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Abstract: This thesis aims to develop a data set of poses to be 
used with locality sensitive hashing in human pose estimation, and 
then to determine the potential for real or near real time use of 
locality sensitive hashing in human pose estimation with that data 
set.  Background subtraction is used to obtain a silhouette of the 
human pose from a single frame of video.  The pose is then 
matched against the data set of poses using locality sensitive 
hashing.  Results indicate that a data set can be developed to be 
used with locality sensitive hashing to match human poses in video 
and that near real time results are possible.  The application of 
locality sensitive hashing for human pose estimation in video 
facilitates further discussion of the uses for pose estimation in video 
as well as the uses of locality sensitive hashing in fast feature 
matching. 
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1. Introduction 
  
 Human pose estimation is defined here as the determination of the 

human pose and extraction of useful information concerning the human 

pose either from an image or frame of video.  This thesis examines the 

problem of detecting the seemingly infinite number of possible human 

poses.  Human pose estimation from video sequences has various useful 

applications.  Human computer interaction, animation development, and 

robotics are only a few of many areas that have the potential to benefit 

from fast and accurate human pose estimation.  

Current techniques, however, are limiting.  One method, such as 

that used to develop many motion capture datasets including that in [7], 

involves the use of markers placed on the body to capture motion data 

using specialized equipment.  Other methods, such as [5], require multiple 

cameras. Techniques involving high dimension feature matching for pose 

estimation are limited as well.  kd-trees [3], one such data structure 

popular in nearest neighbor searches, performs little better than linear 

time at high dimensions in what is known as the “curse of dimensionality”, 

nearly equivalent to simply comparing every point in the data set [1]. 

The method for human pose estimation explored here involves 

extracting a pose feature and then matching that feature to large data set 

of features using locality sensitive hashing.  This technique only requires 

one video camera placed in a static location.  Locality sensitive hashing, 

developed by Alexandr Andoni and Piotr Indyk in [1, 10], is used to hash 
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features in such a way that the probability for collision is higher for 

features closer together than those further apart.  A query feature can then 

quickly be matched by retrieving elements stored at the location returned 

by hashing the feature.  With a large enough data set, fast and accurate 

pose estimation can be achieved. 

The goal of this thesis is to determine the viability of using locality 

sensitive hashing for real or near real time human pose estimation in 

video. Because the effectiveness of locality sensitive hashing relies in part 

on the data set stored by locality sensitive hashing, a related goal, 

consequently, is to develop a data set to be used in human pose 

estimation with locality sensitive hashing.  As will be discussed, a data set 

can be developed for use with locality sensitive hashing in human pose 

estimation, and near real time results can be achieved.   
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2. Overview 
 
 This thesis is made up of essentially two components, one being 

the development of a dataset to be used with locality sensitive hashing 

and the second being the analysis and testing of locality sensitive hashing 

with that dataset.  While these two tracks have a great deal of overlap, 

there are some differences that should be noted before proceeding.  The 

figure below gives an overview of these two components developed for 

this implementation of human pose estimation in video. 
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Figure 1 – An overview of the two tracks of development for this thesis. 
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3. Foreground Detection 
 
 The first step in extracting a human pose from a single frame of 

video to be matched against the database of poses is to determine the 

useful information in that frame.  Extracting useful and pertinent 

information is critical to the development of meaningful features and the 

success of the database query.  As a result, accurate foreground 

detection, or the separation of information from the background of a 

scene, is critical.  A number of different methods were implemented and 

analyzed before determining the most beneficial method for the purpose of 

this thesis. 

 
3.1 Frame Difference 
 
 The frame difference technique is perhaps one of the simplest 

background subtraction techniques.  Foreground information is extracted 

by finding the difference between the current frame and the previous 

frame [6].  A pixel is marked as foreground if that difference is greater than 

some predefined threshold. 

€ 

framei − framei−1 > threshold  

But if an object does not move in the time between two frames, foreground 

information is lost.  Just because the object does not move, however, 

does not mean there is no useful pose information present. 

Another option for the frame difference method is to utilize a static 

background.   
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€ 

framei − background > threshold  

Determining the difference between a frame and predefined background 

model returns much more useful information including interior pixels and 

information for non-moving objects.  A drawback to this method is the 

need for a background model, often unavailable from most videos in 

uncontrolled settings. 

 
3.2 Approximate Median 
 
 The approximate median method employs the frame difference 

technique but with a constantly updated background model, alleviating the 

need for a static background model.  Median filtering, a precursor to the 

approximate median method, uses a background model that is the median 

of all previous frames [6].  The storage requirements for median filtering 

are alleviated in the approximate median method by comparing the current 

frame to a single frame background model and then updating the 

background model accordingly [11], described in Figure 2. 

 

Approximate median develops a better background model as well as more 

foreground information without the use of a static background model.  

if pixeli in framen > pixeli in background 
 pixeli in background = pixeli in background + 1 
elseif pixeli in framen < pixeli in background 
 pixeli in background = pixeli in background – 1 

 

 
Figure 2 – A pseudo code algorithm for the approximate median 
method of foreground detection. 
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There is, however, trailing data left by moving objects before the 

background model is updated, as well as much to be desired in terms of 

interior pixel consistency. 

 

 

3.3 Mixture of Gaussians 
 
 The Mixture of Gaussians method develops a parametric 

background model maintaining a probability density function for each pixel 

represented by a mixture of Guassian functions.  The pixel distribution f(It 

= u) is represented by a mixture of K Gaussian functions: 

€ 

f (It = u) = ω i,t ⋅η(u;µi,t ,σ i,t )
i=1

K

∑  

where η(u; µi,t, σi,t) is the Gaussian component with intensity mean µ and 

standard deviation σ.  ωi,t represents the ith component. K, the number of 

Gaussians, ranges from 3 to 5, depending on memory limitations [6, 12, 

4]. 

 This method provides a stronger background model, but at the 

expense of added complexity and memory requirements.  Trailing artifacts 

and object movement remnants as the background model is updated, 

while reduced, are still present, as seen in [4, 6, 12, 13].  As a result, 

mixture of Gaussians was not determined to be the best method for the 

objectives of this thesis.  
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3.4 The Algorithm 
 
 As is usually the case, the simplest method can be the most 

effective. Using the frame difference method and relying on a static 

background proved to be the most efficient solution to fast and informative 

foreground detection.  Critical to separating foreground from background 

is the predetermined threshold value.  Because the best threshold value 

may change depending on the camera used, lighting, and numerous other 

factors, a GUI was developed to determine the threshold before recording 

any data. 

 

 

 

   

 

  

 

 

 

 

The threshold returned by the GUI can then be passed to the 

function responsible for video input.  Before foreground detection takes 

place, the static background model is recorded.  Foreground detection for 

a single frame from video is then performed as follows: 

(a) (b) 

Figure 3 – The GUI developed and used to determine an effective threshold for feature detection.  (a) depicts the 
static background.  (b) shows a hand that it is determined to be foreground. 
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The frame is first resized before determining the difference between the 

frame and background. Resizing and then blurring after determining the 

difference aids in removing artifacts such as clothing textures and design 

patterns.  The resize and blur result in an acceptable loss of detail since 

we are only concerned with the general shape of the foreground figure 

representing the human pose.  After the resize and blur, each pixel is 

matched against the threshold, returning a binary mapping of the useful 

foreground information within the frame. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

framei = framei resized to nxn 
d = | framei – background | 
d = apply filter to d 
for each pixel x,y in d 
 if dx,y > threshold 
  foregroundi:x,y = 1 
 else 
  foregroundi:x,y = 0 

Figure 4 – Pseudo code for foreground 
detection algorithm used. 
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(a) (b) 

(c) (d) 

Figure 5 – (a) shows an input frame from video, (b) shows the result of background subtraction after resize, (c) shows the 
application of a blurring filter to the background subtracted image, (d) represents what is finally determined as foreground. 
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4. Features 
 
 Once pertinent foreground information has been retrieved, the next 

step is determining the best way of storing pose information in the 

database.  A number of features were considered with the aim of 

minimizing database storage requirements while maintaining and 

emphasizing significant data. 

 
4.1 Person Detection 
 
 Utilizing person and human shape detection algorithms was 

considered for the extraction of pose information from the foreground of a 

frame.  The object detection system developed in [9] effectively detects a 

person in an image.  The person detection, however, focuses on human 

body and ignores limb information at times, information that is critical to 

pose determination.  Parameters can be changed to allow for a more 

generous marking of a person with the hopes of including limbs, but such 

changes also increase the possibilities for false positives.  Speed is also 

an issue. Person detection, at least using the algorithm in [9], makes near 

real time pose estimation difficult. 

 
4.2 Shape Context 
 
 A shape context feature, as described in [2], takes a distribution of 

points on a shape return a descriptor for that shape.  For a point pi on the 

shape, a histogram is computed using log polar coordinates for the 

coordinates for the remaining points on the shape relative to pi such that: 
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€ 

hi(k) =#{q ≠ pi : (q − pi)∈ bin(k)} 

which results in features that similar for corresponding points and 

dissimilar for non-corresponding points.  The points on the shape used in 

shape context features, however, are sampled from contour points.  

Performing edge operations on an image takes more time, in addition to 

time spent forming the feature itself.  Shape context features, although 

highly descriptive, have an unjustifiable computational expense in light of 

a simpler and faster feature. 

 
 
4.3 Blob extraction 
 
 The method chosen for the purpose of fast feature development is 

to rely on effective foreground detection and to use foreground pose 

information as the feature.  The blob returned by the foreground detection 

is extracted and any non-foreground information is discarded.  Features 

Figure 6 – This image from [2] provides a visual example of the method 
in which shape context figure are extracted from a shape. 
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are then uniformly resized, providing data that can be used in locality 

sensitive hashing. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

(a) (b) 

Figure 7 – (a) represents the foreground of a frame of video, (b) represents a blob-extracted feature in which any non-
informational rows or columns of a foreground image have been removed. 
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5. Locality Sensitive Hashing 
 
5.1 Definition 
 
 Locality sensitive hashing is used for the quick nearest neighbor 

look up of high dimensional data.  In the case of this thesis, the high 

dimensional data are human pose features.  The idea behind locality 

sensitive hashing is to use a number of hash functions to ensure that the 

chance of collision is higher for elements that are closer together than for 

those that are farther a part.  Nearest neighbor queries then become 

simply a matter of hashing the query and returning the elements in that 

bucket [1, 10].  Locality sensitive hashing is best defined in [1] as follows: 

 
 

 

 

 

 

 

 

 

 

Locality sensitive hashing allows for the quick lookup and matching of high 

dimensional data.  In terms of this thesis and human pose estimation, 

locality sensitive hashing allows for the quick lookup of a single pose from 

Figure 8 – A definition of locality sensitive hashing from [1]. 
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a database containing a large number of human poses.  The speed of the 

lookup allows for near real time human pose estimation using video. 

 
5.2 Dataset Development 
 
 The success of human pose estimation using locality sensitive 

hashing is dependent upon the data being hashed and used for matching 

the query pose.  In this case, the data being hashed are the human pose 

features extracted from the foreground of video frames.  Once features 

have been extracted from each frame of video, each uniformly sized n x n 

feature is resized to a 1 x n2 vector suitable for hashing in high 

dimensional space.  For m video frames, m features in an m x n2 matrix 

are then hashed by columns using locality sensitive hashing.  In the 

process of extracting features from the frames of video for the 

development of the dataset, the frames of video corresponding to the 

features is stored as well.  Additional pose information, such as pose 

labeling, can be added to corresponding features once all features have 

been extracted. 

 
 
 
  
 

 

Video Input Features 
Hashed 

Feature 
Extracted 

Foreground 
Detection 

Additional 
Pose Info 

Feature 
Stored 

Frame 
Stored 

Figure 9 – An overview of the steps involved in dataset development. 
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For the purposes of this thesis, two datasets have been developed.  

The first, which will be referred to as the stick figure dataset, is a MATLAB 

generated dataset of ‘stick figure’ poses, six 3-dimensional rectangular 

shapes formed in such a way so as to represent a human figure from the 

waste up.  A right upper and right lower arm as well as a left upper and left 

lower arm is rotated on each side of a head and body about the z-axis to 

generate arm poses that match potential human movement.  2026 poses 

were generated for the stick figure dataset.  Examples from this dataset 

are shown in the figure below. 

 
  

 

 

 

 

 

 

 

 

 

 

Figure 10 – Four example poses of 2026 from the stick figure dataset developed in 
MATLAB. 
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The second dataset consists of poses generate by recorded human 

movement.  A static background image is recorded before a human 

subject steps in front of the camera.  Foreground detection takes place 

followed by feature extraction to develop a dataset of pose features based 

on actual human movement.  A number of datasets were formed 

throughout the progression of this thesis, some with as few as 500 

features.  Examples of the features from a human pose based dataset are 

shown in the figure below. 
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Figure 11 – Examples of features pulled from frames of video for a dataset of human poses. 
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5.3 Feature Mapping 
  
 Feature mapping is the effort of querying the database of poses for 

a matching input pose.  Similar to the initial steps of dataset development, 

foreground detection and feature extraction are performed on an input 

frame from video.  The feature pulled from the frame of video is then 

hashed against the set of poses stored using locality sensitive hashing.  If 

there is a collision and a matching feature is found in that bucket, the 

index of that feature within the m x n2 matrix of features formed during 

dataset development is returned by the locality sensitive hashing lookup 

function.  This index can then be used to retrieve the corresponding pose 

information, such as the matching video for that feature in the dataset or 

any pose labels, stored during the dataset development stage. 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

Video Input Feature 
Hashed 

Feature 
Extracted 

Foreground 
Detection 

Pose Info 
Retrieved 

Figure 12 – An overview of the steps involved in feature mapping and locality sensitive hash 
lookup. 

Figure 13 – An example of feature mapping showing an input feature on the 
left with a matching feature pulled from a locality sensitive hash lookup on 
the right. 
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6. Results 
 
 The success of human pose estimation in video using locality 

sensitive hashing is dependent upon the database of poses being used.  

Being able to extract useful features is important, but without a sufficient 

database, queries made using locality sensitive hashing cannot return a 

match.  Dataset development, consequently, is critical in determining the 

validity of locality sensitive hashing as a means of human pose estimation 

in video.  Determining a successful lookup is based on a visual judgment 

that the input pose matches the pose returned by a database lookup. 
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Experiments were performed for this thesis using a Sony DCR 

TRV-950 video camera on a 2.33 GHz Intel Core 2 Duo Mac with 2 GB 

667 MHz DDR2 SDRAM in MATLAB for OS X. Foreground detection and 

feature extraction took 0.01 seconds on average, regardless of the dataset 

being tested.  A locality sensitive hash lookup for the human dataset of 

500 poses took 0.0075 seconds on average.  A locality sensitive hash 

lookup for the stick figure dataset of 2026 poses took 0.0073 on average.  

Total processing for a single frame for the human dataset, including 

foreground detection, feature extraction, feature lookup, and a display of 

the matching feature and corresponding pose information, took 0.2333 

seconds on average, or at a rate of 4.3 frames per second.  Total 

processing for a single frame for the stick figure dataset took 0.2453 on 

average.  A linear feature lookup took 0.2671 for a dataset of 300 poses, 

compared to 0.0129 using locality sensitive hashing, indicating that locality 

sensitive hashing leads to a significant decrease in lookup time. 

 
 

Figure 14 – Example successful matches using the stick figure dataset.  From left to right the images represent: an input 
feature, the matching feature pulled from a locality sensitive hash lookup, the input frame of video, the pose information 
matching the feature pulled from the database. 
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7. Discussion 
 
 Near real time human pose estimation using locality sensitive 

hashing seems to be possible considering the results of this thesis. The 

speed of a locality sensitive hash lookup allows for near real time results.  

The features used also lend themselves well to locality sensitive hashing.  

A dataset with as few as 500 poses presents a surprisingly large number 

of accurate matches.  A primitive stick figure dataset presented a large 

number of matches as well.  Although the largest dataset tested was only 

2026 features due to system memory limitations, further optimizations can 

be imagined for even faster results with a larger dataset.   

Of the two datasets tested, a human dataset of only 500 poses 

seemed to outperform the stick figure dataset of 2026 poses.  Reasons for 

this apparent illogicality include the fact that a stick figure pose consists of 

only 4 moving parts, the upper and lower arms, whereas a human pose 

consists of many more moving parts with some degree of consistency at 

their points of connection.  The stick figure dataset presented sharp 

angles not present in human poses, which can be imagined to cause 

some issues in feature matching.   

Both datasets did present errors.  In the examples from the human 

dataset below, cases in which the arms are close to or in front of the body 

produce errors, attributed to the pose feature being used.   
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The stick figure dataset, made up of only black rectangles, is incapable of 

displaying poses in which arms are in front the body.  And both datasets, 

as expected, produce errors when queried for poses not in the dataset, as 

shown below.  

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 15 – An example of a false positive feature match.  This error is the result of features being incapable of 
determining poses in which limbs are in front of the body. 

Figure 16 – An example of an error in which the input pose is not in the database of poses. 
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8. Future Work 
 
 Although this thesis demonstrates that near real time human pose 

estimation is possible using locality sensitive hashing, there is still much 

potential to be explored.  Foreground detection could be improved to 

remove the restriction of a static background.  Motion based poses should 

logically be possible as well.  Features could be improved to resolve 

poses in which limbs are overlapping or in front of the body.  Larger and 

more comprehensive datasets should present immediate improvement in 

the quality and consistency in matches.  Upper body poses were used in 

the work performed here only to minimize the number of possible poses, 

but locality sensitive hashing should be just as effective for full body poses 

as well as for fast feature matching beyond human pose estimation. 

 There are a number of potential interesting applications for near 

real time human pose estimation using locality sensitive hashing as well.  

Human computer interaction could be changed by allowing humans to 

interact with computers through no actual physical input but rather by 

attaching significance to human poses.  Computers as well as robots 

could be taught to respond to human poses.  Digital animation could be 

influenced as well if a dataset of features were attached to corresponding 

animated figures.  While this thesis examines the possibility of human 

pose estimation using locality sensitive hashing, there is still a great deal 

of possibilities still to be discovered. 
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