea is that unidentified parameters can become identified by adding restric-

tions to a model. Imposing the restriction that θ be a draw from a given distribution function could be

an example of such a restriction. For parameters that are not point identified, Gustafson shows that the

behavior of Bayes estimators can depend heavily on whether they are essentially identified or not for the

given prior.

A parameter vector θ is defined to be Bayes identified if its posterior distribution differs from its prior
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distribution. That is, θ is said to be Bayes identified as long as data provides any information at all that

updates the prior. This definition of Bayesian identification goes back at least to Florens, Mouchart, and

Rolin (1990). A formal definition and analysis of Bayesian identification is provided by Florens and

Simoni (2011).

Typically, a parameter that is point identified will also be Bayes identified. Parameters that are set

rather than point identified are also generally Bayes identified, since data that provides information about

the identified set will typically also provide information that updates ones prior. An example is given

by Moon and Schorfheide (2012), who show that if a parameter θ is set identified, where the set is an

interval, then the support of the posterior distribution of θ will generally lie inside the identified interval.

The intuition is that, even if data tells us nothing about where θ could lie inside the identified interval, the

prior does provide information inside this interval, and the posterior reflects that information. See also

Gustafson (2015) for more on Bayes estimation in partially identified models.

9 Conclusions

Identification is a rapidly growing area of research within econometrics, as the ever expanding zooful of

different terms for identification indicates. Many factors are driving this growth. The rise of big data,

with increasingly larger data sets and faster computation, has enabled the specification and estimation of

correspondingly larger and more complicated models, requiring increasingly more elaborate identification

analyses. Examples of modern models with complicated identification issues include games and auctions,

social interactions and network models, forward looking dynamic models, models with nonseparable er-

rors (typically assigning behavioral meaning to unobservables), and general equilibrium models.

At the other extreme, the so-called credibility revolution has lead to a widespread search for sources of

randomization in either constructed or natural experiments, with the goal of gaining identification of inter-

pretable if not structural parameters. Like structural models, causal models are also becoming increasingly

sophisticated, and a similar search for novel methods of identification exists in the reduced form literature.

Regression kink design and the construction of synthetic controls are recent examples.
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Unlike statistical inference, there is not a large body of general tools or techniques that exist for prov-

ing identification. As a result, identification proofs are often highly model specific and idiosyncratic.

Some general techniques for obtaining or proving identification in a variety of settings do exist. These

include control function methods as generalized in Blundell and Powell (2004), special regressors as in

Lewbel (2000), contraction mappings to obtain unique fixed points as applied in the Berry, Levinsohn, and

Pakes (1995) model, classes of integral equations corresponding to moment conditions that have unique

solutions, such as completeness as applied by Newey and Powell (2003), the observational equivalence

characterization theorem of Matzkin (2005), and the moments characterization theorem of Schennach

(2014). Development of more such general techniques and principles would be a valuable area for future

research.

Finally, one might draw a connection between identification and big data. Varian (2014) says, "In

this period of “big data,” it seems strange to focus on sampling uncertainty, which tends to be small with

large datasets, while completely ignoring model uncertainty, which may be quite large." In big data, the

observed sample is so large that it can be treated as if it were the population. Identification deals precisely

with what can be learned about the relationships among variables given the population, i.e., given big data.

A valuable area for future research would be to explore more fully the potential linkages between methods

used to establish identification and techniques used to analyze big data.

This paper has considered over two dozen different identification related concepts, as listed in the

introduction. Given the increasing recognition of its importance in econometrics, the identification zoo is

likely to keep expanding.

10 Appendix: Point Identification Details

This Appendix presents the definition of point identification and related concepts with somewhat more

mathematical rigor and detail than in Section 3. These derivations are very similar to those of Matzkin

(2007, 2012), though Matzkin only considers the case in which φ is a data distribution function.

Define a model M to be a set of functions or sets that satisfy some given restrictions. These could
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include objects like regression functions, distribution functions of errors or other unobservables, utility

functions, payoff matrices, or information sets. Define a model value m ∈ M to be an element of M . So

m would correspond to a particular value of the functions, matrices, and sets that comprise the model. For

example, if we had the regression model Yi = g (X i ) + ei , then M could consist of the set of possible

regression functions g and the set of possible joint distributions of the regressor X i and the error term ei

for all i in the population. The elements of the set M could be restricted with a requirement like saying

the regression function must be linear, so g (X i ) = a + bX i for some constant a and b. Other possible

restrictions could be that each ei has finite variance and is mean zero conditional on regressors.

Each model value m ∈ M implies a data generating process (DGP) (an exception is for incoherent

models, which can have values that do not correspond to any DGP). Define φ to be a set of constants

and/or functions that we assume are known, or knowable, given the DGP. For example, if the DGP consists

of independent, identically distributed (IID) observations of the vector Wi = (Yi , X i ), then φ could be

the distribution function of Wi , because given data with a large enough number of such observations,

this distribution function could, with arbitrarily high probability, be estimated to any desired degree of

accuracy. When observations are not independent, as in time series data or with social interactions, then φ

could consist just of features of the DGP that we assume are knowable, such as means and autocovariances

in stationary data, or reduced form linear regression coefficients. If some elements of W (call them X )

are determined by experimental design and others, called Y , are observed outcomes given X , then under

suitable experimental design φ could be the conditional distribution function of Y given X , evaluated at

the values of X that could be set by the experimenter.

Since any (coherent) model value m implies a DGP, each m must also imply a value φ. Let φ = 5(m)

be the function (or more generally, the mapping) that defines the particular observable φ that corresponds

to any given model value m ∈ M . Let φ0 be the value of φ that corresponds to the true DGP, that is, the

DGP that actually generates what we can observe or know. The model M is defined to be misspecified

if φ0 6= 5(m) for any m ∈ M . Misspecification implies that what we can observe about the true DGP,

which is φ0, cannot satisfy the restrictions of the model M . If the model is not misspecified, then the true
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model value m0 must satisfy φ0 = 5(m0). If more than one value of m ∈ M satisfies φ0 = 5(m), then

we cannot tell which of these values of m is the true one.

This definition sidesteps the deeper question of what is actually meant by truth of a model, since

models are assumed to only approximate the real world. All we are saying here about the true model value

m0 is that it doesn’t conflict with what we can observe or know, which is φ0.

Define a set of parameters θ to be a set of unknown constants and/or functions that characterize or

summarize relevant features of a model. Essentially, θ can be anything we might want to estimate (more

precisely, θ will generally be estimands, i.e., population values of estimators of objects that we want to

learn about). Parameters θ could include what we usually think of as model parameters, e.g. regression

coefficients, but θ could also be, e.g., the sign of an elasticity, or an average treatment effect.

Assume that there is a unique value of θ associated with each model value m (violation of this assump-

tion relates to the coherence and completeness conditions; see Section 4 for details). Let θ = 1(m) be

the function or mapping that defines the particular parameter value θ that corresponds to the given model

value m. The true parameter value θ0 satisfies θ0 = 1(m0).

Define 2 = {θ | θ = 1(m) where m ∈ M}. So 2 is the set of all values of θ that are possible given

the model M . Any θ /∈ 2 is ruled out by the model. We can therefore think of 2 as embodying all of the

restrictions on θ that are implied by the model.

Similar to 2, define 8 = {φ | φ = 5(m) where m ∈ M}. So 8 is the set of all φ that are possible

given the model M . Any φ that is not in 8 is ruled out by the model. While the set 2 embodies or

describes all the restrictions on the parameters θ that are implied by the model, the set 8 embodies all of

the observable restrictions that are implied by the model (assuming that what we can observe is φ). The

functions 5 and 1 are 5 M → 8 and 1 M → 2.

Define the structure s (φ, θ) to be the set of all model values m that can yield both the given values φ

and θ , that is, s (φ, θ) = {m | φ = 5(m), θ = 1(m), and m ∈ M}. We can think of the structure as

embodying the relationship between the parameters θ and what we could learn from data, which is φ.

Two sets of parameter values θ and θ̃ are defined to be observationally equivalent in the model M if
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there exists a φ ∈ 8 such that s (φ, θ) 6= ∅ and s
(
φ, θ̃

)
6= ∅. Equivalently, θ and θ̃ are observationally

equivalent if there exist model values m and m̃ in M such that θ = 1(m), θ̃ = 1(m̃), and5(m) = 5(m̃).

Roughly, θ and θ̃ observationally equivalent means there exists a value φ such that, if φ is true, then either

the value θ or θ̃ could also be true.

Given observational equivalence, we have what we need to define identification. The parameter θ is

defined to be point identified (also sometimes called globally identified and often just called identified)

in the model M if, for any θ ∈ 2 and θ̃ ∈ 2, having θ and θ̃ be observationally equivalent implies

θ = θ̃ . Let θ0 ∈ 2 denote the unknown true value of θ . We can say that the particular value θ0 is point

identified if θ0 is not observationally equivalent to any other value of θ ∈ 2. The key point is that all we

can know is φ0, and φ0 = 5(m0). We therefore can’t distinguish between m0 and any other m for which

5(m) = 5(m0), and so we can’t distinguish between θ = 1(m) and θ0 = 1(m0) if any such m exists.

And, since we don’t know before hand which of the possible values of φ will be the φ0 that we see, and

we don’t know which of the possible values of θ is the true θ0, to ensure point identification we require

that no pairs of values θ and θ̃ be observationally equivalent.

In practice, ensuring point identification may require that the definition of the model rules out some

model values m, specifically, those for which 1(m) is observationally equivalent to some 1(m̃). Equiva-

lently, the set 2 may be limited by ruling out values that can’t be point identified.

We have now defined what it means to have parameters θ be point identified. We say that the model is

point identified when no pairs of model values m and m̃ in M are observationally equivalent. This means

that for any m ∈ M and m̃ ∈ M , if 5(m) = 5(m̃) then m = m̃. Having the model be point identified is

sufficient, but stronger than necessary, to also have any θ ∈ 2 be point identified.
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