
Learning Distributed Representations
of Natural Language Text with

Artificial Neural Networks

Boston College Computer Science Senior Thesis

Ali Aslam
Adviser: Sergio Alvarez



Contents

1 Overview 3

2 Natural Language Processing 4
2.1 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Pragmatics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.4 Common Approaches to NLP . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.5 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Artificial Neural Networks 8
3.1 Brief Introduction to Machine Learning . . . . . . . . . . . . . . . . . . . . . 8
3.2 Introduction to ANNs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.3 Logistic Neurons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.4 Feedforward Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.4.1 Backpropagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.5 Recurrent Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.6 Softmax Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.7 Practical Issues in Training ANNs . . . . . . . . . . . . . . . . . . . . . . . . 16

4 Artificial Neural Networks and Natural Language Processing 17
4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2 Representing Words as Continuous-Valued Vectors . . . . . . . . . . . . . . . 18

4.2.1 Methods for Learning Language Models . . . . . . . . . . . . . . . . . 19
4.2.2 Continuous Skip-gram Model . . . . . . . . . . . . . . . . . . . . . . . 21
4.2.3 Linguistic Properties of Word Vector Representations . . . . . . . . . 22

4.3 Methods of Compositionality . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.4 Parsing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.5 Sentiment Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.6 Additional Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5 Conclusions and Future Work 26

1



Abstract

Methods in natural language processing(NLP) often make use of handcrafted
features or simplifying assumptions of language that work well for many tasks
and allow for computational tractability. They can, however, fall short in
expressing the full semantic and syntactic richness of natural language that
is necessary for solving complex problems of language understanding. To ad-
dress this shortcoming, artificial neural networks(ANN), robust computational
models used for machine learning, have recently been applied to NLP in or-
der to learn continuous-valued vector representations that capture some of the
linguistic properties of words and even sentences. These representations have
subsequently helped achieve state of the art performance in a number of tasks.
In this thesis, I first introduce the motivation and basic concepts behind nat-
ural language processing and artificial neural networks. I then describe the
representations that ANN approaches to NLP comprise and finally, I mention
the latest developments at the cross-section of these two areas, along with the
basic intuitions behind them.
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1 Overview

This thesis is meant to serve as an introduction to artificial neural network(ANN)
applications to natural language processing(NLP). Given that research in both
ANNs and NLP extends back several decades and is relatively expansive, only
a synopsis of both is provided. The focus is recent work related to using ANNs
to learn distributed representations of words, their properties, and also vari-
ous NLP tasks in which these representations are underlying components. An
effort has been made to provide references to further reading as well.
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2 Natural Language Processing

Natural language processing(NLP) aims to program computers to understand
natural language and thus perform useful tasks. One of the obvious moti-
vations for giving machines this capability is the sheer amount of natural
language text and speech data currently available and the exponential rate at
which it is increasing. NLP as one of its many goals attempts to simplify and
aid in our comprehension of this data.

NLP is based heavily in the field of linguistics, the scientific study of language,
and thus it is necessary to have a good grasp of linguistic principles before ex-
ploring more complex NLP applications. Linguistics has been divided into a
number of distinct subfields. From them, perhaps the most important and
most comprehensive are syntax, semantics, and pragmatics. The next few sec-
tions in this chapter provide a brief definition of these areas and also describe
a few of the main tasks in NLP related to each.

2.1 Syntax

Noam Chomsky, often described as the ”father of modern linguistics”, defines
syntax as “the study of the principles and processes by which sentences are
constructed in particular languages” [3]. An important concept in syntax that
should be noted is what is called a grammar. Grammars are sets of rules
that govern the formulation of sentences. There are various types of syntactic
structure, but the most common is the structure generated by context-free
grammars.

Overall, there exists a substantial amount of formal theory for the study of
syntax in linguistics. Many of these details are left out here. A much more
comprehensive introduction is given in chapters 5 and 12 of [11].

The most common challenge related to syntax in NLP is what is called parsing.
Parsing is assigning a syntactic structure to a sentence. In other words, it is to
classify words and phrases into categories such as singular or mass noun(NN),
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Figure 2.1: A parse tree drawn using NLTK [2].

personal pronoun(PRP), noun phrase(NP), verb phrase(VP), etc. as well as
define relationships between them. An example of a typical parse tree is shown
in Figure 2.1.

2.2 Semantics

Semantics is the branch of linguistics devoted to meaning. A distinction be-
tween syntax and semantics is necessary because sentences of very different
syntactic structure may have the same meaning, as shown in Figure 2.2, and
vice versa. All of the sentences in the figure convey the same meaning except
for minor subtleties, and yet have different syntactic structures or parse trees.

(a) Does Boston College have a computer science major?

(b) Do they have a computer science major at Boston College?

(c) Is computer science a major at Boston College?

(d) Does Boston College offer a major in computer science?

Figure 2.2: Sentences that carry the same meaning, but different syntactic structures

Both semantics and syntax play a significant role in understanding. They are
often treated as separate tasks and then in some way brought together for
more complex NLP applications.

2.3 Pragmatics

Pragmatics is “the knowledge of the relationship of meaning to the goals and
intentions of the speaker” [11]. It tends to deal with what is more informally
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called context and how context affects meaning.

Given the ambiguities and vagueness of natural language, understanding the
syntax and semantics of a sentence alone is not sufficient. It is necessary
to further distinguish between the multiple semantic meanings and syntactic
structures a sentence may carry based on the context. A specific example of
why pragmatics is necessary is shown in Figure 2.3.

(a) I cooked waterfowl for her.

(b) I created the (plaster?) duck she owns.

(c) I caused her to lower her head or body.

Figure 2.3: Possible meanings for “I made her duck.” [11]. Knowledge of the context in
which this statement was made is necessary to understand the intended meaning.

Under both semantics and pragmatics lies what is called discourse. Discourse
is the study of larger linguistic units such as a series of sentences. It is the
study of how sentences relate to one another and the meaning they convey as
a collective unit. Discourse contributes to the overall context as well.

2.4 Common Approaches to NLP

Approaches in NLP often make simplifying assumptions of natural language
because either specific tasks do not necessitate the extra complexity or to allow
for computational tractability.

For example, certain approaches in NLP assume that words and phrases are
conditionally independent of one another. This occurs most commonly in text
classification and also in some parsing algorithms. Figure 2.4 illustrates the
bag-of-words model. In this model, word order and relationships are ignored
by figuratively throwing the words in a bag and simply taking word count into
consideration.

It should be understood that as applications become more and more complex,
a deeper understanding of language is necessary. This thesis describe methods
in which NLP researchers are practically taking steps to capture the richness
of natural language that is often ignored with other methods.
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“If I have seen further it is by standing on the shoulders of giants.”

Figure 2.4: A figurative bag-of-words model

2.5 Applications

Natural language processing applications are prevalent in everyday technolo-
gies. Complex xamples include conversational agents, information retrieval,
machine translation, question answering, and speech recognition.
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3 Artificial Neural Networks

Before explaining how artificial neural networks(ANNs) have been applied to
NLP, an introduction to ANNs is first given in this chapter.

Artificial neural networks are powerful computational models used for what is
called machine learning. ANNs have a wide range of applications, but have
been implemented particularly successfully in computer vision(e.g. recognizing
objects in images), speech recognition(i.e. translating spoken words into text)
and more recently, NLP.

3.1 Brief Introduction to Machine Learning

Machine learning is a branch of artificial intelligence concerned with the study
and implementation of models and algorithms that are capable of learning.
Tom Mitchell, a well known researcher in the field, provides a formal defini-
tion of learning, explaining that “a computer program is said to learn from
experience E with respect to some class of tasks T and performance measure
P, if its performance at tasks in T, as measured by P, improves with experi-
ence E” [17]. Experience often relates to what are called training examples,
i.e. what one uses to train a machine learning model. A class of tasks refers to
what exactly one would like a machine learning model to learn. A performance
measure is used to determine how well a model performs with respect to the
objective. A performance measure not only guides a model in the learning
process but also provides a method of comparison between models of different
structure and parameters.

It should be noted that a focal point of machine learning is application. There
are numerous different models and algorithms used in the field with differ-
ent approaches that may work well in certain cases but often do not provide
absolute theoretical guarantees[25]. Choosing the right method for a specific
dataset can at times be more of an art than a science. As such, the entire pro-
cess of applying machine learning is iterative. The data must be thoroughly
understood and tradeoffs related to computational complexity, accuracy, etc.
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Figure 3.1: Examples of handwritten digits from the MNIST dataset

must be considered. Steps such as preprocessing, feature extraction, and model
training may also be repeated several times.

As a concrete example, consider the classification problem of the MNIST
dataset(examples shown in Figure 3.1). The task is to build a classifier or
a categorizer that accurately determines the digit of a handwritten digit. As
a preprocessing step, the dataset has been normalized such that each image
is only a black and white pixel representation of a single handwritten digit.
Prior to classification, one might also extract useful features from each image.
Finally, one would train a model such as an artificial neural network that at-
tempts to fit the data in such a way as to maximize the accuracy on unseen or
test examples, i.e. generalize. If the results were not as expected, one might
return to prior steps in the process to make improvements.

For a more detailed introduction to machine learning, see [17] and for advice
in practically applying machine learning, see [5].

3.2 Introduction to ANNs

Artificial neural networks are powerful methods for learning, often real-valued,
functions.

3.3 Logistic Neurons

The foundational component of an artificial neural network is a logistic neuron,
illustrated in Figure 3.2.
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Figure 3.2: A logistic neuron

The neuron takes as its input a vector x, computes a dot product with a set
of weights w, and finally applies a non-linearity returning a single real-valued
output, also known as an activation value. More precisely, a logistic neuron
first computes:

z = b+
∑
i

xiwi (3.1)

where b is a bias term that serves as an “always on” feature. The logistic
neuron then applies the sigmoidal non-linearity(Figure 3.3a) to the result z:

y =
1

1 + e−z
(3.2)

A performance measure or cost function for a logistic neuron is also necessary.
A common measure is the squared difference error:

E =
1

2

∑
n∈training

(tn − yn)2 (3.3)

tn is the expected output and yn is the predicted output of the model for a
training example n.

Learning in machine learning often comes down to optimizing a set of param-
eters. Here, the set of parameters is w and each distinct set of weights defines
a function or a hypothesis. The objective is to update w with ∆w or in other
words find a hypothesis such that the error E is minimized.
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(a) Sigmoid function (b) tanh function where tanh(z) = ez−e−z

ez+e−z

Figure 3.3: Two common types of non-linearity functions used with ANNs

One way of minimizing the error is to move in the direction, i.e. update the
weights, such that the error is maximally decreased. A visualization of this
concept is shown in Figure 3.4.

Recall from calculus that the direction of greatest decrease is the direction
opposite to the gradient vector. We use this fact to derive the individual
weight-update rule ∆wi for the logistic neuron.

The partial derivative of Equation 3.1 with respect to wi is:

∂z

∂wi

= xi (3.4)

The derivative of Equation 3.2 with respect to z is:

dy

dz
= y(1− y) (3.5)

This then allows us to compute the derivative of the cost, Equation 3.3, with
respect to each weight wi:

∂y

∂wi

=
∂z

∂wi

dy

dz
= xiy(1− y) (3.6)

∂E

∂wi

=
∑
n

∂yn
∂wi

∂E

∂yn
= −

∑
n

xni y
n(1− yn)(tn − yn) (3.7)
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Figure 3.4: Visualizing the error of different hypotheses

3.4 Feedforward Neural Networks

The most basic ANN is the feedforward neural network, shown in Figure 3.5.
Note that the outputs from one layer’s logistic neurons are passed as input to
another’s(e.g. L2 → L3).

Learning with respect to ANNs refers to updating the weights of each of the
neurons. Due to the fact that the neurons’ weights act as a collective unit,
the learning algorithm must account for each weight’s effect on the output. A
popular training algorithm that deals with this complexity is called Backprop-
agation [19]. Despite its simplicity, it is still effectively and widely used for
training artificial neural networks.
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Figure 3.5: A feedforward neural network

3.4.1 Backpropagation

Backpropagation accounts for the multiple layers of an ANN. The algorithm
states that ∂E

∂wij
where wij is the weight from unit i to unit j is as follows:

∂E

∂zj
=
dyj
dzj

∂E

∂yj
= yj(1− yj)

∂E

∂yj
(3.8)

∂E

∂yi
=
∑
j

dzj
dyi

∂E

∂zj
=
∑
j

wij
∂E

∂zj
(3.9)

∂E

∂wij

=
∂zj
∂wij

∂E

∂zj
= yi

∂E

∂zj
(3.10)

This quantiy, ∂E
∂wij

, is also multiplied by a small constant η called the learning

rate to get the actual weight update ∆wij. This is used to prevent the ANN
from getting caught in local minima. This and other issues are explored in
Section 3.7.
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Figure 3.6: A recurrent neural network

3.5 Recurrent Neural Networks

Recurrent Neural Networks(RNNs) are recursive models in which the output
is fed back in as input. RNNs are capable of storing “short-term memories” for
learning. They are trained using a modified version of Backpropagation called
Backpropagation Through Time(BPTT) [24]. The basic idea is to expand the
RNN through time and backpropagate the errors just as one would with a
feedforward neural network. This concept is illustrated in Figure 3.7.

Learning long sequences with RNNs is typically very difficult with BPTT.
The procedure suffers from either vanishing or exploding gradients. In other
words, as the RNN is unwrapped through time, the gradients tend to get either
very small or very large. Several optimization methods have been developed
specifically with this in mind. Nevertheless, RNNs trained for NLP operate
almost exclusively at the word level within a window size of a sentence. Due
to the fact that sentences are fairly short in terms of the number of words,
BPTT has worked well.

3.6 Softmax Layer

In many machine learning tasks, probabilities for class predictions are desired.
A common method of representing probabilities with artificial neural networks
is the use of a softmax layer. It is used to represent a categorical probability
distribution and if used is typically the last layer in an ANN. The softmax
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Figure 3.7: A RNN that has been unwrapped 3 time steps. It is equivalent to a
Feedforward Neural Network.

function is defined as:

yi =
ezi∑

j∈classes
ezj

(3.11)

The partial derivative of yi with respect to the input zi is defined as:

∂yi
∂zi

= yi(1− yi) (3.12)

The cost function cross-entropy is used with a softmax layer instead of the
squared difference error measure. It is defined as:

C = −
∑
j

tj log yj (3.13)

Its partial derivative with respect to zi is:

∂C

∂zi
=
∑
j

∂C

∂yj

∂yj
∂zi

= yi − ti (3.14)
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3.7 Practical Issues in Training ANNs

Mentioned in this section are a few issues pertaining to training ANNs and as
well as common solutions to each.

Learning rate : The learning rate, as mentioned in Section 3.4.1, is an at-
tempt to keep the ANN from getting caught in local minima. There
are several methods for choosing learning rates. One recently developed
method that has been applied successfully in many real-world applica-
tions is Adagrad [6]. Adagrad keeps a learning rate for each individual
weight and adapts these rates based on historical information.

Regularization : One key concept that should be understood in machine
learning is that of generalization. The goal of machine learning applica-
tions is to generalize to unseen examples outside of the training set. This
concept plays a significant role in training artificial neural networks. Reg-
ularization is meant to prevent overfitting, i.e. fitting noise, and promote
generalization. Examples of regularization include but are not limited to:
penalizing large weights(Occam’s razor), Dropout [10], and early stopping.

Training Methods : There are several algorithms for training ANNs. From
them include: stochastic vs. minibatch vs. batch gradient descent,
LBFGS, and Hessian-free optimization. Each has its own drawbacks and
advantages [18].
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4 Artificial Neural Networks and Natural Lan-

guage Processing

Although the fields of natural language processing and artificial neural net-
works independently have a lengthy history, there has been limited work at
the cross-section of the two except within the last two decades. This is for
various reasons. For one, training artificial neural networks is a very compu-
tationally intensive process and so they had previously been used on relatively
small datasets. Due to this, early work in applying ANNs to NLP typically
involved simpler, handcrafted datasets such as toy grammars [7]. Understand-
ing natural language and performing well for common NLP tasks requires a
machine learning model to learn the vast number of structures, meanings and
ambiguities of language and this did not seem feasible for ANNs.

However, recently there have been several theoretical advancements to ANNs
in terms of regularization and training as well as computational improvements
that have drastically reduced the amount of time required for training and
have improved the accuracy of ANN models.

4.1 Motivation

Evidence seems to suggest that artificial neural networks are capable of mim-
icking, to a certain degree, the language processing of the human brain. It
has been shown that artificial neural networks can be trained to resemble the
underlying processes of the brain in certain tasks. Hinton et al. demonstrated
that when an ANN is trained to read and its weights are then randomly per-
turbed, it behaves very similarly to someone with acquired dyslexia [9]. The
random perturbations are a parallel to what an acquired dyslexic would expe-
rience from brain injury.

Although not entirely conclusive, this suggests that ANNs are a natural choice
for machine learning tasks such as those in computer vision and NLP that the
human brain performs naturally.
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4.2 Representing Words as Continuous-Valued Vectors

The primary component used in recent ANN applications to NLP involves
distributed representations of words. A distributed representation differs from
what is called a local representation in that each feature in a local repre-
sentation is mutually exclusive. Also, a distributed representation denotes a
many-to-many mapping(Figure 4.1b) while a local representation denotes a
one-to-one mapping(Figure 4.1a). The focus here is on representations of nat-
ural language, but one can read in more detail about this area in general in
[8].

(a) A one-to-one mapping (b) A many-to-many mapping

Figure 4.1: Mapping comparison

As illustrated in Figure 4.2a, an example of a local representation for a word
is a vector in which only one feature is on, i.e. 1. In this representation,
each individual word maps to only one feature and therefore only n words can
be described with vectors of length n. This is obviously very inefficient with
respect to memory as each word vector is of length |V |, where V represents
the vocabulary.

Alternatively, each feature in a vector could signify a specific attribute of
words, such as gender, plurality, transitivity, etc. and whether this charac-
teristic is on. With n binary features, it would be possible to describe 2n

words. This is an example of a distributed representation(Figure 4.2b) and
with it, one can model componential structure along with a stronger notion of
similarity.

Manually assigning binary features, however, is not feasible for large vocabu-
laries. Instead, one could train an artificial neural network to discover features
automatically and map a word into a feature space. These distributed rep-
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[
· · · 0 0 1 0 0 0 · · ·

]
(a) A local representation denoted as a one-hot encoding in which only one feature is “on”[

· · · 1 0 1 0 1 1 · · ·
]

(b) A distributed representation denoted as a binary feature vector in which many features are
“on”[

· · · 0.32 0.57 −0.18 −0.83 0.46 −0.24 · · ·
]

(c) A distributed representation denoted as a continuous-valued vector

Figure 4.2: Local vs. Distributed Representations

resentations would be continuous-valued(Figure 4.2c) as that simplifies the
problem of optimization/learning.

The resulting word distribution is also called a language model. By doing
this, it is hoped that these vectors capture semantic and syntactic similarity
between words for further use in ANNs and other machine learning models.
Such similarity can be observed in Figure 4.3 and is explored further in Section
4.2.3.

4.2.1 Methods for Learning Language Models

Language models typically try to approximate P (wt|w1, w2, · · · , wt−1). This is
the probability of a word wt given the entire prior context, i.e. all words that
came before wt. Models may instead use a fixed context size n and attempt
to approximate P (wt|wt−n, wt−n+1, · · · , wt−1).

One of the fundamental works in using ANNs to learn word representations
was the Neural Probabilistic Language Model [1]. Another well known paper
described use of a convolutional neural network, an ANN capable of handling
variable sized inputs, to learn word representations along with trying to solve a
variety of different NLP tasks [4]. More recently, there have also been language
models based on recurrent neural networks [12]. The specific model described
below is the skip-gram model.
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Figure 4.3: A sample of word vectors trained on 100B words from GoogleTM News plotted
to illustrate their linguistic similarity. The vectors were first mapped to R2 using t-SNE

[23] and then plotted with the Python Imaging Library.
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4.2.2 Continuous Skip-gram Model

Figure 4.4: The continuous skip-gram model [14]

What differentiates the skip-gram model(Figure 4.4) from previous architec-
tures is that it is strikingly fast to train and that it was developed to scale well
to large quantities of data [14]. Unlike other models which are theoretically
more powerful, the skip-gram model is a simpler log-linear model. The model
tries to find word representations for predicting words both prior to and after
wt. The underlying idea is that words in language are defined according to the
contexts in which they are used. The skipgram model objective is to maximize
the following:

1

T

T∑
t=1

∑
−c≤j≤c,j 6=0

log p(wt+j|wt) (4.1)

where p(wt+j|wt) is defined using the definition of softmax(Section 3.6)

p(wO|wI) =
exp(v

′
wO
· vwI

)
W∑
w=1

exp(v′w · vwI
)

(4.2)

Note that each word has both a word vector and a context vector associated
to it. Thus a word such as jump would have separate vectors used depending
on whether it is used within a context(v

′
wO

) or not(vwI
).

Also note that computing the denominator in Equation 4.2 is a time consuming
computation given that it is a sum over all words in the vocabulary. To handle
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this, suggestions have been made to use what is called a hierarchical softmax.
Details of it and other methods can be found in the referenced literature.

4.2.3 Linguistic Properties of Word Vector Representations

Word vectors learned by artificial neural networks display interesting proper-
ties [15]. Several of these are described below.

Word Clustering: Semantically and syntactically similar words are clustered
together in the feature space. This is visualized in Figure 4.3.

Analogies: The word vectors can be used to complete analogies. For example,
given the analogy “man is to king as woman is to ”, one would first
calculate the difference d between the vectors of “man” and “king”. Then
one would add this difference to the vector of “woman” and find that its
nearest neighbor is in fact the vector of “queen”.

V ector(“man′′)− V ector(“king′′) = d (4.3)

d+ V ector(“woman′′) ≈ V ector(“queen′′) (4.4)

Language Mapping: A mapping can be learned between word vector spaces
trained for different languages. This is useful in statistical machine trans-
lation especially when words and phrases are missing. The method,
even with a simple linear mapping, is highly effective as demonstrated
by Mikolov, et al. [13].

4.3 Methods of Compositionality

Representations of words that carry semantic and syntactic meaning are a
step in the right direction, but language is not just about single words. Text
and speech is composed of phrases and sentences where meaning is conveyed
through the words that they comprise as well as the rules that combine them.
The next few sections describe how learned word vectors can be used to com-
pose longer expressions.

A number of papers have been published in this area [16]. The simplest compo-
sition function is addition. This captures some information, e.g. V ector(“capital′′)+
V ector(“Russia′′) ≈ V ector(“Moscow′′), as well as some syntactic and seman-
tic properties of other short phrases and sentences with actual meaning.
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Another method of compositionality is a weighted sum:

s =
n∑

i=1

wixi (4.5)

The weight vector w may be learned. Using inverse document frequency(idf)
for w is also a possibility. The idea is that words that occur commonly through-
out the entire document set would be given a lower weight because words such
as “the”, “it”, etc. add less to the overall meaning of a sentence. Another
option is to assign weights to particular part of speech(POS) tags with the as-
sumption that nouns and verbs play a much larger role in conveying meaning
than for example determiners.

Nevertheless, the methods described above are simply linear combinations that
fail to take into account the rules that combine words together. Natural lan-
guage is recursive and as such the rules that combine words are recursive
in their nature and change from sentence to sentence. In the next few sec-
tions several models are briefly described that have successfully used word
representations trained from ANNs and take into account natural language’s
recursivity.

4.4 Parsing

A state of the art parsing(Section 2.1) model was recently developed using an
RNN and word vector representations called a Compositional Vector Gram-
mar(CVG) [21]. It, as stated in the paper, is basically an efficient reranker.
The model first produces k highly probable parse trees for a given sentence
using a probabilistic context free grammar(PCFG). The RNN is then searches
this limited hypothesis space and predicts the most likely parse tree for a given
sentence based on the parameters it has learned.

One of the aims of using an RNN is to account for the limited number of
labeled parse trees available for training. One way in which the RNN does
this is by taking advantage of the syntactic and semantic information stored
in word vector representations. It draws conclusions for new words and phrases
that it had not seen during training based on words it had already seen that
are close in the feature space.

The CVG also takes combinations of syntactic categories into account by stor-
ing a different set of weights for each combination, e.g. DT-NP, ADJP-NP.
Through this, the RNN learns a soft notion of a head word. The head of a
phrase is the word that determines the syntactic category of the phrase. For
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example, the RNN learned to recognize that a noun phrase(NP) plays a much
larger role in determining the category of a phrase than a determiner(DT).

Although the objective of the CVG is to parse sentences, it outputs distributed
representations of input sentences as well. However, given that the RNN is
trained specifically for parsing, the representations capture mostly syntactic
information. Nearest neighbors in the feature space have very similar syntactic
structures, but may at the same time have very different semantic meanings.
An example of this is shown in Figure 4.5.

Figure 4.5: Nearest syntactic neighbors displayed with NTLK [2]
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4.5 Sentiment Analysis

A subsequent model called a Recursive Neural Tensor Network(RNTN) also
took advantage of word representations, but for sentiment analysis. The
RNTN does not take pre-trained word vector representations as input, but
rather learns word representations on its own.

Along with the ability to handle the recursivity of language, the RNTN also
learns a tensor or composition function. This tensor directly relates words and
thus captures how words interact and affect one another.

A sentence is first parsed in order to obtain the syntactic structure that de-
scribes which words and phrases hold relationships. Each binary relationship
is pass through the RNTN and a sentiment score is computed at each step
when iterating through the parse tree.

The RNTN is capable of storing and understanding negation as well. Simpler
models, because they assume that words are conditionally independent of one
another, fail to learn negations of positive attributes.

4.6 Additional Applications

There also exist applications in common sense knowledge base reasoning [22]
and statistical machine translation [20].
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5 Conclusions and Future Work

This research area is currently very active and is progressing quickly. It con-
tinues to attract more attention from researchers in different subfields in NLP.

Future areas of emphasis are compositionality of word vector representations
and also potential applications of these representations. In terms of composi-
tionality, methods that capture longer semantic meaning and also context are
currently in their early stages.

Overall though, research in the field is very promising and it will be interesting
to see how artificial neural networks are applied to natural language processing
in the future.
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