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Abstract

Lewbel (2012) provides a heteroscedasticity based estimator for
linear regression models containing an endogenous regressor when no
external instruments or other such information is available. The es-
timator is implemented in the Stata module ivreg2h by Baum and
Schaffer (2012). This note gives some advice and instructions to re-
searchers who want to use this estimator.

1 Introduction

Linear regression models containing endogenous regressors are generally iden-
tified using outside information such as exogenous instruments, or by para-
metric distribution assumptions. Some papers obtain identification with-
out external instruments by exploiting heteroscedasticity, including Rigobon
(2003), Klein and Vella (2010), Lewbel (1997, 2018) and Prono (2014). In
particular, Lewbel (2012) shows how one can use heteroskedasticity to con-
struct instruments when no external instruments are available. Other pa-
pers that obtain identification using constructed instruments include Lewbel
(1997) and Erickson and Whited (2002). See Lewbel (in press) for a general
discussion of identification methods like these.

In this note, we provide advice and instructions for researchers who wish
to apply the Lewbel (2012) estimator. That article includes estimators for
fully simultaneous systems, semiparametric systems, and bounds for when
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key identifying assumptions are violated. However, most empirical applica-
tions use the estimator for a single-equation linear regression model with a
single endogenous regressor, which is the focus here. This linear single equa-
tion estimator has been implemented by Baum and Schaffer (2012) as the
Stata module ivreg2h, which is available from the SSC Archive.

2 The model and estimator

Assume a sample of observations of endogenous variables Y1 and Y2 and a
vector of exogenous covariates X. We wish to estimate γ and the vector β
in the model

Y1 = X ′β + Y2γ + ε1

Y2 = X ′α + ε2

where the errors ε1 and ε2 may be correlated.
Standard instrumental variables estimation depends on having an element

of X that appears in the Y2 equation but not in the Y1 equation, and uses
that excluded regressor as an instrument for Y2. The problem considered
here is that perhaps no element of X is excluded from the Y1 equation, or
equivalently, we’re not sure that any element of β is zero. Lewbel (2012)
provides identification and a corresponding very simple linear two stage least
squares estimator for β and γ in this case where no element of X can be used
as an excluded instrument for Y2. The method consists of constructing valid
instruments for Y2 by exploiting information contained in heteroscedasticity
of ε2.

In addition to the standard exogenous X assumptions that E(Xε1) = 0,
E(Xε2) = 0, and E(XX ′) is nonsingular, the key additional assumptions
required for applying the Lewbel (2012) estimator are that Cov(Z, ε1ε2) = 0
and Cov(Z, ε22) 6= 0, where either Z = X or Z is a subset of the elements of
X.

The Lewbel (2012) estimator can be summarized as the following two
steps.

1. Estimate α̂ by an ordinary least squares regression of Y2 on X, and
obtain estimated residuals ε̂2 = Y2 −X ′α̂.

2. Let Z be some or all of the elements of X (not including the constant
term). Estimate β and γ by an ordinary linear two stage least squares
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regression of Y1 on X and Y2, using X and (Z − Z)ε̂2 as instruments,
where Z is the sample mean of Z.

This estimator is implemented in the Stata module ivreg2h by Baum and
Schaffer (2012). Note that applying the estimator requires choosing which
elements of X will comprise the vector Z used to construct instruments. The
default assumption in ivreg2h is that Z includes all of the elements of X
except for the constant term. However, one might also choose to let Z be
only some of the elements of X, if doing so helps to satisfy the assumptions
required for the estimator, as discussed in the next section.

3 Advice on applying the estimator

The main question to be answered by applied researchers who wish to use
this estimator is whether the key assumptions, that Cov(Z, ε1ε2) = 0 and
Cov(Z, ε22) 6= 0, are likely to hold. Below we discuss conditions that are
sufficient to make these key assumptions hold. The virtue of these sufficient
conditions (given as Assumptions A1, A2, and A3 below) is that each can
either be motivated by economic theory, or can be empirically tested with
data, or both. It is possible for the key assumptions to hold without satisfying
Assumptions A1, A2, and A3. However, if you can provide evidence (theory
and tests as we describe below) for why these sufficient conditions should
hold in your application, then the estimator is more likely to be appropriate
for you to use.

ASSUMPTION A1: The errors ε1 and ε2 have the factor structure

ε1 = cU + V1

ε2 = U + V2

where c is a constant, and U , V1, and V2 are unobserved error terms that are
mutually independent conditional on Z.

The interpretation of Assumption A1 is that Y2 is endogenous because
it contains an error component U that appears in the errors of both equa-
tions. This assumption is not directly testable, and so must be justified by
economic or econometric theory. To illustrate, here we provide examples of
how Assumption A1 could be justified in a variety of contexts.
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Example: Suppose Y2 is endogenous because it is mismeasured. Then V1
is the true outcome model error, and U is the measurement error. Classical
measurement error in linear regression models satisfies Assumption A1.

Example: Suppose Y1 is a wage, and Y2 is education level. Here U could
be unobserved ability, which affects both educational attainment Y2 and one’s
wage Y1. Then V1 represents all the unobservables that affect wages but not
education, while V2 represents all the unobservables that affect education but
not wages.

Example: Suppose Y1 is a firm’s value added output per unit of capital,
and Y2 is the firm’s labor per unit of capital. Here U could be unobserved
entrepreneurship, which affects both productivity and the chosen level of
inputs. Then V1 represents all the unobservables that affect productivity but
not inputs, and vice versa for V2.

The point here, as illustrated by these examples, is that the endogeneity
of Y2 takes the form of there being some underlying, unobserved factor U
that affects both Y1 and Y2.

ASSUMPTION A2: U2 is not correlated with Z.
Assumption A2 says that U is homoscedastic. The Y1 equation is a struc-

tural model, so if we can argue that it is correctly specified without important
omitted variables, then it is common to assume remaining errors are com-
pletely idiosyncratic. This may be a difficult assumption to justify in theory,
but it is partly testable, in particular, we may apply a Pagan and Hall (1983)
test to the Y1 equation. The commonly used Breusch and Pagan (1979) and
White (1980) tests are not appropriate in the context of the Y1 equation, as it
contains an endogenous regressor. See Baum, Schaffer, and Stillman (2003),
Section 3, for more detail. The form of the Pagan–Hall test that allows spec-
ification of the included regressors should be used, as just the variables in Z
should be included in the test of this assumption that (U2 is not correlated
with Z). Having heteroscedasticity of a form where U2 is correlated with
regressors other than Z would not violate Assumption A2.

A limitation of this test is that it tests homoscedasticity of ε1, so if we
reject homoscedasticity, we can’t know if the rejection is due to violating
Assumption A2 or whether it is due to harmless heteroscedasticity of V1. In
short, failing to reject homoscedasticity of ε1 provides evidence supporting
Assumption A2, but rejecting homoscedasticity of ε1 does not mean that
Assumption A2 is necessarily violated.

Note that Assumption A2 does not require that U2 be fully homoscedas-
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tic: only that it is not correlated with Z. As discussed at the end of the
previous section, to satisfy Assumption A2 (and A3 below) one might be
selective about which elements of X to include in Z.

ASSUMPTION A3: ε22 is correlated with Z.
This assumption is needed to ensure that the constructed instrument ends

up correlated with Y2. If the previous assumptions hold, then this assumption
is equivalent to heteroscedasticity of V2 relative to Z. This assumption is easy
to justify, since the Y2 equation need not be a structural equation. The Y2
equation is like the first stage of two stage least squares: it can be defined
as just a linear projection of Y2 on exogenous covariates. Moreover, this
assumption can be tested by applying a Breusch and Pagan (1979) test to
the Y2 equation.1 Unlike the test of Assumption A2 for the Y1 equation, to
satisfy Assumption A3 we want to reject homoscedasticity.2

Note that the above assumptions are not strictly necessary for the esti-
mator, e.g., it is possible that the factor model of Assumption A1 does not
hold but the estimator is still consistent (see Lewbel (2018) for an example).
However, we can have more confidence that the estimator is consistent in a
given application if we can argue that the logic of Assumption A1 holds and
if we pass the tests in Assumptions A2 and A3.

Additional tests, lending even more support for the estimator, are possible
when Z has more than one element. In that case, the model is overidentified,
and one can then apply standard overidentification tests such as the Hansen
(1982) and Sargan (1958) J-test. However, it is important to note that this
only tests a necessary condition for validity of the method, which is that all
instruments yield the same coefficient estimates. It is possible, e.g., that one
fails to reject overidentification tests not because the assumptions hold, but
because the constructed instruments happen to all yield the same incorrect
coefficient estimates. Still, failing to reject overidentification tests provides
additional evidence in support of the model and estimator.

To summarize the results of this section, one way to use this estimator
convincingly is to:

1As there are no endogenous regressors in the Y2 equation, the standard heteroscedas-
ticity tests may be used. The Pagan and Hall (1983) test could also be used, as it is
equivalent to the Breusch–Pagan test when applied to an OLS equation.

2The Breusch and Pagan (1979) test is preferred over the general White (1980) test,
as it allows us to target the necessary form of heteroscedasticity, i.e., correlation of the
squared error with Z.
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1. Use economic theory and/or data to justify linearity of the model Y1 =
X ′β + Y2γ + ε1 and the assumption that X is exogenous.

2. Use economic theory and/or data to justify the factor structure of the
errors given by Assumption A1.

3. Choose a set of covariates Z (either all the elements of X except the
constant, or some subset of those elements) to use for constructing the
instruments (Z − Z)ε̂2. For the chosen Z, apply theory and the above
described tests to justify the remaining identifying assumptions.

4 Implementing the estimator and tests

Using the Lewbel (2012) method, instruments are constructed as simple func-
tions of the model’s data. This approach may be (a) applied when no or-
dinary (external) instruments are available, or, alternatively, (b) used along
with external instruments to improve the efficiency of the instrumental vari-
ables estimator. Constructed instruments along with external instruments
can also be used to obtain overidentification, thereby allowing application
of Sargan–Hansen tests (of the orthogonality conditions or overidentifying
restrictions) which would not be possible in the case of exact identification
by external instruments. This then allows one to simultaneously test validity
of both the external instruments and the constructed instruments.

The implementation of the estimator in ivreg2h is based on the ear-
lier xtivreg2 (Schaffer (2015)) and ivreg2 (Baum, Schaffer, and Stillman
(2003, 2007)) routines. Essentially, ivreg2h generates the heteroscedasticity
based constructed instruments, and then implements instrumental variables
estimation like these earlier routines. In addition to pure cross section or
time series data, ivreg2h can also be applied to panel data using the within
transformation of a fixed effects model: see the fe option described below.
As ivreg2h is a variant of ivreg2, essentially all of the features and options
of that program are available in ivreg2h. For that reason, you can consult
help ivreg2 for full details of the available options.

The robust and gmm2s options should generally be employed, invoking
the IV-GMM estimator. This will compute the Hansen J statistic as a test
of overidentifying restrictions. The default Sargan test assumes normality of
the errors. See Baum, Schaffer, and Stillman (2003, 2007) for further details.
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Note that the gmm2s option supersedes the gmm option described in the earlier
article.

The ivreg2h program provides four additional options: gen, gen(string[,replace]),
fe and z(). If the gen option is given, the generated (constructed) instru-
ments are saved, with names built from the original variable names suffixed
with g. If greater control over the naming of the generated instruments is
desired, use the gen(string[,replace]) option. The string argument allows
the specification of a stub, or prefix, for the generated variable names, which
will also be suffixed with g. You can remove earlier instruments with those
same names with the replace suboption. If the data have been declared as a
panel, you can use the fe option to specify that a fixed-effects model should
be estimated, as in xtivreg2. The z() option can be used to specify that
only some of the included exogenous variables should be used to generate
instruments, as suggested above.

The ivreg2h program can be invoked to estimate either (a) a model
that would be identified even without the constructed instruments, or (b) a
model that, without constructed instruments, would fail the order condition
for identification by either having no excluded instruments, or by having
fewer excluded instruments than needed for traditional identification.

In case (a), where an adequate number of external instruments are aug-
mented by the generated constructed instruments, the program provides
three sets of estimates: the traditional IV estimates, the estimates using only
the generated instruments, and the estimates using both generated and ex-
cluded instruments. In this case, ivreg2h automatically produces a Hayashi
C test of the excluded instruments’ validity, equivalent to that provided by
the orthog() option in ivreg2).3 The results of the third estimation (the
one including both generated and excluded instruments) are saved in the
ereturn list. All three sets of estimates are saved, named StdIV, GenInst

and GenExtInst, respectively.
In case (b), where the equation would be underidentified without con-

structed instruments, either one or two sets of estimates will be produced and
displayed. If there are no excluded instruments, only the estimates using the
generated instruments are displayed. If there are excluded instruments but
too few to produce identification by the order condition, the estimates using
only generated instruments and those produced by both generated and ex-
cluded instruments will be displayed. Unlike ivreg2 or ivregress, ivreg2h

3Baum, Schaffer, and Stillman (2003),18–19.
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allows the syntax

ivreg2h depvar exogvar (endogvar=) [if exp] [in range], options

as after augmentation with the generated regressors, the order condition
for identification will be satisfied. The resulting estimates are saved in the
ereturn list and as a set of estimates named GenInst and, optionally,
GenExtInst.

The Pagan and Hall (1983) tests referenced above are available from the
ivreg2 package of Baum, Schaffer, and Stillman (2003) using the ivhettest
command. The default test does not assume normality of the errors.

4.1 Saved results

In the estimates table output, the displayed results j, jdf and jp refer
to the Hansen J statistic, its degrees of freedom, and its p-value. If i.i.d.
errors are assumed and a Sargan test is displayed in the standard output,
the Sargan statistic, its degrees of freedom and p-value are displayed in j,

jdf and jpval, as the Hansen and Sargan statistics coincide in that case.
The results of the most recent estimation are saved in the ereturn list.

5 Examples of usage

In this example from Lewbel (2012), centering of regressors is only used to
match the published results.

ssc install center // (if needed)
ssc install bcuse // (if needed)
bcuse engeldat
center age-twocars, prefix(z_)
ivreg2h foodshare z_* (lrtotexp=), small robust
ivreg2h foodshare z_* (lrtotexp = lrinc), small robust
ivreg2h foodshare z_* (lrtotexp = lrinc), small robust gmm2s z(z_age-z_age2sp)

Example of use with panel data and HAC standard errors:

webuse grunfeld, clear
ivreg2h invest L(1/2).kstock (mvalue=), fe
ivreg2h invest L(1/2).kstock (mvalue=L(1/4).mvalue), fe robust bw(2)
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6 Additional comments

Here we provide answers to additional questions that have been asked about
the estimator.
1. Can validity of the estimator be tested?

Partially. The tests discussed in the previous sections are examples.

2. What if Y1 or Y2 is discrete?
It is possible that the estimator will still be valid in this case. Lewbel

(2018) gives one set of conditions that suffice for validity of the estimator.
However, the factor structure given by Assumption A1 will generally not
hold if Y1 or Y2 is discrete, so it is much harder to justify application of the
estimator. One might still apply the tests discussed in the previous section
to provide some evidence to rationalize the estimator in this case.

3. What does it mean if coefficient estimates are close to those from ordinary
least squares?

In any application of instrumental variables estimators, coefficient es-
timates can be close to ordinary least squares either by chance, or if the
instruments are highly correlated with the endogenous regressors. The same
is true of constructed instruments.

4. Can the estimator be used with more than one endogenous regressor?
Conditions for validity of the estimator have been proven for one en-

dogenous regressor. The estimator may be valid with multiple endogenous
regressors, but the exact conditions required for validity in that case have
not been shown.

5. What if I have additional instruments?
This is the best case scenario, as those external instruments can be used

along with the constructed instruments in the second step of the estimator
(as discussed earlier). In particular, one of the best uses of the constructed
instruments is to provide overidentifying information for model tests and for
robustness checks. For example, one could apply the overidentification tests
discussed in the previous sections to estimates based on both constructed
and external instruments. If validity is rejected, then either the model is
misspecified or at least one of these instruments is invalid. If validity is not
rejected, it’s still possible that the model is wrong or the instruments are in-
valid, but one would at least have increased confidence that both the external
instruments and the constructed instruments are valid. More informally, one
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might simply compare the estimated coefficients based on constructed instru-
ments versus those based on external instruments.4 If they are numerically
similar, that increases confidence in the robustness of the model, as the two
estimators based on very different identifying assumptions are yielding sim-
ilar results. More generally, identification based on constructed instruments
is preferably not used in isolation, but rather is ideally employed in conjunc-
tion with other means of obtaining identification, both as a way to check
robustness of results to alternative identifying assumptions and to increase
the efficiency of estimation.

7 Conclusions

In the few years since the heteroskedasticity-based estimator was proposed,
it has been cited more than five hundred times according to Google Scholar.
But like any identification method that is based largely on structure and
functional form, one must be very cautious about interpreting the results.
This note should help ensure that the estimator is applied appropriately.
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