

 1

Near Real Time Human Pose
Estimation using Locality

Sensitive Hashing

By Michael Betten
2010 Undergraduate Honors Thesis

Advised by Professor Hao Jiang
Computer Science Department, Boston College

Abstract: This thesis aims to develop a data set of poses to be
used with locality sensitive hashing in human pose estimation, and
then to determine the potential for real or near real time use of
locality sensitive hashing in human pose estimation with that data
set. Background subtraction is used to obtain a silhouette of the
human pose from a single frame of video. The pose is then
matched against the data set of poses using locality sensitive
hashing. Results indicate that a data set can be developed to be
used with locality sensitive hashing to match human poses in video
and that near real time results are possible. The application of
locality sensitive hashing for human pose estimation in video
facilitates further discussion of the uses for pose estimation in video
as well as the uses of locality sensitive hashing in fast feature
matching.
Keywords: human pose estimation, locality sensitive hashing, fast
feature matching, foreground detection

 2

Contents

1. Introduction .

2. Overview .

3. Foreground Detection .

3.1. Frame Difference .

3.2. Approximate Median .

3.3. Mixture of Gaussians .

3.4. The Algorithm .

4. Features .

4.1. Person Detection .

4.2. Shape Context .

4.3. Blob Extraction .

5. Locality Sensitive Hashing .

5.1. Definition .

5.2. Data Set Development .

5.3. Feature Mapping .

6. Results .

7. Discussion .

8. Future Work .

9. References .

3

5

6

6

7

8

9

12

12

12

13

15

15

16

18

20

23

25

26

 3

1. Introduction

 Human pose estimation is defined here as the determination of the

human pose and extraction of useful information concerning the human

pose either from an image or frame of video. This thesis examines the

problem of detecting the seemingly infinite number of possible human

poses. Human pose estimation from video sequences has various useful

applications. Human computer interaction, animation development, and

robotics are only a few of many areas that have the potential to benefit

from fast and accurate human pose estimation.

Current techniques, however, are limiting. One method, such as

that used to develop many motion capture datasets including that in [7],

involves the use of markers placed on the body to capture motion data

using specialized equipment. Other methods, such as [5], require multiple

cameras. Techniques involving high dimension feature matching for pose

estimation are limited as well. kd-trees [3], one such data structure

popular in nearest neighbor searches, performs little better than linear

time at high dimensions in what is known as the “curse of dimensionality”,

nearly equivalent to simply comparing every point in the data set [1].

The method for human pose estimation explored here involves

extracting a pose feature and then matching that feature to large data set

of features using locality sensitive hashing. This technique only requires

one video camera placed in a static location. Locality sensitive hashing,

developed by Alexandr Andoni and Piotr Indyk in [1, 10], is used to hash

 4

features in such a way that the probability for collision is higher for

features closer together than those further apart. A query feature can then

quickly be matched by retrieving elements stored at the location returned

by hashing the feature. With a large enough data set, fast and accurate

pose estimation can be achieved.

The goal of this thesis is to determine the viability of using locality

sensitive hashing for real or near real time human pose estimation in

video. Because the effectiveness of locality sensitive hashing relies in part

on the data set stored by locality sensitive hashing, a related goal,

consequently, is to develop a data set to be used in human pose

estimation with locality sensitive hashing. As will be discussed, a data set

can be developed for use with locality sensitive hashing in human pose

estimation, and near real time results can be achieved.

 5

2. Overview

 This thesis is made up of essentially two components, one being

the development of a dataset to be used with locality sensitive hashing

and the second being the analysis and testing of locality sensitive hashing

with that dataset. While these two tracks have a great deal of overlap,

there are some differences that should be noted before proceeding. The

figure below gives an overview of these two components developed for

this implementation of human pose estimation in video.

Dataset development Dataset testing

Foreground Detection

Feature Extraction

Features Hashed
using Locality

Sensitive Hashing

Video Input

Foreground Detection

Feature Extraction

Feature Lookup
using Locality

Sensitive Hashing

Video Input

Feature Matching
using corresponding

Pose Information

Figure 1 – An overview of the two tracks of development for this thesis.

 6

3. Foreground Detection

 The first step in extracting a human pose from a single frame of

video to be matched against the database of poses is to determine the

useful information in that frame. Extracting useful and pertinent

information is critical to the development of meaningful features and the

success of the database query. As a result, accurate foreground

detection, or the separation of information from the background of a

scene, is critical. A number of different methods were implemented and

analyzed before determining the most beneficial method for the purpose of

this thesis.

3.1 Frame Difference

 The frame difference technique is perhaps one of the simplest

background subtraction techniques. Foreground information is extracted

by finding the difference between the current frame and the previous

frame [6]. A pixel is marked as foreground if that difference is greater than

some predefined threshold.

€

framei − framei−1 > threshold

But if an object does not move in the time between two frames, foreground

information is lost. Just because the object does not move, however,

does not mean there is no useful pose information present.

Another option for the frame difference method is to utilize a static

background.

 7

€

framei − background > threshold

Determining the difference between a frame and predefined background

model returns much more useful information including interior pixels and

information for non-moving objects. A drawback to this method is the

need for a background model, often unavailable from most videos in

uncontrolled settings.

3.2 Approximate Median

 The approximate median method employs the frame difference

technique but with a constantly updated background model, alleviating the

need for a static background model. Median filtering, a precursor to the

approximate median method, uses a background model that is the median

of all previous frames [6]. The storage requirements for median filtering

are alleviated in the approximate median method by comparing the current

frame to a single frame background model and then updating the

background model accordingly [11], described in Figure 2.

Approximate median develops a better background model as well as more

foreground information without the use of a static background model.

if pixeli in framen > pixeli in background
 pixeli in background = pixeli in background + 1
elseif pixeli in framen < pixeli in background
 pixeli in background = pixeli in background – 1

Figure 2 – A pseudo code algorithm for the approximate median
method of foreground detection.

 8

There is, however, trailing data left by moving objects before the

background model is updated, as well as much to be desired in terms of

interior pixel consistency.

3.3 Mixture of Gaussians

 The Mixture of Gaussians method develops a parametric

background model maintaining a probability density function for each pixel

represented by a mixture of Guassian functions. The pixel distribution f(It

= u) is represented by a mixture of K Gaussian functions:

€

f (It = u) = ω i,t ⋅η(u;µi,t ,σ i,t)
i=1

K

∑

where η(u; µi,t, σi,t) is the Gaussian component with intensity mean µ and

standard deviation σ. ωi,t represents the ith component. K, the number of

Gaussians, ranges from 3 to 5, depending on memory limitations [6, 12,

4].

 This method provides a stronger background model, but at the

expense of added complexity and memory requirements. Trailing artifacts

and object movement remnants as the background model is updated,

while reduced, are still present, as seen in [4, 6, 12, 13]. As a result,

mixture of Gaussians was not determined to be the best method for the

objectives of this thesis.

 9

3.4 The Algorithm

 As is usually the case, the simplest method can be the most

effective. Using the frame difference method and relying on a static

background proved to be the most efficient solution to fast and informative

foreground detection. Critical to separating foreground from background

is the predetermined threshold value. Because the best threshold value

may change depending on the camera used, lighting, and numerous other

factors, a GUI was developed to determine the threshold before recording

any data.

The threshold returned by the GUI can then be passed to the

function responsible for video input. Before foreground detection takes

place, the static background model is recorded. Foreground detection for

a single frame from video is then performed as follows:

(a) (b)

Figure 3 – The GUI developed and used to determine an effective threshold for feature detection. (a) depicts the
static background. (b) shows a hand that it is determined to be foreground.

 10

The frame is first resized before determining the difference between the

frame and background. Resizing and then blurring after determining the

difference aids in removing artifacts such as clothing textures and design

patterns. The resize and blur result in an acceptable loss of detail since

we are only concerned with the general shape of the foreground figure

representing the human pose. After the resize and blur, each pixel is

matched against the threshold, returning a binary mapping of the useful

foreground information within the frame.

framei = framei resized to nxn
d = | framei – background |
d = apply filter to d
for each pixel x,y in d
 if dx,y > threshold
 foregroundi:x,y = 1
 else
 foregroundi:x,y = 0

Figure 4 – Pseudo code for foreground
detection algorithm used.

 11

(a) (b)

(c) (d)

Figure 5 – (a) shows an input frame from video, (b) shows the result of background subtraction after resize, (c) shows the
application of a blurring filter to the background subtracted image, (d) represents what is finally determined as foreground.

 12

4. Features

 Once pertinent foreground information has been retrieved, the next

step is determining the best way of storing pose information in the

database. A number of features were considered with the aim of

minimizing database storage requirements while maintaining and

emphasizing significant data.

4.1 Person Detection

 Utilizing person and human shape detection algorithms was

considered for the extraction of pose information from the foreground of a

frame. The object detection system developed in [9] effectively detects a

person in an image. The person detection, however, focuses on human

body and ignores limb information at times, information that is critical to

pose determination. Parameters can be changed to allow for a more

generous marking of a person with the hopes of including limbs, but such

changes also increase the possibilities for false positives. Speed is also

an issue. Person detection, at least using the algorithm in [9], makes near

real time pose estimation difficult.

4.2 Shape Context

 A shape context feature, as described in [2], takes a distribution of

points on a shape return a descriptor for that shape. For a point pi on the

shape, a histogram is computed using log polar coordinates for the

coordinates for the remaining points on the shape relative to pi such that:

 13

€

hi(k) =#{q ≠ pi : (q − pi)∈ bin(k)}

which results in features that similar for corresponding points and

dissimilar for non-corresponding points. The points on the shape used in

shape context features, however, are sampled from contour points.

Performing edge operations on an image takes more time, in addition to

time spent forming the feature itself. Shape context features, although

highly descriptive, have an unjustifiable computational expense in light of

a simpler and faster feature.

4.3 Blob extraction

 The method chosen for the purpose of fast feature development is

to rely on effective foreground detection and to use foreground pose

information as the feature. The blob returned by the foreground detection

is extracted and any non-foreground information is discarded. Features

Figure 6 – This image from [2] provides a visual example of the method
in which shape context figure are extracted from a shape.

 14

are then uniformly resized, providing data that can be used in locality

sensitive hashing.

(a) (b)

Figure 7 – (a) represents the foreground of a frame of video, (b) represents a blob-extracted feature in which any non-
informational rows or columns of a foreground image have been removed.

 15

5. Locality Sensitive Hashing

5.1 Definition

 Locality sensitive hashing is used for the quick nearest neighbor

look up of high dimensional data. In the case of this thesis, the high

dimensional data are human pose features. The idea behind locality

sensitive hashing is to use a number of hash functions to ensure that the

chance of collision is higher for elements that are closer together than for

those that are farther a part. Nearest neighbor queries then become

simply a matter of hashing the query and returning the elements in that

bucket [1, 10]. Locality sensitive hashing is best defined in [1] as follows:

Locality sensitive hashing allows for the quick lookup and matching of high

dimensional data. In terms of this thesis and human pose estimation,

locality sensitive hashing allows for the quick lookup of a single pose from

Figure 8 – A definition of locality sensitive hashing from [1].

 16

a database containing a large number of human poses. The speed of the

lookup allows for near real time human pose estimation using video.

5.2 Dataset Development

 The success of human pose estimation using locality sensitive

hashing is dependent upon the data being hashed and used for matching

the query pose. In this case, the data being hashed are the human pose

features extracted from the foreground of video frames. Once features

have been extracted from each frame of video, each uniformly sized n x n

feature is resized to a 1 x n2 vector suitable for hashing in high

dimensional space. For m video frames, m features in an m x n2 matrix

are then hashed by columns using locality sensitive hashing. In the

process of extracting features from the frames of video for the

development of the dataset, the frames of video corresponding to the

features is stored as well. Additional pose information, such as pose

labeling, can be added to corresponding features once all features have

been extracted.

Video Input Features
Hashed

Feature
Extracted

Foreground
Detection

Additional
Pose Info

Feature
Stored

Frame
Stored

Figure 9 – An overview of the steps involved in dataset development.

 17

For the purposes of this thesis, two datasets have been developed.

The first, which will be referred to as the stick figure dataset, is a MATLAB

generated dataset of ‘stick figure’ poses, six 3-dimensional rectangular

shapes formed in such a way so as to represent a human figure from the

waste up. A right upper and right lower arm as well as a left upper and left

lower arm is rotated on each side of a head and body about the z-axis to

generate arm poses that match potential human movement. 2026 poses

were generated for the stick figure dataset. Examples from this dataset

are shown in the figure below.

Figure 10 – Four example poses of 2026 from the stick figure dataset developed in
MATLAB.

 18

The second dataset consists of poses generate by recorded human

movement. A static background image is recorded before a human

subject steps in front of the camera. Foreground detection takes place

followed by feature extraction to develop a dataset of pose features based

on actual human movement. A number of datasets were formed

throughout the progression of this thesis, some with as few as 500

features. Examples of the features from a human pose based dataset are

shown in the figure below.

 19

Figure 11 – Examples of features pulled from frames of video for a dataset of human poses.

 20

5.3 Feature Mapping

 Feature mapping is the effort of querying the database of poses for

a matching input pose. Similar to the initial steps of dataset development,

foreground detection and feature extraction are performed on an input

frame from video. The feature pulled from the frame of video is then

hashed against the set of poses stored using locality sensitive hashing. If

there is a collision and a matching feature is found in that bucket, the

index of that feature within the m x n2 matrix of features formed during

dataset development is returned by the locality sensitive hashing lookup

function. This index can then be used to retrieve the corresponding pose

information, such as the matching video for that feature in the dataset or

any pose labels, stored during the dataset development stage.

Video Input Feature
Hashed

Feature
Extracted

Foreground
Detection

Pose Info
Retrieved

Figure 12 – An overview of the steps involved in feature mapping and locality sensitive hash
lookup.

Figure 13 – An example of feature mapping showing an input feature on the
left with a matching feature pulled from a locality sensitive hash lookup on
the right.

 21

6. Results

 The success of human pose estimation in video using locality

sensitive hashing is dependent upon the database of poses being used.

Being able to extract useful features is important, but without a sufficient

database, queries made using locality sensitive hashing cannot return a

match. Dataset development, consequently, is critical in determining the

validity of locality sensitive hashing as a means of human pose estimation

in video. Determining a successful lookup is based on a visual judgment

that the input pose matches the pose returned by a database lookup.

 22

Experiments were performed for this thesis using a Sony DCR

TRV-950 video camera on a 2.33 GHz Intel Core 2 Duo Mac with 2 GB

667 MHz DDR2 SDRAM in MATLAB for OS X. Foreground detection and

feature extraction took 0.01 seconds on average, regardless of the dataset

being tested. A locality sensitive hash lookup for the human dataset of

500 poses took 0.0075 seconds on average. A locality sensitive hash

lookup for the stick figure dataset of 2026 poses took 0.0073 on average.

Total processing for a single frame for the human dataset, including

foreground detection, feature extraction, feature lookup, and a display of

the matching feature and corresponding pose information, took 0.2333

seconds on average, or at a rate of 4.3 frames per second. Total

processing for a single frame for the stick figure dataset took 0.2453 on

average. A linear feature lookup took 0.2671 for a dataset of 300 poses,

compared to 0.0129 using locality sensitive hashing, indicating that locality

sensitive hashing leads to a significant decrease in lookup time.

Figure 14 – Example successful matches using the stick figure dataset. From left to right the images represent: an input
feature, the matching feature pulled from a locality sensitive hash lookup, the input frame of video, the pose information
matching the feature pulled from the database.

 23

7. Discussion

 Near real time human pose estimation using locality sensitive

hashing seems to be possible considering the results of this thesis. The

speed of a locality sensitive hash lookup allows for near real time results.

The features used also lend themselves well to locality sensitive hashing.

A dataset with as few as 500 poses presents a surprisingly large number

of accurate matches. A primitive stick figure dataset presented a large

number of matches as well. Although the largest dataset tested was only

2026 features due to system memory limitations, further optimizations can

be imagined for even faster results with a larger dataset.

Of the two datasets tested, a human dataset of only 500 poses

seemed to outperform the stick figure dataset of 2026 poses. Reasons for

this apparent illogicality include the fact that a stick figure pose consists of

only 4 moving parts, the upper and lower arms, whereas a human pose

consists of many more moving parts with some degree of consistency at

their points of connection. The stick figure dataset presented sharp

angles not present in human poses, which can be imagined to cause

some issues in feature matching.

Both datasets did present errors. In the examples from the human

dataset below, cases in which the arms are close to or in front of the body

produce errors, attributed to the pose feature being used.

 24

The stick figure dataset, made up of only black rectangles, is incapable of

displaying poses in which arms are in front the body. And both datasets,

as expected, produce errors when queried for poses not in the dataset, as

shown below.

Figure 15 – An example of a false positive feature match. This error is the result of features being incapable of
determining poses in which limbs are in front of the body.

Figure 16 – An example of an error in which the input pose is not in the database of poses.

 25

8. Future Work

 Although this thesis demonstrates that near real time human pose

estimation is possible using locality sensitive hashing, there is still much

potential to be explored. Foreground detection could be improved to

remove the restriction of a static background. Motion based poses should

logically be possible as well. Features could be improved to resolve

poses in which limbs are overlapping or in front of the body. Larger and

more comprehensive datasets should present immediate improvement in

the quality and consistency in matches. Upper body poses were used in

the work performed here only to minimize the number of possible poses,

but locality sensitive hashing should be just as effective for full body poses

as well as for fast feature matching beyond human pose estimation.

 There are a number of potential interesting applications for near

real time human pose estimation using locality sensitive hashing as well.

Human computer interaction could be changed by allowing humans to

interact with computers through no actual physical input but rather by

attaching significance to human poses. Computers as well as robots

could be taught to respond to human poses. Digital animation could be

influenced as well if a dataset of features were attached to corresponding

animated figures. While this thesis examines the possibility of human

pose estimation using locality sensitive hashing, there is still a great deal

of possibilities still to be discovered.

 26

9. References

[1] Andoni, Alexandr and Indyk, Piotr. Near-Optimal Hashing Algorithms for

Approximate Nearest Neighbor in High Dimensions. Communications of

the ACM, Vol. 51, No. 1, 117-122. 2008.

[2] Belongie, S. and Malik, J. Matching with shape contexts. IEEE Workshop

on Content-based Access of Image and Video Libraries. June 2000.

[3] Bentley, J.L. Multidimensional binary search trees used for

associative searching. Comm. ACM 18, 509–517. 1975.

[4] Benton, Seth. Background subtraction, part 1: MATLAB models.

DSP Design Line. August 10, 2008.

[5] Chellappa, R. and Sundaresan, A. Multicamera Tracking of

Articulated Human Motion Using Shape and Motion Cues. IEEE

Transactions on Image Processing, Vol. 18, No. 9. September

2009.

[6] Cheung, S.C. and Kamath, C. Robust techniques for background

subtraction in urban tra!c video. Video Communications and

Image Processing, SPIE Electronic Imaging. 2004.

[7] CMU Graphics Lab Motion Capture Database, mocap.cs.cmu.edu,

developed with funding from NSF EIA-0196217

[8] Friedman, N. and Russell, S. Image segmentation in video

sequences: A probabilistic approach. Proceedings of the Thirteenth

 27

Annual Conference on Uncertainty in Artificial Intelligence (UAI–

97), 175–181. 1997.

[9] Felzenszwalb, P., Girshick, R., McAllester, D., Ramanan, D.

Object Detection with Discriminatively Trained Part Based Models.

To appear in the IEEE Transactions on Pattern Analysis and

Machine Intelligence.

[10] Indyk, P. and Motwani, R. Approximate nearest neighbor: Towards

removing the curse of dimensionality. In Proceedings of the Symposium

on Theory of Computing. 1998.

[11] McFralane, N. J. B. and Schofield, C.P. Segmentation and tracking

of piglets in images. Machine Vision and Applications, Vol. 8, No. 3,

187-193. 2005.

[12] Mcivor, A. M. Background Subtraction Techniques. Proc. of Image

and Vision Computing, Auckland, New Zealand. 2000.

[13] Stau"er, C. and Grimson, W. Learning patterns of activity using

real-time tracking. IEEE Trans. on Pattern Analysis and Machine

Intelligence, 22, 747–57. August 2000.

