
Evolving Strategies for the Repeated Prisoner’s
Dilemma Game with Genetic Programming:
Studying the Effect of Varying Function Sets

By Daniel J. Scali

2006 Undergraduate Honors Thesis
Advised by Professor Sergio Alvarez

Computer Science Department, Boston College

Abstract: This thesis examines the application of genetic programming to
evolving strategies for playing an iterated version of the Prisoner’s Dilemma
game. The study examines the evolution of strategies for a single population of
players pitted against a static environment, as well as the co-evolution of
strategies for two distinct subpopulations of players competing against one
another. The results indicate that the strategies that can be evolved are strongly
influenced by the function set provided during the design process. In co-
evolutionary runs in particular, the function set shapes the environment of
opponents that an individual strategy is evaluated against. Experimental runs that
alter the makeup of the function set facilitate a discussion of how different
function sets and environments can lead to diverse strategies with varying levels
of performance.
Keywords: genetic programming, prisoner’s dilemma, game theory, function set

1. Introduction

 The Prisoner’s Dilemma has previously been used to show the validity and

effectiveness of applying genetic algorithms in a game-theoretic context. [2,5]. The

current body of research consists of various methods for representing strategies for the

Repeated Prisoner’s Dilemma. In each case, the representation scheme that is chosen

provides a framework for the evolutionary process and dictates the number of previous

moves that a given strategy can consider in the calculation of its next move. For

example, Miller [12] modeled strategies as bit-string representations of finite state

automata whereas Axelrod’s [2] more direct approach used bit strings to reflect the last

three moves of the game’s results history. Some of these studies evolve strategies based

on their performance against a fixed environment [6,12] while others have introduced the

1

idea of co-evolution – the process of assessing a given strategy by its performance against

its peers in each evolutionary generation [2,5,9].

 Although Fujiki and Dickinson [5] demonstrated that genetic algorithms could be

used to evolve Lisp S-expressions, the solution relied heavily upon the construction of a

grammar and was contingent upon “a proper set of productions” being used. The goal of

the current paper is twofold. First, it aims to take a more structured and extensible

approach to evolving strategies for the Repeated Prisoner’s Dilemma game by applying

the genetic programming paradigm as developed in Koza 1992 [8]. In addition, it

attempts to determine the implications of altering the function set that the algorithm

draws from when composing new strategies.

2. The Prisoner’s Dilemma

 The Prisoner’s Dilemma game has been shown to have a variety of applications

in the social sciences and other fields, ranging from trade tariff reduction, to labor

arbitration, evolutionary biology, and price matching [1,4].

 The Prisoner’s Dilemma game is best illustrated anecdotally: Suppose that you

are a bank robber. One day, you and your accomplice are both brought to the police

station and placed in separate rooms for questioning. Isolated from each other, you are

each explained the following: If you both confess, you will receive matching 5 year

sentences. On the other hand, without a confession from either of you, the police only

have enough evidence to put you both away for a lesser crime which carries a penalty of

only 3 years. However, if one robber confesses and the other does not, the recalcitrant

party will be sentenced to 10 years in prison while the robber making the confession will

receive only 1 year. What should you do?

2

 Robber 2
 Deny (Cooperate) Confess (Defect)

Deny (Cooperate) 3 , 3 10 , 1 Robber
1 Confess (Defect) 1 , 10 5 , 5

Table 2.1 The Prisoner's Dilemma with payoffs as time in jail

 Economic game theory provides tools for analyzing this situation. Table 2.1

models the above scenario as a strategic game, where Robber 1’s jail sentence is always

listed first. The strategies available for each prisoner boil down to two options: either

confess to the crime (Defect from accomplice) or deny the allegations (Cooperate with

accomplice).

 Each player in the game has one objective: to minimize his time in jail. Robber 1

has no knowledge of what Robber 2’s move will be. However, Robber 1 knows that if

Robber 2 confesses, his best response is to confess – he receives only 5 years in jail if he

confesses as opposed to 10 years if he denies the allegations. He also knows that if

Robber 2 chooses to deny, his best response is to confess – he receives only 1 year in jail

if he confesses as opposed to 3 years if he denies. No matter what Robber 2 does, it is

always in Robber 1’s best interests to confess. Thus, confession is a dominant strategy

for Robber 1 [4]. Since, a similar analysis holds true for Robber 2, the dominant strategy

equilibrium is for both robbers to confess. Curiously, even though [Confess, Confess]

is a dominant strategy equilibrium, both parties would be better off if the outcome was

[Deny, Deny].

 Player 2
 Cooperate Defect

Cooperate R = 3 , R = 3 S = 0, T = 5 Player
1 Defect T = 5 , S = 0 P = 1 , P =1

Table 2.2 The Prisoner’s Dilemma, with payoffs as points

3

 The Prisoner’s Dilemma can also be described formally. Table 2.2 is a strategic

form illustration of another classic example of the Prisoner’s Dilemma game from

Axelrod [1]. Note that in this example (and from this point forward), players are trying to

maximize their payoff rather than minimize it as in the previous formulation.

 Another useful way of viewing the Prisoner’s Dilemma game is as tree, in what is

called extensive form. Fig 2.1 is an extensive form representation of the strategic game

in Table 2.2. Information Sets, shown as dotted lines between two or more nodes of

equal depth, indicate the fact that the moves occur simultaneously. Here, because Player

2 finds himself in a two-node information set, he has no knowledge of whether Player 1

has moved C or D. The extensive form game in Figure 2.1 has four possible outcomes

which are identical to the outcomes in Table 2.2.

Figure 2.1 The Prisoner’s Dilemma as an extensive form game

4

 The game consists of four possible payoffs, which shall be abbreviated R, T, S and

P. R is the reward for mutual cooperation, T is the temptation to defect, S is the sucker’s

payoff, and P is the punishment for mutual defection. In order for the Prisoner’s

Dilemma to be present, two relationships must apply. First, it must be true that T > R > P

> S. This ordering preserves the proper incentive structure, as the temptation to defect

must be greater than the reward for cooperation, and so on. Second, the reward for

cooperation must be greater than the average of the temptation to defect and the sucker’s

payoff – i.e. R > .5(T+S). This removes the ability of players to take turns exploiting

each other to do better than if they played the game egoistically [1].

 A further technical analysis shows how the [Defect, Defect] dominant strategy

equilibrium is undesirable, but not easily avoidable. [Defect, Defect] is not

considered an efficient outcome. An outcome in a game is considered Pareto efficient if

no other outcome exists that makes every player at least as well off and at least one

player strictly better off. Therefore, mutual cooperation is the only Pareto efficient

solution in the Prisoner’s dilemma [6]. However even though mutual cooperation is

Pareto efficient, the [Defect, Defect] outcome is not easily avoidable because it is a

Nash equilibrium. A Nash equilibrium is an outcome of a game where neither player can

unilaterally change his move in order to improve his own payout [4]. It follows that

[Defect, Defect] is a Nash equilibrium since a player’s best choice is to defect when

he knows that his opponent will defect. Since [Defect, Defect] is the only Nash

equilibrium, it is impossible for two rational egoists who play the game only once to end

up in any other state.

5

 Although the possibility of mutual cooperation emerging in such a situation seems

bleak, cooperation can in fact be sustained when the game is played multiple times. The

resulting game is called the Repeated Prisoner’s Dilemma (RPD). Research shows that

the best strategy for playing the repeated game is much different from the best strategy

for playing just one round [1]. Repeating the game introduces the possibility for

reciprocity that exists in many real-life interactions– players are now able to reward and

punish each other based on past interactions. For example, in a repeated setting a rational

player might try to achieve the gains from cooperation, but would be able to retreat to

defection if an opponent was uncooperative.

 The success of the Tit-for-Tat strategy in the Repeated Prisoner’s Dilemma

has been well-documented. When using the Tit-for-Tat strategy, a player

cooperates on the first move and then mimics the opponent’s move from the last round

for the remainder of the game. Tit-for-Tat scores well in tournaments because of its

ability to reward its opponent for cooperation while also punishing it for defection [1].

Other strategies that have scored well are Tit-for-Two-Tats, Grim Trigger, and

Pavlov [5,6]. Tit-for-Two-Tats is a variation of the Tit-for-Tat strategy

which cooperates unless defected on for two consecutive moves. The Grim Trigger

strategy simulates a player who is provocable and unforgiving: it cooperates until

defected on, at which time it permanently defects. Last, the Pavlov strategy is an

intuitive “win-stay, lose-switch” strategy. If it receives a desirable payoff, it repeats its

move in the next round. However, if it receives an undesirable payoff, it will try a

different move in the next round. Hence, Pavlov cooperates if the last move reflects a

mutual cooperation or defection (i.e. [Cooperate, Cooperate] or [Defect, Defect])

6

and defects otherwise. The Pavlov strategy can either defect or cooperate on the first

move1.

3. Genetic Programming

 Genetic programming (GP) is an evolutionary computation technique which is

based upon the genetic algorithm (GA) developed by Holland [7]. The genetic

programming paradigm, as it will be used in the scope of this paper, was popularized by

John Koza [8].

 Genetic algorithms take advantage of the Darwinian concept of natural selection

to evolve suitable solutions to complex problems. In the typical genetic algorithm, a

possible solution to a problem – called an individual – is represented as a bit string. Each

individual is assigned a fitness, which is simply a determination of how effective a given

individual is at solving the problem. For example, when evolving a game-playing

strategy, a fitness measure might be the number of points the individual scored in the

game. To kickoff the evolutionary process, an initial population of individuals is

generated through a random process as detailed by Koza [8]. Next, the fitness of each

individual in the population is evaluated. Favoring individuals with the highest fitness,

new generations are repeatedly created via genetic techniques such as mutation,

crossover, and reproduction. During the process, progressively more fit generations are

created until either a satisfactory best-of-generation individual is produced or a pre-

determined number of generations have been created.

 The difference between the genetic algorithm and genetic programming lies

primarily in representation. Genetic programming is distinct because it represents

1 The Pavlov implementation in this paper cooperated on the first move.

7

solutions as actual computer programs. Programming languages such as Lisp are well-

suited for GP because they are structured as symbolic expressions (S-expressions) which

can be represented as trees. The nodes of the trees are members of a set of functions and

a set of terminals which are defined by the user in the GP representation. Some examples

of functions given in Koza [8] are arithmetic operations (+,-,*, etc), mathematical

functions (sin, cos, log, etc.), Boolean operations (AND, OR, NOT, etc.), conditional

operators (IF-THEN-ELSE), as well as any other domain-specific functions that can be

defined. The terminal set typically consists of constant values or state variables. In order

to ensure that the trees generated by GP are valid, the function set and terminal set must

both be closed. The closure property, stated more formally, ensures that any function in

the function set must be able to accept as an argument any value that could be derived

from another function in the function set or any terminal in the terminal set. Figure 3.1

shows an example of a simple mathematical Lisp S-expression and a corresponding tree.

Figure 3.1 A simple Lisp expression and tree

 There are three operations that are typically carried out during the evolutionary

process: reproduction, crossover, and mutation. These primary operations are intended

8

to simulate the process of Darwinian evolution and natural selection thus building

stronger populations from generation to generation. In reproduction, an individual is

selected from the population and then simply copied into the new generation. The

crossover operation, illustrated in Figure 3.2, selects two different individuals from the

population, randomly selects one node from each to be the crossover point, and then

swaps the subtrees found at the crossover nodes to create two new individuals for the new

generation. Lastly, mutation introduces random changes into the new generation. When

mutation (Figure 3.3) is applied, an individual is selected and a mutation point is selected

at random. A randomly generated subtree is inserted at the mutation point and the

mutated individual is added to the new population.

Figure 3.2 An example of the crossover operation

9

Figure 3.3 An example of the mutation operation

 The method used to select individuals for the genetic operations can vary, but is

typically based on fitness. Two popular selection methods are fitness-proportionate

selection and tournament selection. For fitness-proportionate selection, the probability

that a given individual is selected increases in proportion to an individual’s fitness with

respect to the rest of the population. In tournament selection, a certain number of

individuals are selected at random from the group and then the one with the best fitness is

selected [8].

 There are also some variations of tournament selection that examine tree size as a

secondary objective behind fitness. During the evolutionary process, individuals’ tree

sizes can become unnecessarily and unmanageably large – a phenomenon known as GP

bloat. Applying lexicographic parsimony pressure helps to solve this problem. In

10

lexicographic parsimony pressure, n individuals are chosen at random. As in regular

tournament selection, the individual with the best fitness is selected. However, in the

event of tie, lexicographic parsimony pressure selects the individual with a smaller tree

size. This multiobjective technique helps limit the size of the evolved trees and therefore

reigns in bloat [10].

 Selection methods can be supplemented by a technique known as elitism. The

reader may have observed that the selection methods described above are probabilistic in

nature – although they will select relatively more fit individuals, they do not necessarily

ensure that the most fit individuals pass on to the next generation. If an individual is not

selected at random for consideration by the selection method, then it can not pass on to

the next generation. Adding elitism to the evolutionary process guarantees that the top n

individuals (the “elites”) move on to the next generation. After positions for the elites are

secured in the next generation, the remainder of the population is selected via a standard

selection method.

4. ECJ

 The genetic programming implementation used for this paper is a Java-based

evolutionary computation toolkit called ECJ [11]. ECJ provides a set of classes which

can be used to customize a Genetic programming problem domain such as the Repeated

Prisoner’s Dilemma. The configurable parameter files used by the system allow for a

considerable amount of tweaking by the user. The methods for initial population

generation, selection, fitness, and genetic operators can all be specified at run time. In

addition, ECJ supports co-evolution, which is particularly useful for the evolving game-

11

playing strategies. Co-evolution allows an individual’s fitness to be calculated based on

its performance playing a game against another evolving subpopulation.

5. Methodology

The Problem
 In this version of the Repeated Prisoner’s Dilemma, the payoff structure will be

defined as [R, T, S, P] = [3, 5, 0, 1] as in Figure 1.2. Each individual plays the Prisoner’s

Dilemma game 100 times against the n opponents in its environment. For static

environments, this means playing any number of pre-determined, well-known strategies.

In co-evolutionary environments, this means playing 100 randomly selected opponents

from the opposing subpopulation. The objective of each GP run will be to evolve the

highest-scoring strategy possible.

The Function and Terminal Sets
 Applying genetic programming to the Repeated Prisoner’s Dilemma requires a

conscious determination of how to represent the problem. Although the function set and

the terminal set that are created do not directly guide the evolutionary process, the union

of these two sets provides the “tools” with which the evolutionary process is allowed to

work.

 Previous work on evolving a strategy for a simple, 32-outcome extensive form

game proves extensible to the Repeated Prisoner’s Dilemma [8]. The 32-outcome game

consists of only five total moves. Therefore, the function set can provide information

about the game’s entire history through only four functions which return the value of

moves one through four. The Repeated Prisoner’s Dilemma is different because of its

infinite nature. To understand this, picture what Figure 2.1 would look like if the game

12

was played more than once – the four terminal nodes would be replaced by four

Prisoner’s Dilemma games in extensive form, which would recursively contain more

Prisoner’s Dilemma games, and so on. Because the Repeated Prisoner’s Dilemma can

consist of any number of iterations, it would be impossible to keep the size of both the

function and terminal sets bounded while also taking into account the history of the

whole game. Therefore, when using this methodology to model the Repeated Prisoner’s

Dilemma, the number of historical moves taken into consideration must be finite.

 The terminal set in this problem consists of the two moves available to the

players. In the case of the Prisoner’s Dilemma this means Cooperate (C) and Defect (D).

In addition, it is important to provide for a move being Undefined (U) to ensure that

closure is established. This is required because the functions will not necessarily be able

to provide data during the first four moves. For example, if in the first round of a game, a

call is made to a function that checks the opponent’s second-to-last move, there is no

second-to-last move to report for either player, so the function should return U.

Therefore, the terminal set T = {C, D, U}.

 All of the functions in the function set are based on the CASE statement in Lisp.

The first category of functions includes functions that are based on recent move history.

These functions can evaluate to any of three arguments in order to provide information

about the most recent four moves of both players. To illustrate with an example, the

function OPP_LAST will evaluate to its first argument if the opposing player’s last move

is undefined, to its second argument if the move was C, and to its third argument if the

move was D. The functions MY_LAST, MY_2ND, MY_3RD, and MY_4TH consult the

move history variables to provide information about the individuals own moves (from

13

most recent to least recent, respectively) while OPP_LAST, OPP_2ND, OPP_3RD, and

OPP_4TH provide the same information for the opponent’s moves.

 The next category included the functions HAS_COOP and HAS_DEFECTED.

These functions check to see if the opponent has ever, within the current history,

cooperated or defected, respectively. Both functions are of arity two in order to handle

the “true” and “false” cases. For example, if the opponent has ever cooperated

(according to the current move history) HAS_COOP will return its first argument, but will

return its second argument in all other cases.

Fitness
 Only rudimentary fitness calculations are required for the repeated Prisoner’s

Dilemma. An individual’s raw fitness is the sum of its scores from the n 100-round

contests that it plays against its n opponents. Programmatically, it is useful to standardize

fitness. A standardized fitness measure, shown in Figure 5.1, is constructed by

subtracting the raw fitness from the total number of points available. In simple terms,

standardized fitness denotes the number of points that a particular strategy failed to earn

over the course of its interactions. Therefore, the lower a strategy’s standardized fitness

is, the better the strategy is. Although a perfect standardized fitness of 0 can only be

achieved in an environment filled with opponents who unconditionally cooperate, the

standardized fitness measure provides context when comparing two strategies or

graphically analyzing data.

Standardized Fitness = T * 100 * n – s

 where: T = the temptation to defect = 5
 n = the number of opponents
 s = the total number of points scored = raw fitness

Figure 5.1 An explanation of Standardized fitness

14

Evolutionary Operators and Parameters
 Unless otherwise noted, runs performed during the study used the following

evolutionary operators and parameters: The evolutionary operators were crossover and

reproduction, used at the probability of .7 and .3 respectively. Tournament selection with

lexicographic parsimony pressure and a tournament size of 7 was used to select the

individuals to be operated upon.

 In runs against a static environment, a population of 500 individuals was evolved

for 100 generations. For co-evolutionary environments, both subpopulations consisted of

500 individuals and were run for up to 500 generations.

The Experiments

Table 5.1 Summary of the environments of pre-defined strategies used in genetic programming runs

Environment Name Opponents in Environment
Environment 1 All C

Environment 2 All D

Environment 3 All C, All D, Tit-for-Tat

Environment 4 All D, Grim Trigger

Environment 5 Tit-for-Tat, Grim Trigger

Environment 6 Tit-for-Tat, Grim Trigger, Pavlov

Environment 7 All C, Grim Trigger

Environment 8 DBTFT, DPC, All D, DTFT, CBTFT, All
C, Grim Trigger, Tit-for-Tat

 Procedures were designed to examine the effect of the function set’s composition

on the fitness of the evolved strategies. A standard evolutionary process was used to

evolve strategies against different fixed environments and one co-evolutionary

environment. In a fixed environment, any number of predetermined strategies made up

the environment of opponents. These environments are summarized in Table 5.1 and

Java source code for the strategies can be found in Appendix A. In the co-evolutionary

environment, the individual being evaluated played against a selection of its counterparts

15

in the current evolutionary generation. Figure 5.2 shows a high level view of the

experimental procedure. In Step 1, the function set was sequentially set equal to three

predefined function sets: FS1, FS2, and FS3. The function set FS1 consisted of eight

functions (MY_LAST, MY_2ND, MY_3RD, MY_4TH, OPP_LAST, OPP_2ND, OPP_3RD,

and OPP_4TH) that could check the last four moves of each player in the history. After

this, FS2 was constructed by adding the HAS_COOP and HAS_DEFECTED functions to

FS1. The evolutionary process was again set in motion in all environments. Finally, the

function set was reduced to FS3, a function set consisting of just two functions:

MY_LAST and OPP_LAST.

Procedure:
1. Set F = FS1 = {MY_LAST, MY_2ND, MY_3RD, MY_4TH, OPP_LAST,

OPP_2ND, OPP_3RD, OPP_4TH}
2. Run against all environments
3. Set F = FS2 = {MY_LAST, MY_2ND, MY_3RD, MY_4TH, OPP_LAST,

OPP_2ND, OPP_3RD, OPP_4TH, HAS_COOP, HAS_DEFECTED }
4. Run against all environments
5. Set F = FS3 = {MY_LAST, OPP_LAST }
6. Run against all environments

Figure 5.2 The experimental procedure and various function sets

6. Results and Discussion

 Static Environments
 A summary of fixed (i.e. static) environment results can be found in Table 6.1.

One of the most interesting static environments was Environment 3, which consisted of

the opponents Tit-for-Tat, All D, and All C. The strategy evolved with FS1 and

a description of how it performed against the opponents in this environment is shown in

Figure 6.1.

16

17

Evolved Strategy:
(OPP_LAST D (MY_LAST D C D) (OPP_2ND D C (MY_LAST C C D)))

Evolved Strategy: DDDDDDDD…
All D: DDDDDDDD…

Evolved Strategy: DDDDDDDD…
All C: CCCCCCCC…

Evolved Strategy: DDCCCCCC…
Tit-for-Tat: CDDCCCCC…

Figure 6.1 A strategy evolved in Environment 3 with Function Set 1

 The success of the evolved strategy was predicated on its ability to recognize the

three different opponents in the environment and react accordingly. By opening each

100-game interaction with two defections, the GP-evolved strategy was able to elicit a

unique response from each of its three opponents. After that, it implemented the optimal

strategy against all three: it exploited All C by defecting, protected against All D by

defecting, and cooperated with the less-exploitable Tit-for-Tat for the remainder of

the interaction.

 Further investigation reveals that the opening sequence of DD was not trivial.

Consider the alternatives: If the strategy were to open with CC, it would not be able to

tell the difference between Tit-for-Tat and All C, hence forfeiting the opportunity

to exploit All C for two extra points per game. Likewise, an opening sequence of CD

would have elicited identical responses from Tit-for-Tat and All C. The last

possibility is DC, which removes the ambiguity between opponents but scores fewer

points than DD – it fails to exploit All C and gets exploited by All D on the second

move. The diagnostic strategy of opening each interaction with two defections was

integral to the evolved strategy’s success.

Table 6.1 Summary of results for genetic programming runs against environments of pre-defined opponents

 Function Set 1 (FS1) Function Set 2 (FS2) Function Set 3 (FS3)
Environment

Number Evolved Strategy Std.
Fitness Evolved Strategy Std.

Fitness Evolved Strategy Std.
Fitness

1 D 0
 D 0

 D 0

2 D 400 D 400 D 400

3
(OPP_LAST D (MY_LAST D

C D) (OPP_2ND D C
(MY_LAST C C D))) *

604* (HAS_DEFECTED
(HAS_COOP C D) D) 604 (MY_LAST D C (OPP_LAST

C D C)) 703

4 (OPP_LAST C C D) 601 (HAS_DEFECTED D C) 601 (OPP_LAST C C D) 601
5 C 400 C 400 C 400
6 C 600 C 600 C 600
7 D 396 D 396 D 396

8

(OPP_3RD (MY_LAST D D
(OPP_LAST D D C))
(MY_LAST D (OPP_2ND
D C D) (OPP_LAST D D
C)) (MY_LAST D C D))

1246

(MY_3RD (MY_LAST C D
D) (MY_LAST C C D)
(OPP_LAST C D
(OPP_2ND C C
(MY_LAST C C D))))

1236 (OPP_LAST C (MY_LAST C
C D) D) 1433

* result based on a run where mutation was used at a probability of .3 and crossover at a probability of .7

18

 Additionally, the results show that changes to the function set can limit this

diagnostic ability and thus produce less-effective strategies. This became apparent when

the function set FS3 was used to evolve strategies in the same environment (Environment

3). The results of this run are summarized in Figure 6.2.

Evolved Strategy:
(MY_LAST D C (OPP_LAST C D C))

Evolved Strategy: DCCCCCCC…
All D: DDDDDDDD…

Evolved Strategy: DDDDDDDD…
All C: CCCCCCCC…

Evolved Strategy: DCCCCCCC…
Tit-for-Tat: CDCCCCCC…

Figure 6.2 A strategy evolved in Environment 3 with Function Set 3

 Strategies developed using the functions in FS3 can only examine the history

from the previous move. Therefore, the use of a diagnostic approach was not possible.

Because the function set is limited, the strategy had to make do with what it can ascertain

from analyzing the previous interaction. As the move history indicates, the strategy’s

more limited diagnostic approach differentiated between the opponents that are capable

of defecting (Tit-for-Tat and All D) and the opponent that unconditionally

cooperates (All C). Once it grouped the opponents, it implemented the optimal strategy

against each group. Again, the best way to play All C is to exploit it via defection.

Against the Tit-for-Tat and All D grouping, it chose to defect on the first move

and then cooperate thereafter. This was a calculated choice which sacrificed the one

point per game that would have been received by defecting against All D in exchange

for the two points per game that it gained by cooperating with (rather than defecting

19

against) Tit-for-Tat. The results from Environment 3 show that reducing the

function set from FS1 to FS3 can have an effect on the diagnostic capability of the

evolved strategies and consequently result in a degradation of performance.

 Environment 4, which consisted of Grim Trigger and All D, also exhibited

interesting behavior across function sets. When the function set was changed, the

performance of the evolved strategy stayed constant, but its representation changed.

With the function set equal to FS1, the Tit-for-Tat strategy (OPP_LAST C C D) was

evolved. With the function set equal to FS2, the Grim Trigger strategy

(HAS_DEFECTED D C) was evolved. As Figure 6.3 shows, both strategies used the same

sequence of moves in Environment 4. In this case, varying the function set caused

aesthetic rather than functional changes.

Evolved Strategies:
(HAS_DEFECTED D C) and (OPP_LAST C C D)

Evolved Strategy: CDDDDDDD…
All D: DDDDDDDD…

Evolved Strategy: CCCCCCCC…
Grim Trigger: CCCCCCCC…

Figure 6.3 Two strategies evolved in Environment 4 with Function Sets 1 and 2

 The results described here from Environments 3 and 4 suggest that genetic

programming is effective at evolving capable strategies in specific environments. The

evolutionary process was able to adapt an optimal or near-optimal strategy for playing the

Repeated Prisoner’s Dilemma game based on the function set that it had to work with and

the environment of opponents that it was placed in. The results reinforce an important

point about competitive domains such as the Repeated Prisoner’s Dilemma – a strategy’s

performance must be understood within the context of the specific environment in which

20

it was evolved. Although the genetic programming paradigm is working properly in

these cases, it would be incorrect to interpret the evolved strategies as strategies that

generalize well across a variety of environments. Therefore, the next natural step is to

evolve strategies based on a richer environment than can be constructed manually. This

was achieved through the co-evolutionary experiments which are described in the next

section.

Co-evolutionary Environments
 Co-evolution evaluates a given individual based on its performance against its

peers in the evolutionary population. In the co-evolutionary runs in this study, the

population of 1000 consisted of two subpopulations of size 500. An individual’s fitness

was based on the number of points that it scored when it played the Repeated Prisoner’s

Dilemma game against 100 randomly-selected members of the opposing subpopulation.

During co-evolution, the environment of opponents is constantly changing, making it

more difficult for the evolutionary process to adapt individuals for a specific

environment. In this predator-prey environment, if one subpopulation develops a

particularly useful trait, the opposing subpopulation is forced to adapt, and vice-versa.

The intuition is that once the subpopulations stabilize or converge, a reasonably

generalized strategy will have emerged.

 Early co-evolutionary runs suggested that the chaotic nature of co-evolution can

force populations towards defection. Figure 6.4 shows the mean adjusted fitness2 of

Subpopulation 1 for the first 100 generations of a co-evolutionary run using the function

set FS1. The strategies that fared well in the early going were those that reduced to All

2 Adjusted Fitness = 1 / (1 + standardized fitness)

21

D. For example, the best individual in Generation 5 was (MY_LAST D D D). As the

graph reveals, no significant increase in fitness was observed during the run. The

population eventually converged to the All D strategy.

 Obviously, the All D strategy is not a good general strategy for playing the

Repeated Prisoner’s Dilemma game since it leaves out even the possibility of sustaining

cooperation, limiting itself to a payout of P for the majority of its interactions. However

there are at least two settings in which the All D strategy might be a good idea. The

most obvious is in an environment made up of many naïvely cooperating strategies like

All C. The second case is a very random or noisy environment. When opponents are

unpredictable, the All D strategy hedges by defecting in order to guarantee itself at least

one point per round. It is likely that the strategies evolved by this run were forced into

permanent defection because of the noisy and unpredictable nature of co-evolution.

 Co-evolving solutions with the FS2 function set resulted in a sharp improvement

in performance. Figure 6.5 shows how the average fitness of the subpopulation

rebounded as the best strategies in each generation were transformed from strategies that

tended to unconditionally defect to ones that sustained cooperation. In the early going,

the strategies that performed the best were equivalent to All D. For example, the best

strategies in the initial generation were (MY_LAST D D D) and (HAS_DEFECTED D D).

However, within the first ten generations the HAS_DEFECTED function emerged,

producing strategies like (HAS_DEFECTED D (OPP_4TH C C D)) which had the best

score in Generation 10. By Generation 12, the Grim Trigger strategy

(HAS_DEFECTED D C) took hold, resulting in the large upward spike in mean fitness

observed in Figure 6.5. Eventually the population converges to the Grim Trigger

22

strategy. In fact at one point (Generation 48), once the population was dominated by

Grim Trigger strategies, the strategy All C emerged as the best in Subpopulation 2

since it was a smaller individual than Grim Trigger and performed just as well as

Grim Trigger would have performed against itself.

 Although the Grim Trigger strategy has been argued to be a good general

strategy in its own right by Dacey and Pendegraft, the widely-cited success of Tit-

for-Tat in Axelrod’s [1] computerized tournaments necessitates a comparison between

Grim Trigger and Tit-for-Tat. How would Tit-for-Tat have fared in the

same environment that evolved Grim Trigger? To answer this question, the co-

evolutionary run that evolved Grim Trigger was run a second time. During this

additional run, data was collected so that Tit-for-Tat could serve as a benchmark

strategy without altering the evolutionary process. For each generation in the run, both

Tit-for-Tat and Grim Trigger played the repeated Prisoner’s Dilemma against

the same 100 randomly selected opponents from Subpopulation 2.

 Figure 6.6 plots the performance (in terms of points scored against 100 randomly-

selected opponents played) of Tit-for-Tat, Grim Trigger, and the best strategy

from Subpopulation 1. The results show very little variation in performance between

Tit-for-Tat and Grim Trigger. In fact, the two series of data points representing

them are virtually identical. In general, each strategy’s performance was comparable to

the best-of-generation strategy. The interesting downward spikes on the graph are the

product of adapting populations and the luck of the draw. At these points, the majority of

the 100 opponents selected at random from the population were biased toward defection,

forcing both Tit-for-Tat and Grim Trigger to score poorly. In general,

23

Mean Adjusted Fitness of a Subpopulation Evolved with FS1

0.00E+00

5.00E-06

1.00E-05

1.50E-05

2.00E-05

2.50E-05

3.00E-05

3.50E-05

4.00E-05

4.50E-05

0 50

Generation

Fi
tn

es
s

Figure 6.4 Mean adjusted fitness of a subpopulation during co-evolution with FS1

Mean Adjusted Fitness of a Subpopulation Evolved with FS2

0.00E+00

1.00E-05

2.00E-05

3.00E-05

4.00E-05

5.00E-05

6.00E-05

0 50

Generation

Fi
tn

es
s

Figure 6.5 Mean adjusted fitness of a subpopulation during co-evolution with FS2

24

however, the data shows that the Grim Trigger strategy performed comparably to

Tit-for-Tat and the best-of-generation strategy.

 The fact that Grim Trigger emerged from co-evolution speaks to the ability of

genetic programming to evolve human-competitive solutions to game theoretic problems

like the Repeated Prisoner’s Dilemma. By using the population as an evolving

environment of opponents, the co-evolutionary process did promote a strategy which was

less dependent on a specific environment for its success. However, these results should

be interpreted in light of a few important factors.

 First, a given strategy’s performance is ultimately dependent upon the nature of

the opponents that it plays against. For example, no matter how effective Grim

Trigger is in general, if it were to play in an environment full of All D strategies, it

would actually do worse than All D. In a noisy environment, one misperceived

defection from an opponent could cause Grim Trigger to throw away chances to

improve its score with an otherwise cooperative opponent. These examples do not

suggest that Grim Trigger is a bad strategy, they just point out that every strategy

needs to be understood in the context of its environment.

 Second, although co-evolution promoted a changing and diverse environment for

strategies to play in, it is important to note that the environment was a product of the

function set. In the fixed environment examples, the environment was limited to the pre-

defined opponent strategies that were selected. Analogously, in a co-evolutionary

environment, the environment is constrained by the strategies that can be produced with

the given function set. Since the function set is used to build the environment of

25

opponents during co-evolution, changes to the function set are amplified in a co-

evolutionary setting.

Points Scored vs. Coevolutionary Opponents

10000

15000

20000

25000

30000

35000

0 100

Tit-for-
Tat
Best of
Gen
Grim

Figure 6.6 Comparing the performance of Grim Trigger and Tit-for-Tat

7. Conclusion
 Genetic programming was used to successfully generate strategies for the

Repeated Prisoner’s Dilemma game. First, genetic programming was used to generate

strategies in manually-constructed environments of pre-defined opponents. The

strategies that were evolved were effective against the specific set of opponents in the

static environment, but could not be regarded as good general strategies. Where the

effectiveness of these strategies depended upon their diagnostic nature, changes to the

function set resulted in non-trivial variation in the performance of the evolved strategies.

26

 In co-evolution, the pre-defined opponents were replaced by a strategy’s peers in

the evolving population. Grim Trigger, a strategy regarded as a good general

strategy in previous work, emerged as the most effective strategy. Grim Trigger was

shown to perform similarly to Tit-for-Tat in this environment. The results suggest

that changing the function set has an increased effect in co-evolution since the changes

alter the environment of opponents.

 The application of genetic programming to evolutionary game theory discussed in

this paper suggests some interesting directions for future research. From a game-

theoretic perspective, the results of the study might be analyzed further. Are strategies

that emerge during evolution well-generalized strategies, evolutionary stable, or both?

This study also points out that the results of genetic programming runs are sensitive to

changes made to the function set. Additional research might build on these findings to

provide a more complete understanding of the general characteristics of functions that,

when added, tend to improve results.

8. Acknowledgements
 Thank you to my advisor Professor Sergio Alvarez for his wealth of insightful

comments. His time, support, and expertise were integral to the success of this project.

Thank you to my parents and friends for supporting me over the course of the year.

I would also like to thank Liviu Panait and Sean Luke for their technical assistance with

the ECJ software. Lastly, thank you to Mark Irvine for introducing me to the Prisoner’s

Dilemma and convincing me to sign up for the masochistic undertaking that is the Senior

Honors Thesis – I enjoyed the journey.

27

Appendix A: Java Source Code for Opponent Strategies

abstract class Strategy
{
 char[] myHistory;
 char[] oppHistory;
 int moveNumber;
 int gameLength;
 boolean hasDefected;
 boolean hasCooperated;

 public Strategy()
 {
 this.reset();
 }

 public void updateHistory(char myMove, char oppMove, int num)
 {
 moveNumber = num;
 myHistory[moveNumber] = myMove;
 oppHistory[moveNumber] = oppMove;
 if (oppMove == 'D'){
 hasDefected = true;
 }else{
 hasCooperated = true;
 }
 }

 public void reset(){
 hasDefected = false;
 hasCooperated = false;
 moveNumber = 0;
 gameLength = 100;
 myHistory = new char[gameLength];
 oppHistory = new char[gameLength];

 for(int i=0; i < myHistory.length; i++)
 {
 myHistory[i] = 'U';
 oppHistory[i] = 'U';
 }
 }

 abstract char getMove();
}

class AllC extends Strategy
{
 public char getMove()
 {
 return 'C';
 }
}

class AllD extends Strategy
{
 public char getMove()
 {
 return 'D';
 }
}

28

class GrimTrigger extends Strategy
{
 public char getMove()
 {
 if(hasDefected){
 return 'D';
 }else{
 return 'C';
 }
 }
}

class Pavlov extends Strategy
{
 public char getMove()
 {
 if(moveNumber == 0) return 'C';

 if(oppHistory[moveNumber-1] == myHistory[moveNumber-1]){
 return 'C';
 }else{
 return 'D';
 }
 }
}

class TitForTat extends Strategy
{
 public char getMove()
 {
 if(moveNumber == 0) return 'C';

 if(oppHistory[moveNumber-1] == 'C'){
 return 'C';
 }else{
 return 'D';
 }
 }
}

class CBTFT extends Strategy
{
 public char getMove()
 {
 if(moveNumber == 0) return 'C';

 if(oppHistory[moveNumber-1] == 'C'){
 return 'D';
 }else{
 return 'C';
 }
 }
}

class DBTFT extends Strategy
{
 public char getMove()
 {
 if(moveNumber == 0) return 'D';

 if(oppHistory[moveNumber-1] == 'C'){
 return 'D';

29

 }else{
 return 'C';
 }
 }
}

class DPC extends Strategy
{
 public char getMove()
 {
 if(hasCooperated){
 return 'C';
 }else{
 return 'D';
 }
 }
}

class DTFT extends Strategy
{
 public char getMove()
 {
 if(moveNumber == 0) return 'D';

 if(oppHistory[moveNumber-1] == 'C'){
 return 'C';
 }else{
 return 'D';
 }
 }
}

30

Appendix B: Java Source Code for Functions and Terminals

For brevity, the source code for the functions and terminals used in static environment
experiments is not included. The source code shown here was used for co-evolution. It
contains modifications to the classes used in the static environments which facilitate co-
evolution and add the ability to specify a pre-defined strategy for use as a benchmark in
co-evolutionary environments.

package ec.app.pd_compete.func;
import ec.*;
import ec.gp.*;
import ec.util.*;
import ec.coevolve.*;

import ec.app.pd_compete.*;

public class C extends GPNode{

 public String toString() { return "C"; }

 public void checkConstraints(final EvolutionState state,
 final int tree,
 final GPIndividual typicalIndividual,
 final Parameter individualBase)
 {
 super.checkConstraints(state,tree,typicalIndividual,individualBase);
 if (children.length!=0)
 state.output.error("Incorrect number of children for node " +
 toStringForError() + " at " +
 individualBase);
 }

 public void eval(final EvolutionState state,
 final int thread,
 final GPData input,
 final ADFStack stack,
 final GPIndividual individual,
 final Problem problem)
 {
 PDdata data = ((PDdata)(input));
 data.x = 'C';
 }
}

package ec.app.pd_compete.func;
import ec.*;
import ec.gp.*;
import ec.util.*;
import ec.coevolve.*;

import ec.app.pd_compete.*;

public class D extends GPNode{

 public String toString() { return "D"; }

 public void checkConstraints(final EvolutionState state,

31

 final int tree,
 final GPIndividual typicalIndividual,
 final Parameter individualBase)
 {
 super.checkConstraints(state,tree,typicalIndividual,individualBase);
 if (children.length!=0)
 state.output.error("Incorrect number of children for node " +
 toStringForError() + " at " +
 individualBase);
 }

 public void eval(final EvolutionState state,
 final int thread,
 final GPData input,
 final ADFStack stack,
 final GPIndividual individual,
 final Problem problem)
 {
 PDdata data = ((PDdata)(input));
 data.x = 'D';
 }
}

package ec.app.pd_compete.func;
import ec.*;
import ec.gp.*;
import ec.util.*;

import ec.app.pd_compete.*;

public class HAS_COOP extends GPNode {
 public String toString() { return "HAS_COOP"; }

 public void checkConstraints(final EvolutionState state,
 final int tree,
 final GPIndividual typicalIndividual,
 final Parameter individualBase)
 {
 super.checkConstraints(state,tree,typicalIndividual,individualBase);
 if (children.length!=2)
 state.output.error("Incorrect number of children for node " +
 toStringForError() + " at " +
 individualBase);
 }

 public void eval(final EvolutionState state,
 final int thread,
 final GPData input,
 final ADFStack stack,
 final GPIndividual individual,
 final Problem problem)
 {
 PD pd = (PD)problem;

 boolean oppHasCooperated;
 if (pd.whosTurn == pd.P1){
 oppHasCooperated = pd.p2HasCooperated;
 }else if(pd.whosTurn == pd.P2){
 oppHasCooperated = pd.p1HasCooperated;
 }else{
 oppHasCooperated = pd.p3HasCooperated;
 }

32

 if(oppHasCooperated){
 children[0].eval(state,thread,input,stack,individual,problem);
 }else{
 children[1].eval(state,thread,input,stack,individual,problem);
 }

 }
}

package ec.app.pd_compete.func;
import ec.*;
import ec.gp.*;
import ec.util.*;

import ec.app.pd_compete.*;

public class HAS_DEFECTED extends GPNode {
 public String toString() { return "HAS_DEFECTED"; }

 public void checkConstraints(final EvolutionState state,
 final int tree,
 final GPIndividual typicalIndividual,
 final Parameter individualBase)
 {
 super.checkConstraints(state,tree,typicalIndividual,individualBase);
 if (children.length!=2)
 state.output.error("Incorrect number of children for node " +
 toStringForError() + " at " +
 individualBase);
 }

 public void eval(final EvolutionState state,
 final int thread,
 final GPData input,
 final ADFStack stack,
 final GPIndividual individual,
 final Problem problem)
 {
 PD pd = (PD)problem;

 boolean oppHasDefected;
 if (pd.whosTurn == pd.P1){
 oppHasDefected = pd.p2HasDefected;
 }else if (pd.whosTurn == pd.P2){
 oppHasDefected = pd.p1HasDefected;
 }else{
 oppHasDefected = pd.p3HasDefected;
 }

 if(oppHasDefected){
 children[0].eval(state,thread,input,stack,individual,problem);
 }else{
 children[1].eval(state,thread,input,stack,individual,problem);
 }

 }
}

package ec.app.pd_compete.func;
import ec.*;
import ec.gp.*;
import ec.util.*;

33

import ec.coevolve.*;

import ec.app.pd_compete.*;

public class MY_2ND extends GPNode {
 public String toString() { return "MY_2ND"; }

 public void checkConstraints(final EvolutionState state,
 final int tree,
 final GPIndividual typicalIndividual,
 final Parameter individualBase)
 {
 super.checkConstraints(state,tree,typicalIndividual,individualBase);
 if (children.length!=3)
 state.output.error("Incorrect number of children for node " +
 toStringForError() + " at " +
 individualBase);
 }

 public void eval(final EvolutionState state,
 final int thread,
 final GPData input,
 final ADFStack stack,
 final GPIndividual individual,
 final Problem problem)
 {
 PD pd = (PD)problem;

 char temp;
 if (pd.whosTurn == pd.P1){
 temp = (pd.p1Moves.get(1)).charValue();
 }else if (pd.whosTurn == pd.P2){
 temp = (pd.p2Moves.get(1)).charValue();
 }else {
 temp = (pd.p2Moves2.get(1)).charValue();
 }

 switch(temp){
 case 'C':
 children[1].eval(state,thread,input,stack,individual,problem);
 break;

 case 'D':
 children[2].eval(state,thread,input,stack,individual,problem);
 break;

 default: // assume undefined
 children[0].eval(state,thread,input,stack,individual,problem);
 break;
 }

 }
}

package ec.app.pd_compete.func;
import ec.*;
import ec.gp.*;
import ec.util.*;
import ec.coevolve.*;

import ec.app.pd_compete.*;

34

public class MY_3RD extends GPNode {
 public String toString() { return "MY_3RD"; }

 public void checkConstraints(final EvolutionState state,
 final int tree,
 final GPIndividual typicalIndividual,
 final Parameter individualBase)
 {
 super.checkConstraints(state,tree,typicalIndividual,individualBase);
 if (children.length!=3)
 state.output.error("Incorrect number of children for node " +
 toStringForError() + " at " +
 individualBase);
 }

 public void eval(final EvolutionState state,
 final int thread,
 final GPData input,
 final ADFStack stack,
 final GPIndividual individual,
 final Problem problem)
 {
 PD pd = (PD)problem;

 char temp;
 if (pd.whosTurn == pd.P1){
 temp = (pd.p1Moves.get(2)).charValue();
 }else if (pd.whosTurn == pd.P2){
 temp = (pd.p2Moves.get(2)).charValue();
 }else {
 temp = (pd.p2Moves2.get(2)).charValue();
 }

 switch(temp){
 case 'C':
 children[1].eval(state,thread,input,stack,individual,problem);
 break;

 case 'D':
 children[2].eval(state,thread,input,stack,individual,problem);
 break;

 default: // assume undefined
 children[0].eval(state,thread,input,stack,individual,problem);
 break;
 }

 }
}

package ec.app.pd_compete.func;
import ec.*;
import ec.gp.*;
import ec.util.*;
import ec.coevolve.*;

import ec.app.pd_compete.*;

public class MY_4TH extends GPNode {
 public String toString() { return "MY_4TH"; }

 public void checkConstraints(final EvolutionState state,

35

 final int tree,
 final GPIndividual typicalIndividual,
 final Parameter individualBase)
 {
 super.checkConstraints(state,tree,typicalIndividual,individualBase);
 if (children.length!=3)
 state.output.error("Incorrect number of children for node " +
 toStringForError() + " at " +
 individualBase);
 }

 public void eval(final EvolutionState state,
 final int thread,
 final GPData input,
 final ADFStack stack,
 final GPIndividual individual,
 final Problem problem)
 {
 PD pd = (PD)problem;

 char temp;
 if (pd.whosTurn == pd.P1){
 temp = (pd.p1Moves.get(3)).charValue();
 }else if(pd.whosTurn == pd.P2){
 temp = (pd.p2Moves.get(3)).charValue();
 }else{
 temp = (pd.p2Moves2.get(3)).charValue();
 }

 switch(temp){
 case 'C':
 children[1].eval(state,thread,input,stack,individual,problem);
 break;

 case 'D':
 children[2].eval(state,thread,input,stack,individual,problem);
 break;

 default: // assume undefined
 children[0].eval(state,thread,input,stack,individual,problem);
 break;
 }

 }
}

package ec.app.pd_compete.func;
import ec.*;
import ec.gp.*;
import ec.util.*;
import ec.coevolve.*;

import ec.app.pd_compete.*;

public class MY_LAST extends GPNode {
 public String toString() { return "MY_LAST"; }

 public void checkConstraints(final EvolutionState state,
 final int tree,
 final GPIndividual typicalIndividual,
 final Parameter individualBase)
 {

36

 super.checkConstraints(state,tree,typicalIndividual,individualBase);
 if (children.length!=3)
 state.output.error("Incorrect number of children for node " +
 toStringForError() + " at " +
 individualBase);
 }

 public void eval(final EvolutionState state,
 final int thread,
 final GPData input,
 final ADFStack stack,
 final GPIndividual individual,
 final Problem problem)
 {
 PD pd = (PD)problem;

 char temp;
 if (pd.whosTurn == pd.P1){
 temp = (pd.p1Moves.get(0)).charValue();
 }else if(pd.whosTurn == pd.P2){
 temp = (pd.p2Moves.get(0)).charValue();
 }else{
 temp = (pd.p2Moves2.get(0)).charValue();
 }

 switch(temp){
 case 'C':
 children[1].eval(state,thread,input,stack,individual,problem);
 break;

 case 'D':
 children[2].eval(state,thread,input,stack,individual,problem);
 break;

 default: // assume undefined
 children[0].eval(state,thread,input,stack,individual,problem);
 break;
 }

 }
}

package ec.app.pd_compete.func;
import ec.*;
import ec.gp.*;
import ec.util.*;
import ec.coevolve.*;

import ec.app.pd_compete.*;

public class OPP_2ND extends GPNode {
 public String toString() { return "OPP_2ND"; }

 public void checkConstraints(final EvolutionState state,
 final int tree,
 final GPIndividual typicalIndividual,
 final Parameter individualBase)
 {
 super.checkConstraints(state,tree,typicalIndividual,individualBase);
 if (children.length!=3)
 state.output.error("Incorrect number of children for node " +
 toStringForError() + " at " +

37

 individualBase);
 }

 public void eval(final EvolutionState state,
 final int thread,
 final GPData input,
 final ADFStack stack,
 final GPIndividual individual,
 final Problem problem)
 {
 PD pd = (PD)problem;

 char temp;
 if (pd.whosTurn == pd.P1){
 temp = (pd.p2Moves.get(1)).charValue();
 }else if(pd.whosTurn == pd.P2){
 temp = (pd.p1Moves.get(1)).charValue();
 }else{
 temp = (pd.p3Moves.get(1)).charValue();
 }

 switch(temp){
 case 'C':
 children[1].eval(state,thread,input,stack,individual,problem);
 break;

 case 'D':
 children[2].eval(state,thread,input,stack,individual,problem);
 break;

 default: // assume undefined
 children[0].eval(state,thread,input,stack,individual,problem);
 break;
 }

 }
}

package ec.app.pd_compete.func;
import ec.*;
import ec.gp.*;
import ec.util.*;
import ec.coevolve.*;

import ec.app.pd_compete.*;

public class OPP_3RD extends GPNode {
 public String toString() { return "OPP_3RD"; }

 public void checkConstraints(final EvolutionState state,
 final int tree,
 final GPIndividual typicalIndividual,
 final Parameter individualBase)
 {
 super.checkConstraints(state,tree,typicalIndividual,individualBase);
 if (children.length!=3)
 state.output.error("Incorrect number of children for node " +
 toStringForError() + " at " +
 individualBase);
 }

 public void eval(final EvolutionState state,

38

 final int thread,
 final GPData input,
 final ADFStack stack,
 final GPIndividual individual,
 final Problem problem)
 {
 PD pd = (PD)problem;

 char temp;
 if (pd.whosTurn == pd.P1){
 temp = (pd.p2Moves.get(2)).charValue();
 }else if (pd.whosTurn == pd.P2){
 temp = (pd.p1Moves.get(2)).charValue();
 }else {
 temp = (pd.p3Moves.get(3)).charValue();
 }

 switch(temp){
 case 'C':
 children[1].eval(state,thread,input,stack,individual,problem);
 break;

 case 'D':
 children[2].eval(state,thread,input,stack,individual,problem);
 break;

 default: // assume undefined
 children[0].eval(state,thread,input,stack,individual,problem);
 break;
 }

 }
}

package ec.app.pd_compete.func;
import ec.*;
import ec.gp.*;
import ec.util.*;
import ec.coevolve.*;

import ec.app.pd_compete.*;

public class OPP_4TH extends GPNode {
 public String toString() { return "OPP_4TH"; }

 public void checkConstraints(final EvolutionState state,
 final int tree,
 final GPIndividual typicalIndividual,
 final Parameter individualBase)
 {
 super.checkConstraints(state,tree,typicalIndividual,individualBase);
 if (children.length!=3)
 state.output.error("Incorrect number of children for node " +
 toStringForError() + " at " +
 individualBase);
 }

 public void eval(final EvolutionState state,
 final int thread,
 final GPData input,
 final ADFStack stack,
 final GPIndividual individual,

39

 final Problem problem)
 {
 PD pd = (PD)problem;

 char temp;
 if (pd.whosTurn == pd.P1){
 temp = (pd.p2Moves.get(3)).charValue();
 }else if (pd.whosTurn == pd.P2){
 temp = (pd.p1Moves.get(3)).charValue();
 }else {
 temp = (pd.p3Moves.get(3)).charValue();
 }

 switch(temp){
 case 'C':
 children[1].eval(state,thread,input,stack,individual,problem);
 break;

 case 'D':
 children[2].eval(state,thread,input,stack,individual,problem);
 break;

 default: // assume undefined
 children[0].eval(state,thread,input,stack,individual,problem);
 break;
 }

 }
}

package ec.app.pd_compete.func;
import ec.*;
import ec.gp.*;
import ec.util.*;
import ec.coevolve.*;

import ec.app.pd_compete.*;

public class OPP_LAST extends GPNode {
 public String toString() { return "OPP_LAST"; }

 public void checkConstraints(final EvolutionState state,
 final int tree,
 final GPIndividual typicalIndividual,
 final Parameter individualBase)
 {
 super.checkConstraints(state,tree,typicalIndividual,individualBase);
 if (children.length!=3)
 state.output.error("Incorrect number of children for node " +
 toStringForError() + " at " +
 individualBase);
 }

 public void eval(final EvolutionState state,
 final int thread,
 final GPData input,
 final ADFStack stack,
 final GPIndividual individual,
 final Problem problem)
 {
 PD pd = (PD)problem;

40

 char temp;
 if (pd.whosTurn == pd.P1){
 temp = (pd.p2Moves.get(0)).charValue();
 }else if(pd.whosTurn == pd.P2){
 temp = (pd.p1Moves.get(0)).charValue();
 }else {
 temp = (pd.p3Moves.get(0)).charValue();
 }

 switch(temp){
 case 'C':
 children[1].eval(state,thread,input,stack,individual,problem);
 break;

 case 'D':
 children[2].eval(state,thread,input,stack,individual,problem);
 break;

 default: // assume undefined
 children[0].eval(state,thread,input,stack,individual,problem);
 break;
 }

 }
}

41

Appendix C: Java Source Code for the Prisoner’s Dilemma
Problem

The following Java source code is the formulation of the Prisoner’s Dilemma problem
that was used to co-evolve solutions in ECJ.

package ec.app.pd_compete;

import ec.util.*;
import ec.*;
import ec.gp.*;
import ec.gp.koza.*;
import ec.simple.*;
import ec.coevolve.*;

import java.util.*;

public class PD extends GPProblem implements GroupedProblemForm{

 public static final String P_DATA = "data";

 public PDdata input;

 //values of "My" moves and Opponent's moves
 public LinkedList<Character> p1Moves;
 public LinkedList<Character> p2Moves;

 public LinkedList<Character> p3Moves;
 public LinkedList<Character> p2Moves2;

 //temp variables for current moves
 public char p1Move;
 public char p2Move;
 public char p3Move;
 public char p2Move2;

 //cooperation and defection information
 public boolean p1HasDefected;
 public boolean p1HasCooperated;
 public boolean p2HasDefected;
 public boolean p2HasCooperated;

 public boolean p3HasDefected;
 public boolean p3HasCooperated;
 public boolean p2HasDefected2;
 public boolean p2HasCooperated2;

 public int p1defectCount;
 public int p2defectCount;
 public int p2defectCount2;
 public int p3defectCount;

 public int moveNum;

 //random number generator
 public MersenneTwisterFast rand;

42

 //Define payoff values here to make it easier to adjust them if needed
 public static final int MUTUAL_COOP = 3;
 public static final int MUTUAL_DEFECT = 1;
 public static final int TEMPTATION = 5;
 public static final int SUCKER = 0;

 //A variable used in the functions from the function set to determine who
 //is P1 and who is P2
 public int whosTurn;
 public static final int P1 = 1;
 public static final int P2 = 2;
 public static final int P3 = 3;

 //comparison strategies
 private Strategy p3;

 //for printing p3 info
 private int p3score = 0;
 private int oppCount = 0;
 private int maxScore = 0;

 public Object protoClone() throws CloneNotSupportedException
 {
 PD newobj = (PD) (super.protoClone());
 newobj.input = (PDdata)(input.protoClone());
 return newobj;
 }
 public void setup(final EvolutionState state,final Parameter base)
 {
 // very important, remember this
 super.setup(state,base);

 input =(PDdata)state.parameters.getInstanceForParameterEq(
 base.push(P_DATA), null, PDdata.class);
 input.setup(state,base.push(P_DATA));

 p3 = new GrimTrigger();

 //set up random number generator
 rand = new MersenneTwisterFast(3252354);
 }

 public void preprocessPopulation(final EvolutionState state,
 Population pop)
 {
 int opps = (state.parameters).getInt(
 new Parameter("eval.subpop.0.num-rand-ind"));
 maxScore = opps*TEMPTATION*100;

 for(int i = 0 ; i < pop.subpops.length ; i++)
 for(int j = 0 ; j < pop.subpops[i].individuals.length ; j++)
 ((KozaFitness)(pop.subpops[i].individuals[j].fitness)).
 setStandardizedFitness(state, (float)opps*TEMPTATION*100);

 }

 public void postprocessPopulation(final EvolutionState state,
 Population pop)
 {
 for(int i = 0 ; i < pop.subpops.length ; i++)
 for(int j = 0 ; j < pop.subpops[i].individuals.length ; j++)
 {

43

 pop.subpops[i].individuals[j].evaluated = true;
 }

 //report and reset scoring for p3
 int standardized = maxScore-p3score;
 System.out.print("Generation " + state.generation + ",");
 System.out.println(p3score + "," + standardized);
 p3score = 0;
 oppCount = 0;
 }

 public void evaluate(final EvolutionState state,
 final Individual[] ind,
 final boolean[] updateFitness,
 final boolean countVictoriesOnly,
 final int threadnum)
 {

 int sum1 = 0;
 int result1 = 0;

 int sum2 = 0;
 int result2 = 0;

 int sum3 = 0;
 int result3 = 0;

 //reset move history
 p1Moves = new LinkedList<Character>();
 p2Moves = new LinkedList<Character>();
 p3Moves = new LinkedList<Character>();
 p2Moves2 = new LinkedList<Character>();

 p1HasDefected = false;
 p1HasCooperated = false;
 p2HasDefected = false;
 p2HasCooperated = false;

 p3HasDefected = false;
 p3HasCooperated = false;
 p2HasDefected2 = false;
 p2HasCooperated2 = false;

 p1defectCount = 0;
 p2defectCount = 0;
 p2defectCount2 = 0;
 p3defectCount = 0;

 p3.reset();

 for(int x=0; x < 4; x++){
 p1Moves.addFirst(new Character('U'));
 p2Moves.addFirst(new Character('U'));
 p3Moves.addFirst(new Character('U'));
 p2Moves2.addFirst(new Character('U'));
 }

 for(int j=0;j<100;j++){//play the game 100 times
 moveNum = j;

 whosTurn = P1;
 //Evaluate the individual to get Player 1's move
 ((GPIndividual)ind[0]).trees[0].child.eval(

44

 state,threadnum,input,stack,((GPIndividual)ind[0]),this);
 p1Move = input.x;
 if(p1Move == 'C'){
 p1HasCooperated = true;
 }else{
 p1HasDefected = true;
 p1defectCount++;
 }
 whosTurn = P2;
 //Evaluate the individual to get Player 2's move
 ((GPIndividual)ind[1]).trees[0].child.eval(
 state,threadnum,input,stack,((GPIndividual)ind[1]),this);
 p2Move = input.x;
 if(p2Move == 'C'){
 p2HasCooperated = true;
 }else{
 p2HasDefected = true;
 p2defectCount++;
 }

 //calculate each individual's payout based on given moves
 result1 = getPayout(p1Move, p2Move);
 result2 = getPayout(p2Move, p1Move);

 //keep a tally for how each player is doing
 sum1 += result1;
 sum2 += result2;

 //Update both players' move history
 p1Moves.addFirst(new Character(p1Move));
 p2Moves.addFirst(new Character(p2Move));

 //--- Play TFT (or another Strategy) against subpopulation 2 ---//

 whosTurn = P3;
 //Get Strategy's move
 p3Move = p3.getMove();
 if(p3Move == 'C'){
 p3HasCooperated = true;
 }else{
 p3HasDefected = true;
 p3defectCount++;
 }

 //how would p2 have played against p3?
 //Evaluate the individual to get Player 2's move
 ((GPIndividual)ind[1]).trees[0].child.eval(
 state,threadnum,input,stack,((GPIndividual)ind[1]),this);
 p2Move2 = input.x;
 if(p2Move2 == 'C'){
 p2HasCooperated2 = true;
 }else{
 p2HasDefected2 = true;
 p2defectCount2++;
 }

 //calculate P3's payout based on given moves
 result3 = getPayout(p3Move, p2Move2);

 //keep a tally for how each player is doing
 sum3 += result3;

 //Update both players' move history

45

 p3Moves.addFirst(new Character(p3Move));
 p2Moves2.addFirst(new Character(p2Move2));

 p3.updateHistory(p3Move, p2Move, j);

 //-------- Done playing TFT against subpopulation 2 --------//
 }

 if (sum1 >= 100*MUTUAL_DEFECT)
 ((KozaFitness)(ind[0].fitness)).hits=
 ((KozaFitness)(ind[0].fitness)).hits + 1;
 if (sum2 >= 100*MUTUAL_DEFECT)
 ((KozaFitness)(ind[1].fitness)).hits=
 ((KozaFitness)(ind[1].fitness)).hits + 1;

 float prevFit1 = ((KozaFitness)(ind[0].fitness)).rawFitness();
 float prevFit2 = ((KozaFitness)(ind[1].fitness)).rawFitness();

 if(updateFitness[0])
 {
 ((KozaFitness)(ind[0].fitness)).setStandardizedFitness(
 state,(float)(prevFit1-sum1));
 }

 if(updateFitness[1])
 {
 ((KozaFitness)(ind[1].fitness)).setStandardizedFitness(
 state,(float)(prevFit2-sum2));
 }

 //update p3's score
 if(oppCount < 100)
 p3score += sum3;
 oppCount++;
 }

 //user-defined function that calculates the outcome value
 //of the game
 private int getPayout(char myMove, char oppMove)
 {
 if(myMove == oppMove){
 if(myMove == 'C'){
 return MUTUAL_COOP;
 }else{
 return MUTUAL_DEFECT;
 }
 }else{
 if(myMove == 'C'){
 return SUCKER;
 }else{
 return TEMPTATION;
 }
 }
 }
}

46

Appendix D: Sample ECJ parameter file

This is the ECJ parameter file that was used for co-evolutionary runs with FS2

parent.0 = ../../gp/koza/koza.params

generations = 500
evalthreads = 1
breedthreads = 1
seed.0 = 55678

checkpoint = false
checkpoint-modulo = 10

set up statistics
stat.num-children = 2
stat.child.0 = ec.gp.koza.KozaStatistics
stat.child.1 = ec.gp.koza.KozaShortStatistics
stat.child.0.file = $out.stat
stat.child.1.file = $out.short

set up population
pop.subpops = 2
pop.subpop.0 = ec.Subpopulation
pop.subpop.1 = ec.Subpopulation

we are using competitive coevolution
eval =
ec.coevolve.MultiPopCoevolutionaryEvaluator

#the num-rand-ind set here is used in fitness calculation -- make sure subpop 0
#and 1 are the same number
eval.subpop.0.num-rand-ind = 100
eval.subpop.0.num-elites = 0
eval.subpop.0.num-ind = 0
eval.subpop.0.select = ec.select.TournamentSelection
eval.subpop.0.select.size = 1

eval.subpop.1.num-rand-ind = 100
eval.subpop.1.num-elites = 0
eval.subpop.1.num-ind = 0
eval.subpop.1.select = ec.select.TournamentSelection
eval.subpop.1.select.size = 1

set up subpopulations
pop.subpop.0.size = 500
pop.subpop.1.size = 500

pop.subpop.0.fitness = ec.gp.koza.KozaFitness
pop.subpop.1.fitness = ec.gp.koza.KozaFitness

pop.subpop.0.duplicate-retries = 100
pop.subpop.1.duplicate-retries = 100

pop.subpop.0.species = ec.gp.GPSpecies
pop.subpop.0.species.ind = ec.gp.GPIndividual
pop.subpop.1.species = ec.gp.GPSpecies

47

pop.subpop.1.species.ind = ec.gp.GPIndividual

pop.subpop.0.species.ind.numtrees = 1
pop.subpop.0.species.ind.tree.0 = ec.gp.GPTree
pop.subpop.0.species.ind.tree.0.tc = tc0
pop.subpop.1.species.ind.numtrees = 1
pop.subpop.1.species.ind.tree.0 = ec.gp.GPTree
pop.subpop.1.species.ind.tree.0.tc = tc0

pop.subpop.0.species.pipe = ec.breed.MultiBreedingPipeline
pop.subpop.0.species.pipe.generate-max = false
pop.subpop.0.species.pipe.num-sources = 3
pop.subpop.0.species.pipe.source.0 = ec.gp.koza.CrossoverPipeline
pop.subpop.0.species.pipe.source.0.prob = 0.7
pop.subpop.0.species.pipe.source.1 = ec.breed.ReproductionPipeline
pop.subpop.0.species.pipe.source.1.prob = 0.3
pop.subpop.0.species.pipe.source.2 = ec.gp.koza.MutationPipeline
pop.subpop.0.species.pipe.source.2.prob = 0.0

pop.subpop.1.species.pipe = ec.breed.MultiBreedingPipeline
pop.subpop.1.species.pipe.generate-max = false
pop.subpop.1.species.pipe.num-sources = 3
pop.subpop.1.species.pipe.source.0 = ec.gp.koza.CrossoverPipeline
pop.subpop.1.species.pipe.source.0.prob = 0.7
pop.subpop.1.species.pipe.source.1 = ec.breed.ReproductionPipeline
pop.subpop.1.species.pipe.source.1.prob = 0.3
pop.subpop.1.species.pipe.source.2 = ec.gp.koza.MutationPipeline
pop.subpop.1.species.pipe.source.2.prob = 0.0

breed.reproduce.source.0 = ec.parsimony.LexicographicTournamentSelection
gp.koza.mutate.source.0 = ec.parsimony.LexicographicTournamentSelection
gp.koza.xover.source.0 = ec.parsimony.LexicographicTournamentSelection
gp.koza.xover.source.1 = ec.parsimony.LexicographicTournamentSelection
select.lexicographic-tournament.size = 7

#add elitism
breed.elite.0 = 10
breed.elite.1 = 10

We have one function set, of class GPFunctionSet
gp.fs.size = 1
gp.fs.0 = ec.gp.GPFunctionSet
We'll call the function set "f0". It uses the default GPFuncInfo class
gp.fs.0.name = f0
gp.fs.0.info = ec.gp.GPFuncInfo

We have functions in the function set. They are:
gp.fs.0.size = 12
gp.fs.0.func.0 = ec.app.pd_compete.func.C
gp.fs.0.func.0.nc = nc0
gp.fs.0.func.1 = ec.app.pd_compete.func.D
gp.fs.0.func.1.nc = nc0
gp.fs.0.func.2 = ec.app.pd_compete.func.MY_LAST
gp.fs.0.func.2.nc = nc3
gp.fs.0.func.3 = ec.app.pd_compete.func.MY_2ND
gp.fs.0.func.3.nc = nc3
gp.fs.0.func.4 = ec.app.pd_compete.func.MY_3RD
gp.fs.0.func.4.nc = nc3
gp.fs.0.func.5 = ec.app.pd_compete.func.MY_4TH
gp.fs.0.func.5.nc = nc3
gp.fs.0.func.6 = ec.app.pd_compete.func.OPP_LAST
gp.fs.0.func.6.nc = nc3
gp.fs.0.func.7 = ec.app.pd_compete.func.OPP_2ND

48

gp.fs.0.func.7.nc = nc3
gp.fs.0.func.8 = ec.app.pd_compete.func.OPP_3RD
gp.fs.0.func.8.nc = nc3
gp.fs.0.func.9 = ec.app.pd_compete.func.OPP_4TH
gp.fs.0.func.9.nc = nc3
gp.fs.0.func.10 = ec.app.pd_compete.func.HAS_DEFECTED
gp.fs.0.func.10.nc = nc2
gp.fs.0.func.11 = ec.app.pd_compete.func.HAS_COOP
gp.fs.0.func.11.nc = nc2

eval.problem = ec.app.pd_compete.PD
eval.problem.data = ec.app.pd_compete.PDdata

The following should almost *always* be the same as eval.problem.data
For those who are interested, it defines the data object used internally
inside ADF stack contexts
eval.problem.stack.context.data = ec.app.pd_compete.PDdata

49

References

[1] Axelrod, Robert. The Evolution of Cooperation. New York: Basic Books, 1984.
[2] Axelrod, Robert. The Complexity of Cooperation. Princeton: Princeton University

Press, 1997.
[3] Dacey, Raymond and Norman Pendegraft. “The Optimality of Tit-For-Tat.”

International Interactions 15, no. 1 (1988): 45-64.
[4] Dixit, Avinash and Susan Skeath. Games of Strategy. 2nd ed. New York: W.W.

Norton, 2004.
[5] Fujiki, Cory and John Dickinson. “Using the Genetic Algorithm to Generate Lisp

Source Code to Solve the Prisoner’s Dilemma.” Genetic Algorithms and their
Applications: Proceedings of the Second International Conference on Genetic
Algorithms. Edited by John J. Grefenstette, 236-40. Hillsdale: Erlbaum, 1987.

[6] Golbeck, Jennifer. “Evolving Strategies for the Prisoner’s Dilemma.” Advances in
Intelligent Systems, Fuzzy Systems, and Evolutionary Computation. February
2002, p 299-306.

[7] Holland, John H. Adaptation in Natural and Artificial Systems. Ann Arbor:
University of Michigan Press, 1975.

[8] Koza, John R. Genetic Programming: On the Programming of Computers by Means
of Natural Selection. Cambridge: MIT Press, 1992.

[9] Lowsky, David. “Using a Cooperative Fitness Function to Coevolve Optimal
Strategies in the Iterated Prisoner’s Dilemma Game.” Genetic Algorithms and
Genetic Programming at Stanford. Edited by John R. Koza, 131-39. Stanford,
1999.

[10] Luke, Sean and Liviu Panait. “Lexicographic Parsimony Pressure.” GECCO-2002:
Proceedings of the Genetic and Evolutionary Computation Conference. Edited by
W. B. Langdon et al, 829-36. Morgan Kauffman, 2002.

[11] Luke, Sean et al. ECJ: A Java-based Evolutionary Computation Research System.
Version 13. Available at http://cs.gmu.edu/~eclab/projects/ecj/

[12] Miller, John Howard. “Two Essays on the Economics of Imperfect Information.”
PhD diss., University of Michigan, 1988.

50

	1. Introduction
	2. The Prisoner’s Dilemma
	3. Genetic Programming
	4. ECJ
	5. Methodology
	The Problem
	The Function and Terminal Sets
	Fitness
	Evolutionary Operators and Parameters
	The Experiments
	6. Results and Discussion
	 Static Environments
	Co-evolutionary Environments

	7. Conclusion
	8. Acknowledgements
	 Appendix C: Java Source Code for the Prisoner’s Dilemma Problem
	 Appendix D: Sample ECJ parameter file

