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Abstract 
Recent work in deep machine learning has led to more powerful artificial neural network designs, including 
Recurrent Neural Networks (RNN) that can process input sequences of arbitrary length. We focus on a special 
kind of RNN known as a Long-Short-Term-Memory (LSTM) network. LSTM networks have enhanced 
memory capability, creating the possibility of using them for learning and generating music and language.  
 
This thesis focuses on generating Chinese music and Japanese lyrics using LSTM networks. For Chinese music 
generation, an existing LSTM implementation is used called char-RNN written by Andrej Karpathy in the Lua 
programming language, using the Torch deep learning library. I collected a data set of 2,500 Chinese folk 
songs in abc notation, to serve as the LSTM training input. The network learns a probabilistic model of 
sequences of musical notes from the input data that allows it to generate new songs. To generate Japanese 
lyrics, I modified Denny Britz’s GRU model into a LSTM networks in the Python programming language, 
using the Theano deep learning library. I collected over 1MB of Japanese Pop lyrics as the training data set. 
For both implementations, I discuss the overall performance, design of the model, and adjustments made in 
order to improve performance.  
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1. Introduction 
 

1.1  Overview 
 

In recent years neural networks have become widely popular and are often mentioned along with 
terms such as machine learning, deep learning, data mining, and big data. Deep learning methods 
perform better than traditional machine learning approaches on virtually every single metric. From 
Google’s DeepDream that can learn an artist’s style, to AlphaGo learning an immensely complicated 
game as Go, the programs are capable of learning to solve problems in a way our brains can do 
naturally. To clarify, deep learning, first recognized in the 80’s, is one paradigm for performing 
machine learning. Unlike other machine learning algorithms that rely on hard-coded feature 
extraction and domain expertise, deep learning models are more powerful because they are capable 
of automatically discovering representations needed for detection or classification based on the raw-
data they are fed. [13] For this thesis, we focus on a type of machine learning technique known as 
artificial neural networks. When we stack multiple hidden layers in the neural networks, they are 
considered deep learning. Before diving into the architecture of LSTM networks, we will begin by 
studying the architecture of a regular neural network, then touch upon recurrent neural network and 
its issues, and how LSTMs resolve that issue.  
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1.2  Feedforward Neural Networks 
 

Neural network is a machine learning technique inspired by the structure of the brain. The basic 
foundational unit is called a neuron. Every neuron accepts a set of inputs and each input is given a 
specific weight. The neuron then computes some function on the weighted input. Functions 
performed throughout the network by the neurons include both linear and nonlinear – these nonlinear 
functions are what allow neural networks to learn complex nonlinear patterns. Nonlinear functions 
include sigmoid, tanh, ReLU, and Elu; these functions have relatively simple derivatives, which is an 
important characteristic that will be discussed later in this section. Whatever value the functions 
computes from the weighted inputs are the outputs of the neuron that are then transmitted as inputs 
to succeeding neuron(s). The connected neurons then form a network, hence the name neural 
network. The basic structure of a neural network consists of three types of layers: input layer, hidden 
layer, and output layer. The diagram below is an example of a neural network’s structure. 
 

 
 

Diagram 1: An example of a neural network 
 
1.2.1 Forward Propagation 
The first step in a neural network is the forward propagation. Given an input, the network makes a 
prediction on what the output would be. To propagate the input across the layers, we perform 
functions like that of below: 
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The equations z1, z2 are linear functions with x as input and W, b are weights and biases. The a1 in 
the hidden linear performs a nonlinear activation function 𝑡𝑎𝑛ℎ. The 𝑡𝑎𝑛ℎ function takes in the 
inputs z1 and output values in the range of [-1. 1]. In general, the activation function condenses very 
large or very small values into a logistic space, and their relatively simple derivatives allow for 
gradient descent to be workable in backpropagation. In the output layer, we perform the softmax 
function that turns the values of z2 into a probability distribution where the highest value is the 
predicted output. The equations above are the steps that occur in the forward propagation. The next 
step is backpropagation, which is where the actual learning happens. 
 
1.2.2 Backpropagation 
Backpropagation is a way of computing gradients of expressions through recursive application of 
chain rule. [11] The backpropagation involves two steps: calculating the loss, and performing a 
gradient descent. We calculate the loss L by cross entropy loss to determine how off our predicted 
output 𝑦 is from the correct output 𝑦. We typically think of the input 𝑥 as given and fixed, and the 
weights and biases as the variables that we are able to modify. Because we randomly initialize the 
weights and biases, we expect our losses to be high at first. The goal of training is to adjust these 
parameters iteration by iteration so that eventually the loss is minimized as much as possible. We 
need to find the direction in which the weight-space improves the weight vector and minimizes our 
loss is the gradient descent. 
 
The gradient descent is an optimization function that adjusts weights according to the error. The 
gradient is another word for slope. The slope describes the relationship between the network’s error 
and a single weight, as in how much the error changes as the weight is adjusted. The relationship 

between network error and each of those weights is a derivative, 
!"
!"

, which measures the degree to 

which a slight change in a weight causes a slight change in the error. [10] The weights are 
represented in matrix form in the network, and each weight matrix passes through activations and 
sums over several layers. Therefore, in order to find the derivative we need to use the chain rule to 
calculate the derivative of the error in relation to the weights. If we were to apply the 
backpropagation formula for the equations listed from the forward propagation section, we have the 
following derivatives for the weights in respect to the loss: 
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We continually adjust the model’s weights in response to the error it produces iteration after iteration 
until the error can no longer be reduced. 
 
1.3  Recurrent Neural Networks 

 
1.3.1 Forward Propagation 
While traditional feedforward neural networks perform well in classification tasks, they are limited 
to looking at individual instances rather than analyzing sequences of inputs. Sequences can be of 
arbitrary length, have complex time dependencies and patterns, and have high dimensionality. Some 
examples of sequential datasets include text, genomes, music, speech, text, handwriting, change of 
price in stock markets, and even images, which can be decomposed into a series of patches and 
treated as a sequence. [10] Recurrent neural networks are built upon neurons like feedforward neural 
networks but have additional connections between layers.  

 
Diagram 2: Recurrent Neural Network in time steps [2] 

 
The diagram above illustrates how the workings of the RNN, when unfolded in time, is very similar 
to feedforward neural networks. The area highlighted in blue is similar to what is happening in the 
diagram of the feedforward neural network. There is the input layer 𝑥!, hidden layer 𝑠!, and output 
layer 𝑜!. 𝑈,𝑉, and 𝑊are the parameters or the weights that the model needs to learn. The difference 
between the feedforward neural network and the RNN is that there is an additional input, 𝑠!!!, fed 
into the hidden layer 𝑠!. If the network path highlighted in blue is the current time step 𝑡, then the 
previous that is the network at timestep t-1, and the network after happens at time step t+1, in which 
the current hidden layer 𝑠! will be fed into 𝑠!!! along with 𝑥!!!. In the hidden layer, we apply an 
activation function to the sum of the previous hidden layer state and current input 𝑥! (in the below 
diagram, the 𝑡𝑎𝑛ℎ activation function is applied). While the left hand side of diagram 2 seems to 
suggest that RNNs have a cyclic cycle, the connection between previous time step and current time 
step in the hidden state is still acyclic; this is important to recognize because the network needs to be 
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acyclic in order for backpropagation to be possible. The diagram below illustrates what is happening 
in the hidden state of a RNN: 
 

 
Diagram 3: Hidden State of a RNN [16] 

 
Mathematically, we represent the step happening in the hidden state ℎ! as: 

  
𝑊 and 𝑈 are weight matrices; they are filters that determine how much importance to accord to both 
the present input and the previous hidden state. When we feed in the previous hidden state, it 
contains traces of all those that preceded ℎ!!!; this is how the RNN is able to have a persistent 
memory. [10]  
 
1.3.2 Backpropagation Through Time  
In the backpropagation, we calculate the error the weight matrices generate, and then adjust their 
weights until the error cannot go any lower. As we see in diagram 2, the weight matrix 𝑊 is carried 
through each time step. In order to compute the gradient for the current 𝑊, we need to perform the 
chain rule through a series of previous time steps. Because of this, we call the process back 
propagation through time (BPTT). If the sequences are quite long, the BPTT can take a long time; 
thus, in practice many people truncate the backpropagation to few steps instead of all the way to the 
beginning. [10] 
 
1.3.3 Issue of Vanishing Gradient 
While in theory the RNN should retain memory through the time steps, in practice RNN performed 
poorly. Hochreiter (1991) and Bengio, et al. (1994) explored the problem in depth of why gradient 
based learning algorithms face an increasingly difficult problem as the duration of the dependencies 
to be captured increases. [8] One major issue is the vanishing gradient problem. As we mentioned 
before, the gradient is the derivative of the loss with respect to the weights. If the gradient is so 
small, we cannot adjust the weights in a direction that decreases the error, and so the network cannot 
learn. In a RNN, the layers and time steps of deep neural networks relate to each other through 
multiplication. Multiplying a number slightly greater than one can make the number become 

ht = tanh(Wxt + Uht�1)
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immeasurably large (exploding), and multiplying a number slightly less than one can diminish to 
zero very fast (vanishing). [10] Therefore, derivatives or gradients are susceptible to vanishing or 
exploding in a RNN. We can solve exploding gradients but truncating or squaring the values, but 
resolving vanishing gradients is harder. Below is a diagram of the graphs of the tanh function and its 
derivative. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Diagram 4: Graphs of tanh and its derivative 1 
 
The tanh activation function maps output values in the range of [-1,1] and the maximum value of the 
derivative is 1 with 0 at both ends. Weight matrices are randomly initialized to be small values, and 
with a derivative that is slightly less than 1, multiplying the derivatives across the previous time 
steps can cause the gradients to vanish very rapidly. [15] This prevents learning long-term 
dependencies and is the cause for RNNs to perform poorly. While there are tricks to overcome this 
issue, it does not change the fact that RNNs fundamentally have unstable gradients that can vanish 
and explode quickly. [15] In the next section, we discuss Long Short-Term Memory Networks, a 
type of RNN that was discovered in the mid 1900s in order to overcome the issue of vanishing 
gradients.  
 
 
 
 
 
 
 

                                                
1 "Transfer Function Layers." Nn. Read the Docs, n.d. Web. 06 May 2016. 
<http://nn.readthedocs.io/en/rtd/transfer/#tanh>. 
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1.4  Long Short-Term Memory 
 

1.4.1 The Cell State and the Three Gates 
LSTM was first introduced in 1997 by Sepp Hochrieiter and Jürgen Schmidhuber. LSTMs are 
capable of bridging time intervals in excess of 1000 time steps even in case of noisy, incompressible 
input sequences, without loss of short time lag capabilities. [9] The architecture enforces constant 
error flow through internal states of special unit known as the memory cell.  
 
There are three gates to the cell: the forget gate, input gate, and output gate. These gates are sigmoid 
functions that determine how much information to pass or block from the cell. Sigmoid functions 
takes in values and outputs them in the range of [0,1]. In terms of acting as a gate, a value of 0 means 
let nothing through, and a value of 1 means let everything through. These gates have their own 
weights that are adjusted via gradient descent. For the rest of the explanation for the forward 
propagation of the LSTM, we will refer to the diagram below. 

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Diagram 5: The hidden state of a LSTM [17] 
 
In the equations listed under the forget gate, input gate, and output gate in the diagram, ℎ!!! is the 
previous hidden state, 𝑥! is the current input, 𝑊 is the weight matrix, and 𝑏 is the bias.  
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1.4.2 Forget Gate 
The first step is the forget gate, in which the sigmoid function outputs a value ranging from 0 to 1 to 
determine how much information of the previous hidden state and current input it should retain. 
Forget gates are necessary to performance of LSTM because the network does not necessarily need 
to remember everything that has happened in the past. For example, if we are moving from one 
music piece to the next in the input dataset, then we can forget all of the information related to the 
old music piece. 
 
1.4.3 Input Gate 
The next step involves two parts. First, the input gate determines what new information to store in 
the memory cell. Next, a tanh layer creates a vector of new candidate values to be added to the state. 
From the example of the music learning model, we are inputting the first few sequences of notes of 
the new piece. 
 
 
 
 
 
 
 
 
 
 
 

Diagram 6: Input gate [17] 
 
1.4.4 Updating The Cell Memory 
At this point we have determined what to forget and what to input, but we have not actually changed 
the memory cell state.  

 
Diagram 7: Updating the cell memory [17] 

 
To update the old cell state, 𝐶!!!, we multiply the vector 𝑓!, and then add 𝑖!   ∗   𝐶!.  
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1.4.5 Output gate 
To determine what to output from the memory cell, we again apply the sigmoid function to the 
previous hidden state and current input, then multiply that with tanh applied to the new memory cell 
(this will make the values between -1 and 1). In the music learning model example, we want to 
output information that will be helpful in predicting the next sequence of notes. Perhaps information 
such as the time signature and key of the new music piece would be outputted.  
 
 
 
 
 
 
 
 
 
 
 

Diagram 8: Output gate [17] 
 
1.4.6 Why LSTM is superior over RNN 
The extra complications with the gates may make it difficult to see why exactly the LSTM is better 
than the RNN. LSTM has an actual memory built into the architecture that lacks in RNN. We update 
the cell memory with new information (𝑖! ∗   𝐶!) by addition, highlighted with a green star in the 
diagram 5, and that makes the LSTM maintain a constant error when it must be backpropagated at 
depth. [10] Instead of determining the subsequent cell state by multiplying its current state with the 
new input, the addition prevents the gradient from exploding or vanishing. [10] (Although we do still 
have to multiply the forget gate to the memory cell.)  
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1.5 Brief Overview of Training, Testing, and Validation 
 
Before diving into the two implementations, we will cover some machine learning concepts in this 
section. 
 
Learning problems can be grouped into two basic categories: supervised and unsupervised. 
Supervised learning includes classification, prediction, and regression, where the input vectors have 
a corresponding target (output) vectors. The goal is to predict the output vectors based on the input 
vectors. In unsupervised learning, such as clustering, there are no target values and the goal is to 
describe the associations and patterns among a set of input vectors. [7] The two LSTM 
implementations solve a supervised learning problem: given a sequence of inputs, we want to predict 
the probability of the next output.  
 
Normally to perform machine learning, it is best to break a given dataset into three parts: a training 
set, a validation set, and a test set. The training set is used for learning; the validation set is used to 
estimate the prediction error for model selection; the test set is used for assessment of the 
generalization error of the final chosen model. A general rule of thumb is to split the dataset 50% for 
training, and 25% each for validation and testing. [7] The difference in validation set and test set is 
that the validation set is used to tune the parameters of the network based on the error rate. From the 
validation we pick the model that performs the best. The test set is then strictly used to assess the 
performance of the chosen model, and therefore no tuning must happen during testing.  
 
In our case our goal is to build a model that can predict the next word or that next music note; this is 
a generative model in which we can generate new text or music by sampling from the output 
probabilities.  Therefore, we will be having training and validation set to fine tune the model, but we 
will not be having a test set. Instead, to generate an output we can feed in a randomly selected batch 
of data from the training.  
 
There can be cases when the error rate during training can be very low while the testing error rate is 
much higher. This phenomenon is called overfitting. The test error, also referred to as generalization 
error, is the expected error of the model on previously unseen records. [19] In training, we may be 
tempted to increase the complexity of the model to produce good results. However, sometimes 
increasing the complexity does not necessarily produce a model that generalizes well to test 
examples. A good model should have both a low training and generalization error. Model 
underfitting can also occur if the model has yet to learn the true structure of the data; usually in this 
case the training error and the generalization error will both be high. In the case of underfitting, the 
issues can be not enough dataset, or the model is not complex enough. While there are theories that 
address possible issues to these solutions, there is quite an art in training neural networks.  
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2. Implementation for Generating Traditional Chinese Music 
 
2.1 Overview of Andrej Karpathy’s char-RNN Model 
  
The char-RNN code written by Andrej Karpathy takes a single text file as an input and feeds it into 
the RNN algorithm that learns to predict the next character in the sequence. After training the RNN, 
it can generate text character by character that looks stylistically similar to the original dataset. The 
code is written in Lua and uses Torch. Useful features in this code are: option to have multiple 
layers, supporting code for model checkpointing, and using mini-batches to make the learning 
process efficient.  
 
2.2 Input Dataset: ABC notation 
 
The Chinese music dataset I used as input for the char-RNN model is a collection of simple Chinese 
music tunes I found online. It is a combination of 2,000 songs from abcnotation.com (1,200 songs, 
webscraped) and from a Japanese online blog2, also about 1,000 songs. The ABC notation was 
developed by Chris Walshow so that music can be represented using ASCII symbols. [21] The basic 
structure of the abc notation is the header and the notes. The header which contains background 
information about the song can look something like below:  
 
X:145 
T: Chocolate Pudding 
C: Ayako Mikami 
M:6/8 
K:D 
 
These lines are known as fields, where X is the reference number, T is the title of the song, C is the 
composer, M is the meter, and K is the key. The notes portion looks something like below:  
 
 
 
 
 
 
 
“D” stands for the note D, “C” for C, and so on.  
 
 

                                                
2 I could not locate the url of the website, which seemed like it was personally owned by a music 
hobbiest. There is a chance that the site has been taken down. 
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As Walshow explains, 
 

Upper case (capital) letters, CDEFGAB, are used to denote the bottom octave (C represents 
middle C, on the first leger line below the treble stave), continuing with lower case letters for 
the top octave, cdefgab (b is the one above the first leger line above the stave).To go down an 
octave, just put a comma after the letter and to go up an octave use an apostrophe. [21] 

 
There are many other symbols and formatting involved in abc notation. The abc formatted songs are 
converted to MIDI (Musical Instrument Digital Interface) files. MIDI files are series of messages 
such as “note on”, “note off”, “note/pitch”, “pitchbend”, and many more. [1] These MIDI files are 
then finally converted to mp3 files.  Chinese folk songs are typically monophonic, so the notations 
are straightforward with representation of the notes and the rhythm. When attempting to increase the 
size of the dataset by attempting to convert more complex music (non folk traditional songs) from 
MIDI to abc notation, the resulting abc notations were much more long and complicated. Below is a 
screenshot of part of a more complex traditional music in abc notation:  
 

 
 
Mixing the simple and complex abc notations together gave poor results and the network was not 
able to properly learn the abc notation.  
 
2.3 Results 
 
2.3.1 Checkpoints and Minimum Validation Loss 
During training, a checkpoint is saved every 1,000 iterations and at every checkpoint, a filename that 
looks something like this is printed to the terminal: 

 
lm_lstm_epoch0.95_2.0681.t7  

 
The checkpoint file saves the current values for all the weights in the model. The number after 
epoch0.95 (which means it has almost complete one full pass through the training data) indicates the 
loss on validation data, which is 2.0681. The smaller the loss, the better the checkpoint file works 
when generating the music. Due to possible overfitting, the minimum validation loss is not 
necessarily at the end of the training. For example, the table and plot below show all the saved 
checkpoints during a single training: 
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The minimum validation loss occurs at the 4,000th iteration out of 8,600 iterations. Rerunning the 
code on the same dataset produced the same loss values. Each iteration on average takes about 0.33 
seconds, and in total the model takes about 2-3 hours to train on CPU.  
 
2.3.2 Decreasing the batch parameter 
 
The two files needed to run the char-rnn code are train.lua and sample.lua. The train.lua gives the 
several options to adjust the parameters to create the best model for a given dataset. The parameters 
with the default values in brackets are as below:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Nth Iteration (out 
of 8600) 

Validation Loss 

1000 1.3641 

2000 1.2020 

3000 1.1862 

4000 1.1825 
5000 1.1978 

6000 1.2316 

7000 1.2669 

8000 1.2882 

8600 1.2737 
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These default parameters worked well for the dataset. As an experiment, I decreased the batch size 
from the default size of 50 to 40. The batch size specifies how many streams of data are processed in 
parallel at one time. If the input text file has N characters, these get split into chunks of size [batch 
size] x [sequence length] (length of each step, which is also the length at which the gradients can 
propagate backwards in time). [14] These chunks get allocated across two splits: training, and 
testing. By default the training fraction size (train_frac) is 0.95 and the validation fraction size 
(val_frac) is 0.05, meaning 95% of the data gets trained and 5% is used to estimate validation loss. 
With a small dataset, there could be very few chunks in total (~100 is considered small according to 
Karpathy). With the initial parameter settings for batch size and sequence length, the chunks were 
172 training and 10 for validation, in total 182 chunks. By decreasing the batch size to 40, there were 
now 216 chunks for training and 12 for validating, so 228 in total.  
 
The resulting validation loss was less than when trained with batch size of 50, as shown in the table 
and plot below.  
 
 
 
Nth Iteration (out of 
8600) 

Validation Loss 

1000 1.3316 

2000 1.1798 

3000 1.1353 

4000 1.1368 

5000 1.1485 

6000 1.1709 

7000 1.2028 

8000 1.1942 

9000 1.2333 

10000 1.2544 

10800 1.2581 

 
 
The minimum validation loss is 1.1353 at 3,000th iteration.  
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Below is a sample output text from the model (default parameters) and a musical score sheet of the 
output. 
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2.4 Challenges and Performance Evaluation 
 
The challenge of getting a successful result from this char-RNN was the limitation of the small 
dataset. There are not many Chinese music songs that are in abc format, and the songs themselves 
are short (only about 10-20 measures per song) and very simple tunes.  
 
The first time I ran the char-RNN it was on a dataset of 277KB, which is far less than the minimum 
required size of 1MB for the char-RNN to produce tangible results. Evidently, the result was poor. 
After converting the output to a mp3 file and listening to the song, there were about only 2 parts (~1-
2 seconds) that sounded “Chinese” in the 34 seconds and rest were random sequences of notes that 
made no musical “sense.” After finding more music from another source, the dataset increased to 
457KB, and the results were significantly better. Overall, music generated from the model with the 
larger dataset stylistically sounded Chinese. However, there are some outputs where occasionally 
there would be a note or two that does not sound cohesive with the rest of the music, which may be 
because the note is not part of the music’s scale. Since I have very little background in Chinese 
Music Theory, my evaluation is subjective and dependent on how the music sounds like. Regardless 
of the inability to quantitatively measure the accuracy of how well the model learned Chinese music, 
I am still impressed by LSTM’s ability to generate music that at least sounds very similar to the 
given input dataset.  
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3. Implementation for Generating Japanese Lyrics 
 
To better understand LSTMs, I wanted to work on my own implementation. Because this was my 
first time actually trying to code a LSTM model, I wanted to work with a easier dataset than music, 
and thus I chose to implement a LSTM model that generates Japanese lyrics. For this second 
implementation, I modified Denny Britz’s GRU model into an LSTM model. [1] GRU is another 
type of RNN model that has a different architecture from LSTM. The implementation is written in 
Python and uses the Theano library. For faster runtime I ran the code on GPU, specifically Amazon 
Web Services EC2 g2.2xlarge instance.  
 
3.1 Collecting and Preprocessing the Data 
 
The program will read in a single text file that contains all the Japanese lyrics. Since there are no 
online sources that provide Japanese lyrics that we can copy and paste (due to legal copyright issues) 
I used an application called Lyrics Master to lookup the lyrics and copy and paste them into a text 
file. 
 
The next step is to preprocess the dataset. Unlike the char-RNN model that parses the dataset char by 
char, this one parses word by word. Since we want to make the model specific to learning Japanese, 
we use a Japanese tokenizer written in Python by Masato Hagiwara called TinySegementer. Below is 
an example of how the TinySegmenter parses the text “My name is Ayako Mikami.”   
 

 
 
After parsing the lyrics into words, we build a vocabulary list. The rational for a vocabulary list is 
that many words will only appear once or twice in the lyrics text file. The model will not learn these 
words properly anyway because of their low frequency. We will set the vocabulary size to 8000. The 
top 8000 frequent words in the text file will be in the vocabulary size. If the model encounters a 
word not in the vocabulary list, we replace the word with UNKNOWN_TOKEN, and we will predict 
it like any other word. To each lyric in the lyrics text file we append START_TOKEN and 
END_TOKEN. When we actually generate a new lyric from the learned model, we can use the 
START_TOKEN to feed into the model, and from there the model can predict the word for the 
beginning of the lyric. 
 
The neural network takes in vectors as inputs, not strings. To convert the strings to vectors we create 
a mapping between words and indices – index_to_word and word_to_index. Britz explains how the 
input and corresponding labels are set up: 
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For example, the word “friendly” may be at index 2001. A training example 𝑥 may look like [0, 179, 
341, 416], where 0 corresponds to SENTENCE_START. The corresponding label 𝑦 would be [179, 
341, 416, 1]. Remember that our goal is to predict the next word, so 𝑦 is just the 𝑥 vector shifted by 
one position with the last element being the SENTENCE_END token. In other words, the correct 
prediction for word 179 above would be 341, the actual next word. [2] 

 
Below is a single training example, where x is the input and y is the correct prediction. What we are 
actually feeding in are the vectors: 

 
Figure 1: Sample input x and its corresponding labels y [3] 

 
I wrote my own preprocessing code so to parse and encode Japanese text, but the mapping idea 
remains the same. Please refer to the appendix for the code. 
 
The input 𝑥 is a sequence of words, and each 𝑥! is a single word. However, converting the strings 
into corresponding numerical indices is not enough. In order to make the matrix multiplication work, 
we cannot use the word index as input. Instead, we need to represent each word as a one-hot vector 
of size 8000, our vocabulary_size. For example, the word with index 10 will be vector of all 0’s and 
a 1 at position 10. Each word, x_t becomes a vector, and x is a matrix, with each row representing a 
word. The below figure illustrates what the input matrix looks like: 
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Given that the vocabulary size is 8000 and we have a hidden layer size of 100, then the dimensions 
of the matrices and vectors for the LSTM network will look like this: 
 

𝑥!   ∈   ℝ!""" 
𝑜!   ∈   ℝ!""" 
𝑠!   ∈   ℝ!"" 
𝑐!   ∈   ℝ!"" 

𝑈   ∈   ℝ!""  ×  !""" 
𝑉   ∈   ℝ!"""  ×  !"" 
𝑊   ∈   ℝ!""  ×  !"" 

 
𝑥! is a word vector input, 𝑜! is an output vector,  𝑠!  is hidden layer vector, 𝑐! is the cell state, and U, 
V, W are weight matrices that correspond to input layer, output layer, and hidden layer, respectively 
as illustrated in diagram 2.  
 
Knowing the dimensions of our matrices is important because it not only helps in making sure we set 
the correct initialization values, but also tells us the complexity of our model. As Britz explains: 
 

Remember that 𝑈,𝑉, 𝑎𝑛𝑑  𝑊are the parameters of our network we want to learn from data. 
Thus, we need to learn a total of 2𝐻𝐶 + 𝐻! parameters. In the case of  𝐶 = 8000 and 
𝐻 = 100 that’s 1,610,000. The dimensions also tell us the bottleneck of our model. Note 
that because 𝑥! is a one-hot vector, multiplying it with 𝑈 is essentially the same as selecting 
a column of 𝑈, so we don’t need to perform the full multiplication. Then, the biggest matrix 
multiplication in our network is 𝑉𝑠!. That’s why we want to keep our vocabulary size small 
if possible. [2] 

 
What follows after for implementation steps are: initialization of variables; forward propagation; 
calculating the loss; back propagation through time; gradient checking; stochastic gradient descent; 
and finally generating text. Please refer to Britz’s blog post for further explanations. 
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3.2 Forward Propagation 
 
As mentioned before, I modified Britz’s implementation of GRU to make it LSTM. The biggest 
modification happens in the forward propagation, which looks like below: 
 

 
 
The model architecture has two hidden layers (commented above in the code as #LSTM Layer 1, 
#LSTM Layer 2). The activation function is tanh. I took the equations from diagram 5 and wrote it in 
Python using Theano’s built-in functions.  
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3.3 Results 
 
For this implementation, I needed to run the code on GPU, so I used Amazon Web Services EC2 
g2.2xlarge. The dataset is about 1MB, or 732 Japanese lyrics. A single SGD step time takes on 
average 44 milliseconds, and the entire model takes roughly 3 hours to train.  
 
Here is a sample training output, with the English translation to the right: 
 

 
 
The result is quite poor. There are multiple areas where the grammar is incorrect, and the sentences 
do not make any sense. It did learn that the lyric composition is 3-4 lines of text, a line break, 
another 3-4 lines of text. The poor performance could either be due to a small dataset, not enough 
optimization in the code, error in the code, or combination of any of them. In addition, removing any 
English words in the preprocessing step would be ideal, since including both Japanese and English 
complicates the learning.  
 
At this point I could not determine what the exact reason for, I decided to increase the dataset. To 
increase the dataset, instead of batching a single input x as the entire lyrics piece, I made the single 
input x to be a single line of lyrics. This makes it so that from 732 inputs to around 31,000 inputs. I 
also collected 2MB of literature written by Souseki Natsume. After running the code over the larger 
dataset, there seems to be a bug in the code as there were error messages that halted the training. 
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4. Conclusions and Future Work 
 

I would like to continue working on the implementation to fix the code and improve the performance 

of the model. There is still much to understand about LSTM networks both in theory and in practice. 

There are many optimization techniques involved in neural networks that I would like to further 

explore.  

 

Overall I am impressed with the progress and results deep learning techniques have accomplished in 

the recent years. I am fascinated by deep neural networks’ capability to create something that is in 

align with the style of the given input, and yet have its own unique taste that can be sometimes 

bizarre but sometimes incredible. I look forward to future human and machine collaborations in the 

fields of music, literature, and art.  
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Appendix 
 
Please visit https://github.com/mikamia for all code related to this thesis.  
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