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Abstract

Esteban and Sákovics (2003) showed in their three-person game that an
alliance never appears in a possibly multi-stage contest game for an indivisible
prize when allies’ efforts are perfectly substitutable. In this paper, we intro-
duce allies’ effort complementarity in alliances by using a CES effort aggregator
function. We consider an open-membership alliance formation game followed
by two contests: one played by alliances, and one within the winning alliance.
We show that if allies’ efforts are too substitutable or too complementary, there
is no meaningful alliance in equilibrium. However, if allies’ efforts are moder-
ately complementary to each other, then competition between two alliances is
a subgame perfect equilibrium, which Pareto-dominates the equilibrium in a
no-alliance single-stage contest. We also show that if forming more than two
alliances is supported in equilibrium, then it Pareto-dominates two-alliance
equilibrium. Nevertheless, the parameter space for such an allocation to be
supported as an equilibrium shrinks when the number of alliances increases.

1 Introduction

In their influential paper, Esteban and Sákovics (2003) consider a three-person strate-
gic alliance formation in a Tullock contest model in which players compete for an
indivisible prize, and demonstrate that an alliance involves strategic disadvantages
(see also Konrad 2009). There are two main disadvantages to forming an alliance:
First, if an alliance is formed, there will be an additional contest that dissipates

*We would like to thank two anonymous referees of the journal for their helpful comments. We
also thank Joan Esteban, Kai Konrad, Hendrik Rommeswinkel, József Sákovics, Chih-Chun Yang,
and all seminar/conference participants at various places for their suggestions and encouragement.
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the members’ rents, even if the alliance wins the first race. Because of this rent-
dissipation effect, the members of the alliance have lower valuations for winning
in the first race, reducing their efforts and the winning probability. Second, even
without the rent-dissipation problem, e.g., if the winning prize is shared equally,
there are still free-riding incentives for the alliance members to reduce efforts and,
consequently, the winning probability. As a result, they conclude that it is hard to
materialize strategic alliances in a Tullock contest model.1 Konrad (2009) points out
that these disincentives are not specific to Tullock contest models—they also appear
in first price all-pay auctions.2

However, in the real world, forming alliances in competition is ubiquitous—for ex-
ample, in research and development activities, and nations in conflicts. In this paper,
we provide a simple solution for this alliance paradox by using complementarity in
efforts in a general but symmetric N -person game.3 To analyze complementarity, we
introduce a simple and tractable CES effort aggregator function to translate alliance
members’ individual efforts into the alliance’s joint effort. We assume that each in-
dividual member’s marginal effort cost is constant in order to limit the benefits of
forming an alliance to effort complementarity only.4 With strong complementarity in
efforts, a larger alliance has the effort advantage relative to a smaller one. Although
there are aforementioned disincentives, it makes sense to form an alliance as long as
the benefits from complementarity exceed the costs. The complementarity parame-
ter in the CES aggregator provides a simple measure of the strength of incentive to
form alliances as its value increases from 0 to 1.5

1Konrad (2004) considers an asymmetric all-pay auction game with exogenously determined
hierarchical tournament structure, and shows that the highest valuation player may not have a
chance to become the final winner depending on the hierarchical structure.

2On the other hand, Wärneryd (1998) shows that forming alliances and competing in a multi-
stage competition reduce wasteful competition and increase total welfare. However, this resource
saving effect is difficult to realize due to the disadvantageous effect on alliances when members’
individual efforts are perfectly substitutable.

3There are at least a few other ways to resolve this alliance paradox (Konrad and Leininger 2007
and Konrad and Kovenock 2008: see the literature review).

4In general, forming an alliance can reach higher total efforts with less individual cost when cost
functions are convex. For example, Esteban and Sákovics (2003) assume quadratic individual effort
functions but still got their alliance paradox.

5Complementarity in efforts within a group in Esteban and Ray (2011) is more subtle. They
analyze the conflict between two ethnic groups by assuming that players have heterogeneous fi-
nancial and human opportunity costs, and they can contribute financially to a conflict or they
can directly participate as activists. This generates some sort of complementarity: more activism
requires more of the two inputs, time and money. They find that within-group inequality leads to
more activism. This is because alliance members are specialized: poor individuals with cheap avail-
able activist time and rich individuals with money they can contribute at a lower marginal utility
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We are not the first to present this idea. Following Cornes (1993) and Cornes
and Hartley (2007) in the literature of private provision of public goods, Kolmar
and Rommeswinkel (2013) and Choi, Chowdhury, and Kim (2016) have already
demonstrated the presence of such incentives in alliance formation (see next section).
This paper goes one step further. Since players’ payoffs are related to the whole
alliance structure, it is important to know how other players react to the alliance
structure and whether or not the alliance structure could be stable. Therefore,
we need to see players’ and alliances’ strategic interactions, and what happens in
equilibrium: in particular, we ask whether or not there exists an equilibrium alliance
structure.

We set up a simple alliance (coalition) formation game with multiple stages. In
stage 1, players form alliances. In stage 2, alliances compete with each other, and
in stage 3, the winning alliance members compete with each other for the indivisi-
ble prize. The solution concept is the standard subgame perfect Nash equilibrium.
Two things should be noted. First, we model the alliance formation process as an
“open-membership” game (Yi 1997) in which players can freely choose their alliance
without being excluded.6 This setup can be motivated by examples of geographical
concentrations of specialized retails stores such as car dealers (auto rows). In big
cities in the United States, car dealers tend to collocate to form auto rows, despite
that they must compete with each other, and that they can choose to stand alone
in a different location. Consumers are attracted by auto rows since they can find a
wide variety of cars at competitive prices, and stand-alone dealers have a hard time
surviving.7 The prosperity of an auto row depends on the number of retail stores and
each store’s efforts.8 Car dealers choose their locations freely, knowing that big auto
rows attract many customers, but that the dealers there must face fierce competition
with neighboring dealers.9 Second, given the way we set up the multi-stage game, a
singleton-only alliance structure and a grand alliance structure are practically iden-
tical, since the former does not have the third stage competition, and the latter does

cost. We can interpret these results that an increase in complementarity within groups intensifies
group competition.

6In a companion paper, Konishi and Pan (2020), we consider a sequential alliance formation
game à la Bloch (1996), and compare the resulting alliance structures (see Conclusion section).

7See Konishi (2005) for a mechanism of the emergence of concentration of retail stores.
8Note that a Tullock contest success function is identical to consumers’ logit demand function

in a discrete choice model.
9Another possible example is competing technologies that have network externalities: A classic

instance is the videotape format war between VHS by JVC and Betamax by Sony in the late 1970s.
Japanese electric appliance companies chose one of these two technologies (JVC, Panasonic, and
RCA for the former, and Sony, Toshiba, and Sanyo for the latter), but VHS won the market against
Betamax. The market competititon took place among the winning technology adopters.
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not have the second stage competition. The outcome of these two alliance structures
coincides with that of a grand standard Tullock contest. Thus, our focus will be
finding subgame perfect equilibria with non-trivial alliance structures.

We first analyze the third stage game, which is just a Tullock contest within the
winning alliance from stage 2. The rate of rent dissipation increases with the size of
alliance increases (Proposition 1). Substituting this as the winning payoff of stage
2, we analyze equilibrium payoffs and strategies in this stage (Theorem 1). Using
these building blocks, we analyze values of CES parameter σ when nontrivial alliance
structures emerge in equilibrium. We show that when the complementarity param-
eter in CES function is small, there are spin-off incentives for alliance members,
while when the complementarity parameter is large, players want to join a bigger
alliance and end up with a trivial grand alliance. Therefore, there is no nontrivial
equilibrium structure in those ranges (Proposition 2). In order to show the existence
of a nontrivial equilibrium alliance structure, we focus on the two-alliance case and
provide sufficient conditions for the existence and uniqueness of this type of equi-
librium (Theorem 2). We also show that equilibrium alliance structures involve two
similar-sized alliances.

Moreover, we show that such a similar-sized two-alliance equilibrium allocation
always Pareto-dominates the Tullock contest allocation (Theorem 3). That is, non-
trivial alliances are not only an equilibrium phenomenon but also provide benefits to
their members. Focusing on alliance structures with symmetric (i.e., equally sized)
alliances, we also analyze equilibria with more than two alliances. It is shown that
symmetric allocations with more alliances achieve higher payoffs, while it is harder
to satisfy the equilibrium conditions when the number of alliances increases. We also
illustrate how these findings are affected by the level of rent-dissipation in stage 3
by assuming a large population in the contest.

The rest of the paper is organized as follows. In the next subsection, we review
the relevant literature. Section 2 introduces the model, and Sections 3 investigates
subgames in stages 3 and 2. Employing simple examples, Section 4 illustrates how
nontrivial alliance structure is stable when the complementary parameter is mod-
erate. Section 5 presents the results on equilibrium alliance structures. Section 6
considers large population contests and analyzes how the level of rent dissipation
affects the stability of alliances. Section 7 concludes, commenting on other alliance
formation games.
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1.1 Literature Review

There have been attempts to resolve the alliance paradox in Esteban and Sákovics
(2003). Konrad and Leininger (2011) consider a dynamic all-pay auction game with
possible side payments and endogenous timing of effort in which a group of play-
ers (alliance members) fight against a threat from an external enemy player. They
show that there is a subgame perfect equilibrium, in which the alliance members
exert efficient efforts against the enemy, followed by peaceful side payments from a
leader of the alliance to the members in the equilibrium path. In this setup, the
free-riding problem and redistributive conflicts are avoided by potential wasteful in-
ternal fighting. Konrad and Kovenock (2009) introduce budget constraints for efforts
(resources) for each contest in a three-person all-pay auction game, and show that
there can be a beneficial alliance for two players with tighter budgets. Konrad (2012)
considers an all-pay-auction game in which each player’s budget constraint is private
information, considering forming an alliance as a tool of information sharing. As-
suming a common willingness-to-pay, Konrad (2012) finds that merging alliances is
weakly Pareto-improving, and the grand alliance emerges as equilibrium. An asym-
metric three-player alliance formation game by Skaperdas (1998) may appear to be
the closest to our model, in the sense that he considers complementarity in mem-
bers’ efforts. He shows that alliance formation is beneficial if and only if the effort
aggregator function exhibits increasing returns to scale in the members’ efforts, but
he assumes that players’ effort levels are exogenously fixed.10 In a general symmetric
n-player game, Garfinkel (2004) adopts a farsighted solution concept (in the spirit of
farsighted stability in Chwe 1994), i.e., a player spins off from an alliance structure
only when the eventual outcome after such a move is more preferable than the origi-
nal alliance structure. With her solution concept, she shows that with a large number
of players there are stable alliance structures with similar alliance sizes. In contrast,
in our paper, we use the standard subgame perfect Nash equilibrium as the solution
concept of our alliance formation game, and derive a stable alliance structure with
similar sizes.

There are papers that use a CES aggregator function to capture effort comple-
mentarity. In the public good context, Cornes (1993) introduces complementarity in
the famous voluntary public good contribution game in Bergstrom, Blume, and Var-
ian (1986). Cornes and Hartley (2007) examine this problem extensively. In contest
games, Kolmer and Rommeswinkel (2013) consider a group contest played by exoge-

10Tan and Wang (2010) also analyze an asymmetric model with exogenously fixed efforts. In
their framework, they show that equilibrium alliance structure has only two alliances with balanced
power in a three- or four-player game. Herbst et al. (2015) experimentally study a three-player
alliance formation game when the winning alliance members share the prize equally.
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nously formed groups using a CES effort-aggregator function when group-members
have heterogeneous abilities. Assuming that the winning prize is enjoyed by all mem-
bers of a winning team as a public good, they analyze how effort complementarity
affects members’ efforts. They find that the complementarity parameter has no effect
on equilibrium efforts if groups are homogeneous. If groups are heterogeneous, then
the divergence of efforts among group-members and, somewhat surprisingly, the win-
ning probability decreases as the complementarity of efforts goes up, contradicting
common intuitions that complementarity of efforts solves the free-riding problem.
In contrast, Choi, Chowdhury, and Kim (2016) consider an indivisible private good
award à la Esteban and Sákovics (2003) in an exogenous two-group model with two
members each, who are heterogeneous in within-group powers. They find that the
weaker player may get a higher payoff under effort complementarity. Crutzen and
Sahuguet (2018) and Crutzen et al. (2020) compare political party competition
with multiple party candidates under different voting systems using CES aggregator
functions.

There is literature on contests among exogenously formed groups, concerning
how group size and group sharing rules affect incentives to exert efforts (the prize
is divisible). In his pioneering work, Olson (1965) argues that due to a free-riding
problem in sharing private benefits from the prize with the members of a group,
larger groups are less effective at collective effort making than smaller groups. This
is the so-called “group-size paradox.” Assuming individual efforts are contractable,
Nitzan (1991) considers a two-part reward system that combines an egalitarian and
a relative-effort-sharing system, and analyzes how the combination affects members’
incentives for players in large and small groups. Lee (1995) and Ueda (2002) endo-
geneize group sharing rules in this class. Esteban and Ray (2001) allow for allocating
the prize among the members into public and private benefits (a mixed prize), and
show that the group-size paradox disappears even if private benefits are allocated
in an egalitarian manner, as long as each member’s marginal cost of effort increases
at a sufficient speed (a sufficient condition for this is that their cost functions are
quadratic). Nitzan and Ueda (2011) show that if private benefits can be allocated
by an endogenously chosen relative-effort-sharing rule, then the group–size paradox
disappears entirely in their class of effort functions, and larger groups tend to have
more egalitarian rules.

Based on the line of research above, Baik and Lee (1997, 2001) endogenize the
alliance formation in Nitzan’s (1991) game with endogenous group sharing rules, and
analyze two- and multiple-alliance cases, respectively. They use open-membership
games to describe alliance formation. Bloch et al. (2006) generalize the model
substantially to analyze the stability of the grand alliance in different alliance forma-
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tion games, including a sequential coalition formation game in Bloch (1996), Okada
(1996), and Ray and Vohra (2001). Sánchez-Páges (2007a) explores different types
of stability concepts, including sequential coalition formation games in alliance for-
mation in contests where efforts are perfect substitutes. Sánchez-Páges (2007b) con-
siders various stability concepts in a model where players allocate endowment into
productive and exploitative activities. These papers assume the award is divisible,
and alliance members can write a binding contract of sharing rule in the case of
the alliance’s winning. In our paper, we do not allow for any side payment, and
players cannot credibly commit to any intra-alliance distribution rule as in Este-
ban and Sákovics (2003). We only focus on the benefits of forming a larger group
through complementarity of effort and analyze the endogenous formation of alliances
in Tullock contests.

2 The Model

There are N players who seek to get an indivisible prize (say, to be the head of an
organization). There is no side payment allowed. The set of players is also denoted
by N = {1, ..., N}, and they can form alliances exclusively for the purpose of being
the final winner. Each player i ∈ N can make an effort to enhance the popularity of
her alliance and that of herself. We assume that each player has an identical linear
cost function C(ei) = ei for all ei ≥ 0.

Starting from the inter-alliance contest, we introduce potential benefits for players
who belong to an alliance—complementarity in aggregating efforts by all alliance
members. That is, if player i belongs to alliance j with Nj ⊂ N as the set of
members, and these members make efforts (ehj)h∈Nj , then the aggregated effort of
alliance j, Ej, is described by a CES aggregator function

Ej =

∑
h∈Nj

e1−σhj

 1
1−σ

, (1)

where σ ∈ (0, 1) is a parameter that describes the degree of complementarity: if
σ = 0, it is a linear aggregator function as in Esteban and Sákovics (2003), and if
σ = 1, it is a Cobb-Douglas function. Thus, as σ goes up, the complementarity of
members’ efforts increases.11

11Although a CES function is well-defined and concave for σ ≥ 1, for those σs, an iso-quant
curve of a positive aggregate effort does not touch any axis. Thus, when σ ≥ 1, the departure of
even a single member will make the aggregate team effort zero. This indispensability of all alliance
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Candidate i in alliance j decides how much effort eij to contribute to her alliance
j. The winning probabilities of an alliance is a Tullock-style contest. That is, an
alliance j’s “winning probability” given its members’ efforts is

pj =
Ej∑
k∈J Ek

. (2)

An indivisible prize is valued as V > 0, which is common and normalized to 1 for
all players. Since the prize is indivisible, one player in the winning alliance in the
second stage must be selected as the final winner in the third-stage contest.

After a winning alliance j is determined, we assume that the final winner is
determined by a Tullock contest within the winning alliance members Nj. Denoting
the second-stage effort as êi, the winning probability of player i ∈ Nj is

pi =
êi∑

h∈Nj êh
. (3)

Before the inter- and intra-alliance contests, players form alliances using a spec-
ified process. Formally, a partition of the set of players N , π = {N1, ..., NJ} is
an alliance structure, where each alliance j consists of a set of players Nj, where
∪j∈JNj = N and Nj′ ∩Nj = ∅ for any j, j′ ∈ J with j 6= j′. The process considered
here is an open-membership game (Yi 1997) where players are allowed to (i) freely
move from alliance to alliance or (ii) spin-off as a singleton if they want to. Following
the literature, we model this process as a “location choice” problem. Suppose there
is a finite number of locations. In the first stage, all players simultaneously announce
their own location, and those players announcing the same location form an alliance.
In equilibrium, no player wants to change their location announcement, i.e., every
player prefers her own alliance, given all other players’ announcement, foreseeing
future inter- and intra-alliance contests.

Since we assume that players are ex-ante homogeneous, we also call {n1, ..., nJ} an
alliance structure with nj = |Nj| for all j = 1, ..., J . We consider a dynamic contest
game with endogenous alliances: it starts with players forming alliances, then the
alliances compete for an indivisible prize in the first contest, and lastly the players
in the winning alliance compete with each other to determine the final winner in
the second contest. Our dynamic contest game with endogenous alliances has three
stages:

members is inconsistent with the free-mobility assumption we adopt. Therefore, we concentrate on
the case 0 < σ < 1.
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Stage 1. All players i ∈ N choose one of locations zi ∈ Z simultaneously, where the
number of locations is at least as many as the number of players |Z| ≥ N .
Players choosing the same integer form an alliance: N(z) ≡ {i ∈ N : zi = z}
for all z ∈ Z, and a collection of nonempty alliances is an alliance structure
π = {Nj}Jj=1.

Stage 2. All players i ∈ N choose effort ei ∈ R+ simultaneously, knowing the aggregated
effort of her alliance is (1). The inter-alliance contest is a Tullock contest with
winning probabilities equal to (2).

Stage 3. All members of the winning alliance Nj choose effort êi ∈ R+ simultaneously.
The ultimate winner is selected in a simple Tullock contest with winning prob-
abilities equal to (3).

We use standard subgame perfect Nash equilibrium as the solution of this dynamic
game. We consider equilibria in pure strategies only. We will analyze this game by
backward induction.

3 Contest Equilibrium in Stage 3 and 2

3.1 Stage 3: Final Contest within the Winning Alliance

In the third stage, all members in the winning alliance Nj in the second stage engage
in a Tullock contest by exerting effort êi ≥ 0. Thus, player i’s winning probability is

pi =
êi∑

h∈Nj êh
.

For any player i in the winning group j, the expected payoff in stage 3 is

Ṽi =
êi

êi +
∑

h6=i êh
− êi.

The first-order condition implies that

1− pi
êi +

∑
h6=i êh

− 1 = 0⇒ 1

êi
pi(1− pi)− 1 = 0.

Since players are homogeneous, pi(1− pi) =
nj−1
n2
j

is the same for all i in the winning

group j in equilibrium. Then, we have the following proposition.
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Proposition 1. Suppose that the winning alliance of the first stage has size nj.
Then, the third-stage equilibrium strategy and payoff are

êi =
nj − 1

n2
j

and Ṽ j =
1

nj

(
1− nj − 1

nj

)
=

1

n2
j

.

3.2 Stage 2: Contest between Alliances

Consider an inter-alliance contest problem. From Proposition 1, we know that for
a given size of alliance nj the payoff of intra-alliance contest is determined by Ṽj =
1
n2
j
. Thus, the second stage maximization problem of a player ij in alliance j is to

maximize the payoff

Vij =

(
e1−σij +

∑
h6=i e

1−σ
hj

) 1
1−σ

(
e1−σij +

∑
h6=i e

1−σ
hj

) 1
1−σ

+
∑

j′ 6=j Ej′

Ṽj − eij

=

(
e1−σij +

∑
h6=i e

1−σ
hj

) 1
1−σ

(
e1−σij +

∑
h6=i e

1−σ
hj

) 1
1−σ

+
∑

j′ 6=j Ej′

1

n2
j

− eij.

The first-order condition with respect to eij (if an interior solution) is(∑
j′ Ej′ − Ej

)
(∑

j′ Ej′
)2 e−σij E

σ
j

1

n2
j

− 1 = 0.

This condition implies that all players in an alliance must exert the same amount of
effort in equilibrium, and we can write ej = eij for all ij ∈ Nj. Therefore, the relevant
information for an alliance Nj is summarized in the number of its members, nj, and

the aggregated effort can be written as Ej =
(
nje

1−σ
j

) 1
1−σ = n

1
1−σ
j ej. Substituting

this back into the above condition, we have(∑
j′ 6=j n

1
1−σ
j′ ej′

)
(∑

j′ n
1

1−σ
j′ ej′

)2 n
σ

1−σ
j

1

n2
j

− 1 = 0,
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or (∑
j′ 6=j n

1
1−σ
j′ ej′

)
(∑

j′ n
1

1−σ
j′ ej′

)2 − n
2−3σ
1−σ
j = 0,

for all j = 1, ..., J . This is a set of conditions that characterize the first-stage equilib-
rium if all coalitions exert positive efforts. Using the share function approach from
Cornes and Hartley (2005), we convert our second-stage J-alliance team competition
to an artificial J-person Tullock contest. We can prove the existence and uniqueness
of equilibrium in the second stage under any π.

3.3 Artificial Tullock Contest Game and Share Function

To apply a method called the “share function” approach that is systematically an-
alyzed in Cornes and Hartley (2005), we rewrite the second-stage competition as

a Tullock contest with heterogeneous marginal costs.12 Formally, let wj = n
2−3σ
1−σ
j

(marginal cost) and xj = n
1

1−σ
j ej (effort) for each j = 1, ..., J . An artificial Tul-

lock contest game (J, (wj)
J
j=1) corresponding to our second-stage game is a J-person

game in which each player j exerts effort xj with constant marginal cost wj > 0. Her
winning probability is specified by πj =

xj∑J
j′=1 xj′

, and her payoff is

uj =
xj∑J
j′=1 xj′

− wjxj.

The payoff function is strictly concave in xj, and the first-order condition is(∑
j′ 6=j xj′

)
(∑

j′ xj′
)2 − wj = 0,

for j = 1, ..., J . This set of equations are the (interior) first-order conditions for the
artificial game that is identical to the set of first-order conditions for the original
game. Thus, in order to analyze the properties of the equilibrium in the original
game, it suffices to analyze the properties of the corresponding artificial game. To
do that, we follow the share function approach in Cornes and Hartley (2005).

12Esteban and Ray (2001) and Ueda (2002) used the same method in their papers.
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Let X−j =
∑

j′ 6=j xj′ . Then, xj > 0 is a unique best response to X−j if and only
if

x2j + 2X−jxj +X2
−j −

X−j
wj

= 0.

Noting that some players may have too high a marginal cost for an interior solution,
player j’s best response to X−j is

βj(X−j) = max

{
−X−j +

√
X−j
wj

, 0

}
.

We define player j’s replacement function following Cornes and Hartley (2005): a
replacement function rj(X) is a function of total effort X =

∑
j′ xj′ such that rj(X)

is the best response to X − rj(X): i.e., rj(X) = βj(X − rj(X)). Thus we obtain

rj(X) = max
{
X − wjX2, 0

}
.

Let group j’s share function be sj(X) = 1
X
rj(X):

sj(X) = max {1− wjX, 0} .

Note that sj(X) is a decreasing function in X. Let s(X) =
∑

j′ sj′(X). This is
a decreasing function as well. Order players by w1 ≤ w2 ≤ .... ≤ wJ . The share
function s(X) is a piece-wise linear function with kinks at X̂nj = 1

wj
for each j =

1, ..., J . Figure 1 depicts share functions for j = 1, ..., J and s(X). The equilibrium
for the artificial contest is a total effort, X∗, for which every group’s optimal share
sums up to 1. Clearly, there exists a unique equilibrium X∗ defined by

∑
j′ sj′(X

∗) =
1. Moreover, at the equilibrium X∗, sj(X

∗) is also the winning probability of player

j. As is easily seen from Figure 1, if X̂nj = 1
wj
< X∗, then sj(X

∗) = 0 must hold,

which means only those groups with smaller marginal costs are active, i.e., exert
positive efforts. The following lemma summarizes the result of this artificial Tullock
game.
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Figure 1: sj(X) and s(X) when J = 4. For the alliance with large wj = n
2−3σ
1−σ
j , the

equilibrium effort is 0, i.e., it is inactive.

Lemma 1. [Cornes and Hartley, 2005] An artificial Tullock game has a unique
equilibrium X∗ at

∑
j sj(X

∗) = 1. Moreover, there exists j∗ such that, for each

j = 1, ..., j∗, xj = X∗ − wj (X∗)2, and for each j = j∗ + 1, ..., J , X̂nj ≤ X∗ (or∑
j′ sj′(X̂

nj) ≥ 1) and xj = 0 hold.

3.4 Equilibrium in Stage 2

Lemma 1 proves the existence and uniqueness of the equilibrium for the artificial
contest and, therefore, for the original game’s second stage contest. Given an alliance
structure, we obtain the following explicit solutions by considering a special case of
Kolmar and Rommeswinkel (2013). All proofs are collected in Appendix A.

Theorem 1. There exists a unique equilibrium in the second-stage game for any
partition of players π = {n1, ..., nj} characterized by the share function s(X∗) = 1.

13



There is j∗ ∈ {1, ..., J} such that p∗j = sj(X
∗) > 0 (active alliance) for all j ≤ j∗

( X̂j > X∗), while p∗j = sj(X
∗) = 0 (inactive alliance) for all j > j∗ ( X̂j ≤ X∗).

Then, the members of alliance j = 1, ..., J obtain payoff

uj =


1
n2
j

[
1− (j∗ − 1)

n
2−3σ
1−σ
j∑j∗

j′=1
n

2−3σ
1−σ
j′

][
1− (j∗ − 1)

n
1−2σ
1−σ
j∑j∗

j′=1
n

2−3σ
1−σ
j′

]
if j ≤ j∗

0 if j > j∗
.

Moreover, the equilibrium total efforts are

X∗ =
j∗ − 1∑j∗

j′ n
2−3σ
1−σ
j′

,

and

(j∗ − 1)n
2−3σ
1−σ
j <

j∗∑
j′

n
2−3σ
1−σ
j′

holds for all j = 1, ..., j∗ .

4 Stage 1: Alliance Formation—An Example

Before proceeding to the equilibrium analysis of the first-stage game of this dynamic
contest game, we need to clarify the implications of no alliance (alliances are all
singletons) and the grand alliance. If each player forms a singleton alliance, π0 =
{1, ..., 1}, and from Theorem 1, the resulting payoff of π0 is u0 = 1

N2 . If players form
the grand alliance, then the game will directly proceed to Stage 3, which is just a
regular Tullock contest. Thus, having the grand alliance and having no alliance are
both “trivial” coalition structures. We denote a single grand alliance structure and
its resulting payoff by πN = {N} and uN = 1

N2 , respectively. To answer the alliance
paradox, our analysis is focused on the incentives for players forming stable alliance
structures other than π0 and πN due to the complementarity we introduced.

In this section, we consider a case of four players. If they do not form an alliance,
everybody gets u0 = 1

16
. Since there are only four identical players, we only need

to consider the following coalition structures: (i) π0 = {1, 1, 1, 1}, (ii) π1 = {2, 1, 1},
(iii) π2 = {2, 2}, (iv) π3 = {3, 1}, and (v) πN = {4}. Let us denote the payoff of a
player in a size n alliance in partition π by u(n, π). Since the key parameter in a CES
aggregator function is σ ∈ [0, 1), and the complementarity of team efforts increases
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as σ increases, we consider three values of σ in order: σ = 1
2

(weak complementarity),
3
4

(moderate complementarity), and 4
5

(strong complementarity). We investigate how
alliance structure is affected by the complementarity of team efforts.

4.1 Weak Complementarity σ = 1
2

In this case, we have 2−3σ
1−σ = 1 and 1−2σ

1−σ = 0. Using Theorem 1, we know the
following:

u(1, π0) u(2, π1) u(1, π1) u(2, π2) u(3, π3) u(1, π3) u(4, πN)
payoff 1

16
0 1

4
3
32

1
48

9
16

1
16

Note that under π1 and π3, smaller alliances perform better than larger ones.
We analyze which partition can be a Nash equilibrium of stage 1:

1. π0 = {1, 1, 1, 1}: This is a Nash equilibrium.

2. π1 = {2, 1, 1}: There is a unilateral spin-off from the size 2 alliance, resulting
in π0.

3. π2 = {2, 2}: There is a unilateral spin-off from one of the size 2 alliances,
resulting in π1.

4. π3 = {3, 1}: There is a unilateral spin-off from the size 3 alliance, resulting in
π1.

5. πN = {4}: There is a unilateral spin-off from the grand alliance, resulting in
π3.

Thus, when σ = 1
2
, the complementarity of team efforts is too weak to form a

nontrivial alliance.

4.2 Medium Complementarity σ = 3
4

In this case, we have 2−3σ
1−σ = −1 and 1−2σ

1−σ = −2. Using Theorem 1, we know the
following:

u(1, π0) u(2, π1) u(1, π1) u(2, π2) u(3, π3) u(1, π3) u(4, πN)
payoff 1

16
3
25

1
50

3
32

11
144

1
16

1
16
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Note that under π1 and π3, larger alliances perform better than smaller ones.
We analyze which partition can be a Nash equilibrium of stage 1:

1. π0 = {1, 1, 1, 1}: Two singletons merge to form an alliance, resulting in π1.

2. π1 = {2, 1, 1}: Two singletons merge to form an alliance, resulting in π2.

3. π2 = {2, 2}: This is a Nash equilibrium.

4. π3 = {3, 1}: One of the size 3 alliance members moves to merge with a single-
ton, resulting in π2.

5. πN = {4}: This is a Nash equilibrium.

This case allows for two Nash equilibria: a trivial grand alliance equilibrium,
and an equally sized two-alliance equilibrium. One important observation is that π2

Pareto-dominates πN .

4.3 Strong Complementarity σ = 4
5

In this case, we have 2−3σ
1−σ = 1 and 1−2σ

1−σ = 0. Using Theorem 1, we know the
following:

u(1, π0) u(2, π1) u(1, π1) u(2, π2) u(3, π3) u(1, π3) u(4, πN)
payoff 1

16
14
81

1
162

3
32

29
300

1
100

1
16

We analyze which partition can be a Nash equilibrium of stage 1:

1. π0 = {1, 1, 1, 1}: Two singletons merge to form an alliance, resulting in π1.

2. π1 = {2, 1, 1}: Two singletons merge to form an alliance, resulting in π2.

3. π2 = {2, 2}: One of the size 2 alliance members moves to the other alliance,
resulting in π3.

4. π3 = {3, 1}: A singleton merges into the size 3 alliance, resulting in πN .

5. πN = {4}: This is a Nash equilibrium.

Thus, when σ = 4
5
, the trivial grand alliance is the unique Nash equilibrium.
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4.4 Observations

The above examples show that when σ is small, there is no gravity to sustain an
alliance, since the effort complementarity is not sufficient enough to compensate
Olson’s inefficiency of alliances.13 In this case, players prefer standing alone and
competing with other single players and/or alliances. In contrast, if σ is large, a larger
alliance is always relatively more attractive than a smaller alliance, resulting in the
grand alliance. When σ is in the middle range, nontrivial alliances can appear and
Pareto-dominate trivial allocation. For nontrivial equilibria, the complementarity is
strong enough to make a singleton player unprofitable. At the same time, it is not
strong enough that players prefer a smaller group to avoid severe competition in the
final stage. These two forces jointly ensure stability. We will show that this is not a
coincidence.

5 Two Competing Alliances

We start with the case where the number of (active) alliances is two. We first show
necessary conditions for a nontrivial alliance structure to exist. The intuition is
straightforward—for a two-alliance structure to be stable, σ cannot be too low or
too high. If σ is too high, joining a larger group is always beneficial. If σ is too low,
players have incentives to spin off. Formally stated, we have:14

Proposition 2. No two-alliance structure can be stable if σ ≤ 2
3

or 4
5
≤ σ.

Next, we consider a set of sufficient conditions for the existence and uniqueness
of a two-alliance equilibrium. We argue that when the value of the complementar-
ity parameter is moderate and some No Spin-off conditions are satisfied, there is

13Skaperdas (1998) shows that forming an alliance is beneficial if and only if the effort aggregator
function exhibits increasing returns to scale. However, in his model, players’ efforts are exogenously
fixed.

14From now on, we implicitly assume that there are no inactive alliances in equilibrium, which
is in fact consistent with equilibrium behavior. First, note that the players in an inactive alliances
have 0 payoffs. Suppose that σ > 2

3 . In this case, inactive alliances must have the smallest sizes,
if any. Therefore, players in an inactive alliance have incentives to join the largest alliance. This
is because, by Theorem 1, the largest alliance remains active after the new entrance and yields a
positive payoff. On the other hand, when σ < 2

3 , the inactive alliances are the largest. In this case,
the players in those inactive alliances have incentive to spin-off since, by Theorem 1, they can enjoy
a positive winning probability and payoff. Finally, when σ = 2

3 , team sizes are irrelevant, and all
teams are active.

17



a unique two-alliance equilibrium in which the maximal difference in sizes is one.
Denoting t = 3σ−2

1−σ , we have the following result.

Theorem 2. There is a σ̄ ∈ (3
4
, 4
5
) such that for all σ ∈ (2

3
, σ̄),

(i) when N is an even number, (N
2
, N

2
) = (n, n) is the unique two-alliance equi-

librium if 4n3

2n−1

[
max{(n−1)t+nt−(n−1)tnt,0}

(n−1)tnt+(n−1)t+nt

]2
≤ 1, and

(ii) when N is an odd number, (N−1
2
, N+1

2
) = (n, n+ 1) is the unique two-alliance

equilibrium if

((n+1)t+nt)
2

nt−2((n+1)t+nt−n−1(n+1)t)

[
max{(n+1)t+(n−1)t−(n−1)t(n+1)t,0}

(n+1)t+(n−1)t+(n−1)t(n+1)t

]2
≤ 1, and

((n+1)t+nt)
2
(max{2−nt,0})2

(n+1)t−2[(n+1)t+nt−(n+1)−1nt](nt+2)2
≤ 1.

This theorem confirms the intuition in the examples in Section 4. The two-
alliance equilibrium exists, and it is the only two-alliance when complementarity is
moderate. Note that the parameter space in Theorem 2 is a proper subset of the
one in Proposition 2. However, one might question what the shapes of No Spin-off
conditions (i) and (ii) are. We depict those cases in Figure 2. Not surprisingly, those
conditions are somewhat stricter than σ > 2

3
. However, as we will show in Section 6,

those conditions are asymptotically close to σ > 2
3

as N becomes larger and larger.
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Figure 2: No Spin-Off Conditions.

The following theorem shows an important welfare implication of having a chance
to form alliances. The emergence of alliances in subgame perfect equilibrium is not
only an equilibrium phenomenon (like prisoners’ dilemma games), but also a Pareto-
improvement for players’ welfare, because it has dynamic contests instead of a single
round contest.

Theorem 3. Every two-alliance equilibrium {n1, n2} with |n1 − n2| ≤ 1 Pareto-
dominates a no-alliance contest outcome.

5.1 Multi-Alliance Case

Is a symmetric alliance structure, i.e., all alliances are of the same size, stable when
J > 2? First of all, forming multiple alliances may be welfare-improving. In fact,
if the alliances are symmetric, players’ welfare improves as the number of alliances
increases. Formally,
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Proposition 3. Let symmetric alliance structure πJ be a structure that has N
J
≥ 2

players in each alliance. If πJ ′ and πJ ′′ with J ′′ > J ′ are both equilibrium alliance
structures, then πJ ′′ Pareto dominates πJ ′.

However, the remaining question is whether a multi-alliance structure is stable
or not. The benefit from forming a larger alliance is that the new alliance has a
higher winning probability in the inter-alliance contest. However, this effect is offset
by a stronger intra-alliance competition in the third stage. This winning-probability-
enhancement effect is stronger if each alliance only has a smaller number of members
and is weaker if the number of alliances is larger. Thus, we expect that, when the
number of alliances is more than two, it requires a larger membership in each alliance
to be a symmetric equilibrium allocation. This intuition leads us to the following
example.

Example 1. Consider the case when J = 3, n = 7 or 8, and σ = 3
4

u(7, {7, 7, 7}) = 0.0061548 < u(8, {8, 6, 7}) = 0.0061581

u(8, {8, 8, 8}) = 0.0047743 > u(9, {9, 7, 8}) = 0.0047736

The above example shows that even when the complementarity between players
is moderate, a symmetric three-alliance structure is not immune to a unilateral move
if n = 7. But, a larger membership (n = 8) again guarantees stability. In fact, σ = 3

4

is the borderline case for No Symmetry Breaking when J = 3, as will be seen in
Corollary 1.

Proposition 2 says that there is no stable two-alliance structure if σ ≤ 2
3
. However,

there may be stable alliance structure with many alliances even if σ ≤ 2
3

holds.
We demonstrate this in the following example, showing that a spin-off may not be
profitable when σ is close to 2

3
and there are many alliances.

Example 2. Suppose σ = 2
3
, π being a structure with J n-member alliances, and

π′ being the structure that one player spins off to form a singleton alliance from π.
We can greatly simplify u(1, π′) and u(n, π) in this case:

u(1, π′) =
1

1

[
1− J 1

J − 1 + 1 + 1

] [
1− J 1

J − 1 + 1 + 1

]
=

1

(J + 1)2

u(n, π) =
1

n2

[
1− (J − 1)

1

J

] [
1− (J − 1)

1
n

J

]
=

1

n2

1

(J)2

(
J − J − 1

n

)
.
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Note that u(1, π′) > u(n, π) holds for all n ≥ 2 and all J ≤ 4; i.e., there exist spin-off
incentives, and π cannot be a subgame perfect equilibrium outcome. However, when
J = 5 and n = 2, u(1, π′) = 1

36
and u(2, π) = 1

4
1
25

(5 − 4
2
) = 3

100
> 1

36
, no player has

incentives to spin off and form a singleton alliance. Moreover, since the size of an
alliance has no effect when σ = 2

3
, the payoff of deviating from a two-player alliance

and forming a three-player alliance is 1
9

1
52

(
5− 4

3

)
< 3

100
. Therefore, {2, 2, 2, 2, 2} is

in fact a stable structure. Since payoffs are continuous in σ, this example can be
extended to those σs that are close to but smaller than 2

3
. �

Finally, the following proposition assures that for any number of alliances J ≥ 2,
there is a spin-off incentive for every player who belongs to an alliance, if σ is small
enough.

Proposition 4. Suppose that σ ≤ 1
2
. Then, from any alliance structure π with

a non-singleton alliance, there is a player with an incentive to spin-off to form a
singleton alliance.

Example 1 seems to imply that players have stronger incentives to join a larger
group when there are more alliances, and the parameter space for a stable symmetric
alliance structure shrinks as the number of alliances increases as a result. In the
following section, we analytically confirm this intuition using a heuristic approach
that approximates the case with large alliances.

6 Symmetric Alliance Structure with Large Pop-

ulation

In the previous section, we analyzed equilibrium conditions by finding the parameter
ranges that discourage forming a larger alliance and satisfy No Spin-Off conditions.
In this section, we will try to interpret these conditions in the case of a large pop-
ulation, and thus large alliance sizes. We also generalize our analysis by allowing
for different continuation games to observe the relevance of continuation payoffs on
the equilibrium alliance structure. Consider the following generalization of Stage 3:
After team j wins the inter-alliance competition, the winner of the subsequent inter-
alliance competition gets a fraction q as a private reward. The remaining fraction
(1 − q) is the public reward enjoyed by all members on the winning team (Esteban
and Ray 2001). Note that if q = 1, this corresponds to the original setup. If q = 0,
then there is no Stage 3 competition. If 0 < q < 1, it is the mixed reward case.
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We will show that the generalized model above is equivalent to parameterize the
expected continuation payoff for team j’s victory as V (nj) = 1/nδj .

Lemma 2. When the fraction of private reward is q ∈ [0, 1], the continuation payoff
is uniquely written as

V (nj) =
1

nδj
,

where δ = − ln
(
qn−2j + (1− q)

)
/ lnnj.

That is, if the continuation game is a simple Tullock contest q = 1 (private prize),
δ = 2 holds. If δ = 1, this means an equal sharing of V = 1 without further rent
dissipation, and if 1 < δ < 2, it can be interpreted as a case partial rent dissipation
within the winning alliance. If δ = 0 or q = 0, this is the public reward case. A slight
modification of Theorem 1 covers all of these cases:15

Theorem 1’. Suppose that, in the winning size nj alliance the member’s subsequent
payoff is V (nj) = 1

nδj
. There exists a unique equilibrium in the second stage game

for any partition of players π = {n1, ..., nJ} characterized by the share function
s(X∗) = 1 and a unique j∗ ≤ J such that players in alliance j ≤ j∗ obtain payoff

uj =
1

nδj

1− (J − 1)
n
δ− σ

1−σ
j∑J

j′=1 n
δ− σ

1−σ
j′

1− (J − 1)
n
δ− 1

1−σ
j∑J

j′=1 n
δ− σ

1−σ
j′


and alliance j’s winning probability is

pj = 1− (J − 1)
n
δ− σ

1−σ
j∑J

j′=1 n
δ− σ

1−σ
j′

.

First note that an increase in nj will increase pj if and only if δ − σ
1−σ < 0

(or σ > δ
1+δ

). It is easy to see that a smaller alliance is always better than a
larger alliance, and a singleton alliance is better than any nontrivial alliance, if this
condition is violated. Thus, this condition can be considered as the No Spin-Off
condition when nj is large. Second, we investigate how much uj is affected by one
player moving from alliance j′ to alliance j when there are J symmetric alliances with

15Kolmar and Rommeswinkel (2013) call n
σ

1−σ

j a social interaction effect, which can affect the
presence of Olson’s (1965) group-sized paradox. See Kolmar and Rommeswinkel (2011, 2019) for
more discussions on group-sized paradox with a CES aggregator producing group efforts.
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large populations. With the first-order approximation, we can show that uj does not
increase with such a move if and only if σ

1−σ ≤
J
J−1δ. This condition is equivalent to

the one where a player does not gain by moving from one alliance to the other when
the two alliances have the same size (No Symmetry Breaking condition), and there
is no snowball effect by breaking a symmetry structure.

Proposition 5. Suppose that the size nj alliance members’ winning payoff is V (nj) =
1
nδ

. Then, when the population is large enough, an alliance structure with J sym-
metric alliance structure is stable if (i) σ> δ

1+δ
(No Spin-Off), and (ii) σ≤ Jδ

J−1+Jδ =
δ

1+δ− 1
J

(No Symmetry Breaking). Moreover, a J + 1 symmetric alliance structure

Pareto-dominates a J symmetric alliance structure.

Our benchmark case corresponds to δ = 2.

Corollary 1. Let δ = 2. Then, when the population is large enough, an alliance
structure with J symmetric alliances is stable if 2

3
< σ ≤ 2

3− 1
J

.

When J = 2, the limit condition is written as 2
3
< σ ≤ 4

5
, and when J = 3, it is

2
3
< σ ≤ 3

4
. These conditions correspond to the necessary condition in Proposition

2 and Example 1. This is also shown in the following graph, in which we depict the
parameter space for stable symmetric two- and three-alliance structures.
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Figure 3: The stability of a symmetric two-alliance structure.
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Figure 4: The stability of a symmetric three-alliance structure.

If δ = 1 and J = 2, then the limit conditions (i) and (ii) in Proposition 5 become
1
2
≤ σ ≤ 2

3
, so smaller values of σ achieve stable alliance structures. If the rent

dissipation in stage 3 is milder than the simple Tullock contest, such as partial prize
sharing (1 < δ < 2) with J = 2, then the values of σ for stability are somewhere in
between.

For each value of δ, the values of σ that support the stability of J symmetric
alliance structure are δ

1+δ
< σ < δ

1+δ− 1
J

. Thus, as J goes up, the parameter range of

σ for stable alliance structures shrinks, although players’ expected payoffs increase.

7 Concluding Remarks

In this paper, we used a CES effort aggregator function to describe incentives to form
alliances by effort complementarity, and we show that there exist stable alliances in an
open-membership two-stage alliance formation game when the effort complementarity
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is moderately strong. When complementarity is too strong, alliances become too
attractive, and all players end up forming a grand alliance, which simply defers the
noncooperative contest by one period.

There are alternative alliance formation games in the literature (see Hart and
Kurz 1983). Using a noncooperative game approach, Bloch (1996), Okada (1996),
and Ray and Vohra (1999) consider an interesting sequential coalition formation
game. In a companion paper, Konishi and Pan (2020), we study equilibrium alliance
structure by adopting their game: In this game, the alliance formation stage has
multiple steps, and a player proposes an alliance at each step, and if all called upon
members agree to form a group, then an alliance is formed, and multiple alliances
are formed sequentially. That is, these alliances can exclude outsiders in this alter-
native setup. Allowing for side payments, Bloch et al. (2006) consider a sequential
alliance formation game in contests, which allows alliances to limit their member-
ships (exclusion), and show that the grand alliance would be formed by sharing the
prize peacefully. However, in our game without side payments (an indivisible prize),
the grand alliance would not be formed, since this is identical to not forming an
alliance. We show that there is always a subgame perfect equilibrium and that there
can be at most two alliances in equilibrium, one large and one small, without any
fringe players (all players belong to one of the two alliances) if the complementarity
parameter σ is large enough. In this case, the large alliance is formed first, and the
leftover players form the second smaller alliance, and the former alliance achieves
higher payoffs than the latter.16
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[15] Esteban, J. and J. Sákovics (2003): “Olson v.s. Coase: Coalitional Worth in
Conflict,” Theory and Decisions, 55, pp. 339-357.

[16] Garfinkel, M.R. (2004): “Stable Alliance Formation in Distributional Conflict,”
European Journal of Political Economy 20, pp. 829-852.

27



[17] Hart, S., and M. Kurz (1983): “Endogenous Formation of Coalitions,” Econo-
metrica 51(4), 1047-1064.

[18] Herbst, L., K.A. Konrad, and F. Morath (2015): “Endogenous Group Formation
in Experimental Contests,” European Economic Review 74, 163-189.

[19] Kolmar, M. and H. Rommeswinkel (2011): “Technological Determinants of the
Group-Size Paradox,” Working Paper.

[20] Kolmar, M. and H. Rommeswinkel (2013): “Group Contests with Group-
Specific Public Good and Complementrities in Efforts,” Journal of Economic
Behavior and Organization 89, 9-22.

[21] Kolmar, M. and H. Rommeswinkel (2020): “Group Size and Group Success in
Conflicts,” Social Choice and Welfare 55, 777–822.

[22] Konishi, H. (2005): “Concentration of Competing Retail Stores,” Journal of
Urban Economics 58, 488-512.

[23] Konishi, H., and C.-Y. Pan (2020): “Sequential Formation of Alliances in Sur-
vival Contests,” International Journal of Economic Theory 16, 95-105.

[24] Konrad, K.A. (2004): “Bidding in hierarchies,” European Economic Review 48,
pp. 1301-1308.

[25] Konrad, K.A. (2009): Strategy and Dynamics in Contests, Oxford University
Press, Oxford.

[26] Konrad, K.A. (2012): “Information Alliances in Contests with Budget Limits,”
Public Choice 151, 679-693.

[27] Konrad, K.A., and D. Kovenock (2009): “The Alliance Formation Puzzle and
Capacity Constraints,” Economics Letters 103, pp. 84-86.

[28] Konrad, K.A., and W. Leininger (2007): “The Generalized Stackelberg Equilib-
rium of the All-Pay Auction with Complete Information, Review of Economic
Design 11, pp. 165-174.

[29] Lee, S. (1995): “Endogenous Sharing Rules in Collective-Group Rent-Seeking,”
Public Choice 85, pp. 31-44.

[30] Nitzan, S. (1991): “Collective Rent Dissipation,” Economic Journal 101, pp.
1522-1534.

28



[31] Nitzan, S., and K. Ueda, (2011): “Prize Sharing in Collective Contests,” Euro-
pean Economic Review 55, pp. 678-687.

[32] Olson, M., (1965): The Rise and Decline of Nations, Yale University Press, New
Haven.

[33] Okada, A., (1996): “A Noncooperative Coalitional Bargaining Game with Ran-
dom Proposers,” Games and Economic Behavior 16, 97–108.

[34] Ray, D. (2008): A Game-Theoretic Perspective on Coalition Formation, Oxford
University Press, Oxford.

[35] Ray, D., and R. Vohra (1999): “A Theory of Endogenous Coalition Structures,”
(with Rajiv Vohra), Games and Economic Behavior 26, pp. 286–336.

[36] Ray, D., and R. Vohra (2014): “Coalition Formation,” Handbook of Game The-
ory vol. 4, pp. 239-326.

[37] Skaperdas, S. (1998): “On the Formation of Alliances in Conflict and Contest,”
Public Choice, 96, pp. 25-42.

[38] Sanchez-Pages, S. (2007a): “Endogeneous Coalition Formation in Contests,”
Review of Economic Design, 11, pp. 139-163.

[39] Sanchez-Pages, S. (2007b): “Rivalry, Exclusion, and Coalitions,” Journal of
Public Economic Theory, 9, pp. 809-830.

[40] Tan, G., and R. Wang (2010): “Coalition Formation in the Presence of Contin-
uing Conflict,” International Journal of Game Theory, 39, pp. 273-299

[41] Ueda, K. (2002): “Oligopolization in Collective Rent-Seeking,” Social Choice
and Welfare, 19, 613-626.

[42] Wärneryd, L. (1998): “Distributional Conflict and Jurisdictional Organization,”
Journal of Public Economics, 69, pp. 435-450.

[43] Yi, S.-S. (1997): “Stable Coalition Structures with Externalities,” Games and
Economic Behavior, 20(2), pp.201-237.

29



Appendix A (Proofs)

Proof of Theorem 1. The artificial game we constructed has the same first-order
conditions as the original first-stage game. This implies that j∗ is uniquely defined,
as in the statement of Lemma 1, only j = 1, ..., j∗ exert efforts in equilibrium. Since

p∗j = 1−
∑
j′ 6=j xj′∑j∗
j′=1

xj′
, the first-order conditions can be written as

(
1− p∗j

)(∑j∗

j′=1 xj′
) − n 2−3σ

1−σ
j = 0

or

1− p∗j =

(
j∗∑
j′=1

xj′

)
n

2−3σ
1−σ
j .

Summing up the above from j = 1 to j∗, we have

j∗ − 1 =

(
j∗∑
j′=1

xj′

)
j∗∑
j′=1

n
2−3σ
1−σ
j′ .

Eliminating
∑j∗
j′=1

xj′

V
from the first-order condition, we obtain:

p∗j = 1− (j∗ − 1)
n

2−3σ
1−σ
j∑j∗

j′=1 n
2−3σ
1−σ
j′

.

Since pj

(∑
j′ xj′

)
= xj, we have

xj =

1− (j∗ − 1)
n

2−3σ
1−σ
j∑j∗

j′=1 n
2−3σ
1−σ
j′

 j∗ − 1∑j∗

j′=1 n
2−3σ
1−σ
j′

.

Notice that xj = n
1

1−σ
j ej, which means the equilibrium ej in the original problem is

ej =
1

n
1

1−σ
j

1− (j∗ − 1)
n

2−3σ
1−σ
j∑j∗

j′=1 n
2−3σ
1−σ
j′

 j∗ − 1∑j∗

j′=1 n
2−3σ
1−σ
j′

.
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Therefore, the equilibrium payoff of the original problem is

uj = p∗j Ṽj − ej

=

1− (j∗ − 1)
n

2−3σ
1−σ
j∑j∗

j′=1 n
2−3σ
1−σ
j′

 1

n2
j

−

 1

n
1

1−σ
j

1− (j∗ − 1)
n

2−3σ
1−σ
j∑j∗

j′=1 n
2−3σ
1−σ
j′

 j∗ − 1∑j∗

j′=1 n
2−3σ
1−σ
j′


=

1− (j∗ − 1)
n

2−3σ
1−σ
j∑j∗

j′=1 n
2−3σ
1−σ
j′

 1

n2
j

− 1

n
1

1−σ
j

(j∗ − 1)∑j∗

j′=1 n
2−3σ
1−σ
j′


=

1

n2
j

1− (j∗ − 1)
n

2−3σ
1−σ
j∑j∗

j′=1 n
2−3σ
1−σ
j′

1− (j∗ − 1)
n

1−2σ
1−σ
j∑j∗

j′=1 n
2−3σ
1−σ
j′

 .
We completed the proof.�

Proof of Proposition 2

This proposition can be proved by the following three lemmas.

Lemma A1. For any two-alliance structure π = (n1, n2) with n1 ≥ n2 ≥
2, it is beneficial to move to the larger group (group 1) from the smaller
group whenever σ = 4

5
.

Proof. Suppose that the initial structure is π = (n1, n2), and if a player
in alliance 2 moves to 1, π′ = (n1 + 1, n2 − 1) realizes. Recall

u (n2, π) =
1

n2
2

(
1−

1
n2
2

1
n2
1

+ 1
n2
2

)(
1−

1
n3
2

1
n2
1

+ 1
n2
2

)
=

(
1

n2
1 + n2

2

)(
n2
1 + n2

2 − n2
1n
−1
2

n2
1 + n2

2

)
.
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We will compare u (n1 + 1, π′) with u (n2, π).

u (n1 + 1, π′)− u (n2, π)

=

(
1

(n1 + 1)2 + (n2 − 1)2

)(
(n1 + 1)2 + (n2 − 1)2 − (n2 − 1)2 (n1 + 1)−1

(n1 + 1)2 + (n2 − 1)2

)

−
(

1

n2
1 + n2

2

)(
n2
1 + n2

2 − n2
1n
−1
2

n2
1 + n2

2

)
=

(
1

(n1 + 1)2 + (n2 − 1)2

)
−
(

1

n2
1 + n2

2

)
−

(
(n2 − 1)2 (n1 + 1)−1(

(n1 + 1)2 + (n2 − 1)2
)2
)

+

(
n2
1n
−1
2

(n2
1 + n2

2)
2

)
=

1

n2 (n1 + 1)
(
(n1 + 1)2 + (n2 − 1)2

)2
(n2

1 + n2
2)

2
×[

n7
1 − 2n6

1n2 + 4n5
1n

2
2 − 5n4

1n
3
2 + 5n3

1n
4
2 − 4n2

1n
5
2 + 2n1n

6
2 − n7

2

+5n6
1 − 12n5

1n2 + 18n4
1n

2
2 − 20n3

1n
3
2 + 17n2

1n
4
2 − 8n1n

5
2 + 4n6

2

+12n5
1 − 27n4

1n2 + 28n3
1n

2
2 − 26n2

1n
3
2 + 16n1n

4
2 − 7n5

2

+16n4
1 − 28n3

1n2 + 16n2
1n

2
2 − 12n1n

3
2 + 8n4

2 + 12n3
1 − 12n2

1n2 − 4n3
2 + 4n2

1

]
.

The contents of the bracket can be rewritten as follows:

[·] = (n1 − n2)
(
n2
1 + n2

2 − n1n2

) (
n2
1 + n2

2

)2
+n1 (n1 − n2)

(
n1 (n1 − n2)

(
5n2

1 − 2n1n2 + 9n2
2

)
+ 8n4

2

)
+ 4n6

2

+12n5
1 − 27n4

1n2 + 28n3
1n

2
2 − 26n2

1n
3
2 + 16n1n

4
2 − 7n5

2 + 4n5
2 − 4n5

2

+16n4
1 − 28n3

1n2 + 16n2
1n

2
2 − 12n1n

3
2 + 8n4

2 + 12n3
1 − 12n2

1n2 − 4n3
2 + 4n2

1

= (n1 − n2)
{(
n2
1 + n2

2 − n1n2

) (
n2
1 + n2

2

)2
+ n1

(
n1 (n1 − n2)

(
5n2

1 − 2n1n2 + 9n2
2

)
+ 8n4

2

)}
+ 4n6

2

+
(
10n1n

2
2 − 3n2

1n2 + 12n3
1 − 3n3

2

)
(n1 − n2)

2 − 4n5
2

+4
(
4n2

1 + 2n2
2 + n1n2

)
(n1 − n2)

2 + 12n3
1 − 12n2

1n2 − 4n3
2 + 4n2

1

= (n1 − n2)
[(
n2
1 + n2

2 − n1n2

) (
n2
1 + n2

2

)2
+ n1

{
n1 (n1 − n2)

(
5n2

1 − 2n1n2 + 9n2
2

)
+ 8n4

2

}]
+ (n1 − n2)

2 (10n1n
2
2 − 3n2

1n2 + 12n3
1 − 3n3

2

)
+ 4 (n1 − n2)

2 (4n2
1 + 2n2

2 + n1n2

)
+4n6

2 − 4n5
2 + 12n3

1 − 12n2
1n2 − 4n3

2 + 4n2
1.

Since n1 ≥ n2 holds, if we can show 4n6
2−4n5

2+12n3
1−12n2

1n2−4n3
2+4n2

1 >
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0, [·] > 0 holds. Rewriting this, we have

4n6
2 − 4n5

2 + 12n3
1 − 12n2

1n2 − 4n3
2 + 4n2

1

= 4
[
n6
2 − n5

2 + 3n2
1 (n1 − n2)− n3

2 + n2
2 − n2

2 + n2
1

]
= 4

[
n6
2 − n5

2 − n3
2 + n2

2 + 3n2
1 (n1 − n2) + (n1 − n2) (n1 + n2)

]
= 4

[
n2
2 (n2 − 1)2

(
n2
2 + n2 + 1

)
+ 3n2

1 (n1 − n2) + (n1 − n2) (n1 + n2)
]
> 0.

We have completed the proof.�

Next, we argue that u (n1 + 1, π′)− u (n2, π) > 0 for not only σ = 4
5

also
all σ ≥ 4

5
.

Lemma A2. For any two-alliance structure π = (n1, n2) with n1 ≥ n2 ≥
2, u(n1+1,π′)

u(n2,π)
is an increasing function in σ.

Proof. Let t = 3σ−2
1−σ . Then, we have

u1(n1 + 1, n2 − 1)

u2(n1, n2)
=

(
n1 + 1

n2

)t−2 [
nt1 + nt2

(n1 + 1)t + (n2 − 1)t

]2
×

[
(n1 + 1)t + (n2 − 1)t − (n2 − 1)t (n1 + 1)−1

nt1 + nt2 − nt1n−12

]
.

LetM =
(
n1+1
n2

)t−2 (
nt1+n

t
2

(n1+1)t+(n2−1)2

)
, and L =

(
nt1+n

t
2

(n1+1)t+(n2−1)2

)(
(n1+1)t+(n2−1)t−(n2−1)t(n1+1)−1

nt1+n
t
2−nt1n

−1
2

)
.

Moreover, let “'” stand for “has the same sign as.” Then,

∂M

∂t
' nt1 ln (n1) (n1 + 1)t + nt1 ln (n1) (n2 − 1)t + nt2 ln (n2) (n1 + 1)t + nt2 ln (n2) (n2 − 1)t

−nt1 ln (n1 + 1) (n1 + 1)t − nt1 ln (n2 − 1) (n2 − 1)t − nt2 ln (n1 + 1) (n1 + 1)t

−nt2 ln (n2 − 1) (n2 − 1)t + nt1 ln

(
n1 + 1

n2

)
(n1 + 1)t + nt1 ln

(
n1 + 1

n2

)
(n2 − 1)t

+nt2 ln

(
n1 + 1

n2

)
(x+ 1)t + nt2 ln

(
n1 + 1

n2

)
(n2 − 1)t

= nt1 (n1 + 1)t ln

(
n1

n2

)
+ nt1 (n2 − 1)t ln

(
n1(n1 + 1)

(n2 − 1)n2

)
+ nt2 (n2 − 1)t ln

(
n1 + 1

n2 − 1

)
> 0.

On the other hand,

33



∂L

∂t
' −n1

2 t ln(n1 + 1) (n1 + 1)t (n2 − 1)t + n1
2 t ln(n2 − 1) (n1 + 1)t (n2 − 1)t

+n1
t n2

t ln(n1) (n1 + 1)2 t − n1
t n2

t ln(n2) (n1 + 1)2 t

+n1
t n2

t ln(n1) (n1 + 1)t (n2 − 1)t − n1
t n2

t ln(n2) (n1 + 1)t (n2 − 1)t

+n1 n1
t n2

t ln(n1) (n1 + 1)2 t + n1 n1
t n2

t ln(n1) (n2 − 1)2 t

−n1 n1
t n2

t ln(n2) (n1 + 1)2 t − n1 n1
t n2

t ln(n2) (n2 − 1)2 t

−n1
t n2

t ln(n1 + 1) (n1 + 1)t (n2 − 1)t + n1
t n2

t ln(n2 − 1) (n1 + 1)t (n2 − 1)t

+n1
2 t n2 ln(n1 + 1) (n1 + 1)t (n2 − 1)t + n2 n2

2 t ln(n1 + 1) (n1 + 1)t (n2 − 1)t

−n1
2 t n2 ln(n2 − 1) (n1 + 1)t (n2 − 1)t − n2 n2

2 t ln(n2 − 1) (n1 + 1)t (n2 − 1)t

+2n1 n1
t n2

t ln(n1) (n1 + 1)t (n2 − 1)t − 2n1 n1
t n2

t ln(n2) (n1 + 1)t (n2 − 1)t

+2n1
t n2 n2

t ln(n1 + 1) (n1 + 1)t (n2 − 1)t − 2n1
t n2 n2

t ln(n2 − 1) (n1 + 1)t (n2 − 1)t

= −n2t
1 (n1 + 1)t (n2 − 1)t [ln (n1 + 1)− ln (n2 − 1) + n2 ln (n2 − 1)− n2 ln (n1 + 1)]

−nt1nt2 (n1 + 1)2t [ln (n2)− ln (n1)− n1 ln (n1) + n1 ln (n2)]

−nt1nt2 (n2 − 1)2t n1 [ln (n2)− ln (n1)]

−nt1nt2 (n1 + 1)t (n2 − 1)t

× [ln (n2)− ln (n1) + ln (n1 + 1)− ln (n2 − 1) + 2n1 ln (n2)

−2n1 ln (n1) + 2n2 ln (n2 − 1)− 2n2 ln (n1 + 1)]

−n2n
2t
2 (n1 + 1)t (n2 − 1)t [ln (n2 − 1)− ln (n1 + 1)]

= −n2t
1 (n1 + 1)t (n2 − 1)t

[
(n2 − 1)

(
ln

(
n2 − 1

n1 + 1

))]
−nt1nt2 (n1 + 1)2t

[
(n1 + 1) ln

(
n2

n1

)]
+ nt+1

1 nt2 (n2 − 1)2t ln

(
n2

n1

)
−nt1nt2 (n1 + 1)t (n2 − 1)t

[
(2n1 − 1) ln

(
n2

n1

)
+ (2n2 − 1) ln

(
n2 − 1

n1 + 1

)]
−n2n

2t
2 (n1 + 1)t (n2 − 1)t ln

(
n2 − 1

n1 + 1

)
> 0.

Therefore, ∂L
∂t
> 0. Since u(n1+1,π′)

u(n2,π)
= M × L, u(n1+1,π′)

u(n2,π)
is an increasing

function in t = 3σ−2
1−σ and σ as well. Combined with Lemma A1, we have

that u(n1+1,π′)
u(n2,π)

for all σ ≥ 4
5
.�

The next lemma shows that when σ ≤ 2
3
, players have incentives to spin
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off. Formally,

Lemma A3. For any two-alliance structure π = (n1, n2) with n1 ≥ n2 ≥
2, it is beneficial to spin off from the larger group whenever σ ≤ 2

3
.

Proof. Note that the payoff in the size-n1 group is

u (n1, π) =

[
1

n2
1

] [
nt1

nt1 + nt2

] [
nt1 + nt2 − nt2n−11

nt1 + nt2

]
≤
[

1

n2
1

] [
nt1

nt1 + nt2

]
≤ 1

4

[
nt1

nt1 + nt2

]
.

Let π′′ = (1, n1 − 1, n2) . Then we have

u (1, π′′) =

[
(n1 − 1)t + nt2 − (n1 − 1)t nt2
(n1 − 1)t + nt2 + (n1 − 1)nt2

]2
.

Note that

2

[
(n1 − 1)t + nt2 − (n1 − 1)t nt2
(n1 − 1)t + nt2 + (n1 − 1)nt2

]
−
[

nt1
nt1 + nt2

]
=
n1

t (n1 − 1)t + 2n2
t (n1 − 1)t + 2n2

2 t − 2n2
2 t (n1 − 1)t + n1

t n2
t − 3n1

t n2
t (n1 − 1)t(

n2
t + n2

t (n1 − 1)t + (n1 − 1)t
)

(n1
t + n2

t)

>0.

The last inequality holds because (n1 − 1)t ≤ 1 whenever n1 ≥ 2 and
t ≤ 0, i.e., σ ≤ 2

3
. It implies u (1, π′′) > u (n1, π).�

By Lemma A1 and A2, we know that u(n1+1,π′)
u(n2,π)

> 1 at all σ ≥ 4
5
. So, there are

incentives to move to a larger group for all σ ≥ 4
5
. By Lemma A3, we know that

u(1,π′′)
u(n1,π)

> 1 at all σ ≤ 2
3
. Therefore, there are incentives to spin off from the larger

group in any 2-alliance structure. Those two facts together imply that for a 2-alliance
structure to be stable, it must be the case of 2

3
< σ < 4

5
.�

Proof of Theorem 2
To prove the theorem, we need the following lemma.
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Lemma A4. When J = 2, there is σ̄ ∈ (3
4
, 4
5
) such that for all σ ∈ (2

3
, σ̄),

the following statements hold: (i) Players in the smaller alliance do not
have an incentive to move to a larger alliance. (ii) When alliance sizes
are equal, players do not move to create a larger alliance. (iii) Players
in a larger alliance have an incentive to move to the smaller one.

Proof of Lemma A4. Consider π = (n1, n2) and π′ = (n1 + 1, n2 − 1)
with n1 ≥ n2 ≥ 2. All three statements above are equivalent to

u(n1 + 1, π′)

u(n2, π)
< 1.

Suppose there is a σ̄ such that at σ = σ̄, u(n1+1,π′)
u(n2,π)

< 1. By Lemma A1

and A2, we know that (a) σ̄ < 4
5

and (b) u(n1+1,π′)
u(n2,π)

< 1 holds for all σ with
2
3
< σ < σ̄. It remains to show that σ̄ > 3

4
. For computational purposes,

let n1 = n + d + 1 and n2 = n + 1 with n ≥ 1. Note that n1 ≥ n2 is
equivalent to d ≥ 0. Consider the case with σ = 3

4
. We have

u(n2, π) =
1

(n+ 1)2

[
n+ 1

(n+ d+ 1) + (n+ 1)

] [
1− 1

n+ 1

n+ d+ 1

(n+ d+ 1) + (n+ 1)

]
=

1

(n+ 1)2

[
n+ 1

(n+ d+ 1) + (n+ 1)

][
(n+ d+ 1) + (n+ 1)− n+d+1

n+1

(n+ d+ 1) + (n+ 1)

]

=
1

(n+ 1)3

[
n+ 1

2n+ d+ 2

] [
n+

n+ 1

2n+ d+ 2

]
>

1

(n+ 1)3

[
(n+ d+ 1)t

(n+ d+ 1)t + (n+ 1)t

] [
n+

(n+ d+ 1)t

2(n+ 1)t

]
=

1

(n+ 1)3
P0(t)

[
n+

(n+ d+ 1)t

2(n+ 1)t

]
, (4)

and similarly

u(n1 + 1, π′) =
1

(n+ d+ 2)2

[
(n+ d+ 2)

(n+ d+ 2) + n

][
1− (n+ d+ 2)t−1

(n+ d+ 2)t + nt

]

<
1

(n+ d+ 2)2

[
n+ d+ 2

2n+ d+ 2

]
=

1

(n+ d+ 2)2
P1(t). (5)
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Therefore,

u(n1 + 1, π′)

u(n2, π)
<

1
(n+d+2)2

[
n+d+2
2n+d+2

]
1

(n+1)3

[
n+1

2n+d+2

] [
n+ n+1

2n+d+2

]
=

(n+ 1)3

(n+ d+ 2)2

[
n+ d+ 2

n+ 1

] [
2n+ d+ 2

n(2n+ d+ 2) + (n+ 1)

]
=

(n+ 1)2

n+ d+ 2

[
2n+ d+ 2

2n2 + (d+ 3)n+ 1

]
=

2n3 + (d+ 6)n2 + (2d+ 6)n+ d+ 2

2n3 + (3d+ 7)n2 + [(d+ 2)(d+ 3) + 1]n+ d+ 2
< 1.

So, (i), (ii), and (iii) hold for σ = 3
4
. As a result, there exists σ̄ > 3

4
such

that u(n1+1,π′)
u(n2,π)

< 1 for all σ ∈ (2
3
, σ̄), all d ≥ 0, and all n ≥ 1.�

From Lemma A1, for any coalition structure with |n1−n2| > 1, a player in a larger
alliance moves to the smaller one. This cannot be an equilibrium alliance structure.
As a result, the only alliance structure that is immune to moving incentives is the
one with |n1 − n2| ≤ 1.

To complete the proof, we calculate the conditions such that plays do not have
incentives to spin off from the above alliance structures. Since in a stable alliance
structure we have |n1 − n2| ≤ 1, we have only two possibilities (i) (n1, n2) = (n, n),
and (ii) (n1, n2) = (n + 1, n). We start with (i) (n1, n2) = (n, n): Players’ payoff in
this alliance structure is

u(n, {n, n}) =
1

n2

1

2

[
1− 1

2n

]
=

2n− 1

4n3
,

and a spun-off player’s payoff is

u(1, {n, n−1, 1}) =

[
max

{
1− 2

1 + (n− 1)−t + n−t
, 0

}]2
=

[
max {(n− 1)t + nt − (n− 1)tnt, 0}

(n− 1)tnt + (n− 1)t + nt

]2
,

since (n− 1)t + nt < (n− 1)tnt then the spun-off player becomes inactive, obtaining
zero payoff. In this case, the no spin-off condition is

u(1, {n, n− 1, 1})
u(n, {n, n})

=
4n3

2n− 1

[
max {(n− 1)t + nt − (n− 1)tnt, 0}

(n− 1)tnt + (n− 1)t + nt

]2
≤ 1.
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Now, case (ii). This case is more cumbersome, since a player can spin off from

both alliances. We need to consider two possible spin-off subcases u(n+1,{n+1,n})
u(1,{n,n,1}) ≥ 1

and u(n,{n+1,n})
u(1,{n+1,n−1,1}) ≥ 1.

u(n, {n, n+ 1}) =
1

n2

(
1−

1
nt

1
nt

+ 1
(n+1)t

)(
1−

1
nt+1

1
nt

+ 1
(n+1)t

)

=
nt−2

(
(n+ 1)t + nt − n−1 (n+ 1)t

)(
(n+ 1)t + nt

)2
u(n+ 1, {n, n+ 1}) =

1

(n+ 1)2

(
1−

1
(n+1)t

1
nt

+ 1
(n+1)t

)(
1−

1
(n+1)t+1

1
nt

+ 1
(n+1)t

)

=
(n+ 1)t−2

[
(n+ 1)t + nt − (n+ 1)−1 nt

](
(n+ 1)t + nt

)2
u(1, {n, n, 1}) =

(
max

{
1− 2

2
nt

+ 1
, 0

})2

=

(
max {2− nt, 0}

2 + nt

)2

u(1, {n− 1, n+ 1, 1}) =

(
max

{
1− 2

1
(n−1)t + 1

(n+1)t
+ 1

, 0

})2

=

[
max

{
(n+ 1)t + (n− 1)t − (n− 1)t (n+ 1)t , 0

}
(n+ 1)t + (n− 1)t + (n− 1)t (n+ 1)t

]2
Thus, we have

u(1, {n− 1, n+ 1, 1})
u(n, {n, n+ 1})

=

(
(n+ 1)t + nt

)2
nt−2

(
(n+ 1)t + nt − n−1 (n+ 1)t

) [max
{

(n+ 1)t + (n− 1)t − (n− 1)t (n+ 1)t , 0
}

(n+ 1)t + (n− 1)t + (n− 1)t (n+ 1)t

]2
≤ 1

and

u(1, {n, n, 1})
u(n+ 1, {n, n+ 1})

=

(
(n+ 1)t + nt

)2
(max {2− nt, 0})2

(n+ 1)t−2
[
(n+ 1)t + nt − (n+ 1)−1 nt

]
(nt + 2)2

≤ 1.

We have completed the proof. �

Proof of Theorem 3. There are two cases: Case 1 with two equally sized alliances
{n, n}, and Case 2 with two alliances whose sizes differ by one {n, n+ 1}. We start
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with Case 1. The payoff from {n, n} is 1
n2

1
2

(
1− 1

2n

)
= 2n−1

4n
, and the one from {2n}

is 1
(2n)2

= 1
4n2 . Thus, the two-alliance equilibrium dominates no alliance equilibrium.

Case 2: Consider allocation π = {n + 1, n}. First, the payoff from belonging to
a size n alliance is

u(n, π) =
1

n2

[
1− n

2−3σ
1−σ

n
2−3σ
1−σ + (n+ 1)

2−3σ
1−σ

][
1− n

1−2σ
1−σ

n
2−3σ
1−σ + (n+ 1)

2−3σ
1−σ

]

=
1

n2

[
1− n

2−3σ
1−σ

n
2−3σ
1−σ + (n+ 1)

2−3σ
1−σ

][
n− 1

n
+

1

n
− n

1−2σ
1−σ

n
2−3σ
1−σ + (n+ 1)

2−3σ
1−σ

]

=
1

n2

[
1− n

2−3σ
1−σ

n
2−3σ
1−σ + (n+ 1)

2−3σ
1−σ

][
n− 1

n
+

1

n

(
1− n

2−3σ
1−σ

n
2−3σ
1−σ + (n+ 1)

2−3σ
1−σ

)]

=
1

n2

[
(n+ 1)

2−3σ
1−σ

n
2−3σ
1−σ + (n+ 1)

2−3σ
1−σ

][
n− 1

n
+

1

n

(
(n+ 1)

2−3σ
1−σ

n
2−3σ
1−σ + (n+ 1)

2−3σ
1−σ

)]
.

Since u(n; π) is decreasing in σ for σ ≥ 2
3
, and since there is no two-alliance equilib-

rium for σ > 4
5

(see Example 2), it suffices to show that u(n; π) exceeds 1
(2n+1)2

when

σ = 4
5
. Substituting σ = 4

5
into u(n; π), we obtain

u(n, π) =
1

n2

[
1

(n+1)2

1
n2 + 1

(n+1)2

][
n− 1

n
+

1

n

(
1

(n+1)2

1
n2 + 1

(n+1)2

)]

=
1

n2

n2

2n2 + 2n+ 1

[
n− 1

n
+

1

n

(
n2

2n2 + 2n+ 1

)]
=

1

2n2 + 2n+ 1
× (2n3 + n2 − n− 1)

n (2n2 + 2n+ 1)

=
(2n3 + n2 − n− 1)

n (2n2 + 2n+ 1)2
.

Subtracting 1
(2n+1)2

from the above, we obtain

(2n3 + n2 − n− 1)

n (2n2 + 2n+ 1)2
− 1

(2n+ 1)2
= 1

4n5 + 4n4 − 6n3 − 11n2 − 6n− 1

n (4n3 + 6n2 + 4n+ 1)2
.

Let f(n;π)(n) ≡ 4n5 + 4n4− 6n3− 11n2− 6n− 1. Since f(n;π)(2) > 0 and f ′(n;π)(n) > 0

for n ≥ 2, we conclude u(n; π) > 1
(2n+1)2

.
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Second, we check u(n+ 1; π). We have

u(n+ 1; π) =
1

(n+ 1)2

[
1− (n+ 1)

2−3σ
1−σ

n
2−3σ
1−σ + (n+ 1)

2−3σ
1−σ

][
1− (n+ 1)

1−2σ
1−σ

n
2−3σ
1−σ + (n+ 1)

2−3σ
1−σ

]
1

(n+ 1)2

[
n

2−3σ
1−σ

n
2−3σ
1−σ + (n+ 1)

2−3σ
1−σ

][
n− 1

n
+

1

n

(
n

2−3σ
1−σ

n
2−3σ
1−σ + (n+ 1)

2−3σ
1−σ

)]
.

Since u(n+ 1;π) is increasing in σ for σ ≥ 2
3
, we check whether or not u(n+ 1;π) >

1
(2n+1)2

for the smallest relevant sigma, σ = 2
3
.

Substituting σ = 2
3

into u(n+ 1; π), we obtain:

u(n+ 1; π) =
1

(n+ 1)2
1

2

[
n− 1

n
+

1

2n

]
=

1

2 (n+ 1)2

[
2n− 1

2n

]
.

Subtracting V
(2n+1)2

from the above, we obtain

1

2 (n+ 1)2

[
2n− 1

2n

]
− 1

(2n+ 1)2

=
(2n− 1) (2n+ 1)2 − 4 (n+ 1)2 n

4 (n+ 1)2 n (2n+ 1)2
.

Denoting the numerator by f(n+1;π)(n), we have

f(n) =
(
4n2 − 1

)
(2n+ 1)−

(
4n3 + 8n2 + 4n

)
= 8n3 + 4n2 − 2n− 1− 4n3 − 8n2 − 4n

= 4n3 − 4n2 − 6n− 1.

Since f(n+1;π)(2) = 3 > 0 and f ′(n+1;π)(n) > for n ≥ 2, we conclude that u(n+ 1;π) >
1

(2n+1)2
for all n ≥ 2. We have completed the proof.�

Proof of Proposition 3. This can be shown by the utility in a symmetric alliance
structure

u(πJ) =
1(
N
J

)2 1

J

(
1− J − 1

N

)
=

1

N3
J (N − J + 1)
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∂u(πJ)

∂J
=

1

N3
(N − 2J + 1) .

Therefore, ∂u(πJ )
∂J

> 0 holds for all J ≤ N+1
2

. Also, notice that a group of N players
can sustain at most N

2
alliances. Therefore, a symmetric structure with more alliances

Pareto-dominates one with less. �

Proof of Proposition 4. From Theorem 1, we know that the payoff of a player
who is one of nj is

u(nj, π) =
1

n2
j

1− (J − 1)
n

2−3σ
1−σ
j∑J

j′=1 n
2−3σ
1−σ
j′

1− (J − 1)
n

1−2σ
1−σ
j∑J

j′=1 n
2−3σ
1−σ
j′

 .
Let π′nj stand for the structure after one player in alliance j spins off to form a
singleton alliance. This player has a payoff equal to

u(1, π′nj) =

1− J 1∑J
j′=1,j′ 6=j n

2−3σ
1−σ
j′ + (nj − 1)

2−3σ
1−σ + 1

2

.

Since 1−2σ
1−σ ≥ 0, n

2−3σ
1−σ
j ≥ (nj − 1)

2−3σ
1−σ ≥ 1

2−3σ
1−σ = 1 and n

1−2σ
1−σ
j ≥ 1

1−2σ
1−σ = 1 hold for all

nj ≥ 2. Since n
2−3σ
1−σ
j is a convex function for σ ∈ [0, 1

2
] (2−3σ

1−σ ∈ [1, 2]), we have

J∑
j′=1,j′ 6=j

n
2−3σ
1−σ
j′ + (nj − 1)

2−3σ
1−σ + 1 ≤

J∑
j′=1

n
2−3σ
1−σ
j′ .

This implies ∑J
j′=1,j′ 6=j n

2−3σ
1−σ
j′ + (nj − 1)

2−3σ
1−σ + 1

J
<

∑J
j′=1 n

2−3σ
1−σ
j′

J − 1
.

Thus, we have

u(1, π′nj) >

1− (J − 1)
1∑J

j′=1 n
2−3σ
1−σ
j′

1− (J − 1)
1∑J

j′=1 n
2−3σ
1−σ
j′

 .
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We want to show the RHS that the above inequality is not exceeded by uj for any
σ ∈ [0, 1

2
]. Note that 2−3σ

1−σ ≥ 1 and 1−2σ
1−σ ≥ 0 for any σ ∈ [0, 1

2
]. Thus, we have

u(nj, π) =
1

n2
j

1− (J − 1)
n

2−3σ
1−σ
j∑J

j′=1 n
2−3σ
1−σ
j′

1− (J − 1)
n

1−2σ
1−σ
j∑J

j′=1 n
2−3σ
1−σ
j′


<

1

n2
j

1− (J − 1)
1∑J

j′=1 n
2−3σ
1−σ
j′

1− (J − 1)
1∑J

j′=1 n
2−3σ
1−σ
j′

 .
Therefore, we conclude that for any σ ∈ [0, 1

2
], a player has an incentive to spin off

from any alliance with nj ≥ 2.�

Proof of Lemma 2. By Proposition 1, the continuation payoff for a given δ is
written as [

q

n2
j

+ (1− q)
]

=
1

nδj

⇒ ln

[
q

n2
j

+ (1− q)
]

= −δ lnnj ⇒ δ = −
ln
[
q
n2
j

+ (1− q)
]

lnnj
.

Since
ln

[
q

n2
j

+(1−q)
]

lnnj
is a monotonic function in q, the corresponding δ is unique for each

q.�

Proof of Proposition 5. Without loss of generality, let’s consider a unilateral move

from alliance n2 to alliance n1. Let D = n
δ− σ

1−σ
1 +n

δ− σ
1−σ

2 +
∑J

j≥3 n
δ− σ

1−σ
j . Recall that

u1 =
1

nδj

[
1− (J − 1)

n
δ− σ

1−σ
1

D

]1− (J − 1)
n
δ− 1

1−σ
1

D

 .
We assume that njs are large, so how much u1 is affected by one player’s moving
from alliance n2 to alliance n1 can be approximated by first-order approximation of
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changing from (n1, n2) to (n1 + ∆, n2 −∆). We have

du1
d∆

= −δ 1

nδ+1
1

[
1− (J − 1)n

δ− σ
1−σ

1

D

]1− (J − 1)n
δ− 1

1−σ
1

D


+

1

nδ1

− (J − 1)

(
δ − σ

1−σ

)
Dn

δ− σ
1−σ−1

1 −
(
δ − σ

1−σ

)
n
δ− σ

1−σ
1 n

δ− σ
1−σ−1

1

D2

1− (J − 1)n
δ− 1

1−σ
1

D


+

1

nδ1

[
1− (J − 1)n

δ− σ
1−σ

1

D

]−(J − 1)

(
δ − 1

1−σ

)
Dn

δ− 1
1−σ−1

1 −
(
δ − σ

1−σ

)
n
δ− 1

1−σ
1 n

δ− σ
1−σ−1

1

D2


− 1

nδ1

(J − 1)

(
δ − σ

1−σ

)
n
δ− σ

1−σ−1
2 n

δ− σ
1−σ

1

D2

1− (J − 1)n
δ− 1

1−σ
1

D


− 1

nδ1

[
1− (J − 1)n

δ− σ
1−σ

1

D

](J − 1)

(
δ − σ

1−σ

)
n
δ− σ

1−σ−1
2 n

δ− 1
1−σ

1

D2

 .
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Evaluating at n1 = n2 = nj = n and D = Jnδ−
σ

1−σ , we obtain,

du1
d∆

= −δ 1

nδ+1

[
1− (J − 1)nδ−

σ
1−σ

Jnδ−
σ

1−σ

][
1− (J − 1)nδ−

1
1−σ

Jnδ−
σ

1−σ

]

− 1

nδ

(J − 1)2
(
δ − σ

1−σ

)
n2δ−2 σ

1−σ−1(
Jnδ−

σ
1−σ

)2
[1− (J − 1)nδ−

1
1−σ

Jnδ−
σ

1−σ

]

− 1

nδ

[
1− (J − 1)nδ−

σ
1−σ

Jnδ−
σ

1−σ

](J − 1)n2δ−2 σ
1−σ−2

[
J
(
δ − 1

1−σ

)
−
(
δ − σ

1−σ

)](
Jnδ−

σ
1−σ

)2


− 1

nδ

(J − 1)

(
δ − σ

1−σ

)
n2δ−2 σ

1−σ−1(
Jnδ−

σ
1−σ

)2
[1− (J − 1)nδ−

1
1−σ

Jnδ−
σ

1−σ

]

− 1

nδ

[
1− (J − 1)nδ−

σ
1−σ

Jnδ−
σ

1−σ

](J − 1)

(
δ − σ

1−σ

)
n2δ−2 σ

1−σ−2(
Jnδ−

σ
1−σ

)2


=
1

nδ+1

[
− δ
J
−
(
J − 1

J

)2(
δ − σ

1− σ

)
− J − 1

J2

(
δ − σ

1− σ

)][
1− J − 1

Jn

]

− 1

nδ+2

1

J

[
(J − 1)

[
J
(
δ − 1

1−σ

)
−
(
δ − σ

1−σ

)]
J2

+
(J − 1)

(
δ − σ

1−σ

)
J2

]

=
1

nδ+1

1

J

[
−δ − (J − 1)

(
δ − σ

1− σ

)][
1− J − 1

Jn

]
− 1

nδ+1

(J − 1)

nJ2

(
δ − 1

1− σ

)
.

Notice that, if n is large, the second term in the last equation is close to 0. Therefore,
when n is large, players have no incentive to move to another alliance unilaterally if

du1
d∆

< 0 ⇐⇒ −δ < (J − 1)

(
δ − σ

1− σ

)
.

Rearranging the last inequality yields the No Symmetry Breaking condition in Propo-
sition 5.
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Now, we turn to the No Spin-Off condition. The payoff from a symmetric alliance
structure is simply written as

u(n) =
1

nδ
1

J

[
1− 1

nJ

]
.

In contrast, the payoff of a player who spun off from a symmetric alliance structure
is more subtle, and we need to consider two cases. We start with the case where
δ − σ

1−σ < 0. Let ε =
∣∣δ − σ

1−σ

∣∣ If a player spins off, then there are J + 1 alliances,
but we have

1 + (J − 1)
1

nε
+

1

(n− 1)ε
< J · 1,

which means that the spun-off player becomes inactive, obtaining zero payoff when n
is large. Thus, if δ− σ

1−σ < 0, then no spin-off occurs. In contrast, when δ− σ
1−σ > 0,

a large n implies

u(1) =

[
1− J × 1

1 + nδ−
σ

1−σ + ...+ nδ−
σ

1−σ + (n− 1)δ−
σ

1−σ

]2
' 1,

resulting in a spin-off. Finally, when δ − σ
1−σ = 0, then

u(1) =

[
1− J × 1

J + 1

]2
=

1

(J + 1)2
> u(n) =

1

nδ
1

J

[
1− 1

nJ

]
for n large enough.�
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