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Abstract

We propose a regret-based model that allows the separation of atti-

tudes towards transitivity on triples of random variables that are close

to each other and attitudes towards transitivity on triples that are far

apart. This enables a theoretical reinterpretation of evidence related

to intransitive behavior in the laboratory. When viewed through this

paper’s analysis, the experimental evidence need not imply intransi-

tive behavior for large risky decisions such as investment choices and

insurance.
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1 Introduction

Transitivity is a fundamental assumption of decision theory, both at the in-

dividual and at the social level. The requirement that if A precedes B and B
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precedes C then A precedes C seems almost obvious. Yet we know that not

all decision rules satisfy transitivity. The voting paradox of Condorcet (see,

e.g., Muller [19]) shows that a majority rule may lead to a violation of tran-

sitivity. Nor do decision makers always behave according to this rule. Many

experiments show that individual preferences are often intransitive, especially

preferences over lotteries. Consider for example the following experiment re-

ported by Loomes, Starmer, and Sugden [15]. There are three possible states

of nature with the probabilities Pr[s1] = Pr[s2] = 0.3 and Pr[s3] = 0.4 and

three random variables,

A = (18, s1; 0, s2; 0, s3)

B = (8, s1; 8, s2; 0, s3)

C = (4, s1; 4, s2; 4, s3)

A significant number of subjects exhibited the intransitive cycle A ≻ C ≻

B ≻ A. For other documented violations of transitivity, see e.g. Lichten-

stein and Slovic [13], Grether and Plott [10], Starmer [22], Birnbaum and

Schmidt [5], and Regenwetter, Dana, and Davis-Stober [21].

Obviously, experiments cannot reconstruct real market behavior, as bud-

get constraints restrict the size of the gambles involved, typically to less than

$50, while real world financial decisions usually involve sums in the thou-

sands, if not much more. Arguably, some psychological violations of “ra-

tionality” (as in the axiomatic approach to decision making) become more

effective when the size of the gambles involved is large. For instance, if an

experiment reveals Allais-type violations of expected utility in the small, this

behavior will become even more persistent in the large.1

There are however arguments in the literature that violations of expected

utility may disappear if prizes are sufficiently large. To quote Hey [11], “if you

1For experiments demonstrating that Allais-paradox behavior is less prevalent when

the size of prizes is reduced, see Conlisk [7], Fan [9], MacCrimmon and Larsson [16] and

the references cited in footnote 31 of Cerreia-Vioglio, Dillenberger, and Ortoleva [6].
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put enough zeroes on the ends of the payoffs ..., you will observe subjective

expected utility behavior.” In our view, this argument is especially relevant

for violations of transitivity because such violations may be due to insufficient

consideration by decision makers. That is, cycles may be observed with

respect to small gambles, but as decision makers will pay more attention and

exert more effort when making big financial decisions, cycles are less likely to

happen. If this is the case, then unlike violations of the independence axiom

and its alternatives, where experiments may reveal insight into real-world

decision making, observing violations of transitivity in experiments does not

necessarily indicate such behavior in the large. Our aim is to provide a formal

framework for such a behavior. For this, we use variations of regret theory,

which is the most widely used model to analyze violations of transitivity. 2

Bell [2] and Loomes and Sugden [14] offered a simple idea to explain vio-

lations of transitivity. Unlike standard models of economics, where the value

of an outcome depends only on the outcome itself, regret theory postulates

that decision makers evaluate each possible outcome they may receive by

comparing it to the alternative outcome they could have received by choos-

ing differently. When comparing the random variable X = (x1, s1; . . . ; xn, sn)

with Y = (y1, s1; . . . ; yn, sn), the decision maker computes the expected value

of a (subjective) elation/regret function ψ(x, y) and will choose X over Y if

and only if this expected value is positive. Formally, X is preferred to Y if

and only if
∑

i Pr[si]ψ(xi, yi) > 0.

Regret theory often assumes that decision makers are regret averse. That

is, if x > y > z then ψ(x, z) > ψ(x, y) + ψ(y, z). The justification for this

assumption is that large differences between what one obtained and what one

would have obtained from an alternative choice give rise to disproportion-

ately greater regret and elation. Observed violations of transitivity can be

2Tserenjigmid [23] provides a related model of intransitivity using intra-dimensional

comparisons. See also Nishimura [20].
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explained by regret aversion. 3 In fact, regret-based preferences are transitive

if and only if they are expected utility. Loomes et al. [15] justified the cycle

discussed earlier by arguing, for instance, that in state s2 the regret/elation

difference between 8 and 0 is significant, while the differences between 8 and

4 and between 4 and 0 are not. But suppose that the payoffs are multiplied

by 1,000. Can one really argue that these differences are insignificant? The

argument that ψ(8, 0) is significantly greater than ψ(8, 4)+ψ(4, 0) seems less

convincing when the outcomes are 8,000, 4,000, and 0.

The purpose of the present paper is two fold. First, we formalize a regret

model in which a violation of transitivity on random variables that are close

to each other does not imply a violation of transitivity on random variables

that are far apart. In this we do not claim that regret theory is not a valid

theory. What we claim is that applying this theory to decisions involving

“large” random variables (like insurance or investment decisions) cannot be

justified based on these experiments.

Our second objective is to establish that even if regret theory applies

only to random variables that are close to each other, it is still a very pow-

erful theory. It implies that preferences in different neighborhoods are not

independent of each other. Formally, suppose that for each random variable

W there is a neighborhood around W on which preferences are induced by

regret, but the regret function may change from one random variable W to

another. We show that to a certain extent, all these “local” regret functions

are tightly knitted to each other. Therefore, even if experiments showing in-

transitivity in the small do not prove intransitivity in the large, they should

still indicate a strong connection between local behavior around all random

variables.

The paper is organized as follows. Section 2 shows that with linear regret,

3See e.g. Loomes, Starmer, and Sugden [15] or Starmer [22]. For an axiomatization of

regret aversion, see Diecidue and Somasundaram [8].
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intransitivity in one part of the domain implies intransitivity everywhere. A

more general regret model, which permits a decoupling of attitudes towards

transitivity in the small and transitivity in the large, is considered in Sec-

tion 3. All proofs are in Appendix A while Appendix B contains several

examples.

2 Linear Regret

Consider a set L of finite-valued random variables X of the form X =

(x1, s1; . . . ; xn, sn) where the outcomes are monetary payoffs (which may be

positive or negative).4 The events s1, . . . , sn partition the sure event and the

probability of si is pi. The set L is endowed with the L2 norm. Thus,5 for

X = (x1, s1, . . . ; xn, sn) and W = (w1, s1; . . . ;wn, sn), we have ||X −W || =
√
∑n

i=1 pi(xi − wi)2. An ε-neighborhood of W is the set B(W, ε) = {X :

||X −W || < ε}.

The decision maker has complete but not necessarily transitive prefer-

ences � on L. Preferences are intransitive if there exists even one triplet

X, Y, Z ∈ L such that X � Y , Y � Z, yet Z ≻ X. We are interested in

more complex situations, where preferences may be transitive on some parts

of the domain but intransitive on other parts. More importantly, we want

to investigate how pervasive are such intransitive cycles, and if they exist,

whether they are sporadic or must they appear everywhere.

Regret is a convenient way to model intransitive preferences. Bell [2] and

Loomes and Sugden [14] suggested a model of linear regret : for two random

4The random variables X are defined over an underlying probability space (S,Σ, P )

where S = [0, 1], Σ is the standard Borel σ-algebra on S, and P is the Lebesgue measure.

We assume an unbounded domain of payoffs, but our results hold for the case of bounded

domain as well.
5Two random variables can be written on the same list of events without loss of gen-

erality. See Appendix A.
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variables X = (x1, s1; . . . ; xn, sn) and Y = (y1, s1; . . . ; yn, sn) over the same

set of events,

X � Y if and only if
∑

i

Pr[si]ψ(xi, yi) > 0 (1)

where ψ is a regret function which is continuous and for all x and y,

(i) ψ(x, y) = −ψ(y, x),

(ii) ψ is increasing in its first and decreasing in its second argument.

The function ψ represents the feelings of the decision maker when he wins x,

knowing that had he chosen differently his outcome would have been y. If

x > y he will be elated (and ψ(x, y) > 0), but if x < y he will be disappointed

and regretful (hence ψ(x, y) < 0). Condition (i) simply says that the elation

from winning x greater than y equals the regret of winning y less than x. The

other condition asserts that elation is increasing with the winning outcome

and decreasing with the foregone one. A consequence of the first condition

is that ψ(x, x) = 0.

Bell [2] and Loomes and Sugden [14] assumed linearity in probabilities,

that is, they evaluated regret by taking expected values of a regret function.

We show that with linear regret, intransitivity is pervasive in the sense that

the existence of one intransitive cycle implies the existence of intransitive

cycles everywhere. The basic linear model was extended by Bikhchandani

and Segal [3] to more general evaluations. Let Ψ(X, Y ) = (ψ(x1, y1), p1; . . . ;

ψ(xn, yn), pn) be a regret lottery. Define

X � Y if and only if V (Ψ(X, Y )) > 0 (2)

where the function V is any general function evaluating regret lotteries Ψ.

If �, represented as in eq. (2), is transitive, then it must be expected utility

(see [3]). Thus regret-based behavior is not consistent with any transitive
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non-expected utility choice.6 For clarity, we refer to preferences as defined

in eqs. (1) or (2) as universal regret, as later we define local regret.

Assume linear regret. If for some x1, x2, x3 and s1, s2, s3 such that Pr[s1] =

Pr[s2] = Pr[s3] =
1
3
, (x1, s1; x2, s2; x3, s3) ∼ (x3, s1; x1, s2; x2, s3) ∼ (x2, s1;

x3, s2; x1, s3) ∼ (x1, s1; x2, s2; x3, s3), then eq. (1) implies that ψ(x1, x3) =

ψ(x1, x2) + ψ(x2, x3). If the above indifferences hold for all x1, x2, x3, it

follows from the proof of Lemma 7 of [3] that there exists u : ℜ → ℜ such that

ψ(x, y) = u(x)−u(y) which yields expected utility. Therefore, if linear regret

preferences are non-expected utility then there exists at least one intransitive

cycle of the form7

(x1, s1; x2, s2; x3, s3) ≻ (x3, s1; x1, s2; x2, s3) (3)

≻ (x2, s1; x3, s2; x1, s3) ≻ (x1, s1; x2, s2; x3, s3)

As the next theorem shows, the existence of one cycle implies that in

the neighborhood of each random variable there are cycles. We call this

intransitivity in the small. Moreover, there exist intransitive cycles in which

the random variables are far apart from each other. We call this intransitivity

in the large.

Theorem 1 Suppose that non-expected utility preferences � can be repre-

sented by linear regret. Then

(i) For every W and ε > 0 there are X, Y, Z ∈ B(W, ε) such that X ≻

Y ≻ Z ≻ X.

(ii) For any M > 0, there exist random variables, Xi, i = 1, 2, 3, with

||Xi −Xj|| ≥M such that X1 ≻ X2 ≻ X3 ≻ X1.

6However, regret over pairs of independent lotteries (rather than random variables)

is compatible with betweenness and other transitive non-expected utility models. See

Machina [18] and Bikhchandani and Segal [4].
7Each of the three preferences is strict because they generate the same regret lottery.
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The proof of Theorem 1(i) makes specific predictions that can be checked

experimentally. A violation of transitivity implies a cycle as in eq. (3). Then

for every y there is a sufficiently small ε > 0 such that for s0, . . . , s3 where

Pr[s0] = 1− ε and Pr[s1] = Pr[s2] = Pr[s3] =
ε
3
,

(y, s0; x1, s1; x2, s2; x3, s3) ≻ (y, s0; x3, s1; x1, s2; x2, s3) ≻

(y, s0; x2, s1; x3, s2; x1, s3) ≻ (y, s0; x1, s1; x2, s2; x3, s3)

Theorem 1 strongly depends on the assumption that regret is linear in

probabilities, but it does not hold for non-linear models of regret. Example 1

in Appendix B provides a regret relation that is transitive in the large, yet

violates transitivity in the small. Once regret is not linear in probabilities,

the opposite is also possible. Example 2 in Appendix B presents a non-linear

model of regret which is expected utility (and therefore transitive) in every

small neighborhood, yet has intransitive cycles in the large.

Although non-linear regret permits a separation between attitudes to-

wards transitivity in the small and in the large, it nevertheless imposes some

strict restrictions over preferences in small neighborhoods. We analyze such

preferences in the next section.

3 Local preferences and regret

To facilitate a distinction between intransitive cycles where random variables

are far away from each other and cycles where random variables are all in

small neighborhoods, define preferences to be locally regret-based if they can

be represented as in eq. (2) above in a neighborhood around each random

variable W , albeit possibly with different functions ψ and V . Formally, a

binary relation is locally regret-based if for every W there is ε > 0 such that

for all X, Y ∈ B(W, ε),

X � Y if and only if VW (ΨW (X, Y )) > 0
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As we show below, local regret does not imply universal regret, yet it does

impose restrictions on ψW and VW across different values of W (Theorem 2).

First, all the local-regret functions ψW can be taken to be the same. Second,

any two local-regret functionals VW , VW ′ with domains RW ,RW ′ are concor-

dant in the sense that if they have the same sign on regret lotteries common

to both domains. That is, for all R ∈ RW ∩ RW ′ ,8 VW (R) R 0 if and only

if VW ′(R) R 0. In particular, concordant regret functionals have the same

indifference curve through zero.

Theorem 2 If preferences are locally regret-based, then:

(i) All the ψW functions are ordinally equivalent and can be taken to be

the same.

(ii) Any pair of local-regret functionals VW and VW ′ are concordant.

The proof of the theorem uses the fact that the line segment connecting

any two random variables W and W ′ is covered by a finite number of open

neighborhoods of random variables W1, . . . ,Wn on the line segment. Local-

regret evaluations must be equivalent on the intersection of neighborhoods of

Wi and Wi+1 for each i. This is shown to imply that local-regret evaluations

must also be equivalent at W and W ′.

Theorem 2 makes some simple behavioral predictions. In particular,

preferences between two random variables that are close to each other do

not depend on outcomes that are common to both. To formalize this, let

W j = (wj
1, s1; . . . ;w

j
n, sn), j = 1, 2 where Pr[s1] = Pr[s2] = δ. Let Xj =

(x1, s1; x2, s2;w
j
3, s3; . . . ;w

j
n, sn) and Y j = (y1, s1; y2, s2;w

j
3, s3; . . . ; w

j
n, sn).

Let ε > 0 and let δ be small enough such that Xj , Y j ∈ B(W j, ε), j = 1, 2.

8The regret lottery that yields 0 with probability 1 belongs to the set RW ∩ RW ′ .

Hence, RW ∩RW ′ is non-empty.
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Proposition 1 If preferences are locally regret-based, then X1 ∼ Y 1 if and

only if X2 ∼ Y 2, where Xj , Y j are defined above.

This proposition is related to Savage’s sure-thing principle. The difference

is that in Proposition 1 the common parts of Xj and Y j are “large” while

these is no such restriction in the sure-thing principle.

If each local-regret functional is linear in probabilities, then we have a

stronger result than Theorem 2.

Proposition 2 If preferences are locally regret-based and each local-regret

functional VW is linear in probabilities, then local regrets are identically lin-

early evaluated. That is, each local regret is the expected value of a common

(up to positive multiplication) local-regret function ψ for all W .

In the proof of Theorem 2(i), the ordinal equivalence of the ψW func-

tions is obtained by adjusting the regret functionals. The adjusted regret

functional will in general be non-linear, even if the initial regret functional is

linear. Thus, Proposition 2 does not follow from Theorem 2(i).

Remark 1 If preferences are locally regret-based then Theorem 2 implies

that either there are intransitive cycles in every neighborhood or there is no

intransitive cycle in any neighborhood. Intransitivity in some but not all

neighborhoods are possible when preferences do not satisfy local regret.

Remark 2 Our distinction between preferences in the small and in the large

should not be confused with Machina’s [17] model of Fréchet differentiable

representations, where preferences violate the independence axiom while con-

verging at each point to expected utility. Intransitive regret models of the

type discussed in this paper do not permit a representation function (which

necessarily implies transitivity), hence are orthogonal to Machina’s analysis.
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4 Discussion

Example 1 in Appendix B shows that violations of transitivity when random

variables are close to each other do not imply the existence of intransitive

cycles when random variables are far apart from each other. As experiments

are done with “small” random variables, it is questionable to what extent

one may deduce from these experiments that individuals violate transitiv-

ity in “big” decisions like financial investments, real-estate transactions, or

retirement planning.

But isn’t this true for all experimental results? For example, when real

payments are involved, experiments regarding the Allais paradox (Allais [1];

see also MacCrimmon and Larsson [16], Kahneman and Tversky [12], and

Starmer [22]) are conducted, for obvious reasons, with small amounts of

money. Will an argument similar to the one made in the paper lead to

the conclusion that we cannot learn from these experiments that the Allais

paradox really exists?

There is however an important difference between experiments on tran-

sitivity and experiments on phenomena like the Allais paradox. A standard

presentation of this decision problem asks the decision maker to choose be-

tween A = (5M, 0.1; 0, 0.9) and B = (1M, 0.11; 0, 0.89), and then between

C = (5M, 0.1; 1M, 0.89; 0, 0.01) and D = (1M, 1). The commonly observed

preferences A ≻ B together with D ≻ C violate expected utility maximiza-

tion. The psychological rationale behind these preferences is that A and B

offer similar probabilities of success, but A offers a much higher payoff. This

argument applies to C and D as well, but there is another factor that tilts

the scales in favor of D, and this is the possibility of winning zero in C. Be-

fore making the choice the decision maker knows that he will be devastated

if after choosing C he were to win zero, when he could have avoided all risk

by choosing D (and receiving 1M).

This argument becomes less powerful if all outcomes are scaled down,
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yet such preferences persist even after such modifications (see for example

problems 1 and 2 in [12]). The actual experimental data regarding the Allais

paradox therefore supports that hypothesis that this phenomenon exists not

only in the small but also in the large.

Regret theory, on the other hand, is based on the intuition that for x >

y > z, the elation from obtaining x when the alternative is z is greater than

the sum of the two smaller elations, from receiving x when the alternative is

y and from receiving y when the alternative is z. This intuition is convincing

when there is a certain threshold above which the decision maker’s feelings

of elation or regret become relevant. But it is much less obvious that this

property also holds for large numbers. Therefore, even if it is true that

ψ(8000, 0) > ψ(8000, 4000) + ψ(4000, 0), it may well happen (and indeed, is

quite reasonable to expect) that the propensity for intransitivity weakens in

the sense that

ψ(8000, 0)

ψ(8000, 4000) + ψ(4000, 0)
<

ψ(8, 0)

ψ(8, 4) + ψ(4, 0)

To summarize, our argument that a certain behavior in the small may

not necessarily indicate a similar behavior in the large can be formally ex-

tended to other violations of expected utility theory. However, with respect

to other phenomena, violations in the small are less likely to happen than

violations in the large, and therefore, experiments showing violations in the

small correctly predict violations in the large. In contrast, with respect to

intransitive behavior the opposite may be true. Intransitive behavior may be

due to insufficient reflection by the decision maker. Consequently, intransi-

tivity is more likely to happen in the small than in the large, and therefore

experiments showing violations of transitivity in the small do not necessarily

indicate similar violations in the large.

Our notion of local regret is weaker than the original formulation of

Bell [2] and Loomes and Sugden [14] in that it applies only to random vari-

ables that are close to each other. Nevertheless, local regret implies that
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preferences in different neighborhoods are not independent of each other. We

show that in our formulation, all local regret functions are ordinally equiv-

alent and local regret functionals have the same indifference curve through

zero. Thus, even if experiments showing local regret do not imply universal

regret, they should still indicate a strong connection between local behaviors

around different random variables.

Appendix A: Proofs

First, we show that a finite number of finite-valued random variables may be

written on the same list of events. For two random variables

Xj = (xj1, s
j
1; . . . ; x

j
ij
, sjij), j = 1, 2

define s1,1, . . . , s1,i2 , . . . , si1,1, . . . , si1,i2 by si,j = s1i ∩ s
2
j . Note that

X1 = (x11,∪ks1,k; . . . ; x
1
i1
,∪ksi1,k)

X2 = (x21,∪ksk,1; . . . ; x
2
i2
,∪ksk,i2)

Therefore, we can assume without loss of generality that any finite number

of random variables can be defined on the same list of events.

Second, any event may be partitioned into two sub-events with any prob-

ability ratio. For an event si and α ∈ [0, 1], define β(si, α) such that

Pr[si,α] := Pr[si ∩ [0, β(si, α)] ] = αPr[si], and let s′i,1−α = si\si,α. (Note

that β(si, α) exists because the probability measure is atomless.)

Proof of Theorem 1:

(i): As preferences are non-expected utility and represented by a linear func-

tional, there exist x1, x2, x3 which admit the intransitive cycle of eq. (3).

Hence

V (ψ(x1, x3),
1
3
;ψ(x2, x1),

1
3
;ψ(x3, x2),

1
3
) = (4)
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ψ(x1, x3) + ψ(x2, x1) + ψ(x3, x2)

3
> 0

Let W = (w1, t1; . . . ;wℓ, tℓ) ∈ L. For any m > 1
ε
, let s1, . . . , s3m be pair-

wise disjoint with the probabilities 1
3m

each. The random variables X, Y, Z

defined below are in an ε-neighborhood of W :

X = (x1, s1; x2, s2; x3, s3;w1, t1 ∩ (∪3m
j=4sj); . . . ;wℓ, tℓ ∩ (∪3m

j=4sj))

Y = (x3, s1; x1, s2; x2, s3;w1, t1 ∩ (∪3m
j=4sj); . . . ;wℓ, tℓ ∩ (∪3m

j=4sj))

Z = (x2, s1; x3, s2; x1, s3;w1, t1 ∩ (∪3m
j=4sj); . . . ;wℓ, tℓ ∩ (∪3m

j=4sj))

That X ≻ Y ≻ Z ≻ X follows from

V (ψ(x1, x3),
1
3m

;ψ(x2, x1),
1
3m

;ψ(x3, x2),
1
3m

; 0, m−1
m

)

=
ψ(x1, x3) + ψ(x2, x1) + ψ(x3, x2)

3m
> 0

where the inequality follows from (4).

(ii): Let

X1 = (a, t1; 0, t2; 0, t3; x1, s1; x2, s2; x3, s3)

X2 = (0, t1; a, t2; 0, t3; x3, s1; x1, s2; x2, s3)

X3 = (0, t1; 0, t2; a, t3; x2, s1; x3, s2; x1, s3)

where x1, x2, x3 are in the intransitive cycle of eq. (3), Pr[ti] =
1
3
− ε and

Pr[si] = ε, where ε > 0 is small. Select a > 2M so that ||Xi − Xj|| ≥ M .

Then

V (X1, X2) = V (X2, X3) = V (X3, X1) =
ψ(x1, x3) + ψ(x2, x1) + ψ(x3, x2)

3
ε > 0

Hence, X1 ≻ X2 ≻ X3 ≻ X1. �

Proof of Theorem 2:

(i): First, we show that for any regret functional V ,

V
(

r, 1
ℓ
;−r, 1

ℓ
; 0, ℓ−2

ℓ

)

= V
(

−r, 1
ℓ
; r, 1

ℓ
; 0, ℓ−2

ℓ

)

= 0 (5)
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for any regret level r and integer ℓ ≥ 2. The first equality is true as

(r, 1
ℓ
;−r, 1

ℓ
; 0, ℓ−2

ℓ
) and

(

−r, 1
ℓ
; r, 1

ℓ
; 0, ℓ−2

ℓ

)

are the same regret lottery. Sup-

pose that V
(

r, 1
ℓ
;−r, 1

ℓ
; 0, ℓ−2

ℓ

)

> 0. Let x1, x2 be such that ψ(x1, x2) = r.

By skew symmetry, ψ(x2, x1) = −r. With equiprobable events s1, . . . , sℓ, we

have

(x1, s1; x2, s2; x3, s3; . . . ; xℓ, sℓ) ≻ (x2, s1; x1, s2; x3, s3; . . . ; xℓ, sℓ)

≻ (x1, s1; x2, s2; x3, s3; . . . ; xℓ, sℓ)

which is a violation of irreflexivity. Hence (5).

Define the ⊕ operation as follows. Let X = (x1, s1; . . . ; xn, sn) and Y =

(y1, s1; . . . ; yn, sn). Then

αX ⊕ (1− α)Y = (x1, s1,α; . . . ; xn, sn,α, y1, s
′
1,1−α, . . . ; yn, s

′
n,1−α)

where Pr[si,α] = αPr[si] and Pr[s′i,1−α] = (1− α) Pr[s′i].

Let [W,W ′] = {αW ⊕ (1 − α)W ′ : α ∈ [0, 1]}. The set {α ∈ [0, 1] :

αW ⊕ (1 − α)W ′ ∈ B(βW ⊕ (1 − β)W ′, ε)} is open. As [0, 1] is com-

pact, there is a finite sequence of overlapping neighborhoods B(W, ε) =

B(W1, ε), . . . ,B(Wn, ε) = B(W ′, ε) covering [W,W ′]. Let ψi be the local-

regret function at Wi. We show that for i = 1, . . . , n − 1, ψi and ψi+1

are ordinally equivalent. Suppose not. Then there are (x, y), (x′, y′) such

that ψi(x, y) > ψi(x
′, y′) but ψi+1(x, y) 6 ψi+1(x

′, y′). Let Z ∈ B(Wi, ε) ∩

B(Wi+1, ε). As this intersection is open, there is a sufficiently small β such

that

X = β(x,H; y′, T )⊕ (1− β)Z, Y = β(y,H; x′, T )⊕ (1− β)Z

and X, Y ∈ B(Wi, εi) ∩ B(Wi+1, εi+1). With ℓ > 2
β
we obtain that

Vi(Ψi(X, Y )) = Vi

(

ψi(x, y),
1

ℓ
;ψi(y

′, x′),
1

ℓ
; 0,

ℓ− 2

ℓ

)

= Vi

(

ψi(x, y),
1

ℓ
;−ψi(x

′, y′),
1

ℓ
; 0,

ℓ− 2

ℓ

)
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> Vi

(

ψi(x, y),
1

ℓ
;−ψi(x, y),

1

ℓ
; 0,

ℓ− 2

ℓ

)

= 0

where we use the fact that ψ is skew symmetric, −ψi(x, y) < −ψi(x
′, y′), the

monotonicity of V (·), and equation (5). Therefore, X ≻ Y . Similarly,

Vi+1(Ψi+1(X, Y )) = Vi+1

(

ψi+1(x, y),
1

ℓ
;ψi+1(y

′, x′),
1

ℓ
; 0,

ℓ− 2

ℓ

)

= Vi+1

(

ψi+1(x, y),
1

ℓ
;−ψi+1(x

′, y′),
1

ℓ
; 0,

ℓ− 2

ℓ

)

6 Vi+1

(

ψi+1(x, y),
1

ℓ
;−ψi+1(x, y),

1

ℓ
; 0,

ℓ− 2

ℓ

)

= 0

and therefore X � Y , a contradiction.

Therefore, for all (x, y), (x′, y′) such that ψi(x, y) > ψi(x
′, y′) we have

ψi+1(x, y) > ψi+1(x
′, y′). Hence there exists a well-defined increasing function

hi+1, i such that hi+1, i(ψi(x, y)) = ψi+1(x, y), for all x, y. Since ψ1, . . . , ψn are

ordinally equivalent, so are ψW and ψW ′ .

Fix a random variable W0 and let ψ0 be the local-regret function at W0.

Ordinal equivalence of local-regret functions implies that for each W ∈ L

there is an increasing function hW : ℜ → ℜ such that ψW = hW ◦ ψ0, where

ψW is the local-regret function at W . Define a new local-regret functional

at W

V̂W (ψ0(x1, y1), p1; . . . ;ψ0(xn, yn), pn) ≡

VW (hW ◦ ψ0(x1, y1), p1; . . . ;hW ◦ ψ0(xn, yn), pn)

Thus, for each W , local-regret preferences may be represented by ψ0, V̂W .

This completes the proof of Theorem 2(i).

(ii): Consider W,W ′ ∈ L. We know from the proof of part (i) that there

exists a regret function ψ such that preferences are locally regret with ψ and

VW on B(W, ε) and locally regret with ψ and VW ′ on B(W ′, ε).
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Let RW be the set of regret lotteries generated by X, Y ∈ B(W, ε) and

RW ′ be the set of regret lotteries generated by X ′, Y ′ ∈ B(W ′, ε). The set

RW ∩RW ′ is non-empty as (0, 1) belongs to it. As RW and RW ′ are open sets

so is RW ∩RW ′ . Therefore, we may take R ∈ RW ∩RW ′ such that R 6= (0, 1).

Thus, there exist X, Y ∈ B(W, ε), X 6= Y and X ′, Y ′ ∈ B(W ′, ε), X ′ 6= Y ′

such that R = Ψ(X, Y ) = Ψ(X ′, Y ′). Without loss of generality we may write

X,X ′,W , and W ′ on the same list of events s1, . . . , sn. We can partition

each si into two sub-events, si,α and si,1−α, such that Pr[si,α] = αPr[si] and

Pr[si,1−α] = (1− α) Pr[si]. Thus,

αX ⊕ (1− α)X ′ = (x1, s1,α; . . . ; xn, sn,α; x
′
1, s1,1−α; . . . ; x

′
n, sn,1−α)

αY ⊕ (1− α)Y ′ = (y1, s1,α; . . . ; yn, sn,α; y
′
1, s1,1−α; . . . ; y

′
n, sn,1−α) (6)

αW ⊕ (1− α)W ′ = (w1, s1,α; . . . ;wn, sn,α;w
′
1, s1,1−α; . . . ;w

′
n, sn,1−α)

and

||αX ⊕ (1− α)X ′ − [αW ⊕ (1− α)W ′]||

=
n

∑

i=1

(xi − wi)
2 Pr[si,α] +

n
∑

i=1

(x′i − w′
i)
2 Pr[si,1−α]

= α
n

∑

i=1

(xi − wi)
2 Pr[si] + (1− α)

n
∑

i=1

(x′i − w′
i)
2 Pr[si]

= α||X −W ||+ (1− α)||X ′ −W ′||

Consequently, if X ∈ B(W, ε) and X ′ ∈ B(W ′, ε) then

αX ⊕ (1− α)X ′ ∈ B(αW ⊕ (1− α)W ′, ε)

Similarly, αY ⊕ (1 − α)Y ′ ∈ B(αW ⊕ (1 − α)W ′, ε) if Y ∈ B(W, ε) and

Y ′ ∈ B(W ′, ε). From eq. (6), it follows that

Ψ(αX ⊕ (1− α)X ′, αY ⊕ (1− α)Y ′) = R

Hence, if R ∈ RW ∩RW ′ then R ∈ RαW⊕(1−α)W ′ for any α ∈ (0, 1). That is,

if the regret lottery R is locally generated in the neighborhoods ofW andW ′,
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then R is locally generated in the neighborhood of each random variable on

the line segment joining W and W ′.

Suppose that VW and VW ′ are not concordant. In particular, VW (R) > 0

and VW ′(R) ≤ 0. Let

α = sup{α ∈ [0, 1] : VαW⊕(1−α)W ′(R) ≤ 0 }

As the regret lottery R is locally generated at each αW ⊕ (1 − α)W ′, α

is well-defined. Further, VW ′(R) ≤ 0 implies that the sup is taken over a

non-empty set.

From the continuity of � it follows that α < 1, VαW⊕(1−α)W ′(R) = 0, and

that

VαW⊕(1−α)W ′(R) > 0, ∀α ∈ (α, 1]

We know that

αX ⊕ (1− α)X ′, αY ⊕ (1− α)Y ′ ∈ B(αW ⊕ (1− α)W ′, ε) (7)

As

R = Ψ(αX ⊕ (1− α)X ′, αY ⊕ (1− α)Y ′)

eq. (7) together with VαW⊕(1−α)W ′(R) = 0 implies that

αX ⊕ (1− α)X ′ ∼ αY ⊕ (1− α)Y

For α1 close to α,

αX ⊕ (1− α)X ′, αY ⊕ (1− α)Y ′ ∈ B(α1W ⊕ (1− α1)W
′, ε)

Take such a α1 > α. Then Vα1W⊕(1−α1)W ′(R) > 0 implies that

αX ⊕ (1− α)X ′ ≻ αY ⊕ (1− α)Y

Contradiction. �
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Proof of Proposition 1: We first prove that ifX1 ∼ Y 1, then ψW 1(x1, y1) =

−ψW 1(x2, y2).

By the skew-symmetry of the functions ψ,

X1 ∼ Y 1 ⇐⇒ VW 1(ψW 1(x1, y1), δ; ψW 1(x2, y2), δ; 0, 1− 2δ) = 0

⇐⇒ VW 1(−ψW 1(y1, x1), δ; −ψW 1(y2, x2), δ; 0, 1− 2δ) = 0

Therefore, ψW 1(x1, y1) > −ψW 1(y2, x2) iff ψW 1(x2, y2) 6 −ψW 1(y1, x1). How-

ever, ψW 1(x1, y1) > −ψW 1(x2, y2) implies

−ψW 1(x1, y1) = ψW 1(y1, x1) < −ψW 1(y2, x2) = ψW 1(x2, y2) =⇒

VW 1(ψW 1(y1, x1), δ; ψW 1(y2, x2), δ; 0, 1− 2δ) <

VW 1(ψW 1(x1, y1), δ; ψW 1(x2, y2), δ; 0, 1− 2δ) = 0

A contradiction to X1 ∼ Y 1.

By Theorem 2(i), ψW 2 is an increasing ordinal transformation of ψW 1 .

Therefore, ψW 1(x1, y1) = −ψW 1(x2, y2) implies that ψW 2(x1, y1) = −ψW 2(x2, y2)

and thus X2 ∼ Y 2. �

Proof of Proposition 2: Let W = (w1, s1;w2, s2; . . . ;wn, sn). Let ψW be a

local-regret function at W . First, we show that the linearity of VW implies

that each ψW is unique up to positive multiples.

For two regret levels r1, r2 > 0, let x, y > 0 be monetary outcomes such

that r1 = ψW (x,−x) and r2 = ψW (y,−y). Define

X = (x, s1,ε1 ;−y, s1,ε2 ;w1, s1,1−ε1−ε2 ;w2, s2; . . . ;wn, sn)

Y = (−x, s1,ε1 ; y, s1,ε2 ;w1, s1,1−ε1−ε2 ;w2, s2; . . . ;wn, sn)

where ε1, ε2 > 0, ε1 + ε2 < 1, ε2/ε1 = r1/r2, and Pr[s1,εℓ ] = εℓ, ℓ = 1, 2.

Choose ε1, ε2 small enough so that X, Y ∈ B(W, ε). Thus,

VW (ΨW (X, Y )) = ψW (x,−x) Pr[s1,ε1 ] + ψW (−y, y) Pr[s1,ε2 ]
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= r1ε1 − r2ε2

= 0

Hence, X ∼ Y .

Let ψ̂W be another local-regret function at W for which the regret func-

tional V̂W is linear in probabilities. From X ∼ Y we conclude

V̂W (Ψ̂W (X, Y )) = ψ̂W (x,−x) Pr[s1,ε1 ] + ψ̂W (−y, y) Pr[s1,ε2 ]

= r̂1ε1 − r̂2ε2

= 0

Thus, there exists a such that ψ̂W (x,−x) = aψW (x,−x) = ar1 and ψ̂W (y,−y)

= aψW (y,−y) = ar2. That, a > 0 follows from the fact that ψ̂W (x,−x) > 0.

By varying r2 (and y, ε2 in the above construction), we conclude that ψ̂W ≡

aψW for some a > 0.

Let W,W ′ ∈ L. We show that ψW and ψW ′ are positive multiples of each

other. As in the proof of Theorem 2, there is a finite sequence of random

variables W = W1,W2, . . . ,Wn = W ′ such that the open neighborhoods

B(Wj , ε), j = 1, . . . ,m cover the line segment [W,W ′]. Thus, for each j,

there exists

Ŵj = (ŵ1j, s1; ŵ2j , s2; . . . ; ŵnj, sn)

on the line segment joiningWj andWj+1 such that Ŵj ∈ B(Wj , ε)∩B(Wj+1, ε).

Let ψj be the local-regret function at Wj. Define

Xj = (x, s1,ε1j ;−y, s1,ε2j ; ŵ1j , s1,1−ε1−ε2 ; ŵ2j , s2; . . . ; ŵnj, sn)

Yj = (−x, s1,ε1j ; y, s1,ε2j ; ŵ1j , s1,1−ε1−ε2 ; ŵ2j , s2; . . . ; ŵnj, sn)

where ε1, ε2 > 0, ε2/ε1 = ψj(x,−x)/ψj(y,−y), and Pr[s1,εℓ ] = εℓ, ℓ = 1, 2.

Choose ε1, ε2 small enough so that X, Y ∈ B(Wj , ε) ∩ B(Wj+1, ε). Thus,

local regret evaluated at Wj implies that Xj ∼ Yj. Hence, the local regret

evaluated atWj+1 also impliesXj ∼ Yj. As x and y are arbitrary, we conclude
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that ψj+1 is a positive multiple of ψj. Consequently, ψW ′ is a positive multiple

of ψW . �

Appendix B: Examples

Example 1 Intransitive in the small, transitive in the large

Let ψ(x, y) = x − y be a regret function. For X = (x1, s1; . . . ; xn, sn),

Y = (y1, s1; . . . ; yn, sn), Pr[si] = pi define

V (Ψ(X, Y )) =



















∑n

i=1 piψ(xi, yi) if ||Ψ(X, Y )|| ≥ ε

α
XY

∑n

i=1 piψ(xi, yi) +

(1− α
XY

)
∑n

i=1 pi[ψ(xi, yi)]
3 otherwise

where α
XY

≡ min{1, ||Ψ(X, Y )||/ε}. Note that α
XY

increases continuously

from 0 to 1 as ||Ψ(X, Y )|| increases from 0 to ε. Hence, V is a continuous

functional.

Take a > 0. Define X = (−a, s1; 0, s2; a, s3), Y = (0, s1; a, s2;−a, s3),

and Z = (a, s1;−a, s2; 0, s3), where s1, s2, s3 are equiprobable, disjoint events

with s1 ∪ s2 ∪ s3 = S. By symmetry, α
XY

= α
YZ

= α
ZX

≡ α. For small

enough a, ||Ψ(X, Y )|| < ε, ||Ψ(Y, Z)|| < ε, and ||Ψ(Z,X)|| < ε and α < 1.

Therefore,

V (Ψ(X, Y )) = V (Ψ(Y, Z)) = V (Ψ(Z,X)) = (1− α)2a3 > 0

which implies X ≻ Y ≻ Z ≻ X. Therefore, for each W local regret in

B(W, 0.5ε) is intransitive.

Transitivity in the large follows from V (Ψ(X, Y )) = E[X]−E[Y ] whenever

||Ψ(X, Y )|| > ε. �

As preferences are transitive in the large in Example 1, Theorem 1(ii)

implies that the regret functional V in this example is not linear in proba-

bilities. That is, there exist regret lotteries R1, R2, and a constant c ∈ (0, 1),
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such that

V
(

cR1 + (1− c)R2

)

6= cV (R1) + (1− c)V (R2)

Take two regret lotteries, R1, R2, with ||R1|| > ε and ||R2|| < ε. Let c be

sufficiently close to 1 so that ||cR1 + (1− c)R2|| > ε. Then

V
(

cR1 + (1− c)R2

)

= cE[R1] + (1− c)E[R2]

6= cV (R1) + (1− c)V (R2)

as E[R1] = V (R1) but E[R2] 6= V (R2).

Example 2 Transitive in the small, intransitive in the large

Let X, Y , and ψ(x, y) be as in Example 1. Define

V (Ψ(X, Y )) =











































∑n

i=1 piψ(xi, yi) if ||Ψ(X, Y )|| < ε

(1−β
XY

)
∑n

i=1 piψ(xi, yi)+

β
XY

∑n

i=1 pi [ψ(xi, yi)]
3 if ε 6 ||Ψ(X, Y )|| < 1

∑n

i=1 pi [ψ(xi, yi)]
3 if 1 6 ||Ψ(X, Y )||

where β
XY

≡ ||Ψ(X,Y )||−ε

1−ε
. An argument similar to that in Example 1 implies

that preferences are transitive in the small but intransitive in the large. �

Local-regret preferences do not uniquely determine preferences in the

large. For instance, V (Ψ(X, Y )) = E[X] − E[Y ] for all Ψ(X, Y ) has the

same local-regret preferences as Example 2.
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