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1. Introduction 
 
 The Prisoner’s Dilemma has previously been used to show the validity and 

effectiveness of applying genetic algorithms in a game-theoretic context.  [2,5].  The 

current body of research consists of various methods for representing strategies for the 

Repeated Prisoner’s Dilemma.  In each case, the representation scheme that is chosen 

provides a framework for the evolutionary process and dictates the number of previous 

moves that a given strategy can consider in the calculation of its next move.  For 

example, Miller [12] modeled strategies as bit-string representations of finite state 

automata whereas Axelrod’s [2] more direct approach used bit strings to reflect the last 

three moves of the game’s results history.  Some of these studies evolve strategies based 

on their performance against a fixed environment [6,12] while others have introduced the 
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idea of co-evolution – the process of assessing a given strategy by its performance against 

its peers in each evolutionary generation [2,5,9]. 

 Although Fujiki and Dickinson [5] demonstrated that genetic algorithms could be 

used to evolve Lisp S-expressions, the solution relied heavily upon the construction of a 

grammar and was contingent upon “a proper set of productions” being used.  The goal of 

the current paper is twofold.  First, it aims to take a more structured and extensible 

approach to evolving strategies for the Repeated Prisoner’s Dilemma game by applying 

the genetic programming paradigm as developed in Koza 1992 [8].  In addition, it 

attempts to determine the implications of altering the function set that the algorithm 

draws from when composing new strategies. 

2. The Prisoner’s Dilemma 
 
 The Prisoner’s Dilemma game has been shown to have a variety of applications 

in the social sciences and other fields, ranging from trade tariff reduction, to labor 

arbitration, evolutionary biology, and price matching [1,4]. 

 The Prisoner’s Dilemma game is best illustrated anecdotally:  Suppose that you 

are a bank robber.  One day, you and your accomplice are both brought to the police 

station and placed in separate rooms for questioning.  Isolated from each other, you are 

each explained the following:  If you both confess, you will receive matching 5 year 

sentences.  On the other hand, without a confession from either of you, the police only 

have enough evidence to put you both away for a lesser crime which carries a penalty of 

only 3 years.  However, if one robber confesses and the other does not, the recalcitrant 

party will be sentenced to 10 years in prison while the robber making the confession will 

receive only 1 year.  What should you do? 
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  Robber 2 
  Deny (Cooperate) Confess (Defect) 

Deny (Cooperate) 3 , 3 10 , 1 Robber 
1 Confess (Defect) 1 , 10 5 , 5 

Table  2.1 The Prisoner's Dilemma with payoffs as time in jail 
 

 Economic game theory provides tools for analyzing this situation.  Table 2.1 

models the above scenario as a strategic game, where Robber 1’s jail sentence is always 

listed first.  The strategies available for each prisoner boil down to two options:  either 

confess to the crime (Defect from accomplice) or deny the allegations (Cooperate with 

accomplice). 

 Each player in the game has one objective: to minimize his time in jail.  Robber 1 

has no knowledge of what Robber 2’s move will be.  However, Robber 1 knows that if 

Robber 2 confesses, his best response is to confess – he receives only 5 years in jail if he 

confesses as opposed to 10 years if he denies the allegations.  He also knows that if 

Robber 2 chooses to deny, his best response is to confess – he receives only 1 year in jail 

if he confesses as opposed to 3 years if he denies.  No matter what Robber 2 does, it is 

always in Robber 1’s best interests to confess.  Thus, confession is a dominant strategy 

for Robber 1 [4].  Since, a similar analysis holds true for Robber 2, the dominant strategy 

equilibrium is for both robbers to confess.  Curiously, even though [Confess, Confess] 

is a dominant strategy equilibrium, both parties would be better off if the outcome was 

[Deny, Deny]. 

 
  Player 2 
  Cooperate Defect 

Cooperate R = 3 , R = 3 S = 0, T = 5 Player 
1 Defect T = 5 , S = 0 P = 1 , P =1 

Table  2.2 The Prisoner’s Dilemma, with payoffs as points 
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 The Prisoner’s Dilemma can also be described formally.  Table 2.2 is a strategic 

form illustration of another classic example of the Prisoner’s Dilemma game from 

Axelrod [1].  Note that in this example (and from this point forward), players are trying to 

maximize their payoff rather than minimize it as in the previous formulation.   

 Another useful way of viewing the Prisoner’s Dilemma game is as tree, in what is 

called extensive form.  Fig 2.1 is an extensive form representation of the strategic game 

in Table 2.2.  Information Sets, shown as dotted lines between two or more nodes of 

equal depth, indicate the fact that the moves occur simultaneously.  Here, because Player 

2 finds himself in a two-node information set, he has no knowledge of whether Player 1 

has moved C or D.  The extensive form game in Figure 2.1 has four possible outcomes 

which are identical to the outcomes in Table 2.2. 

 

Figure  2.1 The Prisoner’s Dilemma as an extensive form game 
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 The game consists of four possible payoffs, which shall be abbreviated R, T, S and 

P.  R is the reward for mutual cooperation, T is the temptation to defect, S is the sucker’s 

payoff, and P is the punishment for mutual defection.  In order for the Prisoner’s 

Dilemma to be present, two relationships must apply.  First, it must be true that T > R > P 

> S.  This ordering preserves the proper incentive structure, as the temptation to defect 

must be greater than the reward for cooperation, and so on.  Second, the reward for 

cooperation must be greater than the average of the temptation to defect and the sucker’s 

payoff – i.e. R > .5(T+S).  This removes the ability of players to take turns exploiting 

each other to do better than if they played the game egoistically [1]. 

 A further technical analysis shows how the [Defect, Defect] dominant strategy 

equilibrium is undesirable, but not easily avoidable.  [Defect, Defect] is not 

considered an efficient outcome.  An outcome in a game is considered Pareto efficient if 

no other outcome exists that makes every player at least as well off and at least one 

player strictly better off.  Therefore, mutual cooperation is the only Pareto efficient 

solution in the Prisoner’s dilemma [6].  However even though mutual cooperation is 

Pareto efficient, the [Defect, Defect] outcome is not easily avoidable because it is a 

Nash equilibrium.  A Nash equilibrium is an outcome of a game where neither player can 

unilaterally change his move in order to improve his own payout [4].  It follows that 

[Defect, Defect] is a Nash equilibrium since a player’s best choice is to defect when 

he knows that his opponent will defect.  Since [Defect, Defect] is the only Nash 

equilibrium, it is impossible for two rational egoists who play the game only once to end 

up in any other state. 
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 Although the possibility of mutual cooperation emerging in such a situation seems 

bleak, cooperation can in fact be sustained when the game is played multiple times. The 

resulting game is called the Repeated Prisoner’s Dilemma (RPD).  Research shows that 

the best strategy for playing the repeated game is much different from the best strategy 

for playing just one round [1].  Repeating the game introduces the possibility for 

reciprocity that exists in many real-life interactions– players are now able to reward and 

punish each other based on past interactions.  For example, in a repeated setting a rational 

player might try to achieve the gains from cooperation, but would be able to retreat to 

defection if an opponent was uncooperative. 

 The success of the Tit-for-Tat strategy in the Repeated Prisoner’s Dilemma 

has been well-documented.  When using the Tit-for-Tat strategy, a player 

cooperates on the first move and then mimics the opponent’s move from the last round 

for the remainder of the game.  Tit-for-Tat scores well in tournaments because of its 

ability to reward its opponent for cooperation while also punishing it for defection [1].  

Other strategies that have scored well are Tit-for-Two-Tats, Grim Trigger, and 

Pavlov [5,6].  Tit-for-Two-Tats is a variation of the Tit-for-Tat strategy 

which cooperates unless defected on for two consecutive moves.  The Grim Trigger 

strategy simulates a player who is provocable and unforgiving:  it cooperates until 

defected on, at which time it permanently defects.  Last, the Pavlov strategy is an 

intuitive “win-stay, lose-switch” strategy.  If it receives a desirable payoff, it repeats its 

move in the next round.  However, if it receives an undesirable payoff, it will try a 

different move in the next round.  Hence, Pavlov cooperates if the last move reflects a 

mutual cooperation or defection (i.e. [Cooperate, Cooperate] or [Defect, Defect]) 
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and defects otherwise.  The Pavlov strategy can either defect or cooperate on the first 

move1. 

3. Genetic Programming 
 
 Genetic programming (GP) is an evolutionary computation technique which is 

based upon the genetic algorithm (GA) developed by Holland [7].  The genetic 

programming paradigm, as it will be used in the scope of this paper, was popularized by 

John Koza [8]. 

 Genetic algorithms take advantage of the Darwinian concept of natural selection 

to evolve suitable solutions to complex problems.  In the typical genetic algorithm, a 

possible solution to a problem – called an individual – is represented as a bit string.  Each 

individual is assigned a fitness, which is simply a determination of how effective a given 

individual is at solving the problem.  For example, when evolving a game-playing 

strategy, a fitness measure might be the number of points the individual scored in the 

game.  To kickoff the evolutionary process, an initial population of individuals is 

generated through a random process as detailed by Koza [8].  Next, the fitness of each 

individual in the population is evaluated.  Favoring individuals with the highest fitness, 

new generations are repeatedly created via genetic techniques such as mutation, 

crossover, and reproduction.  During the process, progressively more fit generations are 

created until either a satisfactory best-of-generation individual is produced or a pre-

determined number of generations have been created. 

 The difference between the genetic algorithm and genetic programming lies 

primarily in representation.  Genetic programming is distinct because it represents 

                                                 
1 The Pavlov implementation in this paper cooperated on the first move. 
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solutions as actual computer programs.  Programming languages such as Lisp are well-

suited for GP because they are structured as symbolic expressions (S-expressions) which 

can be represented as trees.  The nodes of the trees are members of a set of functions and 

a set of terminals which are defined by the user in the GP representation.  Some examples 

of functions given in Koza [8] are arithmetic operations (+,-,*, etc), mathematical 

functions (sin, cos, log, etc.), Boolean operations (AND, OR, NOT, etc.), conditional 

operators (IF-THEN-ELSE), as well as any other domain-specific functions that can be 

defined.  The terminal set typically consists of constant values or state variables.  In order 

to ensure that the trees generated by GP are valid, the function set and terminal set must 

both be closed.  The closure property, stated more formally, ensures that any function in 

the function set must be able to accept as an argument any value that could be derived 

from another function in the function set or any terminal in the terminal set.  Figure 3.1 

shows an example of a simple mathematical Lisp S-expression and a corresponding tree. 

 

Figure  3.1 A simple Lisp expression and tree 
 
 There are three operations that are typically carried out during the evolutionary 

process:  reproduction, crossover, and mutation.  These primary operations are intended 
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to simulate the process of Darwinian evolution and natural selection thus building 

stronger populations from generation to generation.  In reproduction, an individual is 

selected from the population and then simply copied into the new generation.  The 

crossover operation, illustrated in Figure 3.2, selects two different individuals from the 

population, randomly selects one node from each to be the crossover point, and then 

swaps the subtrees found at the crossover nodes to create two new individuals for the new 

generation.  Lastly, mutation introduces random changes into the new generation.  When 

mutation (Figure 3.3) is applied, an individual is selected and a mutation point is selected 

at random.  A randomly generated subtree is inserted at the mutation point and the 

mutated individual is added to the new population. 

 
Figure  3.2 An example of the crossover operation 
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Figure  3.3 An example of the mutation operation 

 
 The method used to select individuals for the genetic operations can vary, but is 

typically based on fitness.  Two popular selection methods are fitness-proportionate 

selection and tournament selection.  For fitness-proportionate selection, the probability 

that a given individual is selected increases in proportion to an individual’s fitness with 

respect to the rest of the population.  In tournament selection, a certain number of 

individuals are selected at random from the group and then the one with the best fitness is 

selected [8]. 

 There are also some variations of tournament selection that examine tree size as a 

secondary objective behind fitness.  During the evolutionary process, individuals’ tree 

sizes can become unnecessarily and unmanageably large – a phenomenon known as GP 

bloat.  Applying lexicographic parsimony pressure helps to solve this problem.  In 
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lexicographic parsimony pressure, n individuals are chosen at random.  As in regular 

tournament selection, the individual with the best fitness is selected.  However, in the 

event of tie, lexicographic parsimony pressure selects the individual with a smaller tree 

size.  This multiobjective technique helps limit the size of the evolved trees and therefore 

reigns in bloat [10]. 

 Selection methods can be supplemented by a technique known as elitism.  The 

reader may have observed that the selection methods described above are probabilistic in 

nature – although they will select relatively more fit individuals, they do not necessarily 

ensure that the most fit individuals pass on to the next generation.  If an individual is not 

selected at random for consideration by the selection method, then it can not pass on to 

the next generation.  Adding elitism to the evolutionary process guarantees that the top n 

individuals (the “elites”) move on to the next generation.  After positions for the elites are 

secured in the next generation, the remainder of the population is selected via a standard 

selection method. 

4. ECJ 
 
 The genetic programming implementation used for this paper is a Java-based 

evolutionary computation toolkit called ECJ [11].  ECJ provides a set of classes which 

can be used to customize a Genetic programming problem domain such as the Repeated 

Prisoner’s Dilemma.  The configurable parameter files used by the system allow for a 

considerable amount of tweaking by the user.  The methods for initial population 

generation, selection, fitness, and genetic operators can all be specified at run time.  In 

addition, ECJ supports co-evolution, which is particularly useful for the evolving game-
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playing strategies.  Co-evolution allows an individual’s fitness to be calculated based on 

its performance playing a game against another evolving subpopulation. 

5. Methodology 

The Problem 
 In this version of the Repeated Prisoner’s Dilemma, the payoff structure will be 

defined as [R, T, S, P] = [3, 5, 0, 1] as in Figure 1.2.  Each individual plays the Prisoner’s 

Dilemma game 100 times against the n opponents in its environment.  For static 

environments, this means playing any number of pre-determined, well-known strategies.  

In co-evolutionary environments, this means playing 100 randomly selected opponents 

from the opposing subpopulation.  The objective of each GP run will be to evolve the 

highest-scoring strategy possible. 

The Function and Terminal Sets 
 Applying genetic programming to the Repeated Prisoner’s Dilemma requires a 

conscious determination of how to represent the problem.  Although the function set and 

the terminal set that are created do not directly guide the evolutionary process, the union 

of these two sets provides the “tools” with which the evolutionary process is allowed to 

work. 

 Previous work on evolving a strategy for a simple, 32-outcome extensive form 

game proves extensible to the Repeated Prisoner’s Dilemma [8].  The 32-outcome game 

consists of only five total moves.  Therefore, the function set can provide information 

about the game’s entire history through only four functions which return the value of 

moves one through four.  The Repeated Prisoner’s Dilemma is different because of its 

infinite nature.  To understand this, picture what Figure 2.1 would look like if the game 
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was played more than once – the four terminal nodes would be replaced by four 

Prisoner’s Dilemma games in extensive form, which would recursively contain more 

Prisoner’s Dilemma games, and so on.  Because the Repeated Prisoner’s Dilemma can 

consist of any number of iterations, it would be impossible to keep the size of both the 

function and terminal sets bounded while also taking into account the history of the 

whole game.  Therefore, when using this methodology to model the Repeated Prisoner’s 

Dilemma, the number of historical moves taken into consideration must be finite. 

 The terminal set in this problem consists of the two moves available to the 

players.  In the case of the Prisoner’s Dilemma this means Cooperate (C) and Defect (D).  

In addition, it is important to provide for a move being Undefined (U) to ensure that 

closure is established.  This is required because the functions will not necessarily be able 

to provide data during the first four moves.  For example, if in the first round of a game, a 

call is made to a function that checks the opponent’s second-to-last move, there is no 

second-to-last move to report for either player, so the function should return U.  

Therefore, the terminal set T = {C, D, U}. 

 All of the functions in the function set are based on the CASE statement in Lisp.  

The first category of functions includes functions that are based on recent move history.  

These functions can evaluate to any of three arguments in order to provide information 

about the most recent four moves of both players.  To illustrate with an example, the 

function OPP_LAST will evaluate to its first argument if the opposing player’s last move 

is undefined, to its second argument if the move was C, and to its third argument if the 

move was D.  The functions MY_LAST, MY_2ND, MY_3RD, and MY_4TH consult the 

move history variables to provide information about the individuals own moves (from 
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most recent to least recent, respectively) while OPP_LAST, OPP_2ND, OPP_3RD, and 

OPP_4TH provide the same information for the opponent’s moves. 

 The next category included the functions HAS_COOP and HAS_DEFECTED.  

These functions check to see if the opponent has ever, within the current history, 

cooperated or defected, respectively.  Both functions are of arity two in order to handle 

the “true” and “false” cases.  For example, if the opponent has ever cooperated 

(according to the current move history) HAS_COOP will return its first argument, but will 

return its second argument in all other cases. 

Fitness 
 Only rudimentary fitness calculations are required for the repeated Prisoner’s 

Dilemma.  An individual’s raw fitness is the sum of its scores from the n 100-round 

contests that it plays against its n opponents.  Programmatically, it is useful to standardize 

fitness.  A standardized fitness measure, shown in Figure 5.1, is constructed by 

subtracting the raw fitness from the total number of points available.  In simple terms, 

standardized fitness denotes the number of points that a particular strategy failed to earn 

over the course of its interactions.  Therefore, the lower a strategy’s standardized fitness 

is, the better the strategy is.  Although a perfect standardized fitness of 0 can only be 

achieved in an environment filled with opponents who unconditionally cooperate, the 

standardized fitness measure provides context when comparing two strategies or 

graphically analyzing data. 

Standardized Fitness = T * 100 * n – s 
 

 where: T = the temptation to defect = 5 
  n = the number of opponents 
  s = the total number of points scored = raw fitness 

Figure  5.1  An explanation of Standardized fitness 
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Evolutionary Operators and Parameters 
 Unless otherwise noted, runs performed during the study used the following 

evolutionary operators and parameters:  The evolutionary operators were crossover and 

reproduction, used at the probability of .7 and .3 respectively.  Tournament selection with 

lexicographic parsimony pressure and a tournament size of 7 was used to select the 

individuals to be operated upon. 

 In runs against a static environment, a population of 500 individuals was evolved 

for 100 generations.  For co-evolutionary environments, both subpopulations consisted of 

500 individuals and were run for up to 500 generations. 

The Experiments 

Table  5.1 Summary of the environments of pre-defined strategies used in genetic programming runs 

Environment Name Opponents in Environment 
Environment 1 All C 

Environment 2 All D 

Environment 3 All C, All D, Tit-for-Tat 

Environment 4 All D, Grim Trigger 

Environment 5 Tit-for-Tat, Grim Trigger 

Environment 6 Tit-for-Tat, Grim Trigger, Pavlov 

Environment 7 All C, Grim Trigger 

Environment 8 DBTFT, DPC, All D, DTFT, CBTFT, All 
C, Grim Trigger, Tit-for-Tat 

 
 Procedures were designed to examine the effect of the function set’s composition 

on the fitness of the evolved strategies.  A standard evolutionary process was used to 

evolve strategies against different fixed environments and one co-evolutionary 

environment.  In a fixed environment, any number of predetermined strategies made up 

the environment of opponents.  These environments are summarized in Table 5.1 and 

Java source code for the strategies can be found in Appendix A.  In the co-evolutionary 

environment, the individual being evaluated played against a selection of its counterparts 
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in the current evolutionary generation.  Figure 5.2 shows a high level view of the 

experimental procedure.  In Step 1, the function set was sequentially set equal to three 

predefined function sets:  FS1, FS2, and FS3.  The function set FS1 consisted of eight 

functions (MY_LAST, MY_2ND, MY_3RD, MY_4TH, OPP_LAST, OPP_2ND, OPP_3RD, 

and OPP_4TH) that could check the last four moves of each player in the history.  After 

this, FS2 was constructed by adding the HAS_COOP and HAS_DEFECTED functions to 

FS1. The evolutionary process was again set in motion in all environments.  Finally, the 

function set was reduced to FS3, a function set consisting of just two functions:  

MY_LAST and OPP_LAST. 

Procedure: 
1. Set F = FS1 = {MY_LAST, MY_2ND, MY_3RD, MY_4TH, OPP_LAST, 

OPP_2ND, OPP_3RD, OPP_4TH} 
2. Run against all environments 
3. Set F = FS2 = {MY_LAST, MY_2ND, MY_3RD, MY_4TH, OPP_LAST, 

OPP_2ND, OPP_3RD, OPP_4TH, HAS_COOP, HAS_DEFECTED } 
4. Run against all environments 
5. Set F = FS3 = {MY_LAST, OPP_LAST } 
6. Run against all environments 

Figure  5.2 The experimental procedure and various  function sets 

6. Results and Discussion 

 Static Environments 
 A summary of fixed (i.e. static) environment results can be found in Table 6.1.  

One of the most interesting static environments was Environment 3, which consisted of 

the opponents Tit-for-Tat, All D, and All C.  The strategy evolved with FS1 and 

a description of how it performed against the opponents in this environment is shown in 

Figure 6.1. 
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Evolved Strategy: 
(OPP_LAST D (MY_LAST D C D) (OPP_2ND D C (MY_LAST C C D))) 

 
Evolved Strategy: DDDDDDDD… 
All D: DDDDDDDD… 
 
Evolved Strategy: DDDDDDDD… 
All C: CCCCCCCC… 
 
Evolved Strategy: DDCCCCCC… 
Tit-for-Tat: CDDCCCCC… 

Figure  6.1 A strategy evolved in Environment 3 with Function Set 1 
 
 The success of the evolved strategy was predicated on its ability to recognize the 

three different opponents in the environment and react accordingly.  By opening each 

100-game interaction with two defections, the GP-evolved strategy was able to elicit a 

unique response from each of its three opponents.  After that, it implemented the optimal 

strategy against all three:  it exploited All C by defecting, protected against All D by 

defecting, and cooperated with the less-exploitable Tit-for-Tat for the remainder of 

the interaction. 

   Further investigation reveals that the opening sequence of DD was not trivial.  

Consider the alternatives:  If the strategy were to open with CC, it would not be able to 

tell the difference between Tit-for-Tat and All C, hence forfeiting the opportunity 

to exploit All C for two extra points per game.  Likewise, an opening sequence of CD 

would have elicited identical responses from Tit-for-Tat and All C.  The last 

possibility is DC, which removes the ambiguity between opponents but scores fewer 

points than DD – it fails to exploit All C and gets exploited by All D on the second 

move.  The diagnostic strategy of opening each interaction with two defections was 

integral to the evolved strategy’s success. 



 

Table  6.1 Summary of results for genetic programming runs against environments of pre-defined opponents 

 Function Set 1 (FS1) Function Set 2 (FS2) Function Set 3 (FS3) 
Environment 

Number Evolved Strategy Std. 
Fitness Evolved Strategy Std. 

Fitness Evolved Strategy Std. 
Fitness 

1 D 0 
 D 0 

 D 0 

2 D 400 D 400 D 400 

3 
(OPP_LAST D (MY_LAST D 

C D) (OPP_2ND D C 
(MY_LAST C C D))) * 

604* (HAS_DEFECTED 
(HAS_COOP C D) D) 604 (MY_LAST D C (OPP_LAST 

C D C)) 703 

4 (OPP_LAST C C D) 601 (HAS_DEFECTED D C) 601 (OPP_LAST C C D) 601 
5 C 400 C 400 C 400 
6 C 600 C 600 C 600 
7 D 396 D 396 D 396 

8 

(OPP_3RD (MY_LAST D D 
(OPP_LAST D D C)) 
(MY_LAST D (OPP_2ND 
D C D) (OPP_LAST D D 
C)) (MY_LAST D C D))

1246 

(MY_3RD (MY_LAST C D 
D) (MY_LAST C C D) 
(OPP_LAST C D 
(OPP_2ND C C 
(MY_LAST C C D)))) 

1236 (OPP_LAST C (MY_LAST C 
C D) D) 1433 

* result based on a run where mutation was used at a probability of .3 and crossover at a probability of .7  
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 Additionally, the results show that changes to the function set can limit this 

diagnostic ability and thus produce less-effective strategies.  This became apparent when 

the function set FS3 was used to evolve strategies in the same environment (Environment 

3).  The results of this run are summarized in Figure 6.2.   

Evolved Strategy: 
(MY_LAST D C (OPP_LAST C D C)) 

Evolved Strategy: DCCCCCCC… 
All D: DDDDDDDD… 

 
Evolved Strategy: DDDDDDDD… 
All C: CCCCCCCC… 

 
Evolved Strategy: DCCCCCCC… 
Tit-for-Tat: CDCCCCCC… 

Figure  6.2 A strategy evolved in Environment 3 with Function Set 3 
 
 Strategies developed using the functions in FS3 can only examine the history 

from the previous move.  Therefore, the use of a diagnostic approach was not possible. 

Because the function set is limited, the strategy had to make do with what it can ascertain 

from analyzing the previous interaction.  As the move history indicates, the strategy’s 

more limited diagnostic approach differentiated between the opponents that are capable 

of defecting (Tit-for-Tat and All D) and the opponent that unconditionally 

cooperates (All C).  Once it grouped the opponents, it implemented the optimal strategy 

against each group.  Again, the best way to play All C is to exploit it via defection.  

Against the Tit-for-Tat and All D grouping, it chose to defect on the first move 

and then cooperate thereafter.  This was a calculated choice which sacrificed the one 

point per game that would have been received by defecting against All D in exchange 

for the two points per game that it gained by cooperating with (rather than defecting 
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against) Tit-for-Tat.  The results from Environment 3 show that reducing the 

function set from FS1 to FS3 can have an effect on the diagnostic capability of the 

evolved strategies and consequently result in a degradation of performance. 

 Environment 4, which consisted of Grim Trigger and All D, also exhibited 

interesting behavior across function sets.  When the function set was changed, the 

performance of the evolved strategy stayed constant, but its representation changed.  

With the function set equal to FS1, the Tit-for-Tat strategy (OPP_LAST C C D) was 

evolved.  With the function set equal to FS2, the Grim Trigger strategy 

(HAS_DEFECTED D C) was evolved.  As Figure 6.3 shows, both strategies used the same 

sequence of moves in Environment 4.  In this case, varying the function set caused 

aesthetic rather than functional changes. 

Evolved Strategies:  
(HAS_DEFECTED D C) and (OPP_LAST C C D) 

 
Evolved Strategy: CDDDDDDD… 
All D: DDDDDDDD… 

 
Evolved Strategy: CCCCCCCC… 
Grim Trigger: CCCCCCCC… 

Figure  6.3 Two strategies evolved in Environment 4 with Function Sets 1 and 2 
 

 The results described here from Environments 3 and 4 suggest that genetic 

programming is effective at evolving capable strategies in specific environments.  The 

evolutionary process was able to adapt an optimal or near-optimal strategy for playing the 

Repeated Prisoner’s Dilemma game based on the function set that it had to work with and 

the environment of opponents that it was placed in.  The results reinforce an important 

point about competitive domains such as the Repeated Prisoner’s Dilemma – a strategy’s 

performance must be understood within the context of the specific environment in which 
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it was evolved.  Although the genetic programming paradigm is working properly in 

these cases, it would be incorrect to interpret the evolved strategies as strategies that 

generalize well across a variety of environments.  Therefore, the next natural step is to 

evolve strategies based on a richer environment than can be constructed manually.  This 

was achieved through the co-evolutionary experiments which are described in the next 

section.   

Co-evolutionary Environments 
 Co-evolution evaluates a given individual based on its performance against its 

peers in the evolutionary population.  In the co-evolutionary runs in this study, the 

population of 1000 consisted of two subpopulations of size 500.  An individual’s fitness 

was based on the number of points that it scored when it played the Repeated Prisoner’s 

Dilemma game against 100 randomly-selected members of the opposing subpopulation.  

During co-evolution, the environment of opponents is constantly changing, making it 

more difficult for the evolutionary process to adapt individuals for a specific 

environment. In this predator-prey environment, if one subpopulation develops a 

particularly useful trait, the opposing subpopulation is forced to adapt, and vice-versa.  

The intuition is that once the subpopulations stabilize or converge, a reasonably 

generalized strategy will have emerged. 

 Early co-evolutionary runs suggested that the chaotic nature of co-evolution can 

force populations towards defection.  Figure 6.4 shows the mean adjusted fitness2 of 

Subpopulation 1 for the first 100 generations of a co-evolutionary run using the function 

set FS1.  The strategies that fared well in the early going were those that reduced to All 

                                                 
2 Adjusted Fitness = 1 / (1 + standardized fitness) 
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D.  For example, the best individual in Generation 5 was (MY_LAST D D D).  As the 

graph reveals, no significant increase in fitness was observed during the run.  The 

population eventually converged to the All D strategy. 

 Obviously, the All D strategy is not a good general strategy for playing the 

Repeated Prisoner’s Dilemma game since it leaves out even the possibility of sustaining 

cooperation, limiting itself to a payout of P for the majority of its interactions.  However 

there are at least two settings in which the All D strategy might be a good idea.  The 

most obvious is in an environment made up of many naïvely cooperating strategies like 

All C.  The second case is a very random or noisy environment.  When opponents are 

unpredictable, the All D strategy hedges by defecting in order to guarantee itself at least 

one point per round.  It is likely that the strategies evolved by this run were forced into 

permanent defection because of the noisy and unpredictable nature of co-evolution. 

  Co-evolving solutions with the FS2 function set resulted in a sharp improvement 

in performance.  Figure 6.5 shows how the average fitness of the subpopulation 

rebounded as the best strategies in each generation were transformed from strategies that 

tended to unconditionally defect to ones that sustained cooperation.  In the early going, 

the strategies that performed the best were equivalent to All D.  For example, the best 

strategies in the initial generation were (MY_LAST D D D) and (HAS_DEFECTED D D).  

However, within the first ten generations the HAS_DEFECTED function emerged, 

producing strategies like (HAS_DEFECTED D (OPP_4TH C C D)) which had the best 

score in Generation 10.  By Generation 12, the Grim Trigger strategy 

(HAS_DEFECTED D C) took hold, resulting in the large upward spike in mean fitness 

observed in Figure 6.5.  Eventually the population converges to the Grim Trigger 
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strategy.  In fact at one point (Generation 48), once the population was dominated by 

Grim Trigger strategies, the strategy All C emerged as the best in Subpopulation 2 

since it was a smaller individual than Grim Trigger and performed just as well as 

Grim Trigger would have performed against itself. 

 Although the Grim Trigger strategy has been argued to be a good general 

strategy in its own right by Dacey and Pendegraft, the widely-cited success of Tit-

for-Tat in Axelrod’s [1] computerized tournaments necessitates a comparison between 

Grim Trigger and Tit-for-Tat.  How would Tit-for-Tat have fared in the 

same environment that evolved Grim Trigger?  To answer this question, the co-

evolutionary run that evolved Grim Trigger was run a second time.  During this 

additional run, data was collected so that Tit-for-Tat could serve as a benchmark 

strategy without altering the evolutionary process.  For each generation in the run, both 

Tit-for-Tat and Grim Trigger played the repeated Prisoner’s Dilemma against 

the same 100 randomly selected opponents from Subpopulation 2. 

 Figure 6.6 plots the performance (in terms of points scored against 100 randomly-

selected opponents played) of Tit-for-Tat, Grim Trigger, and the best strategy 

from Subpopulation 1.  The results show very little variation in performance between 

Tit-for-Tat and Grim Trigger.  In fact, the two series of data points representing 

them are virtually identical.  In general, each strategy’s performance was comparable to 

the best-of-generation strategy.  The interesting downward spikes on the graph are the 

product of adapting populations and the luck of the draw.  At these points, the majority of 

the 100 opponents selected at random from the population were biased toward defection, 

forcing both Tit-for-Tat and Grim Trigger to score poorly.  In general,  
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Figure  6.4 Mean adjusted fitness of a subpopulation during co-evolution with FS1 
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Figure  6.5 Mean adjusted fitness of a subpopulation during co-evolution with FS2 
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however, the data shows that the Grim Trigger strategy performed comparably to 

Tit-for-Tat and the best-of-generation strategy. 

 The fact that Grim Trigger emerged from co-evolution speaks to the ability of 

genetic programming to evolve human-competitive solutions to game theoretic problems 

like the Repeated Prisoner’s Dilemma.  By using the population as an evolving 

environment of opponents, the co-evolutionary process did promote a strategy which was 

less dependent on a specific environment for its success.  However, these results should 

be interpreted in light of a few important factors.   

 First, a given strategy’s performance is ultimately dependent upon the nature of 

the opponents that it plays against.  For example, no matter how effective Grim 

Trigger is in general, if it were to play in an environment full of All D strategies, it 

would actually do worse than All D.  In a noisy environment, one misperceived 

defection from an opponent could cause Grim Trigger to throw away chances to 

improve its score with an otherwise cooperative opponent.  These examples do not 

suggest that Grim Trigger is a bad strategy, they just point out that every strategy 

needs to be understood in the context of its environment. 

 Second, although co-evolution promoted a changing and diverse environment for 

strategies to play in, it is important to note that the environment was a product of the 

function set.  In the fixed environment examples, the environment was limited to the pre-

defined opponent strategies that were selected.  Analogously, in a co-evolutionary 

environment, the environment is constrained by the strategies that can be produced with 

the given function set.  Since the function set is used to build the environment of 
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opponents during co-evolution, changes to the function set are amplified in a co-

evolutionary setting.   
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Figure  6.6 Comparing the performance of Grim Trigger and Tit-for-Tat 

 

7. Conclusion 
 Genetic programming was used to successfully generate strategies for the 

Repeated Prisoner’s Dilemma game.  First, genetic programming was used to generate 

strategies in manually-constructed environments of pre-defined opponents.  The 

strategies that were evolved were effective against the specific set of opponents in the 

static environment, but could not be regarded as good general strategies.  Where the 

effectiveness of these strategies depended upon their diagnostic nature, changes to the 

function set resulted in non-trivial variation in the performance of the evolved strategies. 
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 In co-evolution, the pre-defined opponents were replaced by a strategy’s peers in 

the evolving population.  Grim Trigger, a strategy regarded as a good general 

strategy in previous work, emerged as the most effective strategy.  Grim Trigger was 

shown to perform similarly to Tit-for-Tat in this environment.  The results suggest 

that changing the function set has an increased effect in co-evolution since the changes 

alter the environment of opponents. 

 The application of genetic programming to evolutionary game theory discussed in 

this paper suggests some interesting directions for future research.  From a game-

theoretic perspective, the results of the study might be analyzed further.  Are strategies 

that emerge during evolution well-generalized strategies, evolutionary stable, or both?  

This study also points out that the results of genetic programming runs are sensitive to 

changes made to the function set.  Additional research might build on these findings to 

provide a more complete understanding of the general characteristics of functions that, 

when added, tend to improve results. 
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Appendix A:  Java Source Code for Opponent Strategies

abstract class Strategy 
{ 
    char[] myHistory; 
    char[] oppHistory; 
    int moveNumber; 
    int gameLength; 
    boolean hasDefected; 
    boolean hasCooperated; 
 
    public Strategy() 
    { 
 this.reset(); 
    } 
 
    public void updateHistory(char myMove, char oppMove, int num) 
    { 
 moveNumber = num; 
 myHistory[moveNumber]  = myMove; 
 oppHistory[moveNumber] = oppMove; 
 if (oppMove == 'D'){ 
     hasDefected = true; 
 }else{ 
     hasCooperated = true; 
 } 
    } 
 
    public void reset(){ 
 hasDefected = false; 
 hasCooperated = false; 
 moveNumber = 0; 
 gameLength = 100; 
 myHistory  = new char[gameLength]; 
 oppHistory = new char[gameLength]; 
  
 for(int i=0; i < myHistory.length; i++) 
 { 
     myHistory[i]  = 'U'; 
     oppHistory[i] = 'U'; 
 } 
    } 
 
    abstract char getMove(); 
} 

 
class AllC extends Strategy 
{ 
    public char getMove() 
    { 
 return 'C'; 
    } 
} 

 
class AllD extends Strategy 
{ 
    public char getMove() 
    { 
 return 'D'; 
    } 
} 
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class GrimTrigger extends Strategy 
{ 
    public char getMove() 
    { 
 if(hasDefected){ 
  return 'D'; 
 }else{ 
  return 'C'; 
 } 
    } 
} 

 
class Pavlov extends Strategy 
{ 
    public char getMove() 
    { 
 if(moveNumber == 0) return 'C'; 
 
 if(oppHistory[moveNumber-1] == myHistory[moveNumber-1]){ 
  return 'C'; 
 }else{ 
  return 'D'; 
 } 
    } 
} 

 
class TitForTat extends Strategy 
{ 
    public char getMove() 
    { 
 if(moveNumber == 0) return 'C'; 
  
 if(oppHistory[moveNumber-1] == 'C'){ 
     return 'C'; 
 }else{ 
     return 'D'; 
 } 
    } 
} 

 
class CBTFT extends Strategy 
{ 
    public char getMove() 
    { 
 if(moveNumber == 0) return 'C'; 
  
 if(oppHistory[moveNumber-1] == 'C'){ 
     return 'D'; 
 }else{ 
     return 'C'; 
 } 
    } 
} 

 
class DBTFT extends Strategy 
{ 
    public char getMove() 
    { 
 if(moveNumber == 0) return 'D'; 
  
 if(oppHistory[moveNumber-1] == 'C'){ 
     return 'D'; 
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 }else{ 
     return 'C'; 
 } 
    } 
} 

 
class DPC extends Strategy 
{ 
    public char getMove() 
    { 
 if(hasCooperated){ 
     return 'C'; 
 }else{ 
     return 'D'; 
 } 
    } 
} 

 
class DTFT extends Strategy 
{ 
    public char getMove() 
    { 
 if(moveNumber == 0) return 'D'; 
  
 if(oppHistory[moveNumber-1] == 'C'){ 
     return 'C'; 
 }else{ 
     return 'D'; 
 } 
    } 
}
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Appendix B:  Java Source Code for Functions and Terminals  
 
For brevity, the source code for the functions and terminals used in static environment 
experiments is not included.  The source code shown here was used for co-evolution.  It 
contains modifications to the classes used in the static environments which facilitate co-
evolution and add the ability to specify a pre-defined strategy for use as a benchmark in 
co-evolutionary environments.  

 
 
package ec.app.pd_compete.func; 
import ec.*; 
import ec.gp.*; 
import ec.util.*; 
import ec.coevolve.*; 
 
import ec.app.pd_compete.*; 
 
public class C extends GPNode{ 
     
    public String toString() { return "C"; } 
     
    public void checkConstraints(final EvolutionState state, 
     final int tree, 
     final GPIndividual typicalIndividual, 
     final Parameter individualBase) 
    { 
 super.checkConstraints(state,tree,typicalIndividual,individualBase); 
 if (children.length!=0) 
     state.output.error("Incorrect number of children for node " +  
          toStringForError() + " at " + 
          individualBase); 
    } 
     
    public void eval(final EvolutionState state, 
       final int thread, 
       final GPData input, 
       final ADFStack stack, 
       final GPIndividual individual, 
       final Problem problem) 
    { 
 PDdata data = ((PDdata)(input)); 
 data.x = 'C'; 
    } 
} 

 
package ec.app.pd_compete.func; 
import ec.*; 
import ec.gp.*; 
import ec.util.*; 
import ec.coevolve.*; 
 
import ec.app.pd_compete.*; 
 
public class D extends GPNode{ 
     
    public String toString() { return "D"; } 
     
    public void checkConstraints(final EvolutionState state, 
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     final int tree, 
     final GPIndividual typicalIndividual, 
     final Parameter individualBase) 
    { 
 super.checkConstraints(state,tree,typicalIndividual,individualBase); 
 if (children.length!=0) 
     state.output.error("Incorrect number of children for node " +  
          toStringForError() + " at " + 
          individualBase); 
    } 
     
    public void eval(final EvolutionState state, 
       final int thread, 
       final GPData input, 
       final ADFStack stack, 
       final GPIndividual individual, 
       final Problem problem) 
    { 
 PDdata data = ((PDdata)(input)); 
 data.x = 'D'; 
    } 
} 

 
package ec.app.pd_compete.func; 
import ec.*; 
import ec.gp.*; 
import ec.util.*; 
 
import ec.app.pd_compete.*; 
 
public class HAS_COOP extends GPNode { 
    public String toString() { return "HAS_COOP"; } 
     
    public void checkConstraints(final EvolutionState state, 
     final int tree, 
     final GPIndividual typicalIndividual, 
     final Parameter individualBase) 
    { 
 super.checkConstraints(state,tree,typicalIndividual,individualBase); 
 if (children.length!=2) 
     state.output.error("Incorrect number of children for node " +  
          toStringForError() + " at " + 
          individualBase); 
    } 
     
    public void eval(final EvolutionState state, 
                     final int thread, 
                     final GPData input, 
                     final ADFStack stack, 
                     final GPIndividual individual, 
                     final Problem problem) 
    { 
        PD pd = (PD)problem; 
 
 boolean oppHasCooperated; 
 if (pd.whosTurn == pd.P1){ 
     oppHasCooperated = pd.p2HasCooperated; 
 }else if(pd.whosTurn == pd.P2){ 
     oppHasCooperated = pd.p1HasCooperated; 
 }else{ 
     oppHasCooperated = pd.p3HasCooperated; 
 } 
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 if(oppHasCooperated){ 
     children[0].eval(state,thread,input,stack,individual,problem); 
 }else{ 
     children[1].eval(state,thread,input,stack,individual,problem); 
 } 
 
    } 
} 

 
package ec.app.pd_compete.func; 
import ec.*; 
import ec.gp.*; 
import ec.util.*; 
 
import ec.app.pd_compete.*; 
 
public class HAS_DEFECTED extends GPNode { 
    public String toString() { return "HAS_DEFECTED"; } 
     
    public void checkConstraints(final EvolutionState state, 
     final int tree, 
     final GPIndividual typicalIndividual, 
     final Parameter individualBase) 
    { 
 super.checkConstraints(state,tree,typicalIndividual,individualBase); 
 if (children.length!=2) 
     state.output.error("Incorrect number of children for node " +  
          toStringForError() + " at " + 
          individualBase); 
    } 
     
    public void eval(final EvolutionState state, 
                     final int thread, 
                     final GPData input, 
                     final ADFStack stack, 
                     final GPIndividual individual, 
                     final Problem problem) 
    { 
        PD pd = (PD)problem; 
 
 boolean oppHasDefected; 
 if (pd.whosTurn == pd.P1){ 
     oppHasDefected = pd.p2HasDefected; 
 }else if (pd.whosTurn == pd.P2){ 
     oppHasDefected = pd.p1HasDefected; 
 }else{ 
     oppHasDefected = pd.p3HasDefected; 
 } 
 
 if(oppHasDefected){ 
     children[0].eval(state,thread,input,stack,individual,problem); 
 }else{ 
     children[1].eval(state,thread,input,stack,individual,problem); 
 } 
 
    } 
} 

 
package ec.app.pd_compete.func; 
import ec.*; 
import ec.gp.*; 
import ec.util.*; 
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import ec.coevolve.*; 
 
import ec.app.pd_compete.*; 
 
public class MY_2ND extends GPNode { 
    public String toString() { return "MY_2ND"; } 
     
    public void checkConstraints(final EvolutionState state, 
     final int tree, 
     final GPIndividual typicalIndividual, 
     final Parameter individualBase) 
    { 
 super.checkConstraints(state,tree,typicalIndividual,individualBase); 
 if (children.length!=3) 
     state.output.error("Incorrect number of children for node " +  
          toStringForError() + " at " + 
          individualBase); 
    } 
     
    public void eval(final EvolutionState state, 
                     final int thread, 
                     final GPData input, 
                     final ADFStack stack, 
                     final GPIndividual individual, 
                     final Problem problem) 
    { 
        PD pd = (PD)problem; 
 
 char temp; 
 if (pd.whosTurn == pd.P1){ 
     temp = (pd.p1Moves.get(1)).charValue(); 
 }else if (pd.whosTurn == pd.P2){ 
     temp = (pd.p2Moves.get(1)).charValue(); 
 }else { 
     temp = (pd.p2Moves2.get(1)).charValue(); 
 } 
 
 switch(temp){ 
 case 'C': 
     children[1].eval(state,thread,input,stack,individual,problem); 
     break; 
      
 case 'D': 
     children[2].eval(state,thread,input,stack,individual,problem); 
     break; 
      
 default:  // assume undefined 
     children[0].eval(state,thread,input,stack,individual,problem); 
     break; 
 } 
 
    } 
} 

 
package ec.app.pd_compete.func; 
import ec.*; 
import ec.gp.*; 
import ec.util.*; 
import ec.coevolve.*; 
 
import ec.app.pd_compete.*; 
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public class MY_3RD extends GPNode { 
    public String toString() { return "MY_3RD"; } 
     
    public void checkConstraints(final EvolutionState state, 
     final int tree, 
     final GPIndividual typicalIndividual, 
     final Parameter individualBase) 
    { 
 super.checkConstraints(state,tree,typicalIndividual,individualBase); 
 if (children.length!=3) 
     state.output.error("Incorrect number of children for node " +  
          toStringForError() + " at " + 
          individualBase); 
    } 
     
    public void eval(final EvolutionState state, 
                     final int thread, 
                     final GPData input, 
                     final ADFStack stack, 
                     final GPIndividual individual, 
                     final Problem problem) 
    { 
        PD pd = (PD)problem; 
 
 char temp; 
 if (pd.whosTurn == pd.P1){ 
     temp = (pd.p1Moves.get(2)).charValue(); 
 }else if (pd.whosTurn == pd.P2){ 
     temp = (pd.p2Moves.get(2)).charValue(); 
 }else { 
     temp = (pd.p2Moves2.get(2)).charValue(); 
 } 
 
 switch(temp){ 
 case 'C': 
     children[1].eval(state,thread,input,stack,individual,problem); 
     break; 
      
 case 'D': 
     children[2].eval(state,thread,input,stack,individual,problem); 
     break; 
      
 default:  // assume undefined 
     children[0].eval(state,thread,input,stack,individual,problem); 
     break; 
 } 
 
    } 
} 

 
package ec.app.pd_compete.func; 
import ec.*; 
import ec.gp.*; 
import ec.util.*; 
import ec.coevolve.*; 
 
import ec.app.pd_compete.*; 
 
public class MY_4TH extends GPNode { 
    public String toString() { return "MY_4TH"; } 
     
    public void checkConstraints(final EvolutionState state, 
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     final int tree, 
     final GPIndividual typicalIndividual, 
     final Parameter individualBase) 
    { 
 super.checkConstraints(state,tree,typicalIndividual,individualBase); 
 if (children.length!=3) 
     state.output.error("Incorrect number of children for node " +  
          toStringForError() + " at " + 
          individualBase); 
    } 
     
    public void eval(final EvolutionState state, 
                     final int thread, 
                     final GPData input, 
                     final ADFStack stack, 
                     final GPIndividual individual, 
                     final Problem problem) 
    { 
        PD pd = (PD)problem; 
 
 char temp; 
 if (pd.whosTurn == pd.P1){ 
     temp = (pd.p1Moves.get(3)).charValue(); 
 }else if(pd.whosTurn == pd.P2){ 
     temp = (pd.p2Moves.get(3)).charValue(); 
 }else{ 
     temp = (pd.p2Moves2.get(3)).charValue(); 
 } 
 
 switch(temp){ 
 case 'C': 
     children[1].eval(state,thread,input,stack,individual,problem); 
     break; 
      
 case 'D': 
     children[2].eval(state,thread,input,stack,individual,problem); 
     break; 
      
 default:  // assume undefined 
     children[0].eval(state,thread,input,stack,individual,problem); 
     break; 
 } 
 
    } 
} 

 
package ec.app.pd_compete.func; 
import ec.*; 
import ec.gp.*; 
import ec.util.*; 
import ec.coevolve.*; 
 
import ec.app.pd_compete.*; 
 
public class MY_LAST extends GPNode { 
    public String toString() { return "MY_LAST"; } 
     
    public void checkConstraints(final EvolutionState state, 
     final int tree, 
     final GPIndividual typicalIndividual, 
     final Parameter individualBase) 
    { 
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 super.checkConstraints(state,tree,typicalIndividual,individualBase); 
 if (children.length!=3) 
     state.output.error("Incorrect number of children for node " +  
          toStringForError() + " at " + 
          individualBase); 
    } 
     
    public void eval(final EvolutionState state, 
                     final int thread, 
                     final GPData input, 
                     final ADFStack stack, 
                     final GPIndividual individual, 
                     final Problem problem) 
    { 
        PD pd = (PD)problem; 
 
 char temp; 
 if (pd.whosTurn == pd.P1){ 
     temp = (pd.p1Moves.get(0)).charValue(); 
 }else if(pd.whosTurn == pd.P2){ 
     temp = (pd.p2Moves.get(0)).charValue(); 
 }else{ 
     temp = (pd.p2Moves2.get(0)).charValue(); 
 } 
 
 switch(temp){ 
 case 'C': 
     children[1].eval(state,thread,input,stack,individual,problem); 
     break; 
      
 case 'D': 
     children[2].eval(state,thread,input,stack,individual,problem); 
     break; 
      
 default:  // assume undefined 
     children[0].eval(state,thread,input,stack,individual,problem); 
     break; 
 } 
 
    } 
} 

 
package ec.app.pd_compete.func; 
import ec.*; 
import ec.gp.*; 
import ec.util.*; 
import ec.coevolve.*; 
 
import ec.app.pd_compete.*; 
 
public class OPP_2ND extends GPNode { 
    public String toString() { return "OPP_2ND"; } 
     
    public void checkConstraints(final EvolutionState state, 
     final int tree, 
     final GPIndividual typicalIndividual, 
     final Parameter individualBase) 
    { 
 super.checkConstraints(state,tree,typicalIndividual,individualBase); 
 if (children.length!=3) 
     state.output.error("Incorrect number of children for node " +  
          toStringForError() + " at " + 
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          individualBase); 
    } 
     
    public void eval(final EvolutionState state, 
                     final int thread, 
                     final GPData input, 
                     final ADFStack stack, 
                     final GPIndividual individual, 
                     final Problem problem) 
    { 
        PD pd = (PD)problem; 
 
 char temp; 
 if (pd.whosTurn == pd.P1){ 
     temp = (pd.p2Moves.get(1)).charValue(); 
 }else if(pd.whosTurn == pd.P2){ 
     temp = (pd.p1Moves.get(1)).charValue(); 
 }else{ 
     temp = (pd.p3Moves.get(1)).charValue(); 
 } 
 
 switch(temp){ 
 case 'C': 
     children[1].eval(state,thread,input,stack,individual,problem); 
     break; 
      
 case 'D': 
     children[2].eval(state,thread,input,stack,individual,problem); 
     break; 
      
 default:  // assume undefined 
     children[0].eval(state,thread,input,stack,individual,problem); 
     break; 
 } 
 
    } 
} 

 
package ec.app.pd_compete.func; 
import ec.*; 
import ec.gp.*; 
import ec.util.*; 
import ec.coevolve.*; 
 
import ec.app.pd_compete.*; 
 
public class OPP_3RD extends GPNode { 
    public String toString() { return "OPP_3RD"; } 
     
    public void checkConstraints(final EvolutionState state, 
     final int tree, 
     final GPIndividual typicalIndividual, 
     final Parameter individualBase) 
    { 
 super.checkConstraints(state,tree,typicalIndividual,individualBase); 
 if (children.length!=3) 
     state.output.error("Incorrect number of children for node " +  
          toStringForError() + " at " + 
          individualBase); 
    } 
     
    public void eval(final EvolutionState state, 
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                     final int thread, 
                     final GPData input, 
                     final ADFStack stack, 
                     final GPIndividual individual, 
                     final Problem problem) 
    { 
        PD pd = (PD)problem; 
 
 char temp; 
 if (pd.whosTurn == pd.P1){ 
     temp = (pd.p2Moves.get(2)).charValue(); 
 }else if (pd.whosTurn == pd.P2){ 
     temp = (pd.p1Moves.get(2)).charValue(); 
 }else { 
     temp = (pd.p3Moves.get(3)).charValue(); 
 } 
 
 switch(temp){ 
 case 'C': 
     children[1].eval(state,thread,input,stack,individual,problem); 
     break; 
      
 case 'D': 
     children[2].eval(state,thread,input,stack,individual,problem); 
     break; 
      
 default:  // assume undefined 
     children[0].eval(state,thread,input,stack,individual,problem); 
     break; 
 } 
 
    } 
} 

 
package ec.app.pd_compete.func; 
import ec.*; 
import ec.gp.*; 
import ec.util.*; 
import ec.coevolve.*; 
 
import ec.app.pd_compete.*; 
 
public class OPP_4TH extends GPNode { 
    public String toString() { return "OPP_4TH"; } 
     
    public void checkConstraints(final EvolutionState state, 
     final int tree, 
     final GPIndividual typicalIndividual, 
     final Parameter individualBase) 
    { 
 super.checkConstraints(state,tree,typicalIndividual,individualBase); 
 if (children.length!=3) 
     state.output.error("Incorrect number of children for node " +  
          toStringForError() + " at " + 
          individualBase); 
    } 
     
    public void eval(final EvolutionState state, 
                     final int thread, 
                     final GPData input, 
                     final ADFStack stack, 
                     final GPIndividual individual, 
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                     final Problem problem) 
    { 
        PD pd = (PD)problem; 
 
 char temp; 
 if (pd.whosTurn == pd.P1){ 
     temp = (pd.p2Moves.get(3)).charValue(); 
 }else if (pd.whosTurn == pd.P2){ 
     temp = (pd.p1Moves.get(3)).charValue(); 
 }else { 
     temp = (pd.p3Moves.get(3)).charValue(); 
 } 
 
 switch(temp){ 
 case 'C': 
     children[1].eval(state,thread,input,stack,individual,problem); 
     break; 
      
 case 'D': 
     children[2].eval(state,thread,input,stack,individual,problem); 
     break; 
      
 default:  // assume undefined 
     children[0].eval(state,thread,input,stack,individual,problem); 
     break; 
 } 
 
    } 
} 

 
package ec.app.pd_compete.func; 
import ec.*; 
import ec.gp.*; 
import ec.util.*; 
import ec.coevolve.*; 
 
import ec.app.pd_compete.*; 
 
public class OPP_LAST extends GPNode { 
    public String toString() { return "OPP_LAST"; } 
     
    public void checkConstraints(final EvolutionState state, 
     final int tree, 
     final GPIndividual typicalIndividual, 
     final Parameter individualBase) 
    { 
 super.checkConstraints(state,tree,typicalIndividual,individualBase); 
 if (children.length!=3) 
     state.output.error("Incorrect number of children for node " +  
          toStringForError() + " at " + 
          individualBase); 
    } 
     
    public void eval(final EvolutionState state, 
                     final int thread, 
                     final GPData input, 
                     final ADFStack stack, 
                     final GPIndividual individual, 
                     final Problem problem) 
    { 
        PD pd = (PD)problem; 
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 char temp; 
 if (pd.whosTurn == pd.P1){ 
     temp = (pd.p2Moves.get(0)).charValue(); 
 }else if(pd.whosTurn == pd.P2){ 
     temp = (pd.p1Moves.get(0)).charValue(); 
 }else { 
     temp = (pd.p3Moves.get(0)).charValue(); 
 } 
  
 switch(temp){ 
 case 'C': 
     children[1].eval(state,thread,input,stack,individual,problem); 
     break; 
      
 case 'D': 
     children[2].eval(state,thread,input,stack,individual,problem); 
     break; 
      
 default:  // assume undefined 
     children[0].eval(state,thread,input,stack,individual,problem); 
     break; 
 } 
 
    } 
} 

41 



 

Appendix C:  Java Source Code for the Prisoner’s Dilemma 
Problem 
 
The following Java source code is the formulation of the Prisoner’s Dilemma problem 
that was used to co-evolve solutions in ECJ. 

 
 
package ec.app.pd_compete; 
 
import ec.util.*; 
import ec.*; 
import ec.gp.*; 
import ec.gp.koza.*; 
import ec.simple.*; 
import ec.coevolve.*; 
 
import java.util.*; 
 
public class PD extends GPProblem implements GroupedProblemForm{ 
     
    public static final String P_DATA = "data"; 
 
    public PDdata input; 
 
    //values of "My" moves and Opponent's moves 
    public LinkedList<Character> p1Moves; 
    public LinkedList<Character> p2Moves; 
 
    public LinkedList<Character> p3Moves; 
    public LinkedList<Character> p2Moves2; 
 
    //temp variables for current moves 
    public char p1Move; 
    public char p2Move; 
    public char p3Move; 
    public char p2Move2; 
 
    //cooperation and defection information 
    public boolean p1HasDefected; 
    public boolean p1HasCooperated; 
    public boolean p2HasDefected; 
    public boolean p2HasCooperated; 
 
    public boolean p3HasDefected; 
    public boolean p3HasCooperated; 
    public boolean p2HasDefected2; 
    public boolean p2HasCooperated2; 
 
    public int p1defectCount; 
    public int p2defectCount; 
    public int p2defectCount2; 
    public int p3defectCount; 
 
    public int moveNum; 
 
    //random number generator 
    public MersenneTwisterFast rand; 
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    //Define payoff values here to make it easier to adjust them if needed 
    public static final int MUTUAL_COOP = 3; 
    public static final int MUTUAL_DEFECT = 1; 
    public static final int TEMPTATION = 5; 
    public static final int SUCKER = 0; 
 
    //A variable used in the functions from the function set to determine who 
    //is P1 and who is P2 
    public int whosTurn; 
    public static final int P1 = 1; 
    public static final int P2 = 2; 
    public static final int P3 = 3; 
 
    //comparison strategies 
    private Strategy p3; 
 
    //for printing p3 info 
    private int p3score = 0; 
    private int oppCount = 0; 
    private int maxScore = 0; 
 
    public Object protoClone() throws CloneNotSupportedException 
    { 
        PD newobj = (PD) (super.protoClone()); 
        newobj.input = (PDdata)(input.protoClone()); 
        return newobj; 
    } 
    public void setup(final EvolutionState state,final Parameter base) 
    { 
        // very important, remember this 
        super.setup(state,base); 
 
        input =(PDdata)state.parameters.getInstanceForParameterEq( 
     base.push(P_DATA), null, PDdata.class); 
        input.setup(state,base.push(P_DATA)); 
 
   p3 = new GrimTrigger(); 
 
   //set up random number generator 
   rand = new MersenneTwisterFast(3252354); 
    } 
 
 
    public void preprocessPopulation( final EvolutionState state,  
          Population pop ) 
    { 
 int opps = (state.parameters).getInt( 
   new Parameter("eval.subpop.0.num-rand-ind")); 
 maxScore = opps*TEMPTATION*100; 
 
        for( int i = 0 ; i < pop.subpops.length ; i++ ) 
            for( int j = 0 ; j < pop.subpops[i].individuals.length ; j++ )        
     ((KozaFitness)(pop.subpops[i].individuals[j].fitness)). 
   setStandardizedFitness(state, (float)opps*TEMPTATION*100 ); 
 
    } 
     
    public void postprocessPopulation( final EvolutionState state,  
           Population pop ) 
    { 
        for( int i = 0 ; i < pop.subpops.length ; i++ ) 
            for( int j = 0 ; j < pop.subpops[i].individuals.length ; j++ ) 
            { 
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  pop.subpops[i].individuals[j].evaluated = true; 
            } 
  
 //report and reset scoring for p3 
 int standardized = maxScore-p3score; 
 System.out.print("Generation " + state.generation + ","); 
 System.out.println(p3score + "," + standardized); 
 p3score = 0; 
 oppCount = 0; 
    } 
 
     public void evaluate(final EvolutionState state, 
                         final Individual[] ind, 
                         final boolean[] updateFitness, 
                         final boolean countVictoriesOnly, 
                         final int threadnum) 
    { 
 
 int sum1    = 0; 
 int result1 = 0; 
 
 int sum2    = 0; 
 int result2 = 0; 
 
 int sum3    = 0; 
 int result3 = 0; 
 
 //reset move history 
 p1Moves = new LinkedList<Character>(); 
 p2Moves = new LinkedList<Character>(); 
 p3Moves = new LinkedList<Character>(); 
 p2Moves2 = new LinkedList<Character>();  
 
 p1HasDefected   = false; 
 p1HasCooperated = false; 
 p2HasDefected   = false; 
 p2HasCooperated = false; 
 
 p3HasDefected   = false; 
 p3HasCooperated = false; 
 p2HasDefected2   = false; 
 p2HasCooperated2 = false; 
 
 p1defectCount  = 0; 
 p2defectCount  = 0; 
 p2defectCount2 = 0; 
 p3defectCount  = 0; 
 
 p3.reset(); 
  
 for(int x=0; x < 4; x++){ 
     p1Moves.addFirst(new Character('U')); 
     p2Moves.addFirst(new Character('U')); 
     p3Moves.addFirst(new Character('U')); 
     p2Moves2.addFirst(new Character('U')); 
 }    
 
 for(int j=0;j<100;j++){//play the game 100 times 
     moveNum = j; 
 
     whosTurn = P1; 
     //Evaluate the individual to get Player 1's move 
     ((GPIndividual)ind[0]).trees[0].child.eval( 
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   state,threadnum,input,stack,((GPIndividual)ind[0]),this); 
     p1Move = input.x; 
     if(p1Move == 'C'){ 
  p1HasCooperated = true; 
     }else{ 
  p1HasDefected = true; 
  p1defectCount++; 
     }      
     whosTurn = P2; 
     //Evaluate the individual to get Player 2's move 
     ((GPIndividual)ind[1]).trees[0].child.eval( 
   state,threadnum,input,stack,((GPIndividual)ind[1]),this); 
     p2Move = input.x; 
     if(p2Move == 'C'){ 
  p2HasCooperated = true; 
     }else{ 
  p2HasDefected = true; 
  p2defectCount++; 
     } 
      
     //calculate each individual's payout based on given moves 
     result1 = getPayout(p1Move, p2Move); 
     result2 = getPayout(p2Move, p1Move); 
      
     //keep a tally for how each player is doing 
     sum1 += result1; 
     sum2 += result2; 
 
     //Update both players' move history 
     p1Moves.addFirst(new Character(p1Move)); 
     p2Moves.addFirst(new Character(p2Move)); 
 
     //--- Play TFT (or another Strategy) against subpopulation 2 ---// 
 
     whosTurn = P3; 
     //Get Strategy's move 
     p3Move = p3.getMove(); 
     if(p3Move == 'C'){ 
  p3HasCooperated = true; 
     }else{ 
  p3HasDefected = true; 
  p3defectCount++; 
     } 
      
     //how would p2 have played against p3? 
     //Evaluate the individual to get Player 2's move 
     ((GPIndividual)ind[1]).trees[0].child.eval( 
   state,threadnum,input,stack,((GPIndividual)ind[1]),this); 
     p2Move2 = input.x; 
     if(p2Move2 == 'C'){ 
  p2HasCooperated2 = true; 
     }else{ 
  p2HasDefected2 = true; 
  p2defectCount2++; 
     } 
      
     //calculate P3's payout based on given moves 
     result3 = getPayout(p3Move, p2Move2); 
      
     //keep a tally for how each player is doing 
     sum3 += result3; 
 
     //Update both players' move history 
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     p3Moves.addFirst(new Character(p3Move)); 
     p2Moves2.addFirst(new Character(p2Move2)); 
 
     p3.updateHistory(p3Move, p2Move, j); 
 
     //-------- Done playing TFT against subpopulation 2 --------// 
 } 
 
 if (sum1 >= 100*MUTUAL_DEFECT) 
  ((KozaFitness)(ind[0].fitness)).hits=                                      
   ((KozaFitness)(ind[0].fitness)).hits + 1;  
 if (sum2 >= 100*MUTUAL_DEFECT) 
  ((KozaFitness)(ind[1].fitness)).hits= 
   ((KozaFitness)(ind[1].fitness)).hits + 1; 
 
        float prevFit1 = ((KozaFitness)(ind[0].fitness)).rawFitness(); 
        float prevFit2 = ((KozaFitness)(ind[1].fitness)).rawFitness(); 
 
       if( updateFitness[0] ) 
 { 
     ((KozaFitness)(ind[0].fitness)).setStandardizedFitness( 
   state,(float)(prevFit1-sum1)); 
 } 
 
       if( updateFitness[1] ) 
       { 
     ((KozaFitness)(ind[1].fitness)).setStandardizedFitness( 
   state,(float)(prevFit2-sum2)); 
 } 
 
 //update p3's score 
 if(oppCount < 100) 
     p3score += sum3; 
 oppCount++; 
    } 
     
    //user-defined function that calculates the outcome value 
    //of the game 
    private int getPayout(char myMove, char oppMove) 
    { 
 if(myMove == oppMove){ 
     if(myMove == 'C'){ 
  return MUTUAL_COOP; 
     }else{ 
  return MUTUAL_DEFECT; 
     } 
 }else{ 
     if(myMove == 'C'){ 
  return SUCKER; 
     }else{ 
  return TEMPTATION; 
     } 
 } 
    } 
} 
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Appendix D: Sample ECJ parameter file 
 
This is the ECJ parameter file that was used for co-evolutionary runs with FS2  

 
parent.0 = ../../gp/koza/koza.params 
 
generations = 500 
evalthreads = 1 
breedthreads = 1 
seed.0 = 55678 
 
checkpoint = false 
checkpoint-modulo = 10 
 
# set up statistics 
stat.num-children      = 2 
stat.child.0           = ec.gp.koza.KozaStatistics 
stat.child.1        = ec.gp.koza.KozaShortStatistics 
stat.child.0.file      = $out.stat 
stat.child.1.file      = $out.short 
 
# set up population 
pop.subpops =    2 
pop.subpop.0 =     ec.Subpopulation 
pop.subpop.1 =     ec.Subpopulation 
 
# we are using competitive coevolution 
eval =                                  
ec.coevolve.MultiPopCoevolutionaryEvaluator 
 
#the num-rand-ind set here is used in fitness calculation -- make sure subpop 0 
#and 1 are the same number 
eval.subpop.0.num-rand-ind =  100 
eval.subpop.0.num-elites =  0 
eval.subpop.0.num-ind =   0 
eval.subpop.0.select =   ec.select.TournamentSelection 
eval.subpop.0.select.size =  1 
 
eval.subpop.1.num-rand-ind =  100 
eval.subpop.1.num-elites =  0 
eval.subpop.1.num-ind =   0 
eval.subpop.1.select =   ec.select.TournamentSelection 
eval.subpop.1.select.size =  1 
 
# set up subpopulations 
pop.subpop.0.size = 500 
pop.subpop.1.size = 500 
 
pop.subpop.0.fitness =   ec.gp.koza.KozaFitness 
pop.subpop.1.fitness =   ec.gp.koza.KozaFitness 
 
pop.subpop.0.duplicate-retries = 100 
pop.subpop.1.duplicate-retries = 100 
 
 
 
pop.subpop.0.species = ec.gp.GPSpecies 
pop.subpop.0.species.ind = ec.gp.GPIndividual 
pop.subpop.1.species = ec.gp.GPSpecies 
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pop.subpop.1.species.ind = ec.gp.GPIndividual 
 
pop.subpop.0.species.ind.numtrees = 1 
pop.subpop.0.species.ind.tree.0 = ec.gp.GPTree 
pop.subpop.0.species.ind.tree.0.tc = tc0 
pop.subpop.1.species.ind.numtrees = 1 
pop.subpop.1.species.ind.tree.0 = ec.gp.GPTree 
pop.subpop.1.species.ind.tree.0.tc = tc0 
 
pop.subpop.0.species.pipe = ec.breed.MultiBreedingPipeline 
pop.subpop.0.species.pipe.generate-max = false 
pop.subpop.0.species.pipe.num-sources = 3 
pop.subpop.0.species.pipe.source.0 = ec.gp.koza.CrossoverPipeline 
pop.subpop.0.species.pipe.source.0.prob = 0.7 
pop.subpop.0.species.pipe.source.1 = ec.breed.ReproductionPipeline 
pop.subpop.0.species.pipe.source.1.prob = 0.3 
pop.subpop.0.species.pipe.source.2 = ec.gp.koza.MutationPipeline 
pop.subpop.0.species.pipe.source.2.prob = 0.0 
 
pop.subpop.1.species.pipe = ec.breed.MultiBreedingPipeline 
pop.subpop.1.species.pipe.generate-max = false 
pop.subpop.1.species.pipe.num-sources = 3 
pop.subpop.1.species.pipe.source.0 = ec.gp.koza.CrossoverPipeline 
pop.subpop.1.species.pipe.source.0.prob = 0.7 
pop.subpop.1.species.pipe.source.1 = ec.breed.ReproductionPipeline 
pop.subpop.1.species.pipe.source.1.prob = 0.3 
pop.subpop.1.species.pipe.source.2 = ec.gp.koza.MutationPipeline 
pop.subpop.1.species.pipe.source.2.prob = 0.0 
 
breed.reproduce.source.0 = ec.parsimony.LexicographicTournamentSelection 
gp.koza.mutate.source.0 = ec.parsimony.LexicographicTournamentSelection 
gp.koza.xover.source.0 = ec.parsimony.LexicographicTournamentSelection 
gp.koza.xover.source.1 = ec.parsimony.LexicographicTournamentSelection 
select.lexicographic-tournament.size = 7 
 
#add elitism 
breed.elite.0 = 10 
breed.elite.1 = 10 
 
# We have one function set, of class GPFunctionSet 
gp.fs.size = 1 
gp.fs.0 = ec.gp.GPFunctionSet 
# We'll call the function set "f0".  It uses the default GPFuncInfo class 
gp.fs.0.name = f0 
gp.fs.0.info = ec.gp.GPFuncInfo 
 
# We have functions in the function set.  They are: 
gp.fs.0.size = 12 
gp.fs.0.func.0 = ec.app.pd_compete.func.C 
gp.fs.0.func.0.nc = nc0 
gp.fs.0.func.1 = ec.app.pd_compete.func.D 
gp.fs.0.func.1.nc = nc0 
gp.fs.0.func.2 = ec.app.pd_compete.func.MY_LAST 
gp.fs.0.func.2.nc = nc3 
gp.fs.0.func.3 = ec.app.pd_compete.func.MY_2ND 
gp.fs.0.func.3.nc = nc3 
gp.fs.0.func.4 = ec.app.pd_compete.func.MY_3RD 
gp.fs.0.func.4.nc = nc3 
gp.fs.0.func.5 = ec.app.pd_compete.func.MY_4TH 
gp.fs.0.func.5.nc = nc3 
gp.fs.0.func.6 = ec.app.pd_compete.func.OPP_LAST 
gp.fs.0.func.6.nc = nc3 
gp.fs.0.func.7 = ec.app.pd_compete.func.OPP_2ND 
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gp.fs.0.func.7.nc = nc3 
gp.fs.0.func.8 = ec.app.pd_compete.func.OPP_3RD 
gp.fs.0.func.8.nc = nc3 
gp.fs.0.func.9 = ec.app.pd_compete.func.OPP_4TH 
gp.fs.0.func.9.nc = nc3 
gp.fs.0.func.10 = ec.app.pd_compete.func.HAS_DEFECTED 
gp.fs.0.func.10.nc = nc2 
gp.fs.0.func.11 = ec.app.pd_compete.func.HAS_COOP 
gp.fs.0.func.11.nc = nc2 
 
eval.problem = ec.app.pd_compete.PD 
eval.problem.data = ec.app.pd_compete.PDdata 
 
# The following should almost *always* be the same as eval.problem.data 
# For those who are interested, it defines the data object used internally 
# inside ADF stack contexts 
eval.problem.stack.context.data = ec.app.pd_compete.PDdata
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