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Abstract

We consider a sequential formation of alliances à la Bloch (1996)
and Okada (1996) followed by a two-stage contest in which alliances
�rst compete with each other, and then the members in the winning
alliance compete again for an indivisible prize. In contrast to Kon-
ishi and Pan (2019) which adopted an open-membership game as the
alliance formation process, alliances are allowed to limit their mem-
berships (excludable alliances). We show that if members�e¤orts are
strongly complementary to each other, there will be exactly two asym-
metric alliances� the larger alliance is formed �rst and then the rest of
the players form the smaller one. This result contrasts with the one
under open membership, where moderate complementarity is necessary
to support a two-alliance structure. It is also in stark contrast with
Bloch et al. (2006), where they show that a grand coalition is formed in
the same game if the prize is divisible and a binding contract is possible
to avoid further con�icts after an alliance wins the prize.

1 Introduction

In their in�uential paper, Esteban and Sákovics (2003) consider a three-person
strategic alliance formation in a Tullock contest model in which players com-
pete for an indivisible prize, and demonstrate that an alliance involves strategic
disadvantages (see also Konrad 2009). There are two main disadvantageous
forces against forming an alliance: First, if an alliance is formed, there will be
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an additional contest that dissipates the members�rents even if the alliance
wins the �rst race. Because of this rent-dissipation e¤ect, the members of
the alliance have lower valuations for winning in the �rst race, reducing their
e¤orts and the winning probability. Second, even without the rent-dissipation
problem, if the winning prize is shared equally, there are still free-riding incen-
tives for the alliance members to reduce e¤orts, and consequently, the winning
probability. As a result, they conclude that it is hard to materialize strate-
gic alliances in a Tullock contest model.1,2 Konrad (2009) points out that
these disincentive e¤ects are not speci�c to Tullock contest models� they also
appear in �rst price all-pay auctions.
In a companion paper, Konishi and Pan (2019), we provide a simple so-

lution for this alliance paradox by using a CES e¤ort aggregator function to
introduce complementarity in e¤orts (see Kolmer and Rommeswinkel 2013).3

We assume that each individual member�s marginal e¤ort cost is constant in
order to limit the bene�ts of forming an alliance to e¤ort complementarity
only. In that paper, we model an alliance formation process as an open-
membership coalition formation game. In stage 1, players form alliances by an
open-membership game (see Yi, 1997, and Bogomolnaia and Jackson, 2002).
In stage 2, alliances compete in a contest with each other, and in stage 3,
the winning alliance members compete in the standard Tullock contest for the
indivisible prize. We show that when the complementarity parameter in CES
function is small, there are spin-o¤ incentives for alliance members, while when
the complementarity parameter is large, players want to join a bigger alliance,

1Konrad (2004) considers an asymmetric all-pay auction game with exogenously deter-
mined hierarchical tournament structure, and shows that the highest valuation player might
not have a chance to become the �nal winner depending on the hierarchical structure. In
contrast, Konrad (2012) consider an alliance formation problem in the case where players
with homogeneus valuations play an all-pay auction game while their budgets for bidding
are private information. He shows that alliances always have merging incentives, and the
grand alliance emerges.

2Wärneryd (1998) shows that forming alliances and competing in a multi-stage compe-
tition reduce wasteful competition and increase total welfare. This resource saving e¤ect is
di¢ cult to realize due to the disadvantageous e¤ect on alliances when members�individual
e¤orts are perfectly substitutable.

3Complementarity in e¤orts within a group in Esteban and Ray (2011) is more sub-
tle. They analyze the con�ict between two ethnic groups by assuming that players have
heterogeneous opportunity costs of �nancial and human opportunity costs, and they can
contribute �nancially to a con�ict or they can directly participate as activists. They show
that opportunity cost heterogeneity in a group increases the level of con�icts. Their re-
sult can be interpreted that an increase in complementarity within groups intensi�es group
competition.
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and end up with a trivial grand alliance.4 They show that for intermediate
values of the CES complementarity parameter, there exists a unique nontrivial
two-alliance equilibrium.
In contrast, in this paper, we use Bloch�s (1996) and Okada�s (1996) se-

quential coalition (alliance) formation game (along the line of a noncooper-
ative coalition bargaining game in Chatterjee, et al. 1993). Although the
open-membership game in Konishi and Pan (2019) is widely used in coalition
formation games, the non-excludability �that is, players are allowed to freely
choose their alliance without being excluded �may not re�ect the nature of
alliance formation in situations such as a local public good economy.
The results in open-membership and sequential coalition formation games

are quite di¤erent. In an open-membership game, if e¤ort complementarity is
higher than a critical value, belonging to a larger alliance becomes strongly
preferable, despite the fact that there will be negative congestion e¤ects, which
encourages all players to form a grand coalition. This is a prisoners�dilemma
phenomenon. In contrast, with sequential coalition formation, a coalition is
able to avoid becoming too large, although it also needs to think about the
response from the rest of the players in their strategic interactions. Some-
what interestingly, there will again be two alliances in equilibrium, but for
this we need strong e¤ort complementarity. Note that due to excludability,
even if complementarity is very strong, the grand alliance will not emerge in
equilibrium. Thus, although the two-alliance result seems similar to the one
in the open-membership case, they have no obvious relationship. Indeed, the
parameter ranges to have two-equilibrium results in these two games have no
intersection with each other, and two coalitions are similar in their sizes in the
open-membership game, but are quite asymmetric in the sequential coalition
formation game. We further show that the �rst alliance is larger than the
second, and the members of the former receive higher payo¤s than the latter.
This property assures that the alliance structure is robust in the protocol: that
is, we obtain the same alliance structure in Bloch�s deterministic protocol and
in Okada�s random protocol. Note that Bloch (1997) and Yi (1997) provide
a set of su¢ cient conditions under which two coalitions are formed in a se-
quential alliance formation game, but these conditions and our conditions are
independent of each other. Moreover, we get the two-alliance result only when
e¤ort complementarity is large enough.
We also provide numerical examples for di¤erent values of the CES e¤ort

4Given the way we set up the multi-stage game, a singleton-only alliance structure and
a grand alliance structure are practically identical, since the former does not have the third
stage competition, and the latter does not have the second stage competition.
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complementarity parameter under a small number of players (ten players). We
show that there will be no alliance if � is small, but as � goes up the sizes
of alliances increase. Once � passes a certain threshold value, there will be
only two (asymmetric) alliances in equilibrium, and every player participates
in alliances as we have shown in our main theorem.
The rest of the paper is organized as follows. In the next subsection, we

review the relevant literature. Section 2 introduces the model, and Sections 3
and 4 investigate subgames in stages 3 and 2, respectively. Section 5 presents
results on equilibrium alliance structures, and Section 6 provides numerical
examples. Section 7 concludes.

1.1 Literature Review

Since we provide a general literature review in our companion paper (Konishi
and Pan 2019), we will concentrate on the games that determine an alliance
structure. In the companion paper, we used so-called open-membership game
where all players can move freely without being excluded from alliances.5 How-
ever, depending on the nature of alliances we consider, we may want to see how
equilibrium alliance structure is a¤ected by allowing exclusive memberships of
alliances.
Although we can think of di¤erent ways to introduce �excludability" of

alliance memberships in an alliance formation game (see Hart and Kurz 1983,
and Bloch 1997), the most popular way in the literature is to extend Rubin-
stein�s two-person noncooperative bargaining game to a sequential coalition
formation game: Chatterjee et al. (1993), Bloch (1996), Okada (1996), and
Ray and Vohra (1999), among others. Although their games di¤er in the
methods of choosing the proposers (following di¤erent protocols), the proce-
dures for forming coalitions are the same. At each stage, a proposer proposes
a coalition she belongs to, and ask the members of the coalition whether or
not they accept the o¤er. If every member accepts the o¤er, then the coalition
is formed, and the leftover players continue to form coalitions by the same
procedure. If any of the members of a proposed coalition rejects the o¤er, the
coalition is not formed, and a new proposer is speci�ed by the protocol.
In the context of contests, Bloch et al. (2006) generalize the model sub-

stantially to analyze the stability of the grand alliance in di¤erent alliance
formation games, including a sequential coalition formation game in Bloch
(1996). Sánchez-Páges (2007a) explores di¤erent types of stability concepts

5Baik and Lee (1997, 2001) use open-membership games to describe alliance formation in
endogenizing the alliance structure in Nitzan�s (1991) game with endogenous group sharing
rules.
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including sequential coalition formation games in alliance formation in con-
tests where e¤orts are perfect substitutes. Sánchez-Páges (2007b) considers
various stability concepts in a model where players allocate endowment into
productive and exploitive activities. These papers assume the award is divisi-
ble, and alliance members can write a binding contract for sharing rules in the
case of the alliance�s winning.6 In contrast, in our paper, we do not allow for
any side payment, and players cannot credibly commit to any intra-alliance
distribution rule as in Esteban and Sákovics (2003). We will focus on the case
where the reward is indivisible so that con�ict cannot be eliminated until the
ultimate winner is determined.

2 The Model

There are N players who get an indivisible prize (say, to be the head of an
organization). There is no side payment allowed. The set of players is also
denoted by N = f1; :::; Ng, and they can form alliances exclusively for the
purpose of being elected. Each player i 2 N can make an e¤ort to enhance
the popularity of her alliance and that of herself. We assume that each player
has an identical linear cost function C(ei) = ei for all ei � 0.
We consider a three-period dynamic contest game preceded by an alliances

formation process: in the �rst period, players�form alliances endogenously. In
the second period, the alliances compete to decide the winning alliance, and
then the players in the winning alliance compete with each other to determine
the �nal winner in the third period.
We model the sequential alliance formation process as the following: in

period 1, there are rounds j = 1; 2; :::. At every round j = 1; 2; :::; one player
is selected as a proposer with equal probability among all players still active in
the round j. Let Nj be the set of all active players at round j, where N1 = N .
The selected player i proposes a coalition Sj with i 2 Sj � Nj. All other
players in Sj either accept or reject the proposal sequentially. We assume that
the responses are made according to a predetermined order over Nj (the order
of responses does not a¤ect our results). If all other players in the coalition Sj
accept the proposal, then it is agreed upon and enforced, and the remaining
players in Nj+1 = Nj n Sj can continue negotiations in the next round j + 1.
If some members in Sj reject the o¤er, round r ends and negotiations go on to
the next round nd a new proposer is randomly selected from Nj+1 = Nj by the
same rule. Following a coalitional bargaining model in Ray and Vohra (1999),
we assume that whenever an o¤er is rejected, some amount of time passes

6Our game has e¤ort complementarity in the model, which is an additional di¤erence.
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and a time discount factor � 2 (0; 1) applies to the �nal payo¤. The process
continues until there is no player left and � = fS1; S2; ::::; SJg is formed.
We introduce potential bene�ts for players who belong to an alliance�

complementarity in aggregating e¤orts by all alliance members. That is, if
player i belongs to alliance j = 1; :::; J with Sj � N as the set of members,
and these members make e¤orts (ehj)h2Sj , then the aggregated e¤ort of alliance
j, Ej, is described by a CES aggregator function

Ej =

0@X
h2Sj

e1��hj

1A 1
1��

; (1)

where � 2 (0; 1] is a parameter that describes the degree of complementarity:
if � = 0 it is a linear function, and if � = 1 it is a Cobb-Douglas function.
Thus, as � goes up, the complementarity of members�e¤orts increases.
Candidate i in alliance j decides how much e¤ort eij to contribute to her

alliance j. The winning probabilities of an alliance is a Tullock-style contest.
That is, an alliance j�s �winning probability�given its members�e¤orts is

pj =
EjP
k2J Ek

: (2)

An indivisible prize is valued as V > 0, which is common to all players. Since
the prize is indivisible, one player in the winning alliance in the second stage
must be selected as the �nal winner in the third-stage contest.
In the third-stage competition, we assume that a Tullock contest takes

place within the winning alliance Sj. Denoting the second-stage e¤ort as êi,
the winning probability of player i 2 Sj is

pi =
êiP
h2Sj êh

(3)

Formally, an alliance structure is a partition of the set of players N , � =
fS1; :::; SJg; where each alliance j consists of a set of players Sj and [j2JSj =
N , and Sj0 \Sj = ; for any j; j0 2 f1; :::; Jg with j 6= j0. Since we assume that
players are ex-ante homogenous, we also call fn1; :::; nJg an alliance structure
with nj = jSjj for all j = 1; :::; J . Our three-stage dynamic contest game with
sequential alliance formation is summarized as:

Stage 1. In round j = 1; 2; :::; one player is selected as a proposer with equal
probability among all active players in the round j, Nj, where N1 = N .7

7This is the random proposer protocol put forth by Okada (1996). Bloch (1996) uses a
deterministic protocol, but the results we obtain in these two setups are the same if e¤ort
complementarity is high enough.
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The selected player proposes an alliance Sj � Nj. All other players in Sj
either accept or reject the proposal sequentially. If all other players in
the alliance Sj accept the proposal, Sj is formed and removed from the
process, and j+1 round starts with the remaining playersNj+1 = NjnSj.
Otherwise, payo¤ discounts by � 2 (0; 1) apply to all players, the round
r + 1 starts with Nj+1 = Nj by the same rule. The process continues
until there is no player left and � = fS1; S2; ::::; SJg is formed.8

Stage 2. All players i 2 N choose e¤ort ei 2 R+ simultaneously, knowing the
aggregated e¤ort of her alliance is (1). The inter-alliance contest is a
Tullock contest with winning probabilities equal to (2).

Stage 3. All members of the winning alliance Sj choose e¤ort êi 2 R+ simultane-
ously. The ultimate winner is selected by a simple Tullock contest with
winning probabilities equal to (3).

We use standard subgame perfect Nash equilibrium as the solution of this
dynamic game. We consider equilibria in pure strategies only. We will analyze
this game by backward induction.

3 Equilibrium

3.1 Stage 3: Final Contest within the Winning Alliance

In the third stage, all members in the winning alliance Sj in the �rst stage
engage in a Tullock contest by exerting e¤ort êi � 0. Thus, player i�s winning
probability is

pi =
êiP

h2Nj êh
:

For any player i in the winning group j, the expect payo¤ in stage 3 is

~Vi =
êi

êi +
P

h 6=i êh
V � êi

The �rst-order condition implies that

1� pi
êi +

P
h 6=i êh

� 1 = 0) 1

êi
pi(1� pi)V � 1 = 0

8Given the alliances formed in the previous rounds, the remaining players may be forced
to be inactive even when Sj = Nj at round j. In such cases, we assume that they form the
coalition Sj = Nj to close the alliance formation process without loss of generality.
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Since players are homogeneous, pi(1 � pi) = nj�1
n2j

is the same for all i in the

winning group j. Then, we have the following proposition.

Proposition 1. Suppose that the winning alliance of the �rst stage has size
nj. Then, the second-stage equilibrium strategy and payo¤ are

êj =
nj � 1
n2j

V and ~V j =
V

nj

�
1� nj � 1

nj

�
=
V

n2j

3.2 Stage 2: Contest between Alliances

Consider an inter-alliance contest problem. Without loss of generality, we
reorder any alliance structure � from the �rst stage so that n1 � n2 � ::: � nJ�.
From Proposition 1, we know that for a given size of alliance nj the payo¤ of
intra-alliance contest is determined by ~Vj = V

n2j
. In the companion paper,

Konishi and Pan (2019) have the following result.

Theorem 1. (Konishi and Pan, 2019) There exists a unique equilibrium in
the second stage for any partition of players � = fn1; :::; nJ�g characterized
by j� 2 f1; :::; J�g such that p�j > 0 (active alliance) for all j � j�, while
p�j = 0 (inactive alliance) for all j > j

�. Moreover, the members of alliance
j = 1; :::; J� obtain payo¤

uj =

8><>:
1
n2j

"
1� (j� � 1) n

2�3�
1��
jPj�

j0=1 n
2�3�
1��
j0

#"
1� (j� � 1) n

1�2�
1��
jPj�

j0=1 n
2�3�
1��
j0

#
if j � j�

0 if j > j�

by exerting e¤ort

ej =

8><>:
1

n
1

1��
j

"
1� (j� � 1) n

2�3�
1��
jPj�

j0=1 n
2�3�
1��
j0

#
(j��1)VPj�
j0=1 n

2�3�
1��
j0

if j � j�

0 if j > j�

and

(j� � 1)n
2�3�
1��
j <

j�X
j0

n
2�3�
1��
j0

holds for all j = 1; :::; j�.
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3.3 Stage 1: Alliance Structures under Sequential Coali-
tion Formation

Here, we consider a sequential coalition formation game with exclusive alliances
a la Bloch (1996) and Okada (1996). The main results are as follows.

Theorem 2. For any N , there is ��(N) such that, for all � � ��(N), there
are only two alliances in equilibrium. All players belong to one of the two
alliances, and the �rst alliance to move is larger in size than the second one.

We prove this theorem by a sequence of lemmas. For analytical conve-
nience, we will consider fractions of alliance sizes. Let xj =

nj
N
, where N is the

total population. Players�optimization problems in forming alliances can be
described as a fractional alliance choice problem. For notational simplicity, let

� = �2� 3�
1� � =

�

1� � � 2

That is, � � 0 if and only if � � 2
3
. As � increases to its upperbound � = 1, �

goes to in�nity. This means that if a statement holds for all � > �� , then there
is �� such that the same statement holds for all 1 > � > ��.
Since we consider a subgame perfect equilibrium in the sequential alliance

formation game, we will start with the last alliance�s size decision when there
are J � 1 existing alliances with sizes (x1; :::; xJ) and a relatively small fraction
of players left uncommitted. Let

1

�x�
� 1

J

JX
j=1

1

x�j

)�x = 1

�

q
1
J

PJ
j=1

1
x�j

That is, �x is the �power average�of the sizes of J alliances. Let u(x; �x; J +1)
be size x alliance�s payo¤when the average size of all other alliances is �x when
there are J+1 active alliances including a size x alliance. This alliance�s payo¤
can be written as

u(x; �x; J + 1) =

�
J 1
�x�
� (J � 1) 1

x�

� �
J 1
�x�
+ 1

x�
� J

N
1

x�+1

�
N2x2

�
J 1
�x�
+ 1

x�

�2
Then, u(x; �x; J +1) can be written as a product of the following two functions

1

N2
f(x; �x; J + 1) =

1

N2

�
J 1
�x�
+ 1

x�
� J

N
1

x�+1

��
J 1
�x�
+ 1

x�

� =
1

N2

"
1�

J
N

1
x�+1�

J 1
�x�
+ 1

x�

�#
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and

g(x; �x; J + 1) =

�
J 1
�x�
� (J � 1) 1

x�

�
x2
�
J 1
�x�
+ 1

x�

�
We have the following result.

Lemma 1. Suppose that J � 1 alliances with their average size �x have been
formed and remain active even with the entry of the J + 1 alliance. Then, (i)
@u(x;�x;J+1)

@�x
< 0 for all x and �x, and (ii) @u(x;�x;J+1)

@x
> 0 holds for all J�1

J
�x ��

x
�x

�� � (2+�)J�4
2J

when � � 2. Moreover, if
�
x
�x

��
< J�1

J
, then even if the J+1th

alliance with size x enters, it cannot be active.

The implications of this lemma are listed in the following corollaries.

Corollary 1. When � > 4
J
, then the best response of the J + 1th alliance

satis�es x > �x knowing that there will be no more alliances formed after the
alliance.

Corollary 2. Let J = 1 (only one alliance with size �x has been formed). Then,
(i) @u(x;�x;1)

@�x
< 0 for all x and �x, and (ii) @u(x;�x;1)

@x
> 0 holds for all

�
x
�x

�� � ��2
2

when � � 2. The result (ii) implies that if � > 4, then the best response of
the second alliance satis�es x > �x knowing that there will be no more alliances
formed after the second alliance.

When � is large enough, we can assure the following.

Lemma 2. There is ��(N) such that for all � > ��(N), there are at most two
di¤erent size active alliances, or all alliances are the same size.

The following is a purely technical lemma.

Lemma 3. Consider two allocations: � = (x1; x2) and �0 = (x1; x2; :::; x2| {z }
J

). A

size-x2 alliance member prefers � to �0.

The following lemma slightly strengthens the implication of Lemma 1 when
� is large enough.

Lemma 4. Suppose that among J formed alliances, JM � 1 of them have the
largest size xM , and xM < 1 �

PJ
j=1 xj < 2xM . For all � � �̂(N), we have

u(xM + 1
N
; xM ; JM) > u(x; xM ; JM) for all x � xM .

Lemma 5. Suppose that J = 2. For � � ��(N) for some ��(N), u(x; x+ 1
N
; 1) <

u(1
2
+ 1
N
; 1
2
� 1
N
; 1) for any 1

2
> x. That is, the bene�ts from belonging to a larger
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alliance with a higher winning probability dominates the loss from sharing with
a larger group.

Lemma 6. Suppose that among J formed alliances, JM � 1 of them have
the largest size xM , and xM < 1 �

PJ
j=1 xj < 2xM . For � � ~�(N) for

some ~�(N), we have u(xM + 1
N
; xM ; JM) > u(x; xM ; JM) for all x � xM ,

and u(xM ; xM + 1
N
; JM) < u(1

2

�
1�

PJ
j=1 xj

�
+ 1

N
; 1
2

�
1�

PJ
j=1 xj

�
� 1

N
; 1).

That is, the bene�ts of belonging to a larger alliance with a higher winning
probability dominates the losses of sharing with a larger group.

Proof of Theorem 2. We can rename ��(N) by the maximum of the original
�(N), �̂(N), ��(N), and ~�(N). Let ��(N) be � that corresponds to ��(N): By
the sequence of the lemmas above, we consider the second mover�s best or
better responses.

1. Suppose that x1 � 1
2
. By Lemma 1, x2 = 1� x1 is the best response.

2. Suppose that 1
3
� x1 < 1

2
. Suppose that x2 � 1�x1

2
. We will show that

forming multiple same-size alliances is dominated by forming an alliance
of size x1+ 1

N
. Suppose that two or more size-x2 alliances are formed after

a size-x1 alliance. In this case, x2 � x1 holds. By Lemma 3, having only
one size-x2 alliance is generally better than forming multiple of them.
Since x2 � x1, calling x2 is dominated by calling x1 by Lemma 1. But
Lemma 4 suggests that for the second mover calling x1 + 1

N
dominates

calling x1, since Lemma 2 implies that there will be only two active
alliances if x1 + � is called. Note, however, that even if x2 = x1 + 1

N
, the

�rst alliance can do better by choosing size 1
2
+ � from the �rst place by

Lemma 5. Thus, this case cannot be an equilibrium.

3. Suppose that x1 < 1
3
. By Lemma 2, x2 � x1 holds (otherwise, alliance

2 will be inactive by x3 > x1). We only need to consider the case where
alliance 2 calls the same size x2 = x1, which is the only possible case for
alliance 1 to call a size x1 alliance. (If x2 � x1 + 1

N
, alliance 3 will call

size x3 � x2 if possible, which makes alliance 1 inactive, and otherwise,
x3 = x1 < x2 +

1
N
, and the argument in lemma 6 applies. Either way,

alliance 1 does not have an incentive to call a size x1 alliance unless
x2 = x1.) A similar argument applies with j � 3, and the only possible
allocation achievable is an equal division xj = 1

J
for all j = 1; :::; J � 4.

However, if so, the J � 1th alliance can call 1
J
+ 1

N
to improve its payo¤

(Lemma 4), so this allocation is not achievable. Indeed, by foreseeing
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this behavior by the J�1th alliance, the J�2th alliance can call a little
more than one half of the set of players who do not belong to alliances
1 to J � 3 (Lemma 6). Then, only the J � 2th and the J � 1th alliances
will remain active, and alliance 1 gets zero payo¤ (the J � 1th alliance
is formed by all of the rest of the players by Lemma 1). Thus, this case
cannot be an equilibrium as well.

Hence, only case 1 can happen in equilibrium, and there are only two
alliances in equilibrium, all players belong to one of the alliances, and the �rst
alliance is larger than the second.�
Remark. Since x1 > x2 holds with u(x1; x2; 2) > u(x2; x1; 2) in equilibrium,
there will not be any delay in forming coalitions. That is, the same outcome
would realize independent of the protocol.

4 Examples with Small Population

For our analytical result, we will consider the cases of relatively low comple-
mentarity parameter with a small number of players N = 10. The comple-
mentarity parameter value � � 6

7
is su¢ cient to assure that the second mover

tries to form a larger alliance than the �rst (Corollary 2: � = �
1���2). We will

consider the �rst mover�s choices in order, and �nd the equilibrium outcome.

4.1 Case 1: � = 6
7 or � = 4

1. The �rst mover calls a size 5 alliance. In this case, the second mover
forms another size 5 alliance by Corollary 2. Their payo¤s for (5; 5) are
(0:018; 0:018). Indeed, for the second mover, calling a smaller alliance
is not appealing: (0:026728; 001494) for (5; 4), and (0:034598; 0:0089861)
for (5; 3).

2. The �rst mover calls a size 6 alliance. The rest of players stick to each
other. Their payo¤s for (6; 4) are (0:022558; 0:0081571).

3. The �rst mover calls a size 7 alliance. The rest of the players stick to
each other. Their payo¤s for (7; 3) are (0:01965; 0:0024569).

4. The �rst mover calls a size 4 alliance. In this case, if the second mover
calls a size 5 alliance, their payo¤s for (4; 5) are (0012521; 0:028641). If a
size 4 alliance is called by the second mover, then the leftover two players
are forced to be inactive, and the �rst two alliances�payo¤s (4; 4) are

12



(0:027344; 0; 027344). If the second alliance calls a size 3 alliance, then
the third alliance will be size 3, and their payo¤s for (4; 3; 3) are (0:04
2323; 0:010809; 0:010809). Thus, the second mover will call a size 5, and
the payo¤s for (4; 5) are (0012521; 0:028641).

5. The �rst mover calls a size 3 alliance. If the second mover calls a size
3, then the rest form a size 4, and this is not bene�cial for the second
mover (see above). If she calls a size 4, then (3; 4; 3) realizes with (0:01
0809; 0:042323; 0:010809). If she calls a size 5, then (3; 5) realizes, leaving
an inactive size 2 alliance with payo¤s (0:0089861; 0:034598). So, her best
response is to call a size 4 alliance.

6. The �rst mover calls a size 2 alliance. Then, the second mover calls a
size 5 alliance, making the �rst mover�s alliance inactive. The payo¤s for
(5; 3) are (0:034598; 0:0089861).

In summary, the �rst mover calls size 6 alliance. The �rst two alliances�
payo¤s from (6; 4) are (0:022558; 0:0081571).

4.2 Case 2: � = 5
6 or � = 3

When � = 5
6
, the general pattern is similar to the case of � = 6

7
, except for

one important di¤erence: the case where the �rst mover calls a size 4 alliance.
In this case, if the second mover calls a size 5 alliance, then their payo¤s from
(4; 5) are (0:017665; 0:024663), leaving the leftover player inactive. Thus, it
now pays for the �rst mover to call a size 4 alliance, since the payo¤s for
(4; 4) when leaving the rest inactive are (0:027344; 0:027344), which is stictly
better than calling a size 5 alliance for the second mover. The key di¤erence
between this case and case 1 is the di¤erence in the winning probabilities under
(4; 4) and (4; 5). If (4; 4), the winning probabilities are 1

2
and 1

2
, obviously. In

contrast, if (4; 5), the winning probabilities are (0:29058; 0:70942) when � = 6
7
,

and (0:033862; 0:66138) when � = 5
6
. That is, when � is not high enough, it

does not pay for the second mover to expand the size of alliance. Proposition 1
says that in stage 3, the subsequent payo¤s of the winning alliance is inversely
proportional to n2, so the winning probability of a larger alliance needs to be
signi�cantly higher to be pro�table to form it. An increase in � (�) increases
the winning probability of a larger alliance. That is, Lemma 5 is violated for
� = 5

6
, while it is satis�ed for � = 6

7
. As a result, in this case, the equilibrium

outcome is an (active) alliance structure (4; 4) with payo¤s 0:027344.
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4.3 Case 3: Smaller �s

When � = 4
5
(� = 2), the situation is the same as in the � = 5

6
case. The

equilibrium (active) alliance structure for this case is (4; 4). How about for an
even smaller �? When � = 3

4
(� = 1), we have an (active) equilibrium alliance

structure (3; 3; 3), achieving payo¤s 0:028807. Note that this number is higher
than the payo¤ from (4; 4), 0:027344. With this low complementarity, even
if the �rst mover calls a size 3 alliance, the second mover does not bene�t
by calling a size 4 or 5 alliance. Having a large alliance just intensi�es the
subsequent �ght, and (3; 3; 3) realizes.
When � = 2

3
(� = 0), the equilibrium alliance structure is (2; 2; 2; 2; 2) with

payo¤s 0:03. There will be no further spino¤ for this N = 10, since calling a
one person alliance increases the number of alliances, which is harmful to the
player (an independent player gets 1

36
< 0:03 from (2; 2; 2; 2; 1; 1)). However,

if N goes up, all alliances are resolved, going back to the standard Tullock
competition.

5 Concluding Remarks

In this paper, we consider an alliance formation game in Tullock contests
when e¤orts by the members of an alliance are complementary to each other.
In order to illustrate excludability of alliance memberships, we use Bloch�s
noncooperative game of sequential coalition formation (1996). Unlike in an
open-membership game analyzed in the companion paper (Konishi and Pan
2019), strong complementarity does not mean a grand alliance, since alliances
can exclude outsiders by limiting membership. We show that there will be only
two asymmetric alliances in which (i) all players belong to one of them, and (ii)
the �rst alliance is larger than the second alliance, when e¤ort complementarity
is large enough. With a small population example, we show that (i) there can
be more than two alliances in equilibrium, and (ii) there can be fringe inactive
players in equilibrium when e¤ort complementarity is not too strong. These
results sheds light on the role of exclusivity in forming alliances in the context
of contest games.

Appendix

We collect all the proofs of lemmas in the text.
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Proof of Lemma 1. We start by di¤erentiating f and g with respect to �x:

@f(x; �x; J + 1)

@�x
=
��J 1

�x�+1
J 1
x�+1�

J 1
�x�
+ 1

x�

�2 < 0

and

@g(x; �x; J + 1)

@�x
=

��J 1
�x�+1

�
J 1
�x�
+ 1

x�

�
+
�
J 1
�x�
� (J � 1) 1

x�

�
�J 1

�x�+1

x2
�
J 1
�x�
+ 1

x�

�2
=

��J 1
�x�+1

��
J 1
�x�
+ 1

x�

�
�
�
J 1
�x�
� (J � 1) 1

x�

��
x2
�
J 1
�x�
+ 1

x�

�2
=

��J 1
�x�+1

� J 1
x�

x2
�
J 1
�x�
+ 1

x�

�2 < 0
These imply that @u(x;�x;J+1)

@�x
< 0: i.e., a coalition�s payo¤ declines if other

active coalitions�sizes increase.
Di¤erentiating f and g with respect to x, we have

@f(x; �x; J + 1)

@x
=

J

N

(� + 1) 1
x�+2

�
J 1
�x�
+ 1

x�

�
+ 1

x�+1

�
�� 1

x�+1

��
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�x�
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�2
=

J

N

(� + 1) J 1
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1
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+ 1
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�2 > 0
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x3
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J 1
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x�

�2
=

�
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x�
� 2

�
J 1
�x�
� (J � 1) 1

x�

�� �
J 1
�x�
+ 1

x�

�
+
�
J 1
�x�
� (J � 1) 1

x�

�
�
x�

x3
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J 1
�x�
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�
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J 1
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Thus, @g(x;�x;J+1)
@x

> 0 (thus @u(x;�x;J+1)
@x

> 0) holds if we have

J � 1
J

�
�x
�x

��
� (2 + �) (J � 1)

2J
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We can relax the su¢ cient upperbound slightly:

(numerator of (4))

= (J � 1) (� + 2) 1
x2�

+ fJ (J � 1) (� + 2)� 2Jg 1

x� �x�
� 2J2 1

�x2�
� (J � 1) �

x2�
+ J

�

x� �x�

= 2 (J � 1) 1
x2�

+ J f(� + 2) J � 4g 1

x� �x�
� 2J2 1

�x2�

= 2 (J � 1) 1
x2�

+
J

�x�

�
f(� + 2) J � 4g 1

x�
� 2J 1

�x�

�
Thus, @g(x;�x;J+1)

@x
> 0 (thus @u(x;�x;J+1)

@x
> 0) holds if we have�x

�x

��
� (2 + �) J � 4

2J

What if
�
x
�x

��
< J�1

J
? Suppose that originally J alliances are active with

average alliance size �x. Then, even if J + 1th alliance with size x enters, this
alliance cannot be active if J 1

�x�
� (J � 1) 1

x�
< 0, or�x

�x

��
<
J � 1
J

.

We have completed the proof.�

Proof of Lemma 2. Suppose that J1 size x1 = n1
N
coalitions and J2 size

x2 =
n2
N
coalitions. We show that if x1 � x2, then there is ��(x1; x2; J1; J2) such

that for all � > ��(x1; x2; J1; J2) and all x � x1 � 1
N
,

(J1 + J2)
1�

x1 � 1
N

�� > J1 1
x�1
+ J2

1

x�2
+

1�
x1 � 1

N

��
For N , there are �nite numbers of n1, n2, J1, and J2, and there is a maximum
threshold value for ��(x1; x2; J1; J2). Let it be ��(N). We have completed the
proof.�
Proof of Lemma 3. Direct calculations show that the payo¤s of size-x2
alliances under � and �0 are:

1

N2x22

�
1� x�2

x�1 + x
�
2
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1� 1

Nx2

x�2
x�1 + x

�
2

�
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�
1� Jx�2
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2

�
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respectively. We have

Jx�2
x�1 + Jx

�
2

� x�2
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2
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Jx�2 (x
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�
1 + x
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> 0

Thus, we have completed the proof.�
Proof of Lemma 4. Let � = 1

N
. By Lemma 2, there will be at most two

active alliance sizes. Thus, if x > xM then direct calculations show
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and (since x < xM is dominated by xM ; Lemma 1),

u(xM ; xM ; JM) =
1

N2 (xM)2
1

JM + 1

�
1� JM

(JM + 1)NxM

�
Note that if u(xM+�; xM ; 1) > u(xM ; xM ; 1) for some � , then u(xM+�; xM ; J) >

u(xM ; xM ; J) also holds for all J � 2. If � is large, (x
M+�)

�

(xM )�
can be made arbi-

trarily large. Thus, we can show u(xM + �; xM ; J) > u(xM ; xM ; J).�
Proof of Lemma 5. Let � = 1

N
. We have
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holds. This completes the proof of the claim.�

Proof of Lemma 6. We have
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holds. This completes the proof of the lemma.�
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