

Mutational Fuzzing to Discover
Software Bugs and Vulnerabilities

Dylan Wolff

Advised by Robert Signorile
2015 Senior Honors Thesis

Boston College Computer Science Department

Abstract:

Recent major vulnerabilities such as the Heartbleed bug have emphasized the
importance of properly testing software. For both product testers and hackers, fuzzing has
emerged as an important tool used to find these issues. This thesis investigates one branch of
the field, mutational fuzzing, in which valid inputs are randomly altered to produce sample
files. While the samples produced by this approach are not as efficient as the hand-crafted
inputs used in generational fuzzing, a mutational fuzzer can easily be used on multiple
applications with no prior knowledge of the input formats and only a small amount of setup.
The fuzzer created for this thesis, written in Python, is a multiprocessing, distributed generic
file fuzzer, and was used to test the popular media player VLC for bugs.

1

Contents:

1 Introduction 3

1.1 What is Fuzzing? 3

1.2 Why Fuzzing?

5

2 Fuzzer Structure

6

2.1 Virtual Machine and Environment

6

2.2 FuzzServer.py and FuzzClient.py

7

2.4 Fuzzer.py

8

2.5 Mutator.py

9

2.6 Executor.py

11

2.7 reMutate.py 12

3 Fuzzing VLC

12

3.1 Why VLC?

12

2

3.2 Crash Results

14

3.3 Optimizing Fuzzing Parameters for Future Fuzzing Runs

15

3.3.1 Mutation Percentage

16

3.3.2 Number of Iterations and Seed Selection

18

3.3.3 Timeout

20

3.3.4 Number of Executor Processes

22

4 Conclusions and Future Work

23

5 References

24

Appendix A: Comparison of Mutator function Performance

25

Appendix B: Source Code

29

3

1 Introduction

As technology becomes increasingly involved with our daily lives,

breaches in the security of devices and applications that we rely on can have

devastating implications. In recent months, serious vulnerabilities with seriously

catchy names like “Shellshock” and “Heartbleed” have made headlines. These

were important discoveries to be sure, but they are just two of countless

important vulnerabilities in software that have been uncovered (and countless

more that haven’t yet been found). The purpose of this thesis is to examine one

branch of computer security, fuzzing, and how it is used by both security experts

and attackers to test real world programs for these issues.

1.1 What is Fuzzing?

 Fuzz testing is the process of feeding random, unexpected, or invalid data

to a program’s inputs. This process is usually automated, with a debugger

attached to the target program. If the program does crash, information about the

state of the machine is logged by the debugger so that a programmer can later

identify the faulty code that led to the crash. Fuzzing automates the process of

vulnerability and crash discovery. This allows for a massive increase in the

volume of tests that can be run compared to what a human could do, while also

potentially catching subtle bugs that a human code auditor might miss when

looking at lengthy and complex source code [15].

Unfortunately, fuzzing an entire input space is generally intractable.

4

Consider an image that is 47.4KB large. For each byte, there are 256 possible

values so the input space for an image viewer accepting only images of this exact

size is: . This would take a computer running at 4GHz doing one possible562 47400

iteration of this input space every cycle times the current age of the01 737

universe to finish. Thus the differences in types of fuzzers arise in how test cases

are chosen from the vast input space of a program.

Overview of different fuzzing strategies [7]

The two primary categories of fuzzers are mutational and generational.

Random fuzzers can also be useful in a narrow set of applications, but most

real-world software has some kind of input checking mechanism that makes

productive random fuzzing impossible. Mutational fuzzing takes seed files that

are valid inputs to a program and “mutates” random bits of data in these files to

other values. These mutated files are then executed under the target program.

Generational fuzzing relies on a deeper understanding of the application to

create input files designed to test specific aspects of a program. Instead of

5

randomly testing mutant files in the input space, using knowledge of the

program and the structure of it’s inputs, generational fuzzing aims to only tests

minimum and maximum values within test cases (e.g. for a piece of code like: “if

3 <= x <=10:”, the edge cases 3 and 10 are worth testing, as well as 2 and 11, but

other values for x won’t change the control flow of the program and are thus

unlikely to produce any errors that these four values do not) . Unfortunately,

code branching is still generally exponential with code length, so it is still

unlikely that a significant portion of edge cases could be tested for all branches

within a given program [9].

1.2 Why fuzzing?

Most of us know enough not to download or open anything with weird file

extensions, but vulnerabilities in applications can be exploited even by seemingly

innocuous files like .wav, .doc, etc., the worst of which can even be used by an

attacker to achieve arbitrary code execution on a machine. Fuzzing has

uncovered such vulnerabilities in a wide variety of applications. Charlie Miller,

one of the premier experts in fuzzing, was the first one to hack the iPhone [10].

He did so by exploiting a vulnerability he found while fuzzing. Other fuzzers

have uncovered vulnerabilities in targets ranging from the Debian operating

system to the image viewer ImageMagick [9]. Fuzzing has become so prominent

that even “Verizon now requires that its vendors do their own fuzz testing before

submitting equipment into the Verizon testing lab” [2].

6

Initially, for this project, I looked at two separate fuzzers that were free

online. The first was the Basic Fuzzing Framework (BFF), the second Peach

Fuzzer. In both cases I found the fuzzers to be incredibly complex and poorly

documented. While they are both quality products, the sheer number of features

in each is totally overwhelming. After far too much time spent wading through

other people’s code (ironically the exact kind of brutal legwork fuzzing itself

aims to avoid) and the few tutorials I could find online, it became apparent that

learning one of these prebuilt frameworks was a project in of itself, and certainly

not one worth dedicating a serious amount of my thesis to. Instead, I have

written my own fuzzer, with the intention of it being both effective and user

friendly.

2 Fuzzer Structure

2.1 Environment and Structural Overview

The entire fuzzer is built in a virtual machine for Virtual Box running a 64

bit copy of Windows 7 Enterprise. This ensures that the host machine is

unaffected by any adverse consequences of executing so many potentially

damaging files during the fuzzing run. It also has the added benefit of making

installing the fuzzer on multiple computers for a distributed run extremely

simple. After installing Virtual Box and importing the WolffFuzz appliance on

the new computer, the fuzzer is already fully operational. In order to maximize

7

the amount of a program’s input space that can be fuzzed in a given amount of

time, the fuzzer is both distributed and multiprocessing, but for distributed

fuzzing runs to work, port forwarding must be activated in the network settings

of the server virtual machine (using the guest and host ip’s respectively and the

appropriate port number).

Overview of fuzzer structure. Depicted with two clients and four Executor processes per client.

8

2.2 FuzzServer.py and FuzzClient.py

When run on the server machine, FuzzServer.py first reads in the

parameters for the fuzzing run from the config file, FuzzerConfig.txt, on the

desktop. It then waits for client connections on a pre-selected port (12000 is the

default). Upon connection to a client, it sends across the fuzzing parameters,

followed by a portion of the sample files that are located in the servSamples

folder on the desktop. Once all of the sample files have been distributed equally

to each of the clients, the server waits once again on the selected port for client

connections that signal that each client fuzzer has completed the run. From these

connections, the server collects and consolidates the crashes of all clients into the

ServCrashers folder on the desktop, and performs some cursory automated

analysis to give the user the number of crashes considered exploitable, the

number of unique crashes, and the total number of crashes.

When run, FuzzClient.py immediately attempts to connect with the server

at a port number and IP address specified in FuzzerConfig.txt on the desktop of

its virtual machine. Upon connection, it parses the fuzzing parameters from the

server, and writes the sample files it receives to the Samples folder on the

desktop. Finally, it begins a new Fuzzer process before terminating.

2.3 Fuzzer.py

Fuzzer.py can be run manually by a user to proceed with a non-distributed

fuzzing run. If this is the case, the fuzzing parameters are read in from the local

9

FuzzerConfig.txt file. Otherwise, the parameters are passed in as arguments

when the Fuzzer process is created by a FuzzClient process as part of a

distributed run. The Fuzzer process creates one Mutator process and the number

of Executor processes specified by the fuzzing parameters. It passes to each child

process a process/thread safe Queue to convey mutated file names from the

Mutator to the Executor processes as well as a similarly synchronized Queue for

the names of old mutated files that need to be removed. The Fuzzer process then

sits in a loop checking if any of the Executors have died. If this is the case, the

Fuzzer launches a new Executor process. The Fuzzer also checks the Queue for

the string “STOP”. If “STOP”, the poison pill, is found, the Fuzzer waits until all

Executors are finished with their current files before sending the contents of the

Crashers folder to the server. If the fuzzing run is not distributed, the Fuzzer

process calculates and prints the number of exploitable crashes, unique crashes,

and total crashes before terminating.

2.4 Mutator.py

The Mutator process takes each seed file and mutates it the amount given

by the mutation percentage parameter a certain number of times. This number

is dictated by the iterations parameter in the FuzzerConfig.txt file. The Mutator

first sorts the seed files by size, so that smaller files that are mutated faster can be

made available more quickly for the initial executions of the target program.

Each file is read into a string, which is then converted to a list. For each iteration

of each file, the Mutator gets a random seed value. It then calculates a

10

randomized write location between beginning and the end of the file and writes

a byte value between 0 and 255 to that location in the list. These random writes

to the list are performed a number of times equal to the file length in bytes

multiplied by the mutation percentage. Once the writes are completed, the list is

then converted back to a string, and written to a new file with a new name in the

Mutated folder on the desktop. The mutated file’s name, sample file name, and

mutation seed are all then placed on the queue.

The mutation process described above is relatively memory intensive, as it

carries the entire file in memory as a list. Another function, mutate2, was thus

developed as an alternative that uses significantly less memory. mutate2 uses

shutil.copy2() to copy the seed file to the mutated folder with a new name, and

then the file.seek() function to write random bytes to random addresses in the

new copied file. Unfortunately mutate2 is much slower than the first mutation

function, so it is only called if the size of the file being mutated is such that it

could potentially cause a memory error or does cause a memory error.

Whichever mutate function is chosen mutates all iterations of a given

sample file before moving on to the next. At each iteration, the mutator logs its

progress in a file such that it can be resumed if it were to crash. This process is

repeated until all sample files have been mutated with the proper number of

iterations. If the Mutated folder on the desktop exceeds 5 gigabytes, however, the

Mutator process stalls to allow the executor processes to clear out the mutated

files. This prevents the virtual machine from running out of its limited 25GB

hard drive space. While stalling, the Mutator process checks a queue of names of

already executed mutated files that Executor processes failed to delete and

11

attempts to delete them. Once finished, the Mutator puts a “STOP” string on the

queue as a poison pill for all other processes, and terminates.

2.5 Executor.py

The Executor process upon first launch gets a new filename off of the

queue. If it finds “STOP” on the queue, it replaces it, writes “STOP” to its log file

and terminates. If it gets a filename for a mutated file, it logs that it is entering

execution of a file and executes that file under the target program with

WinAppDbg attached. It then waits for a timeout in seconds, passed in as a

parameter upon launch. If a crash is found, a callback function,

my_event_handler(), creates a new folder for the crash, in which it puts the seed

for the random mutations that caused the crash, the name of the sample file that

caused the crash, and the output of the debugger in text files. After a timeout, the

Executor kills the target program and logs that it has finished executing. It then

attempts to remove the mutated file just executed. If it fails to do so because the

target program hasn’t fully died yet, that file is put on a queue to be removed

later. Finally, the Executor checks memory usage. If the memory usage of the

computer exceeds 90% and the Executor process has been alive long enough to

have executed at least two files, the process will self terminate. This is because

certain programs (VLC included) cannot be terminated by any of the according

WinAppDbg functions, nor Process_Terminate. These processes hang around,

taking up memory, until the parent process is terminated. To prevent an

accumulation of such processes to the point of a memory fault, the Executors

12

must be culled if usage gets too high. Not killing Executors that have just begun is

enough to ensure that the amount of memory saved by a kill is worth the

overhead of restarting an Executor process.

2.6 reMutate.py

reMutate.py is used for post-processing. Specifically to use the crashsrc.txt

files in each crash folder and the sample file to re-create a mutated file. It reads

the specifications (seed, mutation percentage and sample file name) from a

crashsrc.txt file dragged to the reMutate folder on the desktop. Using the name

of the sample file, it finds the original sample in the Samples folder on the

desktop. It then recreates the mutations of the mutator using the seed and

mutation percentage, and creates a new file in the Mutated folder on the desktop.

Emphasis was placed in all parts of the fuzzer on being able to recover

from a crash that is severe enough to bring down the fuzzer itself (or just if it

needed to be paused or interrupted for any reason). This is accomplished by

both the Executor and Mutator processes logging progress throughout the

fuzzing run. When Fuzzer.py is run by a user, it prompts the user if a run needs

to be resumed. If this option is selected, the Queues are read from serialized

backup files and the Mutator and Executor processes read from their respective

log files to pick up exactly from where they left off.

13

3 Fuzzing VLC

3.1 Why VLC?

VLC is listed as having been downloaded 60 million times on

download.com, yet just last year, a vulnerability was discovered that allowed an

attacker to gain arbitrary code execution on a machine by a user opening a

malicious .asf file with the application [4]. With that many people using VLC,

chances are, as an attacker, if you post a well disguised, harmful media file on the

internet, a large percentage of the people who download it will have VLC. In

general, there are also only a few programs that the average Joe Computerowner

uses on a regular basis: web browsers, media players, email readers, document

readers etc. [15]. Attacking programs like these not only has a high probability of

the user having the application, but also of them using it. Even if you are smart

enough to avoid downloading malicious content, VLC and other media players

install plugins for popular web browsers (Firefox, Chrome, Internet Explorer,

Safari etc.), harmful media files embedded in websites can be played without

your explicit consent [15]. Furthermore, these programs are not only usually

perceived as safe by their users, but often by the software engineers who write

the applications themselves; the programmers for these type of applications who

are not generally as focused on security as engineers working on something

where it is more obviously important, like a financial transaction over the web

14

[15]. And VLC and other media players are extremely complex, dealing with

many different file formats on many different platforms. This complexity makes

it easier for programmers to make mistakes, and for those mistakes to go

unnoticed. All of these factors combine to make VLC an enticing target for

malicious hackers, and an important one for those concerned with cybersecurity.

It is for these reasons that VLC was chosen as the target of the fuzzer created for

this thesis.

3.2 Crashes from VLC

For the large scale test run of the fuzzer created for this thesis the

parameters were the following:

Mutation Percentage: 0.01

Iterations per Sample File: 120

Number of Executing Threads per Client: 4

Number of Client Machines: 4

The 77 sample files for the run were downloaded from

http://samples.mplayerhq.hu/. This is the same body of sample files that a

security team at Google used to fuzz media libraries (some of which are also used

by VLC) [9]. The version of VLC used for this run (and all other runs) was VLC

media player 2.1.2 [15].

The run resulted in 253 crashes total, 25 of which are classified as

exploitable by the debugger. From those crashes, there were 35 unique addresses

at which faults occurred. Only 9 of the seed files caused crashes when mutated.

15

http://samples.mplayerhq.hu/

Another file seed file was separately found to cause crashes without any

mutations prior to the initial fuzzing run, leaving 10 unique seed files and 36

unique crashes. Of 36 unique crashers, VLC crashed in 5 different dll’s and 7

different functions: libavcodec_plugin (start), libsimple_channel_mixer_plugin

(start), libvlccore (es_format_InitFromVideo, picture_Release, picture_Hold,

picture_pool_Get, vout_ReleasePicture), libdtstofloat32_plugin (start),

libfaad_plugin (start). Other faults occurred in ntdll (RtlFreeHeap,

RtlUnhandledExceptionFilter) and msvcrt (memcpy), but a backtrace using GDB

did not reveal what function or library in VLC caused the initial problem. Of the

dll’s, it appears that at least two of them, libfaad_plugin and libavcodec_plugin

are used in other applications. The former is advertised on several websites for

download as an open source AAC decoder while the latter has its own Wikipedia

page, where it is listed as a component in 57 other applications [1, 8]!

While it is left for future investigation to determine the causes of these

crashes or their true exploitability, there is one bug that seems particularly

dangerous. Specifically all the errors occurring with mutations of the

issue1930.h264 file. The file produces the most unique instruction pointers upon

crashing, but that instruction pointer is generally off in unallocated space. The

other instruction pointer locations of crashes for mutations of this seed file are in

the memcpy function, which notably does not check bounds on the target

memory buffer. It seems likely that all of these “unique” crashes are really just

the product of one error in which memcpy is sometimes overflowing a buffer

and affecting a jump or return address. If this were found to be the case, the

error would be highly exploitable.

16

3.3 Optimizing Fuzzing Parameters

There are four parameters in FuzzerConfig.txt that have an extremely

large impact on the efficacy of the run: Mutation Percentage, Number of

Iterations per File, Timeout, and number of Executor processes. Using data

gathered from the large scale fuzzing run of VLC for this fuzzer and prior

research on this topic, we attempted to approximate optimal fuzzing parameters

for future fuzzing runs.

3.3.1 Mutation Percentage

Fuzzing files has to walk the line between being structured enough to

bypass input checks and other defenses that allow a given program to exit

gracefully while also being invalid enough to cause crashes. There is virtually no

previous research on this parameter, so, to test various mutation percentages, I

took 7 different crash-inducing files (one crash causing mutation of each of the

seed files that caused at least one crash). These files were then used as sample

files for runs with varying mutation percentages. If the file became too mangled

by the second round of mutations, then it would not pass the input checks that

VLC performs and thus would not crash. Otherwise, the program should crash as

it did before the mutation. The probability of undoing the mutation(s) from the

first round and making the file non-buggy is extremely slim, so a file not

crashing indicates with a relatively high probability that it was mutated to

17

severely the second round (as it passed all input checks in the first round).

The graph of Hits vs. Fuzz Percentage above indicates that as the mutation

percentage increases, the number of known crashers that pass crash (and thus

pass input checks) declines. However, that decline is not particularly steep, and

appears even to flatten out as the mutation percentage approaches 20%. Even as

we are fuzzing less files, the average percentage of mutated bytes in files being

executed and passing input checks is increasing approximately linearly with the

fuzz factor as can be seen in the graph below.

18

More of these mutated bytes getting into executed files means that there is an

increased chance that one of those bytes causes a crash, thus it would seem that a

higher mutation percentage is better. However, an increase in mutation

percentage has an impact on the execution time as well. It slows down the

mutation process to the point that the Mutator process, rather than the Executor

processes becomes the limiting factor in speed. Thus Hits/Second vs. Mutation

Percentage graph below incorporates total execution time, finding the per

second percentage of executed bytes. There are two peaks, at 10 and 15 percent,

with a steep drop off after 15%. Thus the optimal fuzz factor for this setup is

19

likely in that range.

3.3.2 Number of Iterations per Sample File

The number of iterations may seem at first to be a relatively simple

parameter to set. In order to fuzz as many files as possible, the number of

iterations should be set as high as possible such that the fuzzing run can be

completed in the time available. However, the number of files fuzzed is a

combination of two factors: the number of iterations and the number of initial

seed files. This begs the question, if we only have a set amount of time and thus

can only make a certain number of mutant files, which should we prioritize, the

number of seed files or the number of iterations? There has been substantial

20

research done on seed selection for mutational fuzzing that helps to develop an

answer.

The general consensus is that finding a minimum set of seed files that have

the maximum code coverage is the optimal way to select seed files. Most notably,

Optimizing Seed Selection, makes two strong conclusions to this effect: First that

such a set “performed best” out of six methods for seed selection and that

“Fuzzing with a reduced set is more efficient in practice” than an equivalent

number of files from the full set [11]. Thus code coverage of the fuzzed files is an

important metric when fuzzing. Miller reports an 1% increase in code coverage

increases the percentage of bugs found by 0.92% [11]. So, when constructing a test

set of a constant magnitude equal to the the product of the number of iterations

and the number of seed files, we want to maximize code coverage. If we select

our seed files with this in mind, with each additional seed file we are increasing

code coverage. Each iteration, however, is highly likely to have the exact same

code coverage as the seed file which it is mutating. Thus, given the choice, more

seed files with different code coverage are preferable to more iterations. If we

cannot find seed files with new code coverage however, extra iterations of the

seed files is probably equally valuable and doesn’t require gathering any more

files. Thus the answer to the question of how many seed files should be chosen

relative to the number of iterations of mutations performed on each seed file is

that maximizing the number of different (in terms of code coverage) seed files is

the priority. Once code coverage has been maximized, each seed file should be

iterated as many times as is possible given the allotted time for the run.

21

3.3.3 Timeout

The timeout parameter sets how long the Executor process will wait before

killing an executing target process. There is virtually no previous research done

on this setting because it is unique to the target application and environment for

the fuzzing run; the slower the computer or the larger the application, the longer

it takes for each execution, and thus the longer the timeout must be to

accommodate the extra startup time. Furthermore, the type of files affects the

amount of time to execute the entire file. Media files can range from seconds to

hours long. This makes it difficult to determine a firm timeout for applications

that run these files. A subset of unique crash inducing files gathered from the

initial large test run on VLC were tested with a mutation percentage of zero and

varying timeouts to determine the optimal timeout for a fuzzing run on VLC.

The tests were run on an iMac11,2 host (3.06 GHz Intel Core i3 Dual Core

Processor, with 4GB of 1333MHz Ram), and the virtual machine was set to 4

cores and 2GB of RAM. The graph plots crash rate (crashes/total files) divided by

the total time to execute the entire run against the timeout setting.

22

The graph above suggests that the 45 second timeout used in the initial test run

was not optimal for finding crashes, but rather a timeout closer to 9.25s. Because

files are being randomly mutated, they are generally equally perturbed at the

beginning and at the end of the file. Thus if a given amount of perturbation has a

probability p of causing a crash for a given block of the file, then the block

executed first has approximately a probability of p to cause a crash. For the next

block to cause a crash, the first block must not crashed, which gives a probability

of roughly (1-p)*p. The probability of the next block causing a crash is

(1-p)*(1-p)*p. And so on. Thus, we are far less likely to see crashes later in the

execution when compared to the beginning. For media files, it also seems likely

that the beginning of the execution is when most of the heavy lifting for the

application takes place; once the video begins to play, most of the data being

used from the file is just dictating the colors of the pixels

23

3.3.4 Number of Executor Processes

This is probably the easiest parameter to figure out. The short and obvious

answer is: as many as possible. The data in the graph below is clear and expected:

there are very good returns for introducing a little bit of parallelism, but there

are diminishing returns as the number of parallel processes increase. Between 4

and 5 executor processes, the improvement begins to flatten out. At 6 Executors

or more, the fuzzer begins to become unreliable and unstable. It seems then that

running 4 Executors, one for each core in the Virtual Machine, is the optimal

number for a fuzzing run, as it retains nearly the greatest productivity at lower

risk of failure than with 5 or more Executors.

24

4. Conclusions and Further Work

The fuzzing run on VLC yielded a lot of important information. First and

foremost, at least ten unique crashes, one of which appears to be highly

exploitable. These crashes were then useful in determining optimal parameters

for future fuzzing runs on VLC. Specifically that the optimal timeout is around

9.25s, the optimal fuzz factor is around 15%. Further testing revealed that running

four Executor processes for a fuzzing run is likely to be ideal. The crash files

found in this paper exposed bugs in a variety of libraries used by VLC and other

programs, and could have serious ramifications if any of them are found to be

exploitable. I intend on sending a full bug report to VLC for any of these issues

that haven’t yet been resolved.
Given more time, there are several aspects of this project I would have

liked to explore further. First of all, another large scale fuzzing run on VLC with

the optimized parameters found in this paper could help to confirm the

conclusions I drew from the first run, as well as potentially uncover more bugs.

Reverse engineering the errors found during the first fuzzing run of VLC and

discovering whether any of them are actually exploitable would complete the

vulnerability discovery process and assist developers on the project. Also,

because the fuzzer will crash occasionally during long fuzzing runs, it would be

helpful for the FuzzServer to be checking in on FuzzClients (through a ping-ack

protocol for example) to see when they die. If a client dies, the server could

notify the human in charge of the fuzzing run that a machine has gone down to

minimize downtime for that computer.

25

5 References

1. Amorim, Roberto, Edwards, John, Gan, Michael, Brooker, Marc and
Naylor, David. "RareWares: AAC Decoders." RareWares.,
http://www.rarewares.org/aac-decoders.php.

2. Bekrar, Sofia, Chaouki Bekrar, Rolan Groz, and Laurent Mounier. 2012. "A
Taint Based Approach for Smart Fuzzing." IEEE Computer Society.

3. Codenomicon. 2012. "Fuzz Testing: Improving Medical Device Quality
and Safety." MDISS Technical White Paper Series.

4. Constantin, Lucian. "Critical Vulnerability in Affects Latest VLC Media
Player, last modified 1/31/132014.

5. ffmpeg. "Index of Samples.", http://samples.mplayerhq.hu/.
6. Garg, Parul. "Fuzzing -- Mutation Vs. Generation." Infosec Institute., last

modified 1/4/12, accessed 12/9/14, 2014,
http://resources.infosecinstitute.com/fuzzing-mutation-vs-generation/.

7. Lewis, Colleen, Barret Rhoden, and Cynthia Sturton. 2007. "Using
Structured Random Data to Precisely Fuzz Media Players." Graduate, UC
Berkeley.

8. "Libavcodec." Wikipedia., http://en.wikipedia.org/wiki/Libavcodec.
9. Liu, Xiuwen and Redwood, Owen. "Offensive Security: Spring 2014

Lectures." Offensive Computer Security., accessed 12/9, 2014,
http://www.cs.fsu.edu/~redwood/OffensiveComputerSecurity/lectures.ht
ml.

10. Miller, Charlie. 2010. Las Vegas, NV, USA, CodenomiCON Ltd, 8/9/2010.
11. Rebert, Alexandre, Jonathan Foote, David Warren, Gustavo Grieco, and

David Brumley. 2014. "Optimizing Seed Selection for Fuzzing." USENIX
Security Symposium.

12. Royal, Martin and Peter Pokorny. 2012. "Dumb Fuzzing in Practice."
Undergraduate Capstone, Cameron University,
http://www.cameron.edu/uploads/8d/e3/8de36a6c024c2be6dff3c34448711
075/5.pdf;.

13. Samiux. 2013. HOWTO : CERT Basic Fuzzing Framework (BFF) on Ubuntu
Desktop 12.04 LTS. Samiux's Blog.

14. Seth. 2010. Memorystatusex.
http://stackoverflow.com/questions/2017545/get-memory-usage-of-comp
uter-in-windows-with-python

15. Thiel, David. 2008. "Exposing Vulnerabilities in Media Software."
Amsterdam, The Netherlands, iSEC Partners, Inc, 3/25/08.

16. VideoLAN Organization. 2014. VLC Media Player. Vol. 2.1.2.
https://www.videolan.org/vlc/releases/2.1.2.html

17. Vilas, Mario. 2009. Winappdbg. Vol. 1.5. http://winappdbg.sourceforge.net/

26

http://www.rarewares.org/aac-decoders.php
http://www.rarewares.org/aac-decoders.php
http://samples.mplayerhq.hu/
http://samples.mplayerhq.hu/
http://resources.infosecinstitute.com/fuzzing-mutation-vs-generation/
http://resources.infosecinstitute.com/fuzzing-mutation-vs-generation/
http://en.wikipedia.org/wiki/Libavcodec
http://en.wikipedia.org/wiki/Libavcodec
http://www.cs.fsu.edu/%7Eredwood/OffensiveComputerSecurity/lectures.html
http://www.cs.fsu.edu/%7Eredwood/OffensiveComputerSecurity/lectures.html
http://www.cs.fsu.edu/%7Eredwood/OffensiveComputerSecurity/lectures.html
http://www.cameron.edu/uploads/8d/e3/8de36a6c024c2be6dff3c34448711075/5.pdf;
http://www.cameron.edu/uploads/8d/e3/8de36a6c024c2be6dff3c34448711075/5.pdf;
http://www.cameron.edu/uploads/8d/e3/8de36a6c024c2be6dff3c34448711075/5.pdf;

Appendix A: Comparison of Mutator
Function Performance

27

28

29

Appendix B: Source Code

FuzzClient.py

Dylan Wolff 5/8/15

FuzzClient immediately makes a connection with a FuzzServer and receives fuzzing files and parameters

for the run. It then starts a Fuzzer process for the run itself

from socket import *

from multiprocessing import Process

import Fuzzer, os

#function that receives a binary file from the clientSocket and returns it

def recFile(clientSocket, filesize):

s = ''

while len(s) != filesize:

s = s + clientSocket.recv(filesize - len(s))

return s

if __name__ == '__main__':

path = '/Users/Fuzzer/Desktop/'

#Delete files from any previous runs

print "Discarding old sample files, hope you saved everything..."

 for root, dirs, files in os.walk(path + "Samples"):

 for f in files:

 os.unlink(os.path.join(root, f))

 #Get server info parameters from the config File

f = open(path + 'FuzzerConfig.txt', 'r')

sl = f.readlines()

serverPort = int(sl[11].strip())

serverIP = sl[13].strip()

f.close()

print "Connecting to " + str(serverPort) + " at " + serverIP

clientSocket = socket(AF_INET, SOCK_STREAM)

30

clientSocket.connect((serverIP, serverPort))

#get parameters for the fuzzing run and put in config file

reply = clientSocket.recv(4096)

#Peel out info from the string to give to the Fuzzer process

sl = reply.split('\n')

print sl

timeout = float(sl[1].strip())

fuzzFactor = float(sl[3].strip())

program = sl[5].strip()

iterations = int(sl[7].strip())

numExecs = int(sl[9].strip())

 #put the parameters in the config file in case we need to resume

print "rec config"

clientSocket.send("sup")

print "ack"

f = open(path + 'FuzzerConfig.txt', 'w+')

f.truncate()

f.write(reply + '\n#Server Port Number\n' + str(serverPort) + '\n#Server IP Address\n' + serverIP +
'\n#Number of Client Fuzzers\n' + '1')

f.close()

#receive files until we get the done snding files token of all 'a's

while True:

#Get the reply from the server

reply = ''

while len(reply) != 4096:

reply = reply + clientSocket.recv(4096-len(reply))

#if all files have been set/received, break

if reply == 4096*'a':

break

#send acknowledgement to server

clientSocket.send("sup")

#peel out the information about the file

31

s = reply.split('|')

#receive a file of length specified by s[1]

guy = recFile(clientSocket, int(s[1]))

#send acknowledge

clientSocket.send("sup")

#write the recevied file to the samples folder

f = open(path + 'Samples/' + s[0], 'wb')

f.write(guy)

f.close()

clientSocket.close()

#Now begin the fuzzing run

process = Process(target=Fuzzer.Fuzzer, args=(False, timeout, fuzzFactor, program, iterations,
numExecs, serverPort, serverIP, path, True))

process.start()

FuzzServer.py

Dylan Wolff 5/8/15

FuzzServer waits for client connections. Once a connection is made, it sends across fuzzing parameters and

sample files from the servSamples folder to each client. Finally it again waits for client connections to

receive the results from a distributed fuzzing run. The default port for the server to wait on is 12000

import os, uuid, shutil, Executor, pickle, Mutator, time

from socket import *

from multiprocessing import Process, Queue

#Function that sends a file from the ServSamples folder to a client given a connection socket and the filename

def sendFile(filename, targetSocket):

f = open(path + 'ServSamples/' + filename, 'rb')

s = f.read()

totalBytes = len(s)

targetSocket.send(filename + '|' + str(totalBytes) + '|' + 'x'*(4096 - len(filename) - len(str(totalBytes)) - 2))

#First send over the information about the file, padding the rest of the packet with xs so its the

32

expected

number of bytes

#first send across the size of the file so the client knows how much to expect

targetSocket.recv(3)

#ack after every send to prevent consecutive messages from being merged

targetSocket.send(s)

#Actually send the file across

targetSocket.recv(3)

#ack

def distributeSamples(numClients, numExecs, path, timeout, program, fuzzFactor, iterations, serverPort,
serverIP):

#this function distributes the sample files evenly across all client fuzzers

clientConfigInfo = '#Timeout: \n' + str(timeout) + '\n#Fuzz Factor: \n' + str(fuzzFactor) + '\n#Name of
Program Being Fuzzed: \n' + program + ' \n#Number of Mutation iterations per File: \n' + str(iterations)
+'\n#Number of Executing Threads per Client: \n' + str(numExecs)

#set up serversocket

serverSocket = socket(AF_INET, SOCK_STREAM)

serverSocket.bind((serverIP, serverPort))

serverSocket.listen(numClients)

#get list of files to send to clients

samples = os.listdir(path + "ServSamples")

#samples per client is integer division, so remainder is used for lefotvers

samplesPerClient = len(samples)/numClients

remainder = len(samples)%numClients

#while we haven't sent files to all of the clients

clientSent = 0

while clientSent < numClients:

clientSent = clientSent + 1

connectionSocket, addrs = serverSocket.accept()

connectionSocket.send(clientConfigInfo)

connectionSocket.recv(3)

#give the client the parameters for the fuzzing run, then wait for ack

33

#figure out the appropriate number of sample flies to send over

samplesSent = 0

if remainder > 0:

extra = 1

remainder = remainder - 1

else:

extra = 0

#send them over

while samplesSent < samplesPerClient + extra:

sendFile(samples[0], connectionSocket)

samples.remove(samples[0])

samplesSent = samplesSent + 1

#send the finished sending files message (super bootleg, but whatever)

connectionSocket.send(4096*'a')

def recFile(clientSocket, filesize):

#this function receives a file from a given socket knowing the filesize

s = ''

while len(s) != filesize:

s = s + clientSocket.recv(filesize - len(s))

return s

def aggregateCrashes(path, numClients, serverPort, serverIP):

#this function takes in all the crashes from all the clients

#set up serversocket

serverSocket = socket(AF_INET, SOCK_STREAM)

serverSocket.bind((serverIP, serverPort))

serverSocket.listen(numClients)

clientsReported = 0

directory = str(uuid.uuid4())

while clientsReported < numClients:

34

#while we haven't received files from all of the clients

os.makedirs(path + '/servCrashers/' + directory)

#make a directory for our first expected crash folder

clientsReported = clientsReported + 1

#tally the client for reporting in

connectionSocket, addrs = serverSocket.accept()

#accept the connection

#receive files until we get the done snding files token

while True:

print "waiting to receive"

reply = ''

while len(reply) != 4096:

reply = reply + connectionSocket.recv(4096-len(reply))

if reply == 4096*'a':

#if we get the end of folder token, then we create a new folder for the next
batch

directory = str(uuid.uuid4())

os.makedirs(path + 'servCrashers/' + directory)

elif reply == 4096*'b':

#if we then receive the end crashes token, we delete that folder, and get the
next client and their crashes

shutil.rmtree(path + 'servCrashers/' + directory)

break

else:

#otherwise, we begin receiving files, and putting them in that folder.

connectionSocket.send("sup")

s = reply.split('|')

#initial message has the filename and the size in it

guy = recFile(connectionSocket, int(s[1]))

connectionSocket.send("sup")

f = open(path + 'servCrashers/' + directory + '/' + s[0], 'wb')

f.write(guy)

f.close()

serverSocket.close()

35

print "All Clients Finished Fuzzing"

def fuzzReport(path, iterations):

This function does some autmatic analysis of a distributed fuzzing run

samples = os.listdir(path + 'ServSamples')

totalFiles = len(samples) * iterations

crashes = os.listdir(path + 'ServCrashers')

totalCrashes = len(crashes)

print "\n\nOf " + str(totalFiles) + " files, " + str(totalCrashes) + " were crashes"

count = 0

c = 0

rips = []

uniques = 0

for crash in crashes:

try:

f = open(path + 'ServCrashers/' + crash + '/crashlog.txt', 'r')

except:

continue

lines = f.readlines()

f.close()

if 'Exploitable' in lines[2]:

#check if crashlog says its Exploitable

count = count + 1

for line in lines:

#check if RIP is unique to this crash

if 'rip=' in line:

rip = (line.split('=')[1]).split(' ')[0]

if rip not in rips:

rips.append(rip)

uniques = uniques + 1

print "\n " + str(count) + " of which are considered Exploitable"

print "\n " + str(uniques) + " of which are unique (by fault address)"

36

if __name__ == '__main__':

#Get parameters for fuzzing run

path = '/Users/Fuzzer/Desktop/'

f = open(path + 'FuzzerConfig.txt', 'r')

sl = f.readlines()

timeout = float(sl[1].strip())

fuzzFactor = float(sl[3].strip())

program = sl[5].strip()

iterations = int(sl[7].strip())

numExecs = int(sl[9].strip())

serverPort = int(sl[11].strip())

serverIP = '10.0.2.15'

#The server is always the local VM IP address for NAT Configuration

numClients = int(sl[15].strip())

f.close()

response = raw_input("Are you in the middle of a run and need to receive files? (y or n)\n")

 if (response == 'y'):

 response = raw_input("how many clients need to still report in? \n")

 aggregateCrashes(path, int(response), serverPort, serverIP)

 fuzzReport(path, iterations)

 else:

 print "Discarding old aggregate crashes"

 for root, dirs, files in os.walk(path + "ServCrashers"):

 for f in files:

 os.unlink(os.path.join(root, f))

 for d in dirs:

 shutil.rmtree(os.path.join(root, d))

 distributeSamples(numClients, numExecs, path, timeout, program, fuzzFactor, iterations, serverPort,
serverIP)

 aggregateCrashes(path, numClients, serverPort, serverIP)

37

 fuzzReport(path, iterations)

Fuzzer.py

Dylan Wolff 5/8/15

Fuzzer.py launches Mutator and Executor processes, monitors them in case they die, and, at the end

a fuzzing run, either sends the crashes back to the server, or does a cursory analysis itself,

depending on whether the run was distributed or not

from winappdbg import Debug, HexDump, win32, Thread, Crash

from socket import *

import os, uuid, shutil, Executor, pickle, Mutator, time, Fuzzer, ctypes, multiprocessing

class Fuzzer():

 def __init__(self, resume, timeout, fuzzFactor, program, iterations, numExecs, serverPort, serverIP, path,
distributed):

 path = 'C:\Users\Fuzzer\Desktop/'

 #Delete remaining files from previous run if not resuming

 if not resume:

 print "Deleting old files, hope you saved everything..."

 for root, dirs, files in os.walk(path + "State"):

 for f in files:

 os.unlink(os.path.join(root, f))

 for root, dirs, files in os.walk(path + "Crashers"):

 for f in files:

 os.unlink(os.path.join(root, f))

 for d in dirs:

 shutil.rmtree(os.path.join(root, d))

 for root, dirs, files in os.walk(path + "Mutated"):

 for f in files:

 os.unlink(os.path.join(root, f))

38

 if resume:

 # Get the Queues back from serialized file

 print "Resuming previous run..."

 try:

 qnfilein = open(path + "State/qn", 'rb')

 qnList = pickle.load(qnfilein)

 qnfilein.close()

 except:

 qnList = []

 try:

 qfilein = open(path + "State/q", 'rb')

 qList = pickle.load(qfilein)

 qfilein.close()

 except:

 qList = []

 else:

 qList = []

 qnList = []

 q = multiprocessing.Queue()

 for item in qList:

 q.put(item)

 qn = multiprocessing.Queue()

 for item in qList:

 qn.put(item)

 # Give a time estimate in seconds for the run

 try:

 print "Running", numExecs, " Executor processes. Estimated time = ",
((timeout*iterations*len(os.listdir(path + '/Samples/')))/numExecs)

 except:

 pass

 #begin the Mutator process

 process = multiprocessing.Process(target=Mutator.Mutator, args=(path, fuzzFactor, iterations, q, qn,

39

resume))

 process.start()

 #start appropriate number of Executor processes

 eProcesses = [None] * numExecs

 for i in range(numExecs):

 eProcesses[i] = multiprocessing.Process(target=Executor.Executor, args=(timeout, program, path, q, qn,
i, resume))

 eProcesses[i].start()

 # sit in a loop monitoring Executor processes and checking if the fuzzing run is over

 while True:

 time.sleep(1)

 for i in range(numExecs):

 if not eProcesses[i].is_alive():

 eProcesses[i] = multiprocessing.Process(target=Executor.Executor, args=(timeout, program, path, q,
qn, i, True))

 eProcesses[i].start()

 if q.qsize() == 1:

 top = q.get()

 q.put(top)

 if top == "STOP":

 break

 #Wait until all Executors are done. Run each again just to be totally sure everything is done running

 for i in range(numExecs):

 while eProcesses[i].is_alive():

 time.sleep(1)

 eProcesses[i] = multiprocessing.Process(target=Executor.Executor, args=(timeout, program, path, q, qn,
i, True))

 eProcesses[i].start()

 for i in range(numExecs):

 while eProcesses[i].is_alive():

 time.sleep(1)

40

 print "Finished fuzzing run"

 #delete any remaining mutated files

 fails = 0

 for i in range(qn.qsize()):

 try:

 s = qn.get(False)

 except:

 continue

 try:

 os.remove(path + 'Mutated/' + s)

 except:

 fails = fails + 1

 print "unable to delete ", fails, " mutated files"

 if(distributed):

 print "sending results to server"

 self.sendCrashes(path, serverPort, serverIP)

 else:

 self.fuzzReport(path, iterations)

 def fuzzReport(self, path, iterations):

 #this function does a cursory automatic analysis of the crashes produced by a run

 samples = os.listdir(path + 'Samples')

 totalFiles = len(samples) * iterations

 crashes = os.listdir(path + 'Crashers')

 totalCrashes = len(crashes)

 print "\n\nOf " + str(totalFiles) + " files, " + str(totalCrashes) + " were crashes"

 count = 0

 rips = []

 uniques = 0

 for crash in crashes:

 f = open(path + 'Crashers/' + crash + '/crashlog.txt', 'r')

 lines = f.readlines()

 if 'Exploitable' in lines[2]:

 #check if crashlog says its exploitable

 count = count + 1

 for line in lines:

 #check for a unique RIP

41

 if 'rip=' in line:

 rip = (line.split('=')[1]).split(' ')[0]

 if rip not in rips:

 rips.append(rip)

 uniques = uniques + 1

 print "\n " + str(count) + " of which are considered Exploitable"

 print "\n " + str(uniques) + " of which are unique (by fault address)"

 def sendFile(self, fpath, fname, targetSocket):

 # this function sends a single file given its name and path across a given socket 4096 bytes at a time

 f = open(fpath + '/' + fname, 'rb')

 s = f.read()

 totalBytes = len(s)

 targetSocket.send(fname + '|' + str(totalBytes) + '|' + 'x'*(4096 - len(fname) - len(str(totalBytes)) - 2))

 #first send across the size of the file so the receiver knows how much to expect as well as the name, fill up
the packet with x's

 targetSocket.recv(3)

 #ack after every send to prevent consecutive messages from being merged

 targetSocket.send(s)

 #sendfile

 targetSocket.recv(3)

 #ack

 def sendCrashes(self, path, serverPort, serverIP):

 #this function sends all of the crashes in the Crashers folder back to the main server for analysis

 # set up connection with server

 clientSocket = socket(AF_INET, SOCK_STREAM)

 clientSocket.connect((serverIP, serverPort))

 #get all crash folders

 crashes = os.listdir(path + 'Crashers')

 for crash in crashes:

 #for each folder (note that windows has a hidden file it sometimes auto creates called desktop.ini.

 # It's obviously not a folder, so it produces an error if we were to look inside it)

 if crash != 'desktop.ini':

42

 files = os.listdir(path + 'Crashers/' + crash)

 for f in files:

 #for each file in crash folder, send it across

 self.sendFile(path + 'Crashers/' + crash, f, clientSocket)

 #4096 a's is the end of a crash folder signal

 clientSocket.send(4096*'a')

 print "Totally done sending files to server"

 #4096 b's is the end of all the crashes from this guy signal

 clientSocket.send(4096*'b')

 clientSocket.close()

 if __name__ == '__main__':

 # This is for either non-distributed runs, or to resume a run

 response = raw_input("Would you like to resume a previous fuzzing run? (please type either 'y' or 'n'
followed by the enter key) \n")

 if (response != 'n'):

 responseDist = raw_input("Is the run distributed? (please type either 'y' or 'n' followed by the enter key)
\n")

 else:

 responseDist = 'n'

 path = 'C:\Users\Fuzzer\Desktop/'

 #Get Fuzzing parameters from Config File

 f = open(path + 'FuzzerConfig.txt', 'r')

 sl = f.readlines()

 timeout = float(sl[1].strip())

 fuzzFactor = float(sl[3].strip())

 program = sl[5].strip()

 iterations = int(sl[7].strip())

 numExecs = int(sl[9].strip())

 serverPort = int(sl[11].strip())

 serverIP = sl[13].strip()

 f.close()

43

 process = multiprocessing.Process(target=Fuzzer.Fuzzer, args=((response != 'n'), timeout, fuzzFactor,
program, iterations, numExecs, serverPort, serverIP, path, (responseDist == 'y')))

 process.start()

Executor.py

Dylan Wolff 5/8/15

Receives files to execute under the target program (program_name) from a synchronized queue (q) with

a debugger attached (using the Debug class from winappdbg). A callback function (my_event_handler)

records the debugger output upon a crash to a unique folder in the Crashers folder.

from winappdbg import Debug, HexDump, win32, Thread, Crash

from time import time

import os, uuid, shutil, Queue, subprocess, ctypes, pickle

class Executor():

 def __init__(self, timeout, program_name, path, queue_in, qn, my_pid, resume):

 self.timeout = timeout

 self.queue_in = queue_in

 self.program_name = program_name

 self.path = path

 self.filename = None

 self.mutator_specs = None

 self.resume = resume

 self.my_pid = my_pid

 self.qn = qn

 self.enterLoop()

 def enterLoop(self):

 #Function in which the Executor sits in a loop executing files under the target program

 fuzzed = 0

 while True:

 if not self.resume:

 #if we didn't just die, get next file from the queue

 try:

 obj = self.queue_in.get()

 except:

 #if we can't get a file off of the queue, try again

 continue

44

 #poison pill

 if obj == "STOP":

 self.queue_in.put("STOP")

 fileout = open(self.path + "State/" + str(self.my_pid), 'w')

 fileout.truncate()

 fileout.write("STOP" + " | " + "pls")

 fileout.close()

 return

 #otherwise we prepare to debug

 self.mutator_specs = obj['mutator_specs']

 self.filename = obj['filename']

 #then log as a new start

 fileout = open(self.path + "State/" + str(self.my_pid), 'w+')

 fileout.truncate()

 fileout.write(self.filename + " | " + self.mutator_specs + " | " + str(False))

 fileout.close()

 else:

 #we've resumed, so set this back

 self.resume = False

 #if we are recovering from a crash of the executor, load the last file tried

 filein = open(self.path + "State/" + str(self.my_pid), 'r')

 s = filein.read()

 filein.close

 params = s.split(" | ")

 #if we are supposed to be stopped, just return

 if params[0] == "STOP":

 return

 #if we had already finished executing the previous file before death, this is True

 finishedPrevFile = (params[2] == "True")

 if finishedPrevFile:

 #if we did finish the file we were on, then continue loop at top to look at queue

 continue

 else: #if we haven't finished the previous file, do so

 self.mutator_specs = params[1]

45

 self.filename = params[0]

 print "Executing ", self.filename

 #run the file

 x = [self.program_name, self.path + "Mutated/" + self.filename]

 self.simple_debugger(x)

 #then log as done

 fileout = open(self.path + "State/" + str(self.my_pid), 'w+')

 fileout.truncate()

 fileout.write(self.filename + " | " + self.mutator_specs + " | " + str(True))

 fileout.close()

 #try to remove the old mutated file

 try:

 os.remove(self.path + "Mutated/" + self.filename)

 except:

 #if we can't because of a zombie executing process, put in on a queue for later

 self.qn.put(self.filename)

 try:

 #serialize qn and add to a file in case of crash

 fileout = open(self.path + "State/qn", 'w+')

 pickle.dump(self.qndump(), fileout)

 fileout.close()

 except:

 pass

 #if we are runnning short on memory because the executor processes are failing to kill children,

 # killing the parent executor will definitely kill the kids and free up memory so that the OS

 # doesn't start randomly killing processes

 stat = MEMORYSTATUSEX()

 ctypes.windll.kernel32.GlobalMemoryStatusEx(ctypes.byref(stat))

 if 90 < int(stat.dwMemoryLoad) and fuzzed != 0:

 #kill if this executor has run more than one process since last death

 print self.my_pid, " committing suicide to save memory"

 os.kill(os.getpid(), 9)

 fuzzed = fuzzed+1

46

 def my_event_handler(self, event):

 # This callback function logs crashes of the target program.

 # Credit to the WinAppDbg website for the extremely detailed tutorial used to construct this function

 # Get the process ID where the event occured.

 pid = event.get_pid()

 # Get the thread ID where the event occured.

 tid = event.get_tid()

 # Find out if it's a 32 or 64 bit process.

 bits = event.get_process().get_bits()

 # Get the value of EIP at the thread.

 address = event.get_thread().get_pc()

 # Get the event name.

 name = event.get_event_name()

 # Get the event code.

 code = event.get_event_code()

 # If the event is an exception...

 if code == win32.EXCEPTION_DEBUG_EVENT and event.is_last_chance() and code not in
(win32.ERROR_SEM_TIMEOUT, win32.WAIT_TIMEOUT):

 # Get the exception user-friendly description.

 name = event.get_exception_description()

 # Get the exception code.

 code = event.get_exception_code()

 # Get the address where the exception occurred.

 try:

 address = event.get_fault_address()

 except NotImplementedError:

 address = event.get_exception_address()

47

 crash = Crash(event)

 crash.fetch_extra_data(event, takeMemorySnapshot = 2)

 #Log the crash in a new unique crash folder in the Crashers directory

 folder = str(uuid.uuid4())

 os.makedirs(self.path + '/Crashers/' + folder)

 f = open(self.path + '/Crashers/' + folder + '/crashlog.txt', 'w')

 f.write(crash.fullReport(bShowNotes = True))

 f.close()

 f = open(self.path + '/Crashers/' + folder + '/crashsrc.txt', 'w')

 f.write(self.mutator_specs)

 f.close()

 def simple_debugger(self, argv):

 # This function creates a Debug object and executes the target program and file under it

 # Again, credit to the WinAppDbg website for tutorials on how to use their stuff

 # Instance a Debug object, passing it the event handler callback.

 debug = Debug(self.my_event_handler, bKillOnExit = True)

 maxTime = time()+self.timeout

 # Start a new process for debugging.

 #Execute the program

 currentProcess = debug.execv(argv)

 #wait for the timeout

 while debug and time() < maxTime:

 try:

 debug.wait(1000)

 # Continue if the timeout hasn't been reached

48

 except WindowsError, e:

 if e.winerror in (win32.ERROR_SEM_TIMEOUT, win32.WAIT_TIMEOUT):

 continue

 raise

 try:

 debug.dispatch()

 finally:

 debug.cont()

 # stops debugging, killsall child processes according to WinAppDbg documentation

 # In practice, this doesn't always work

 debug.stop()

 #if the target process is still alive, kill it. Equivalent to PROCESS_TERMINATE

 try:

 currentProcess.kill()

 except:

 pass

 def qndump(self):

 #this dumps the queue of undeleted files to a list

 qnList = []

 while self.qn.qsize() != 0:

 qnList.append(self.qn.get())

 for item in qnList:

 self.qn.put(item)

 return qnList

class MEMORYSTATUSEX(ctypes.Structure):

 #Taken directly from stackoverflow. See paper bibliography for details.

 # Gets information about total system memory usage

 fields = [

 ("dwLength", ctypes.c_ulong),

 ("dwMemoryLoad", ctypes.c_ulong),

 ("ullTotalPhys", ctypes.c_ulonglong),

49

 ("ullAvailPhys", ctypes.c_ulonglong),

 ("ullTotalPageFile", ctypes.c_ulonglong),

 ("ullAvailPageFile", ctypes.c_ulonglong),

 ("ullTotalVirtual", ctypes.c_ulonglong),

 ("ullAvailVirtual", ctypes.c_ulonglong),

 ("sullAvailExtendedVirtual", ctypes.c_ulonglong),

]

 def __init__(self):

 # have to initialize this to the size of MEMORYSTATUSEX

 self.dwLength = ctypes.sizeof(self)

 super(MEMORYSTATUSEX, self).__init__()

Mutator.py

Dylan Wolff 5/8/15

Mutator.py is initialized with various fuzzing parameters. It then begins mutating files

in the samples folder according to those parameters according to these parameters. These

files are mutated by either the mutate, or mutate2 functions according to file size and

memory availability. The mutate function uses larger amounts of memory, but is faster

when compared to the mutate2 function. Mutated files are placed in the Mutated directory

import random, math, os, Queue, shutil, time, pickle, multiprocessing, copy

class Mutator():

def __init__(self, path, fuzzFactor, iterations, q, qn, resume):

self.q = q

self.path = path

self.fuzzFactor = fuzzFactor

self.iterations = iterations

self.qn = qn

if resume:

self.resumer()

#call a fucntion to resume a fuzzing run that is already in progress

else:

#otherwise, we know we have to mutate all sample files

#get list of names of all sample files

samples = os.listdir(self.path + "Samples")

50

#sort them by size small to large

samples.sort(key = lambda sample: (os.path.getsize(self.path + "Samples/" + sample)))

#mutate each sample

for sample in samples:

self.mutate(self.path, sample, self.fuzzFactor, 0, self.iterations)

self.q.put("STOP")

def log(self, sample, iters):

#this function logs the progress of the mutator in case a fuzzing run is interrupted

fileout = open(self.path + "State/Mutator", 'wb+')

fileout.truncate()

fileout.write(sample + " | " + str(iters) + "\n")

fileout.close

return

def resumer(self):

#this function resumes the mutator if a fuzzing run has been interrupted.

currentFiles = []

#Find the files all Executor processes will resume at

currentStates = os.listdir(self.path + "State")

for thread in currentStates:

if thread != "Mutator":

filein = open(self.path + "State/" + thread, 'rb')

s = filein.read()

filein.close()

name = s.split(" | ")[0]

currentFiles.append(name)

Get any Mutated files that weren't deleted after execution

qnlist = []

while self.qn.qsize() != 0:

qnlist.append(self.qn.get(False))

51

Next Resume mutating files from where the Mutator left off

samples = os.listdir(self.path + "Samples")

samples.sort(key = lambda sample: (os.path.getsize(self.path + "Samples/" + sample)))

filein = open(self.path + "State/Mutator", 'rb')

s = filein.read()

filein.close()

params = s.split(" | ")

#params[0] is name, [1] is number of iters done

#flip through sorted list of seed files until current is found, discarding all others

while params[0] != samples[0]:

samples.pop(0)

#finish the iterations for the current seed file

currentsample = samples.pop(0)

if int(params[1]) != self.iterations-1:

try:

self.mutate(self.path, currentsample, self.fuzzFactor, int(params[1]) + 1,
self.iterations)

except:

pass

do all the rest of the seed files

for sample in samples:

try:

self.mutate(self.path, sample, self.fuzzFactor, 0, self.iterations)

except:

pass

self.q.put("STOP")

def mutate2(self, path, fullfilename, fuzzFactor, start, iterations):

A mutate function that uses less memory

ext = "." + fullfilename.split('.')[-1]

filename = fullfilename[0:len(fullfilename)-(len(ext))]

52

filesize = os.path.getsize(path + "Samples/" + filename + ext)

#get the filesize

numwrites = int(math.ceil(fuzzFactor * filesize))

#get the number of writes to do (size/factor)

for i in range(start, iterations):

shutil.copy2(path + "Samples/" + filename + ext, path + "Mutated/" + filename + str(i) +
ext)

#copy the sample into the new folder with a new name

fileout = open(path+ "Mutated/" + filename + str(i) + ext, 'r+b')

#open the file

random.seed() #seed with system time to get a clean random number

randSeed = str(random.random()) #keep track of our seed

random.seed(randSeed) #seed the thing so that we can recreate mutated file

for j in range(numwrites):

rbyte = random.randrange(256)

#get our random byte

randloc = random.randrange(filesize)

get our random location to write to

fileout.seek(randloc, 0)

#find a random location in the file

fileout.write(chr(rbyte))

#write the byte as an ascii character to that locale

self.log(fullfilename, i)

#close the file

fileout.close()

self.q.put({'mutator_specs': filename + ext + '~' + str(randSeed) + '~' + str(fuzzFactor),
'filename' : filename + str(i) + ext})

def checkTotalMutatedSize(self, path):

returns the size of the Mutated folder on the desktop

53

totalsize = 0

currentMutes = os.listdir(path + "Mutated")

for f in currentMutes:

totalsize = totalsize + os.path.getsize(path + "Mutated/" + f)

return totalsize

def mutate(self, path, fullfilename, fuzzFactor, start, iterations):

This function mutates files quickly, but uses a lot of memory

ext = "." + fullfilename.split('.')[-1]

filename = fullfilename[0:len(fullfilename)-(len(ext))]

#Check how much Hard Drive Space we are taking up with the mutated files. If it exceeds ~5
Gigs,

#we start running out of virtual HD space. Since the Executors need to catch up
anyway,

no harm in sitting around and waiting for them before continuing

filesize = os.path.getsize(path+ "Samples/" + filename + ext)

while self.checkTotalMutatedSize(path) + filesize >= 5000000000:

print "HD Capacity Risk, mutator stalling for more space to be cleared"

for i in range(self.qn.qsize()):

#while stalling, the mutator checks a queue of old mutated files that need

to be deleted and attempts to delete them

try:

s = qn.get(False)

except:

continue

try:

os.remove(path + 'Mutated/' + s)

except:

time.sleep(1)

try:

os.remove(path + 'Mutated/' + s)

except:

qn.put(s)

54

if filesize > 110000000:

print "Extremely Large File, switching mutator functions to conserve memory"

self.mutate2(path, fullfilename, fuzzFactor, start, iterations)

return

#read in the sample to a string

try:

filein = open(path+ "Samples/" + filename + ext, 'rb')

raw = filein.read()

filein.close()

except:

print "Memory Error, switching mutator functions"

del raw

self.mutate2(path, fullfilename, fuzzFactor, start, iterations)

return

#get its length

filesize = len(raw)

numwrites = int(math.ceil(filesize * fuzzFactor))

#get the number of writes to do (size/factor)

for i in range(start, iterations):

for each mutation iteration

#copy the file into a list, if we get a memory error because the file is too big, use the
version of mutate that doesn't use memory

try:

new = list(raw)

except:

print "Memory Error, switching mutator functions"

del raw

del new

self.mutate2(path, fullfilename, fuzzFactor, start, iterations)

return

random.seed() #seed with system time to get a clean random number

randSeed = str(random.random()) #keep track of our seed

55

random.seed(randSeed) #seed the thing so that we can recreate mutated file

for j in range(numwrites):

rbyte = random.randrange(256)

#get our random byte

randloc = random.randrange(filesize)

#get our random location

#write the byte as an ascii character to that locale in the list

new[randloc] = chr(rbyte)

self.log(fullfilename, i)

#write to the new file

fileout = open(path+ "Mutated/" + filename + str(i) + ext, 'w+b')

fileout.write("".join(new))

fileout.close

#print "on the q"

self.q.put({'mutator_specs': filename + ext + '~' + str(randSeed) + '~' + str(fuzzFactor),
'filename' : filename + str(i) + ext})

#serialize q and add to a file in case of crash

fileout = open(self.path + "State/q", 'wb')

pickle.dump(self.qdump(), fileout)

fileout.close()

def qdump(self):

#this dumps the queue of mutated files to a list

qList = []

while self.q.qsize() != 0:

qList.append(self.q.get())

for item in qList:

self.q.put(item)

return qList

56

Dylan Wolff

5/8/15

reMutate.py is a script that reads in any number crashsrc.txt file from the remutateFolder on

the desktop and recreates the mutated file according to specifications within. The original

the original sample files need to be placed in the Samples folder, and, upon completion, the

recreated mutated file will be in the Mutated folder.

import random, os, math

path = 'C:\Users/Fuzzer/Desktop/'

#path hardcoded to be Desktop of VM

fs = os.listdir(path + 'remutateFolder')

j = 0

for f in fs:

j = j + 1

a = open(path + 'remutateFolder/' + f, 'r')

s = a.read()

samplename, sampleseed, fF = s.split('~')

#pull the name of the original sample file, the random seed that gave rise to the mutations,

and the mutation percentage

a.close()

 fuzzFactor = float(fF)

 # now use the seed and the same mutation procedure as the mutate function in Mutator.py

 # to re-generate the mutated file

random.seed(sampleseed)

sample = open(path + 'Samples/' + samplename, 'rb')

s = sample.read()

sample.close()

filesize = len(s)

numwrites = int(math.ceil(filesize * fuzzFactor))

new = list(s)

for i in range(int(numwrites)):

rbyte = random.randrange(256)

57

randloc = random.randrange(filesize)

new[randloc] = chr(rbyte)

#write to the new file in the Mutated directory

fileout = open(path + "Mutated/" + str(j) + samplename, 'w+b')

fileout.write("".join(new))

fileout.close

58

